Showing posts with label Superfamily: Tyrannosauroidea. Show all posts
Showing posts with label Superfamily: Tyrannosauroidea. Show all posts

Monday, May 6, 2019

[Paleontology • 2019] Suskityrannus hazelae • A mid-Cretaceous Tyrannosauroid and The Origin of North American end-Cretaceous Dinosaur Assemblages


Suskityrannus hazelae 
Nesbitt, Denton, Loewen, Brusatte, Smith, et al., 2019

Abstract
Late Cretaceous dinosaur assemblages of North America—characterized by gigantic tyrannosaurid predators, and large-bodied herbivorous ceratopsids and hadrosaurids—were highly successful from around 80 million years ago (Ma) until the end of the ‘Age of Dinosaurs’ 66 Ma. However, the origin of these iconic faunas remains poorly understood because of a large, global sampling gap in the mid-Cretaceous, associated with an extreme sea-level rise. We describe the most complete skeleton of a predatory dinosaur from this gap, which belongs to a new tyrannosauroid theropod from the Middle Turonian (~92 Ma) of southern Laramidia (western North America). This taxon, Suskityrannus hazelae gen. et sp. nov., is a small-bodied species phylogenetically intermediate between the oldest, smallest tyrannosauroids and the gigantic, last-surviving tyrannosaurids. The species already possesses many key features of the tyrannosaurid bauplan, including the phylogenetically earliest record of an arctometatarsalian foot in tyrannosauroids, indicating that the group developed enhanced cursorial abilities at a small body size. Suskityrannus is part of a transitional Moreno Hill (that is, Zuni) dinosaur assemblage that includes dinosaur groups that became rare or were completely absent in North America around the final 15 Myr of the North American Cretaceous before the end-Cretaceous mass extinction, as well as small-bodied forebears of the large-bodied clades that dominated at this time.




Skeletal element of both specimens of Suskityrannus hazelae gen. et sp. nov. and reconstruction. 


Systematic palaeontology
 Dinosauria Owen, 1842
Theropoda Marsh, 1881

Coelurosauria
Tyrannosauroidea

Suskityrannus hazelae gen. et sp. nov. 

Etymology. Genus: from the Zuni ‘Suski’ (coyote) and the Latin ‘tyrannus’ (king). The specific name is for Hazel Wolfe, whose tireless efforts, support and sacrifices made possible much of the success at the Moreno Hill fossil localities.



Sterling J. Nesbitt, Robert K. Denton Jr, Mark A. Loewen, Stephen L. Brusatte, Nathan D. Smith, Alan H. Turner, James I. Kirkland, Andrew T. McDonald and Douglas G. Wolfe. 2019. A mid-Cretaceous Tyrannosauroid and The Origin of North American end-Cretaceous Dinosaur Assemblages. Nature Ecology & Evolution. DOI: 10.1038/s41559-019-0888-0  

New three-foot-tall relative of Tyrannosaurus rex 


Thursday, April 6, 2017

[Paleontology • 2017] Daspletosaurus horneri • A New Tyrannosaur with Evidence for Anagenesis and Crocodile-like Facial Sensory System


Daspletosaurus horneri 
 Carr, Varricchio, Sedlmayr, Roberts & Moore, 2017 

Holotype (MOR 590). Illustration: Dino Pulerà.
 
DOI: 10.1038/srep44942  

Abstract
A new species of tyrannosaurid from the upper Two Medicine Formation of Montana supports the presence of a Laramidian anagenetic (ancestor-descendant) lineage of Late Cretaceous tyrannosaurids. In concert with other anagenetic lineages of dinosaurs from the same time and place, this suggests that anagenesis could have been a widespread mechanism generating species diversity amongst dinosaurs, and perhaps beyond. We studied the excellent fossil record of the tyrannosaurid to test that hypothesis. Phylogenetic analysis places this new taxon as the sister species to Daspletosaurus torosus. However, given their close phylogenetic relationship, geographic proximity, and temporal succession, where D. torosus (~76.7–75.2 Ma) precedes the younger new species (~75.1–74.4 Ma), we argue that the two forms most likely represent a single anagenetic lineage. Daspletosaurus was an important apex predator in the late Campanian dinosaur faunas of Laramidia; its absence from later units indicates it was extinct before Tyrannosaurus rex dispersed into Laramidia from Asia. In addition to its evolutionary implications, the texture of the facial bones of the new taxon, and other derived tyrannosauroids, indicates a scaly integument with high tactile sensitivity. Most significantly, the lower jaw shows evidence for neurovasculature that is also seen in birds.


