Showing posts with label RAPTOR. Show all posts
Showing posts with label RAPTOR. Show all posts

Wednesday, July 22, 2015

SDSR 2015 - Any chance to keep up fast jet numbers?




SDSR 2015 – Issues, analysis and recommendations going towards the review

Budget

Army 

Royal Air Force 
Fast jets and squadrons number 
Royal Navy 



It is SDSR time, and it is evident in the news. Suddenly, something that we have know since at least 2011 is making the headlines as newspapers and publications grasp the fact that the UK is running down a steep slope that could bring the total number of fast jets all the way down to a paltry 127 or so by 2020, in as few as 6 squadrons, one of which probably not even fully operational and built up by that date.
The totals are easy made: 107 Tranche 2 and 3 Typhoons in 5 frontline squadrons, plus around 20 F-35Bs in 617 Sqn (plus OCU and OEU). The exact number of F-35Bs by 2020 is not known because government has yet to detail how many british aircraft will be purchased in LRIP 11 and in the Full Rate Production Lot 1. LRIP 11 aircraft would be delivered over the year 2019, with Full Rate 1 jets following during 2020, assuming that the F-35 production ramp-up is successful and there are no delivery delays.
18 F-35Bs should be in british hands by end 2018, according to JPO documents. LRIP 11 will add a yet unknown number. By 2023, some 48 F-35s should be in british hands, which, if confirmed in these terms, would mean spreading the purchase of 30 aircraft over LRIP 11 and Full Rate Lots 1, 2, 3 and 4. An average of 6 aircraft per year.

Anyway, by 2020 the fast jet fleet will indeed count a mere 127 or 130 or 131 aircraft, whatever it might be. The difference is marginal, and would still equate to just 6 squadrons, with a seventh (809 NAS) to follow by 2023. Longer term figures entirely depend on the number of F-35s to be purchased beyond 2023, but there is every reason to be fearful that if the number of jets is allowed to fall so low, it will then be very complex to rebuild.
The fall to such a low number of jets (and squadrons) will be determined by the loss, by 2019, of the 52 surviving Tranche 1 Typhoons (one written off in 2008) and the withdrawal of the remaining Tornado GR4 fleet, planned for March 2019.
Is there any way to put a limit to this dismantling process? 

The Tranche 1 Typhoons are far from out of useful airframe life, but they are extremely limited in their multi-role capability, and increasinly less comparable to Tranche 2s and 3As. The aircraft cannot be upgraded to current standards unless they are vastly rebuilt, in a process which would cost billions.
The Typhoon Tranche 1 is effectively stuck to AMRAAM and Paveway II, and both weapons are on the way out. The latter is being replaced by the lighter, more modern and capable Paveway IV. The AMRAAM will be replaced by the Meteor.
None of the two new weapons can be employed on Tranche 1, nor can the old Typhoons be upgraded to accept them at an acceptable cost.

An indirect help to Tranche 1 comes from the Meteor's and F-35's delays, however. It is to be assumed that the RAF will once more life-extend its (limited) stock of AMRAAM missiles to ensure that the F-35 has an air to air capability at entry in service and into the first five years of 2020. Meteor is expected to be integrated with the F-35 Block IV software (it should be confirmed later this year, hopefully), but it could take out to 2026 before it is operational. It is to be hoped that the RAF will not accept years of gap with the F-35 capable to employ only 2 external ASRAAM missiles.
Indirectly, a life-extension to the AMRAAM stock would benefit the Tranche 1 Typhoons, ensuring that they have at least one operational weapon (again, in addition to ASRAAM).

Thanks to an AMRAAM extension, it is theorically possible to talk about delaying the Tranche 1 OSD, putting the aircraft into one or two "air to air only" squadrons, with the other five employing Tranche 2 and 3 machines in a multi-role fashion, with special focus on air to ground due to Tornado GR4 leaving service in 2019 as currently planned.

The advantages of a Tranche 1 run-on, potentially, are:

- Confirmed elimination of one logistic and training line (Tornado GR4)
- Up to two extra squadrons going into the 2020s, albeit only good for air to air and at a progressively declining level of combat capability due to the rest of the Typhoon fleet moving on to Meteor
- It will be somewhat easier to argue for more F-35s if the number of squadrons is kept up. Replacing the equipment of existing squadrons is one thing. Rebuilding squadrons after losing them entirely is a different story, especially in the Treasury's eye.


The alternative is, of course, delaying the OSD of Tornado GR4. This is likely to be what the RAF actually hopes to obtain. The GR4 is useless in air to air, but has a complete air to ground capability which is in far higher demand.
It is already deployed on operations against ISIS.
And it has RAPTOR. This point is particularly relevant since the RAF is so far still refusing to seek integration of RAPTOR, or of another recce pod, on Typhoon. The RAPTOR is used constantly, and its contribution is appreciated and praised: with the Prime Minister and top brass voicing their support for ISTAR spending, surely the risk of losing RAPTOR without an immediate replacement in 2019 will add weight to the RAF's calls for a Tornado run-on.


The Tornado GR4 is more immediately useful and better responds to what the UK currently needs and is likely to continue needing in the near future: air to ground capability, including excellent tactical imagery reconnaissance with the RAPTOR system.
The Tranche 1's help would instead consist only of providing an (increasingly sub-standard, but arguably good enough) air defence capability, enabling the rest of the Typhoon fleet to be more swing-role, and to take up the job from the outgoing Tornado.
The Tornado run-on means facing all the costs of a separate fleet with its own logistic and training needs. The availability of a very large sustainment fleet can help somewhat in covering logistic costs, but the financial impact is still likely to be important.
The Tranche 1 eurofighters, albeit increasinly different from later aircraft of the same name, would still fit within the Typhoon pipeline, instead.

In other words: capability wise, the running on of Tornado is more desirable than the running on of Tranche 1. The problem is the added complexity (and cost, presumably) or running a third fleet with a different logistic and training pipeline. The Tornado GR4, unlike Typhoon and F-35, also requires a specific training pipeline for the rear crew.

The signs that the RAF hopes for a longer life for Tornado, in my opinion, are:

- The refusal, voiced by RAF officers at RIAT, to commit to a reconnaissance pod for Typhoon, saying that integrating RAPTOR for now is not on the cards and "leaving the decision for the SDSR"



- The seeking of an Helmet Mounted Cueing Display system for the Tornado GR4. Helmet mounted cueing was already introduced back in 2012 as an Op Herrick UOR, but now the RAF is asking for a fleet-wide installation of a system which must be compatible with all weapons employed by Tornado, including the ASRAAM. It is true that these devices greatly help the crews in conducting their missions, and that if deemed essential they should be made available to the crews even in the imminence of the OSD, since they are engaged in real combat. But the requirement seems a bit excessive, if the assumption is for less than three years of use before the aircraft goes out of service.

- Recent, consistent investment in upgrades for the Radar Frequency self-protection capability, by means of rebuilt Skyshadow pods which also introduce modern Towed Radar Decoys.

- Rumors of a renewed RAF focus on rear-crew training, via exploitation of the Royal Navy's Observers training pipeline at 750 NAS (althouth the entry in service of Rivet Joint, the running-on of Sentinel and the expected purchase of an MPA might be enough of an explanation, admittedly)

It seems pretty certain that the Tornado force will get another temporary boost, with the further extension of the service life of the third squadron, originally planned to disband this year but then extended out to 2016. But another one-year extension will not be enough to alter the long term figures. More will be needed.

As always, the outcome depends on money, and despite some (way excessive, i fear) optimism shown by service chiefs themselves, the 2% of GDP committment has been officially exposed as being made up at least in part by financial gimmicks and inclusion of voices of expenditure which used to be separated.

As with other NATO allies, from time to time we update our approach to ensure we are categorising defence spending fully in accordance with NATO guidelines, seeking to capture all spending contributing to delivering the defence of the United Kingdom. Our 2011-12 NATO return was £36.6 billion. This included the Ministry of Defence budget, the cost of operations, and the Armed Forces Pension Scheme but did not reflect all UK defence spending. Our 2015-16 NATO return of £39 billion also included Ministry of Defence-generated income which directly funds defence activity, elements of the Government's cyber security spending, parts of the Conflict, Stability and Security Fund relating to peacekeeping, war pensions and pension payments to retired MOD civil servants.
House of Lords written answer, 20 July 2015, exposes the new expenditure voices included to secure the 2% target is formally met. 


Lets be clear once more: to even achieve 2% without gimmicks, it would still mean decline in percentual terms. We are forced to take the 2% as a good news only because the alternative was even worse, and by far.
The pressure on the forces' budget is not going away, and expecting miracles will only result in disappointment and tears. However, if we believe to the words of Howard Wheeldon, FRAeS

We had entered into the intense bargaining that surrounded SDSR 2010 with a request for twelve squadron. It was believed that we would in the end get nine and yet that belief ended up being just seven on an accepted basis that this would grow to nine.

Nine squadrons would cohincide with the up to 96 aicraft, 4-squadron F-35 force which was aired as long term target at the time of the switch to the F-35C.
Around 80 F-35Bs in four squadrons would be a good force, and they would be numbers which would give value to the investment made in the aircraft carriers. A fast jet count of some 187 would be nothing extraordinary: keep in mind that France is aiming for 225 in the long run, with quite a few more than that in service in 2020 (247, according to the documents). Even the Italian air force is planning for some 165 aircraft in the long term (with some 75 Typhoons after much of the Tranche 1s are withdrawn, and 90 F-35s). 127 is quite dramatically low.

Nine squadrons should be the magic number to aim to. But there are currently only 8 squadrons, so that adding one would already count as "neat growth", hard to fit into the budget, into the manpower, into the Treasury's vision.
If the number of squadrons is allowed to fall even further, arguining for additional F-35 squadrons will become harder and harder. Don't destroy with the hope of rebuilding later: "ham tomorrow" too often ends in tears.
It is important, for many reasons, that the number of fast jets is kept at decent levels. 127 is not a decent level. And assuming that there will be a recovery after such a sharp fall risks being terribly naive.

Immediate operational needs and long term considerations both impose that the number of aircraft and squadrons is kept up. Temporary running on of Typhoon Tranche 1, or better still of Tornado GR4, as a ramp leading to an acceptable number of F-35s, is something that should feature prominently in the SDSR.
The news we see in these days, even the (rather obscene, if you ask me) comparisons of the current anti-ISIS efforts to the battle of Britain, are hopefully part of the RAF's attempts to obtain a better settlement.



Wednesday, July 18, 2012

Towards SCAVENGER



Watchkeeper, aircraft carriers and catapults

One big downside of the return to STOVL configuration on the aircraft carriers is represented by the additional, serious issues that this comports for the future, when the time will come in which UAVs and, crucially, combat UCAVs will need to go to sea.
I’ve heard a lot of people on the internet saying that such problem does not exist, or that it exists but is easily and cheaply fixed later on, by fitting, guess what, catapults and arresting gear, but of “smaller, simpler” type, intended for UAVs use.
The most illiterate suggestion I’ve read of, in several places, was that small drones such as Watchkeeper “wouldn’t even need arresting wires, surely there is more than enough deck for them to land”.
Unfortunately, the guys suggesting this kind of things are entirely wrong. I read also of someone saying that surely the BAE Mantis will be carrier compatible, and I did not know if I should laugh or cry. 9 tons or more of weight at take-off, 22 meters of wingspan. And people believes not only that it’ll take off from a STOVL deck, but that it will be able to land on it. Without wires.
The temptation to insult the source of such demented affirmation was, I must admit, immense.

Launching a Watchkeeper class drone (say, around 500 kg weight) is relatively easy: although not under contract for the British Army (at least for the moment), truck-mounted or trailer-mounted catapults are able to launch a Watchkeeper drone into the air. ROBONIC offers such a catapult, which folded down for transport fits inside a standard container, for example. The Converteam-developed EMKIT electromagnetic catapult is 15 meters long, and more than capable to throw a suitably modified Watchkeeper drone into the air.
But that’s about it. 500 kg, or little more. With the EMKIT, perhaps we can arrive to 1.5 ton  or so: up to the first generation Predator, if we are lucky. But as it stands, technology does not allow to put on such a small drone the power, the datalinks and radars which would be needed for roles such as provision of Aerial Early Warning. A Watchkeeper could be useful, more for supporting an amphibious operation than as a complement or even less replacement for AEW systems currently useful. But that’s the end of it. And to be fair, the EMKIT is already a bit of kit which is likely to require some deck cutting to be fitted, and some compartment redesign/modification.
From there upwards, we creep more and more towards CATOBAR catapults, and towards, of course, EMALS. You won’t be able to launch an Hawk-sized UCAV such as the Taranis demonstrator from a STOVL deck, nor will EMKIT be enough. It won’t launch a Reaper, nor a production-variant of the Mantis. No matter how much you dream of it.

And this, better make it clear, is before we even consider the modifications the drone itself would need to survive in the maritime environment, and to operate from a ship, including software and navigation system modifications to enable it to find the carrier, navigate back to it, and approach it for landing.