Figure 1: Skull and jaws of the holotype (MOR 590) of Daspletosaurus horneri sp. nov.;
 (A) photograph and, (B) labeled line drawing of skull and jaws in left lateral view; (C) photograph and, (D) labeled line drawing of occiput and suspensorium in caudal view; (E) photograph and, (F) labeled line drawing of skull in dorsal view. Scale bars equal 10 cm. Abbreviations: MOR, Museum of the Rockies. 

Figure 2: Phylogenetic position and synapomorphies of Daspletosaurus, based on parsimony analysis.
 (A) Phylogenetic relationships of tyrannosaurines calibrated to geological time. Full consensus trees in Extended Data. Synapomorphies of the Daspletosaurus lineage from: (B) maxilla of MOR 1130; (C) lacrimal of MOR 1130; (D) postorbital of CMN 11594; (E) vomer of MOR 590; (F) palatine of MOR 1130; and (G) frontoparietal complex of MOR 590. Abbreviations: AMNH FARB, American Museum of Natural History, Fossil Amphibians, Reptiles, and Birds; As, Asia CMN, Canadian Museum of Nature; K/Pg, Cretaceous-Paleogene; LA, Laramidia; MOR, Museum of the Rockies. 

Figure 3: The growth series of Daspletosaurus horneri sp. nov., based on parsimony analysis.
 Unambiguously optimized derived phylogenetic characters were recovered as synontomorphies at two of the five growth stages, which are labeled at the corresponding numbers. Scale bar equals 10 cm. Abbreviations: AMNH FARB, American Museum of Natural History, Fossil Amphibians, Reptiles, and Birds; MOR, Museum of the Rockies. 


Theropoda Marsh, 1881
Tyrannosaurinae Matthew and Brown, 1922 (sensu Sereno et al., 2005)

Daspletosaurus Russell, 1970
Daspletosaurus. All species more closely related to Daspletosaurus torosus than to Tyrannosaurus rex.

Daspletosaurus horneri sp. nov.

Etymology: Horneri, Latinized form of Horner, in honor of Jack Horner, in recognition of his successful field program in the Two Medicine Formation that has recovered many new species of dinosaurs that are critical for our understanding of the palaeobiology of dinosaurs in Laramidia, support in the preparation and curation of these specimens, and to acknowledge that his mentoring efforts have launched many professional scientific careers.

Figure 4: The craniofacial epidermis of Daspletosaurus horneri sp. nov., based on comparison with its closest living relatives, crocodylians and birds. Figure 4 Bone texture indicates large zones of large, flat scales and subordinate regions of armor-like skin and cornified epidermis; integumentary sense organs occur on the flat scales that cover the densest regions of neurovascular foramina. The region outside of the crocodylian-like skin is reconstructed with small scales after fossilized skin impressions of tyrannosaurids.
 Illustration: Dino Pulerà.  



Thomas D. Carr, David J. Varricchio, Jayc C. Sedlmayr, Eric M. Roberts and Jason R. Moore. 2017. A New Tyrannosaur with Evidence for Anagenesis and Crocodile-like Facial Sensory System.
 Scientific Reports. 7, 44942 (2017). DOI: 10.1038/srep44942 

Thursday, March 17, 2016

[Paleontology • 2016] Timurlengia euotica • New Tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs


Timurlengia euotica 
 Brusatte, Averianov, Sues, Muir & Butler, 2016
DOI:   
10.1073/pnas.1600140113 

Significance
Tyrannosaurs — the iconic group of dinosaurian carnivores that includes Tyrannosaurus rex —dominated latest Cretaceous ecosystems with their colossal sizes and sophisticated senses. A gap in the mid-Cretaceous fossil record between these giant apex predators and their older, smaller relatives makes it difficult to understand how the characteristic body size and ecological habits of T. rex and kin developed. A new species from Uzbekistan fills this gap. This horse-sized animal shows that tyrannosaurs had yet to achieve huge size at this time but had already evolved key brain and sensory features of the gigantic latest Cretaceous species. Tyrannosaurs apparently developed giant body size rapidly, late in the Cretaceous, and their success may have been enabled by their early-evolving keen senses.