But the huge problem is not launching or navalizing the drone: it is recovering it that is most challenging. Do you know how much runway even just a Watchkeeper needs to operate safely on land? 1200 meters.
Indeed, the Aberporth airfield had to receive a runway extension, to 1200 meters, urgently needed to support the validation of Watchkeeper, as it was transformed in the UK’s UAV centre of excellence.
Do you still deem it likely that it will land on CVF (less than 300 meters, even using the deck from stern to bow), and without wires, even?
If you do, you need medical care.   
On land, deployable emergency catch-wires are used routinely, and are part of the Royal Artillery scheme of deployment for a Watchkeeper base. And people would want the same drone to land on a carrier, without the wires.
Worse, other people think they can make a “Sea Mantis” in the same easy and cheerful fashion. Wake up.

A lot of people is ignoring the fact that UAVs usage was not properly considered during the CATOBAR/STOVL decision for the carriers. It is not my paranoia who says this: minister Nick Harvey was forced to admit it in front of the Parliamentary Defence Committee. Specifically, he had to admit that while the STOVL CVF ideally will operate with UAVs in the future and is notionally compatible with a “wide range” of drones (mostly the helicopter-derived ones, though, he should have said, or light surveillance ones) the compatibility of the carrier with future UAVs was not a decisive factor because the RAF planning assumption is that the drones will be only deployed on and from land bases. Forget about SCAVENGER and the future UCAV coming with any naval feature, the Royal Navy has lost this battle.
And the full implications and full costs of this debacle will only be known in the future.



Watchkeeper: a quick overview

The Watchkeeper drone is an evolution of the Israeli Hermes H450. The airframe has been redesigned, including the wing-fuselage structure for greater payload and strength. Tthe undercarriage has been redesigned and strengthened to sustain operations from rough surfaces and a de-icing system has been added to the wings to enable all weather, all-environments operations. The drone was also fitted with a more advanced engine that runs on avgas.

The need for highly trained pilots specialists to deploy forwards to guide the drone in its take off and landing phase has been eliminated by the adoption of the THALES MAGIC ATOLS (Automatic Take Off and Landing System), which continues to work even if GPS is denied. 
The sensors payload has been enhanced adopting a combination of SAR/GMTI radar and EO/IR imagery and full motion video collection: the Thales I-Master "Viper" radar comes as a single LRU, weighs just over 60 pounds and requires 620W power. Housed in a turret that rotates through 360 degrees, it provides strip maps and submeter resolution spot scenes, plus ground moving target indicator mode and target tracking at ranges exceeding 15 miles. The Elbit CoMPASS IV EO/IR camera offers advanced optics and a laser subsystem. The Army had to accept a compromise, however, since the COMPASS EO/IR works best from 10.000 feet altitude, while the radar is best utilized from 16.000 feet and above.

There is an unspecified payload margin for eventually adding COMINT and VHF/UHF rebroadcast systems in the future, or weapons, or possibly additional fuel tanks (the original Hermes can be fitted with 2 50 liters tanks, don’t know if Watchkeeper retains this capability). The Royal Artillery has a notional ATUAS (Armed Tactical Unmanned Aerial System) requirement, which in the next few years, assuming funding can be secured, will enable Watchkeeper to carry a couple of weapons, most likely Thales LMM missiles. 

The Watchkeeper
 
The sensors payload assembly includes a laser target marker, ranger and designator plus line-of-sight narrow and wideband common datalinks produced by Cubic Corp.’s UK subsidiary. The drone is being fully incorporated into the UK defense communications network, and an important part of the Watchkeeper’s design is for ensuring complete imagery exploitation, dissemination and reference system. The air vehicle can broadcast images including metadata direct to soldiers who use small Remote Viewing Terminals (RVTs), including ROVER 4 (which will be normally found in Fire Support Teams and assigned to Tactical Air Attack Controllers, with the Fire Support Team normally attached on the field to each Infantry Company), as well as streaming video to the ground control stations (GCS) and to Tac Groups on the ground. The Tac Group, made up by a commanding officer and a NCO plus signaller, travels with all its equipment in a specially configured Viking all terrain armoured vehicle (21 such vehicles produred) which can follow deployed headquarters everywhere. Constantly in communication with the GCS, the Tac Group can request a Watchkeeper mission and re-task the drone as necessary. The Tac Group kit can easily dismount from the Viking and transfer into a tent or building when necessary.
The GCS can communicate with a wide range of ground, air and even naval formations and commanders.

Importantly, the Watchkeeper system includes the US Tactical Common Data Link (TCDL) system, supplied by Cubic Defense Applications, along with the company's High Integrity Data Link (HIDL). The TCDL enables Watchkeeper to transfer time-critical information from multiple UAVs operating in the same geographical area without mutual interference. The Watchkeeper normally works on Line of Sight communications, which limit its range to 150 – 200 km, but thanks to the data link, a second Watchkeeper in flight can act as radio relay node and enable the first drone to fly much further away.
Alternatively, the drone can be fitted for control via satellite.
The HIDL is developed for command and control of multiple UAVs from a single ground station (in the case of Watchkeeper, 2 or 3 drones in flight for each GCS) and provides a programmable back-up link.

The Ground Control Station is fitted into a 20-foot container, normally carried on a DROPS Foden Improved Medium Mobility Load Carrier IMMLC truck. It has accommodation for the UAV pilot, a UAV co-pilot/payload operator, a Mission Commander, a Signaller and an Imagery Analyst or two. The GCS, and the whole Watchkeeper system, is compatible with C130 air transport for ease of deployment. 

Watchkeeper's Ground Control Station


Finally, unlike other military UAVs, Watchkeeper is being certified to UK and European civil airworthiness standards.

All these improvements have a cost, naturally, so Watchkeeper is not the cheaper of drones available on the market. However, it is one complete and well integrated system.
Another cost of all modifications, and especially of the civilian airworthiness certification, is that the entry in service has been delayed several times: as of now, Watchkeeper should have been in Afghanistan, providing a sixth UAV task line, but deployment has been delayed as activities connected with certifications continue. In September 2009, Thales delivered the contracted training facility to the UK’s Royal Artillery at Larkhill. A three-year performance-based logistics support contract worth over $80 million has also been signed.
According to Thales, the Watchkeeper system will have low lifecycle costs thanks to low attrition rates, simple maintenance and training. The air vehicle should have airframe life for some 100.000 hours.

In Afghanistan, in the meanwhile, as the Army waits for Watchkeeper, the Hermes 450 from which it derives is being used constantly and to great profit. In 2007, the Army signed with Thales an agreement for the provision of interim tactical UAV capability using unmodified H450s and ground stations, as an UOR for operation Herrick in Afghanistan. In a unique arrangement called Project Lydian, U-TacS bought the UAVs from Israel’s Elbit and retained ownership, charging the Army for their use by the hour. The Army’s 32 Regiment Royal Artillery, the first specialized UAV regiment (since then joined by 47 Regiment) operated and maintained them, with contractor assistance. It took only six weeks to train the soldiers to fly the UAVs, learn the mission system and do the airspace coordination, despite the challenges posed by the new drone, far more complex than anything the Army had ever had before. In particular, one serious challenge was to train and keep current UAV specialists for the direction of take off and landings: recently, an automated system similar to that which comes with Watchkeeper started being rolled out in service in Afghanistan with project Lydian, easing training and personnel requirements.
By August last year, Project Lydian had logged no fewer than 50,000 flying hours on well over 3,000 sorties. Five daily “tasking lines” have been established in Afghanistan, and the operation has coped well with dust, heat, wind and high altitudes. Reportedly, 3 drones have been lost on operations, but this is not a bad result, and it is more than in line with other nations’ experience with unmanned aircrafts.

54 Watchkeeper drones and 13 Ground Control Stations are on order, plus 2 more for training, with the final cost put by NAO at 889 million pounds. The exact future ORBAT of the drone batteries is uncertain: originally, there had to be 99 drones and 3 large batteries in 32 Regiment, but now the structure has evolved on 5 Integrated UAV batteries spread between 32 and 47 regiment.
Each such battery includes Hermes 450 / Watchkeeper, Desert Hawk 3 and T-Hawk detachments, but the post-Afghanistan organization will depend on the future of Desert and T Hawks, and on other considerations made within Army 2020 thinking.
My personal feeling (and hope) is that Desert Hawk 3 will stay, while T-Hawk (procured in just 5 or 6 systems, for use in the Talisman route clearance squadrons) might not be brought into core, as it has quite a few defects despite its usefulness. However, we’ll have to see.

Such five integrated batteries provide a deploying brigade with full UAV coverage, sustaining 5 (soon enough to become 6) Hermes/Watchkeeper task lines and a dozen Desert Hawk detachments, which are assigned to various FOBs, to infantry companies out on patrol, to the Warthog group and to the Brigade Recce Force.
Watchkeeper is an excellent brigade asset, which will also work at divisional level when necessary. The US Army has chosen a more incremental and layered approach, assigning the much less ambitious Shadow UAV to brigades and the larger, more capable Gray Eagle, latest evolution of the Predator, at the Divisional Level: a company with 12 Gray Eagles in 3 platoons of 4 is being assigned to each Combat Aviation Brigade. Each US Army division has its own Combat Aviation Brigade (101 Air Assault Division actually has 2). 



MQ-9 Reaper: a quick overview

The Reaper is the Medium Altitude, Long Endurance (MALE) platform that Scavenger will directly replace, so it must be of course analyzed. The Reaper is actually a Scavenger contender as well, even if the preferred solution is the procurement of a new platform, with different and improved characteristics.

The current RAF Reaper force is a temporary measure: the Reapers have been procured under UOR arrangements, and will need to be brought into the Core Defence Budget in 2015 if they are to stay past the conclusion of operation Herrick.
It is widely expected that Reaper will indeed be brought into core, as a gap-filled on the way to Scavenger (which has experienced already 2 or 3 slips in the hoped-for in-service date, now indicated in 2020 at the earliest) but until this is confirmed (possibly next year) we have to stick to the fact: Reaper is a UOR. But with a longer story behind its back. 

in January 2005 the 1115° RAF Flight was established at Creech Air Force Base, Nevada, to operate US Air Force-owned General Atomics M/RQ-1 Predator unmanned Remotley Piloted Air System (RPAS). RPAS is the official RAF acronym for drones: the name is meant to make it real clear that the airplane is piloted and controlled by human beings, even if there is no pilot on board. Admirable effort in political correctness, but as expected not enough to avoid tons of countless examples of scaremongering about “terminator machines” and unmanned platforms “which drop bombs on their own”. The press is an enemy that can't be defeated, unfortunately, so that's how things go.

45 members of the RAF were assigned to this bi-national collaborative programme, which also allowed the UK to have voice and direct participation in a whole series of tests, trials and experiments about the use of drones, their limits, their good points, and the kit that they need/best operate with. This practice became known as the Joint UAV Experimentation Programme (JUEP), which looked at RPAS applications for other emerging requirements. Part of these trials, between December 2005 and February 2005, saw the testing of a RAPTOR reconnaissance pod on board of a Reaper. During those trials a DB-110 recce sensor and tactical data link taken from a Royal Air Force RAPTOR targeting pod was integrated into a US Air National Guard stores pod normally carried by a Lockheed Martin F-16. The new configuration was carried on the inner port pylon of a National Guard's Predator B's wing. The proposed compact DB-110 pod is optimised for carriage on a centreline pylon, and could provide the basis for a highly integrated cross cueing sensor suite for the Reaper. So far though, it has not progressed, with Tornado GR4 being used every time that RAPTOR is needed, at much greater cost.

On 3 January 2007, as the RAF acquired 3 MQ-9 Reaper drones from the US as part of a UOR for Afghanistan and the 39 Squadron RAF, which had last operated with the English Electric Camberra PR9 recce plane up to 2006, was reformed to operate the new machines. The RAF squadron was reformed on RAF Waddington air base, but it actually works in Creech AFB, Nevada, in the United States. The 45 men already present in the base became the 'A Flight' and continued with their collaboration with the USAF, while 'B', 'C' and 'D' Flights were formed to operate the 3 Reapers, which were deployed to Kandahar airfield to provide a persistent ISR (Intelligence, Surveillance, Reconnaissance) capability to British and NATO forces in Afghanistan.

In 2009, the 39 Squadron lined, in Creech AFB, a force of 12 two-man crews, assigned to a fleet of 3 Reapers, which became two after one was lost in Afghanistan to an engine failure and crashed in June 2008. A team of Special Forces was sent into the crash site to remove the secret technical equipment, after which the wreckage was destroyed by RAF Harriers.
Although the aircraft can fly for up to 17 hours when fully armed, the crews only fly for a maximum of four hours each to ensure fresh eyes are always watching the British troops on the ground. And because much of the flying is on autopilot, crews can take lavatory breaks, stretch their legs and, in some circumstances, take a call from their wives.
The crews are supported by a tri-service team of intelligence specialists, signalers and meteorologists and part of the personnel works in Afghanistan to maintain the drones themselves, in Kandahar.