Abstract
Tyrannosaurids — the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus — were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90–92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

Keywords: dinosaur, Tyrannosauroidea, Uzbekistan, phylogenetics, evolution


Fig. 1. Skeletal reconstruction of Timurlengia euotica, with known bones colored in red. Individual bones come from different individuals, as they were surfacecollected as isolated specimens in the Bissekty Formation of Uzbekistan. The proportions of the skeleton are based on an intermediate body type between Xiongguanlong and Tyrannosaurus but should be considered provisional until associated material is found.
Bones are as follows: A, left frontal, ZIN PH 2330/ 16; B, holotypic braincase, ZIN PH 1146/16; C, cervical vertebra, ZIN PH 671/16; D, cervical vertebra, USNM (National Museum of Natural History) 538131; E, dorsal neural arch, USNM 538132; F, dorsal vertebra, CCMGE (Chernyshev’s Central Museum of Geological Exploration) 432/12457; G, anterior caudal vertebra, ZIN PH 951/16; H, middle caudal vertebra, ZIN PH 120/16; I, distal caudal vertebra, ZIN PH 507/16; J, pedal ungual, USNM 538167; K, manual ungual, ZIN PH 619/16; L, right articular and surangular (reversed), ZIN PH 1239/16; M, left quadrate, ZIN PH 2296/16; N, right dentary, ZIN PH 15/16; and O, right maxilla (reversed), ZIN PH 676/16. (Individual scale bars, 2 cm.)
Skeletal drawing courtesy of Todd Marshall.

A fossil tooth (front and back) of the newly discovered dinosaur. The blade-like teeth, says Hans Sues, were well-suited for "slicing through meat."

Systematic Paleontology
Dinosauria Owen, 1842; Theropoda Marsh, 1881;
Coelurosauria Huene, 1914; Tyrannosauroidea Osborn, 1905;

Timurlengia euotica  gen. et sp. nov.

Holotype: ZIN PH (Paleoherpetological Collection, Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia) 1146/16, a well-preserved braincase missing only the paroccipital processes and much of the parabasisphenoid (Figs. 1 and 2 and Figs. S1−S3).

Etymology Timurlengia, in reference to the fourteenth-century Central Asian ruler Timurleng (English: Tamerlane), and euotica, meaning “well eared” in reference to the large inner ear of the holotype.

Horizon and Locality: Dzharakuduk, central Kyzylkum Desert, Navoi Viloyat, Uzbekistan. Bissekty Formation, Upper Cretaceous, Middle-Upper Turonian (ca. 90–92 million years ago)

A reconstruction of the horse-sized tyrannosaur Timurlengia euotica, named for the charismatic Central Asian ruler Tamerlane, shows the species' long, slender legs, large head and teeth built sharp like a steak knife.
NMNH, Original painting by Todd Marshall 

Fig. 3. Phylogenetic relationships of Timurlengia euotica among theropod dinosaurs. Strict consensus of 99,999 most parsimonious trees (length = 3,367, consistency index = 0.322, retention index = 0.777) recovered from cladistic analysis in which T. euotica is scored based on the holotypic braincase and series of referred specimens. Numbers next to nodes are Bremer/jackknife support values, thick lines next to each taxon depict temporal range (which in most cases is age uncertainty and not true range), colors of lines denote geographic areas, and silhouettes are in relative proportion and scaled to total body length (T. rex = 13 m).
Geographic silhouettes are from Loewen et al. (3), and taxon silhouettes are courtesy of phylopic.org (Kileskus, T. M. Keesey; Guanlong, S. Hartman; Juratyrant, S. Hartman, T. M. Keesey; Eotyrannus, S. Hartman; Dryptosaurus, T. M. Keesey; Albertosaurus, C. Dylke; Daspletosaurus, S. O’Connor, T. M. Keesey; Tyrannosaurus, S. Hartman).

Conclusions
Timurlengia is a long-awaited diagnostic tyrannosauroid from the middle part of the Cretaceous. It indicates that these predators were still far from giants during this time, but had already evolved signature brain and sensory features that may have been tied to the extraordinary success of the last-surviving, latest Cretaceous species like Tyrannosaurus. However, Timurlengia remains a single data point from a still murky interval in dinosaur history, and future discoveries from this gap will undoubtedly lead to a better understanding of how tyrannosauroids rose from marginal creatures into some of the largest terrestrial predators in Earth history.