In the control room of the Reaper, at Creech AFB, the pilot sits on the left-hand side and the sensor operator sits on the right. The pilot has a throttle and a joystick from where he can release bombs or fire missiles. In front of the crew are 10 computer screens, of which two provide high-resolution, real-time video imagery of the ground. The other screens provide the crew with the information they need to fly the mission. Crews talk to Joint Tactical Air Controllers (JTacs) – the troops who identify targets and call in air strikes – on the ground in Helmand. When a Reaper is providing top cover for British troops, the JTac is in constant communication with the crew. Using a ROVER 4 laptop computer terminal, the JTac can also see the same video image as the crews in Creech, mark the target on the image, send the image back to the Reaper pilot and so direct him on to the objective.
The Reaper crews often work with members of the Special Forces conducting surveillance and strike operations against senior al-Qaeda and Taliban commanders or High Value Targets (HVTs).

The RAF reapers were used for sole RECCE only for roughly a year: after that, the drones began to carry weaponry, early 2008. The drones use Paveway bombs (GBU-12 500 lbs) and Hellfire of various variants (included the Hellfire N, armed with a thermobaric warhead) but are not currently capable of using british stores such as Paveway IV and Brimstone, because no integration has been funded. Notably, for ease of use on Reaper, a twin rail for Brimstone is available, but the RAF has not acquired this.
Currently, 4 to 5 Reapers are available, and a further five are on order under a 135 million pounds contract, or 27 million per drone. Ten Reapers will allow the RAF to keep up to 3 simultaneously in the air over Helmand.

To accommodate the expansion to the Reaper fleet, new Ground Control Stations are part of the order, and these are being installed directly at RAF Waddington, where XIII Squadron is being reformed to take over the new Reapers. The new squadron, operating from Waddington, will cover the return of 39 Squadron from the US, as its personnel and Reaper equipment is finally migrating back to the UK, also bound for Waddington.  

The main stats for Reaper are:

Weaponry load: four underwing pylons, normally loaded with 2 x 500lb Paveway laser guided bombs and
4 Hellfire missiles on two twin rails
Speed: 260 knots maximum, 200 knots cruise
Endurance: 17 hours fully armed – 2 Paveway + 4 Hellfire
24 hours unarmed (up to 28 according to some sources)
14 hours maximum endurance at maximum load
Weight: 10,000 lbs
Maximum altitude when armed: 25,000ft
Unarmed 50,000ft
Wing Span: 60ft
Length: 36 ft
Engine: 1 x 1000HP turbo prop
Sensors: three cameras - Day TV, low light, infra-red.
Lynx Synthetic Aperture Radar (effective out to around 65 km)
Electro-Optic sensor turret with laser targeting

Store Pylons: 7
o    Up to 1,500 lb (680 kg) on the two inboard weapons stations
o    Up to 750 lb (340 kg) on the two middle stations
o    Up to 150 lb (68 kg) on the outboard stations
o    Center station is not normally used

More stores can be carried than those used currently in Afghanistan, but two bombs and four Hellfires is the standard loadout.
The Reaper can be dismantled into its main parts and fitted into a purposefully-designed container for carriage inside cargo aircrafts such as C130J and C17.
The MQ-9 aircraft operates from standard U.S. airfields with clear line-of-sight to the ground data terminal antenna which provides line-of-sight communications for takeoff and landing. The PPSL provides over-the-horizon communications for the aircraft and sensors. 

An alternate method of employment, Remote Split Operations, employs a GCS for takeoff and landing operations at the forward operating location, while the CONUS-based crew executes the mission via beyond-line-of-sight links (satellite). This is the method used for operations in Afghanistan.



DABINETT, SOLOMON, SCAVENGER, MANTIS, TELEMOS…

A thousand names for the evolving, complex story of the same problems and requirements.
The story beings in 2004 with the DABINETT requirement, an ambitious programme which had to come up with an unified, common architecture for the effective tasking of ISTAR collection, for its processing and for its dissemination to the final users on the field. For its “physical” part, DABINETT included development and fielding efforts of solutions for “adaptable ISTAR platforms”, for “Urban ISTAR” platforms and a requirement for “Deep and Persistent ISTAR” collection platform, which back was meant to be, effectively, a replacement for the soon-to-be-gone Camberra PR9 reconnaissance aircraft.

DABINETT was to provide a central core system, capable to direct and task all kind of ISTAR collection platforms, process the info acquired, and disseminate it to all headquarters and other users. The system was, of course, to be interoperable not just among the three services, but among NATO allies as well.

The entire Intelligence Cycle of life was to be affected by DABINETT, from start to finish:

Direction would entail looking at the intelligence and information needed and at the requrests coming from units on the battlefield, verify if said data was already available or being collected, and either task the adequate ISTAR platform to collect the info requested, or forward it depending on availability.

Collection is clearly about getting the raw data needed: SIGINT, COMINT, IMINT, full motion video, radar pictures, whatever. This included the introduction of a number of new platforms and solutions, including the already mentioned Deep and Persistent ISTAR system.

Processing is about the analysis of collected raw data, to turn it into the requested intelligence material. It involves a multitude of activities such as adding metadata to reconnaissance photos to highlight suspect changes in the environment.

Dissemination is about making sure that the intelligence material reaches the intended final user, in the shortest possible time.

DABINETT didn’t go very far, though: in 2006, urgent operational needs meant that the money allocated for the programme had to be used to finance the emergency buy of Reaper drones from the US, a buy that was, of course, presented as an early start capability within the wider DABINETT effort.

As a consequence of the use of funding, DABINETT limped in Assessment Phase for more time, eventually reaching Initial Gate only in 2008. By this time, the programme was broken down into three incremental phases: Phase 1 intended to deliver an intelligence requirements management and resource tasking tool to improve use of ISTAR resources including UAVs;

Phase 2 aimed to provide, in conjunction with the Defence Information Infrastructure, information handling services to improve dissemination of intelligence through an ISTAR virtual knowledge base;

Phase 3 aimed to and to integrate imagery sources through this virtual knowledge base, including WATCHKEEPER data.

Then, in 2010, the name DABINETT was abandoned in favor of SOLOMON.

As of 2011, DABINETT/SOLOMON has turned into a "Continuous Assessment Phase" that will initiate a number of projects, with their own lifecycles, over three phases to deliver over time the full capability identified for Dabinett.
[In simple words, SOLOMON has diluted in time the ambitions of DABINETT as there was, of course, no money to proceed with the earlier plan]
The first of these projects is the Intelligence, Surveillance, Target Acquisition and Reconnaissance Information Integration & Management project which is currently in its Assessment Phase.

A Through Life Capability Management approach is being used to manage the Dabinett Programme.
£8M over four years have been allocated to the SOLOMON/Dabinett Programme continuous Assessment Phase element and have been used to provide technical support to the programme such as:

a. Undertaking benefits analysis of the programme.
b. Undertaking effectiveness modelling to support the programme.
c. Supporting Programme Planning/Optimisation through Capability and Programme

Dabinett is currently planned to deliver over three phases.

Phase 1
The Intelligence, Surveillance, Target Acquisition and Reconnaissance Information Integration & Management project is the only project in Phase 1 of the Programme. It passed Initial Gate in April
2009. In February 2010 two competitive Assessment Phase contracts were placed to BAe INSYTE and Lockheed Martin UK with preferred bidder selection expected in late 2010. The Parliamentary Defence Committee was told by the MOD that Phase 1 will deliver a capability to disseminate ISTAR information over the UK Defence Information Infrastructure networks between March 2012 Initial Operating Capability (IOC) and March 2015 Full Operating Capability (FOC) with “further improvements” to come as part of Phase 2 from 2015.


Phase 2
Phase 2 will provide common Intelligence, Surveillance, Target Acquisition and Reconnaissance
enabling services, and implement improvements to Intelligence, Surveillance, Target Acquisition and
Reconnaissance information integration, Intelligence, Surveillance, Target Acquisition and
Reconnaissance management, and intelligence processing.
In February 2010 a decision was taken by the Direct Process and Disseminate Programme Board to divert planned resources from this phase to an Urgent Operational Requirement and other higher priority tasks. This lead to a Capability management measure to defer funding for Phase 2 by two years. This has provided an opportunity to re-plan Phases 2 and 3.

I’m waiting for the NAO Major Projects Report 2012 for learning about the current state of SOLOMON: in theory, Phase 1 should be already active, albeit in IOC state, with Phase 2 should have started receiving funding. In practice, I suspect that the NAO report will paint a very different picture.

Phase 3
The Deep and Persistent element of Dabinett, previously planned for Phase 3, has been split out from
the Direct Process and Disseminate element and will form part of the Air Intelligence Surveillance
Target Acquisition and Reconnaissance programme. Phase 3 of Dabinett will therefore only consist of the technology refresh activities.


The Deep and Persistent ISTAR element is now SCAVENGER, the requirement for a new Medium Altitude, Long Endurance drone for the Royal Air Force.
TELEMOS is the name chosen by BAE and Dassault for their collaborative drone design, which is to be backed by the French and British governments and which is expected to be the preferred solution for the SCAVENGER requirement, even though, at least formally, SCAVENGER remains completely open, with a wide variety of drones being considered, including the Reaper itself.
A contract for initial development activities was expected to be announced by BAE and Dassault during the Farnborough air show this month, but this proved impossible as the new French government is reviewing its drone plans at the moment.
France ensures that it is still fully committed to collaboration with the UK on the matter, but in the meanwhile it is signing agreements with Germany and sending signals to Italy: the most unlikely but most spectacular outcome of the review is France quitting the joint TELEMOS effort for pursuing a different European strategy.
And perhaps as a revenge for the UK’s abandon of the CATOBAR carrier cooperation plan over which France had put so many hopes.
A more likely outcome is renewed, intensified pressure from France for turning the bi-national Telemos effort in a wider European effort, something that would be almost as undesirable and problematic for the UK, which grew considerably wary of large multinational programs after the constant issues with the Typhoon arrangement, the failure of the Horizon destroyer programme and the problems with the A400M cargo plane. 

The BAE Mantis is the demonstrator drone, built with financial contribution of the British MOD, that will serve as base for the TELEMOS development.
Mantis first flew in 2009 at the Woomera range in Australia, but after a brief campaign of successful flight trial, it was mothballed as the MOD refused to commit money to Phase 2 of development. With the TELEMOS effort ramping up, however, barring nasty surprises coming from France’s new government, BAE has announced that Mantis will come out of the hangar next year to resume trials, this time flying in the UK.

The indicative performances of a production-standard Mantis were indicated in:

- 36+ hours endurance
- 60.000 feet cruising altitude
- 3000 kg payload, including ample provision for weaponry, on 6 underwing hardpoints (plus 1 underfuselage?)

The Mantis air vehicle is relatively large, with a 22m wingspan and it is powered by a pair of Rolls Royce RB250B-17 turboprop engines (better for resilience and survivability) developing 450shp each. They are a possible engine configuration, but they are not necessarily the solution adopted by the final, production-ready drone. Installing turbofans remains an option. Possible mission payloads might include ECM, SIGINT, communications relay or even the RAPTOR pod.

 
Mock-ups were shown armed with Brimstone missiles and Paveway IV bombs.



SCAVENGER: what the RAF wants

With the signature of the first contract for development deemed imminent, the RAF voiced some of its current wishes and considerations about the Deep and Persistent ISTAR MALE drone in an interview released by Wing Cmdr. Paul Mounsey, desk officer on the ministry's Air Staff for UAV strategy and ISR.
His words offer several interesting pieces of information: for example, he makes it clear that SCAVENGER will not be a platform which merely collects data: ideally, the drone will do some data-processing on its own as it sends data and imagery towards the Ground Control Station.

We'd like the system to federate the data as it's gathering it, to put metadata onto it, then put it back into a wider intelligence space through a common intelligence architecture so it can then be pushed out to people who need it. Some of that technology exists, and it can be refined.”

He also confirms that there is no ambition of making SCAVENGER stealth: that would cut out of the race a lot of existing, proven competitors, and moreover it would risk pushing the costs up to inacceptable levels. SCAVENGER might, or might not, fitted with some self-protection electronic countermeasures, at most.

Again, he makes it clear that SCAVENGER is trying to innovate in terms of architecture, adaptability for the future and in the optimal use of existing infrastructure and bandwidth, not so much in the area of sensors: plenty of excellent sensors are already available that can literally collect more data than can be processed.
So it is more interesting to build a drone which not only collects, but processes data, and manages the flow better. Datalinks, Satcoms, processing of information and, I’ll add, installed power, are the real areas in which innovation is urgently needed.
At the same time, effort is going into ensuring that SCAVENGER is easily upgradable and adaptable to the needs of the moment, and the solution to this requirement is in the design of a suitably modular airframe.

Specifically, the idea is to use Common Pods containing the sensors and easily swappable: upgrade or re-role of the drone would involve, as much as possible, a simple change of pod instead of an expensive rework and rewiring inside the airframe.

“So the pod is aerodynamically cleared, and as long as what's inside it is within weight and center-of-gravity [thresholds], you can put different products in it. That's enticing, because the clearance time and money is often what dissuades us from buying things.”