 Stephen L. Brusatte, Alexander Averianov, Hans-Dieter Sues, Amy Muir and Ian B. Butler. 2016. New Tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs. Proceedings of the National Academy of Sciences of the United States of America. in press. DOI:   10.1073/pnas.1600140113

The discovery of a tiny Tyrant set the stage for the evolution of T. rex
http://po.st/TSbHav via @SmithsonianMag 
@NMNH #PreRex
 Behold Timurlengia—the Elusive Missing Link in Tyrannosaur Evolution
http://gizmodo.com/behold-timurlengia-the-elusive-missing-link-in-tyrannos-1764749916
Timurlengia euotica: Distant relative of T-rex shows how dinosaur became giant
  http://ibt.uk/A6V4r  via @IBTimesUK #dinosaurevolution

Saturday, December 20, 2014

[Paleontology • 2014] Qianzhousaurus sinensis • A New Clade of Asian Late Cretaceous long-snouted tyrannosaurids


two individuals of Qianzhousaurus sinensis and a small feathered dinosaur
illustration: Chuang Zhao

The iconic tyrannosaurids were top predators in Asia and North America during the latest Cretaceous, and most species had deep skulls that allowed them to generate extreme bite forces. Two unusual specimens of Alioramus from Mongolia seem to indicate a divergent long-snouted body plan among some derived tyrannosaurids, but the rarity and juvenile nature of these fossils leaves many questions unanswered. Here, we describe a remarkable new species of long-snouted tyrannosaurid from the Maastrichtian of southeastern China, Qianzhousaurus sinensis. Phylogenetic analysis places Qianzhousaurus with both species of Alioramus in a novel longirostrine clade, which was geographically widespread across latest Cretaceous Asia and formed an important component of terrestrial ecosystems during this time. The new specimen is approximately twice the size as both Alioramus individuals, showing that the long-snouted morphology was not a transient juvenile condition of deep-snouted species, but a characteristic of a major tyrannosaurid subgroup.




Junchang Lü, Laiping Yi, Stephen L. Brusatte, Ling Yang, Hua Li & Liu Chen. 2014. A New Clade of Asian Late Cretaceous long-snouted tyrannosaurids. Nature Communications. 5, 3788 doi: dx.doi.org/10.1038/ncomms4788

"Pinocchio Rex" Found; Dinosaur Sported Long Snout

Thursday, March 13, 2014

[Paleontology • 2014] Nanuqsaurus hoglundi • A Diminutive New Tyrannosaur from the Top of the World


Nanuqsaurus hoglundi Fiorillo & Tykoski 2014
 nearly 2 m. tall at the hips and 7 m. from snout to tail, about half the size of T rex.
Illustration: Karen Carr

Abstract
Tyrannosaurid theropods were dominant terrestrial predators in Asia and western North America during the last of the Cretaceous. The known diversity of the group has dramatically increased in recent years with new finds, but overall understanding of tyrannosaurid ecology and evolution is based almost entirely on fossils from latitudes at or below southern Canada and central Asia. Remains of a new, relatively small tyrannosaurine were recovered from the earliest Late Maastrichtian (70-69Ma) of the Prince Creek Formation on Alaska's North Slope. Cladistic analyses show the material represents a new tyrannosaurine species closely related to the highly derived Tarbosaurus+Tyrannosaurus clade. The new taxon inhabited a seasonally extreme high-latitude continental environment on the northernmost edge of Cretaceous North America. The discovery of the new form provides new insights into tyrannosaurid adaptability, and evolution in an ancient greenhouse Arctic.


Figure 3. Nanuqsaurus hoglundi, holotype, DMNH 21461.
A. Reconstruction of a generalized tyrannosaurine skull, with preserved elements of holotype shown in white. Arrow points to autapomorphic, reduced, first two dentary teeth.
B–E. Photographs and interpretive line drawings of right maxilla piece in medial (B, C); and dorsal (D, E) views. F–I. Photographs and interpretive line drawings of partial skull roof in dorsal (F, G); and rostrolateral (H, I) views. J–M, partial left dentary in lateral (J); medial (K); dorsal (L) views; and close-up of mesial alveoli in dorsal (M) views.

Etymology: Nanuqsaurus, combination of ‘nanuq’ the Iñupiaq word for polar bear and the Greek ‘sauros’ for lizard; hoglundi, named in recognition of Forrest Hoglund for his career in earth sciences and his philanthropic efforts in furthering cultural institutions.