The idea of using pods is a particularly happy one, in my opinion. Developing a large, aerodynamic common pod, validate it, and make it transportable on, say, 3 hardpoints out of 7 opens up a huge amount of options. Examples of use of pods include the Vigilant / Harvest Hawk approach proposed by Lockheed Martin for the rapid re-roling of C130 cargo planes or the proposed Enclosed Weapon Pods put forwards by Boeing as part of the F/A-18 Super Hornet International evolution programme.
The Vigilant Hawk pods are external auxiliary fuel tanks modified and re-designed to contain AESA radars for ground mapping and moving target indication, EO/IR sensor payloads, weapons, SIGINT and ELINT sensors and a whole range of other solutions.
The Enclosed Weapon Pod is an example of even more ambitious approach: the EWP is a large container meant to contain large amounts of weaponry in an aerodynamic envelope that impacts Radar Cross Section and aerodynamics far less than conventional rails and pylons carrying bombs and missiles. The EWP proposed for the Super Hornet weights 370 kg empty, but one EWP can replace all pylons under a wing, and allow the airplane to perform better due to improved aerodynamics: the drag of the air caused by weapons hanging from pylons has a surprisingly serious negative impact on endurance, speed and agility of the airplane, so a pod becomes attractive.
As I mentioned in passing, the EWP is also specifically thought to reduce the airplane’s Radar Cross Section. Each EWP can contain 4 AMRAAM-class missiles, or 2 AMRAAM and 2 500lbs guided bombs or a single 2000 lbs bomb. 

This concept image shows AMRAAM missiles being fired by an Enclosed Weapon Pod fitted to the ventral pylon of a Super Hornet International.

On Scavenger, an aerodynamic pod containing a variety of sensors would have a benefic effect by reducing drag, allowing better endurance even when fully loaded, compared to a traditional pylon arrangement. The reduction of the RCS as we have said is not a requirement on SCAVENGER, but surely if the radar echo of the drone could be contained at acceptable cost it would not be a bad thing: drones are very vulnerable in contested airspaces, so whatever can help them go unnoticed is welcome.
A SCAVENGER could go in mission with a large pod under the fuselage, containing a EO/IR turret and, for example, a large SAR/GMTI radar: these could be directly fitted in the fuselage, obviously, as with current drones, but having them fitted in a pod means being able to replace them very, very quickly, either with new and more modern systems, or with a different payload more adequate for the mission.
This way, the space internal to the fuselage can be fully exploited for fuel tanks, provision of power, and datalink and satcomm electronics.
Two more pods could be carried on the innermost hardpoints under the wings (the strongest ones, able to bear more weight) and these could be used for further sensors, for SIGINT payloads, for communications relay antennas and equipment, or for additional cameras, to build a wide-area imagery collector, similar to the US Gorgon Stare system.

Gorgon Stare is the name given to a new video capture technology developed by the United States military in a 150 million dollars programme. It is an array of nine cameras attached to an aerial drone, that make it possible to monitor the whole of a four square kilometers area in real time.
The system is capable of capturing video of an entire city, can then be analyzed by humans and/or artificial intelligence systems.

In January 2011, it was announced that the program wasn't performing to expectations, and included faults such as "a large black triangle moving throughout the image," due to failure to combine the images taken by the multiple cameras, inferior image quality compared to older systems, a problematic night-vision system, inability to track people on the surface, and delays of up to eighteen seconds in sending data to the ground. In response, the Air Force said that several of the flaws had been fixed since the report was detailing the issues had been written, that the system was never designed to offer high-resolution imagery over a wide area, and that in some areas the testing was "not sufficiently constructed to objectively evaluate the capabilities of the system," according to an anonymous source involved with the program.

Gorgon Stare’s payload is contained in two pods slightly larger than, but about the same total weight as the two 500-lb. GBU-12 laser-guided bombs the Reaper routinely carries. The pods attach to the inboard weapon pylons under the wing. One pod carries a sensor ball produced by subcontractor ITT Defense that protrudes from the pod’s bottom. The ball contains five electro-optical (EO) cameras for daytime and four infrared (IR) cameras for nighttime ISR, positioned at different angles for maximum ground coverage. The pod also houses a computer processor. The cameras shoot motion video at 2 frames/sec., as opposed to full motion video at 30 frames/sec. The five EO cameras each shoot two 16-megapixel frames/sec., which are stitched together by the computer to create an 80-megapixel image. The four IR cameras combined shoot the equivalent of two 32-megapixel frames/sec. The second Gorgon Stare pod contains a computer to process and store images, data-link modem, two pairs of Common Data Link and Tactical Common Data Link antennas, plus radio frequency equipment. 

The 2 pods of the Gorgon Stare system. Their problem is that they cause a lot of drag.


Gorgon Stare is operated independently but in coordination with the Reaper’s crew by a two-member team working from a dedicated ground station, which cat fit on the back of a Humvee. A second Humvee carries a generator and spare parts. A separate, forward-deployed processing, exploitation and dissemination team co-located with the Gorgon Stare ground station coordinates with commanders in-theater, directing the system’s sensors and exploiting their imagery in real time.

The result is a system that offers a “many orders of magnitude” leap beyond the “soda straw” view provided by the single EO/IR camera carried by a conventional UAV. The video taken by Gorgon Stare’s cameras can be “chipped out” into 10 individual views and streamed to that many recipients or more via the Tactical Common Data Link (TCDL). Any ground or airborne unit within range of Gorgon Stare’s TCDL and equipped with a Remote Operations Video Enhanced Receiver, One System Remote Video Terminal or an hand-held receiver can view one of the chip-outs.

At the same time, Gorgon Stare will process the images from all its cameras in flight, quilting them into a mosaic for a single wide-area view. That image can be streamed to tactical operations centers or Air Force Distributed Common Ground System intelligence facilities by the Gorgon Stare ground station via line-of-sight data link. The ground station team, which will control the system’s sensors, can also transmit the relatively low-resolution wide-area view to recipients in-theater or elsewhere via other wideband communication devices, plus chip-out an additional 50-60 views and forward them as needed. 

A Reaper shown outfitted with the Gorgon Stare pods.

Gorgon Stare’s coverage area is at least 4x4 kilometers wide, with 8x8 being a target for further development, but details are of course classified.  There is no comparison with the field of view of a single EO/IR camera: instead of looking at a truck or a house, the look can now encompass an entire village or a small city. Moreover, Gorgon Stare’s computers will store all imagery its cameras capture on a single mission, allowing the data to be transferred for exploitation after landing.