Theropod size comparisons, showing the newly discovered Nanuqsaurus hoglundi (A), Tyrannosaurus rex (B and C), Daspletosaurus torosus (D), Albertosaurus sarcophagus (E), Troodon formosus (F), and Troodon sp. (G).
Scale bar equals 1 metre | Doi: 10.1371/journal.pone.0091287



Anthony R. Fiorillo and Ronald S. Tykoski. 2014. A Diminutive New Tyrannosaur from the Top of the World. PLoS ONE. 9 (3): e91287.
 DOI: dx.doi.org/10.1371/journal.pone.0091287

Pygmy tyrannosaur roamed the Arctic
Newly discovered cousin of T rex, Nanuqsaurus hoglundi, inhabited an Arctic island continent around 70m years ago
 http://gu.com/p/3nfdx/tw via @guardian


Thursday, November 7, 2013

[Paleontology • 2013] Lythronax argestes | 'King of Gore' | a new tyrannosaurid from the Wahweap formation of southern Utah • Tyrant Dinosaur Evolution Tracks the Rise and Fall of Late Cretaceous Oceans





Life Reconstruction of the newly named tyrannosaur Lythronax argestes.
Illustration: Andrey Atuchin

Abstract

The Late Cretaceous (~95–66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah—including a new taxon which represents the geologically oldest member of the clade—to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.




Skull reconstructions and selected cranial elements of Lythronax argestes.

Lythronax argestes
Loewen, Irmis, Sertich, Currie & Sampson 2013

Etymology: Lythronax, from lythron (Greek), gore, and anax (Greek), king; and argestes (Greek), the Homeric wind from the southwest, in reference to the geographic location of the specimen within North America.


Skeletal reconstruction of Lythronax (A) and Teratophoneus (B)Reconstructed skeletons of Lythronax argestes (UMNH VP 20200) and (B) Teratophoneus curriei (UMNH VP 16690), with the respective postcranial material (C-M for Teratophoneus and N-P for Lythronax)




Mark A. Loewen,  Randall B. Irmis, Joseph J. W. Sertich, Philip J. Currie and Scott D. Sampson. 2013. Tyrant Dinosaur Evolution Tracks the Rise and Fall of Late Cretaceous Oceans. PLoS ONE. 8(11): e79420. doi: dx.doi.org/10.1371/journal.pone.0079420

Thomas D. Carr, Thomas E. Williamson, Brooks B. Britt and Ken Stadtman. 2011. Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (Late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits formation of Utah. Naturwissenschaften 98 (3): 241–246. doi: dx.doi.org/10.1007/s00114-011-0762-7

Lythronax argestes the "King of Gore"
A new species of Tyrannosaur recently uncovered in the badlands of Utah.




Lythronax: a new tyrant and the spread of the tyrannosaurs
A newly named tyrannosaur dinosaur supports the idea that the evolution of these animals was more provincial than previously thought

All hail the Southern King of Gore – Lythronax argestes. As names go in palaeontology that’s a superb entry and one that has more than a nice ring to it. While it is true that new dinosaurs are named all the time, new tyrannosaurs are generally considered rather special since they are not common, and the charisma of the group remains undimmed. Thus the naming of Lythronax in the journal PLOS ONE is unsurprisingly popular, but the animal has way more going for it than a cool name.

Thursday, April 26, 2012

[Paleontology • 2012] Yutyrannus huali 'feathered tyrant' • A gigantic feathered dinosaur from the Lower Cretaceous of China




Abstract
 Numerous feathered dinosaur specimens have recently been recovered from the Middle–Upper Jurassic and Lower Cretaceous deposits of northeastern China, but most of them represent small animals1. Here we report the discovery of a gigantic new basal tyrannosauroid, Yutyrannus huali gen. et sp. nov., based on three nearly complete skeletons representing two distinct ontogenetic stages from the Lower Cretaceous Yixian Formation of Liaoning Province, China. Y. huali shares some features, particularly of the cranium, with derived tyrannosauroids, but is similar to other basal tyrannosauroids in possessing a three-fingered manus and a typical theropod pes. Morphometric analysis suggests that Y. huali differed from tyrannosaurids in its growth strategy. Most significantly, Y. huali bears long filamentous feathers, thus providing direct evidence for the presence of extensively feathered gigantic dinosaurs and offering new insights into early feather evolution.



An artist's impression of a group of Yutyrannus, the largest known frathered dinosaur, and two smaller Beipiaosaurus, the previous record holder.
Illustration by Brian Choo via Nature


Figure 1: Yutyrannus huali (ZCDM V5000 and ZCDM V5001).

Figure 2: Selected elements of Y. huali (ZCDM V5000, ZCDM V5001 and ELDM V1001).


Figure 3: A simplified cladogram showing the systematic position of Y. huali among the Tyrannosauroidea.

Xu, X., Wang, K., Zhang, K., Ma, Q., Xing, L., Sullivan, C., Hu, D., Cheng, S., and Wang, S. 2012. A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature. http://dx.doi.org/10.1038/nature10906