Gorgon Stare operates independently of the Reaper’s sensor turret, which MQ-9 operators continue to control from U.S. ground control stations. Bandwidth limitations prevent Reaper operators from viewing Gorgon Stare’s imagery as they fly the MQ-9: transfer the imagery via satellite back to Creech requires so much bandwidth that not even the USAF can afford it.
The Reaper crew will instead be in contact with the team in the forward-deployed Gorgon Stare ground station, however, to coordinate requests to slew the sensor ball over a target, or for other purposes. In practice, the team forward-deployed gets the whole picture, and the drone crew control the sensor turret, which can be used to focus on a detail of interest such as suspect activity, for example someone digging a hole that might be used to plant an IED. Advances in sensor capability, particularly focal plane arrays, and in image-processing capacity are the key technologies that make Gorgon Stare possible, the official wrote. 
Gorgon Stare's first fielded increment had the capability to provide imagery to 12 different Rover terminals used by troops on the ground, at once

A US document showing the Gorgon Stare capability and its planned evolution.

The initial deployment, designated Quick Reaction Capability Increment I, consisted of four sets of pods built at a cost of $17.5 million per set, excluding the cost of the ground control station, says Robert Marlin, USAF deputy director of ISR capabilities and technical adviser for Gorgon Stare. The production cost per pod set is expected to rise for a planned Increment II consisting of six pod sets, Marlin says, but “costs will decrease with larger production runs.”

The Increment II pods will differ from Increment I, offering twice the area coverage and double the resolution by using separate EO and IR sensor balls—one of each on individual pods—being built, respectively, by BAE Systems and ITT Defense, says Mike Meermans, vice president of strategic planning at Sierra Nevada. Increment II will produce increased coverage and better resolution by packing a large number of small cameras—perhaps hundreds—into each sensor ball, he notes. Images from the Increment II EO cameras will be in color rather than black-and-white as in Increment I. Sierra Nevada is also designing Increment II with an open architecture to permit additional sensors—perhaps a synthetic aperture radar, for example—to be added to the pods, with the data they gather integrated into the Gorgon Stare video image by the onboard computer processors.

A Gorgon Stare pod set weighs substantially less than a Reaper’s 3,000-lb. payload capacity, but an MQ-9 carrying Gorgon Stare flies unarmed because of electrical power limitations (what were we saying about innovation in installed power and use of bandwidth…?) and stays aloft at 20,000-25,000 ft. for only 14-15 hr., several hours less than an armed MQ-9 which can fly 17 hours. Endurance is affected by drag from the pods, which are particularly damaging to aerodynamics.

For all its defects, Gorgon Stare is a generational change, which turns a UAV in a platform capable to look simultaneously over a whole small town, instead of down one single street, which means that the work of a drone fitted with Gorgon Stare could be matched only using several more drones. And still it would not be the same thing.

Pods, in other words, mean options. Depending on the mission at hand, SCAVENGER could rapidly be re-roled just by swapping a pod for another. The sensor ceases to work? In moments, the pod comes off and is replaced.

Another area for innovation in the SCAVENGER programme is the drone’s autonomy, and the control of multiple drones, of different type and on different missions, from the same Ground Control Station. The MALE will have to be as autonomous as possible, needing minimal direct control from its human crew. But the real crucial point will be making sure that multiple drones can be controlled from the same team, in the same Ground Control Station.

“Our gold-plated solution—and I'm not saying we're going to achieve this—would be to make all the ground elements of Watchkeeper, Reaper and Scavenger as common as possible.
And with the data dissemination (part of the SOLOMON program, as we have seen), there is the desire to make all that intelligence common, too. That's clearly where we'd like to pitch. The challenge is that it costs money to do that; but also the programs aren't always aligned.”

It might not be as impossible as it might sound at first, fortunately. The RAF is not alone and is not the first in thinking that having a different GCS for each type of drone is ineffective duplication. In the US, passage to a common architecture for ground control of multiple different drones is part of the UAV strategy set by the Army.
And there is at least one company which has been working hard in this direction: Raytheon, which is working to develop a scalable, deployable Common Ground Control Station for drones, and has already demonstrated this to the UKMOD's Defense Science and Technology Laboratory.
The crew in the Common Ground Control Station would be led by an RAF flight lieutenant, but include Royal Artillery personnel who now operate Hermes 450 and will operate Watchkeeper. The concept of operations means that a fully qualified pilot with weapons training would act as the mission commander alongside operators from other backgrounds, which have not and do not need to have long and expensive full training as aircraft pilots. This would allow routine ISR tasks to be met by Watchkeeper, while allowing a seamless platform swap with Scavenger should a strike be required. Perhaps the GCS could be working to control a “package” of platforms comprising a couple of Watchkeepers and a SCAVENGER heavily armed flying at higher altitude, with the drones working over a wide battlegroup area. It is evidently an attractive approach, which would fit well into the ambitions of DABINETT/SOLOMON, and that would enable considerable savings in the long term.

A few interesting questions would emerge regarding operational command and direction of such closely-knit operations: the SCAVENGER squadrons (2 of them?) would need to be “Army Cooperation” formations, and ideally would report to the Army’s Surveillance and Intelligence Brigade, at least on deployment.
This will be subject of studies, in the case, to write a suitable CONOPS document.  

From Watchkeeper, SCAVENGER could also well inherit the MAGIC ATOLS system, which would help a lot in reducing the need for expensive flight crew by automating the delicate phases of take off and landing.
For its Deep and Persistent role, SCAVENGER will need to have good speed (for deploying in deep) and great endurance, even when fully armed (in order to be persistent). The inability to deploy at sea from an aircraft carrier mean that self-deploying and long range will be more necessary than ever: one area of innovation that the interview does not mention but that hopefully will feature on SCAVENGER is that of air refueling. In the US, numerous tests of air to air refueling without human control have been already successful carried out, and a completely unmanned in-flight refueling demonstration also took place, which involved a UAV working as air tanker and refueling another. 
Air to Air refuelling is a requirement for the US Navy's UCLASS program, and the X47B UCAV prototype will demonstrate its ability to refuel from air tankers in flight by 2014. 
The UK has been allowed into classified information regarding the X47B development, capability and trials as part of the US/UK agreement on carrier air power collaboration when signed when the MOD switched to CATOBAR for CVF: it is likely that, even after the return to STOVL, the UK is continuing to be allowed into the UCLASS activities. However, this access will now benefit only the RAF, since the future british UCAV will not be able to go to sea, barring major changes to current policy and, of course, to CVF. 
In order to be genuinely Deep and Persistent, SCAVENGER will better be capable to take on fuel in flight.

Not going for a fully joint and fully deployable asset, however, remains a huge mistake in my opinion.

In the interview, it is noted that Reaper is unlikely to be abandoned in 2015, and that the already established infrastructure, the already equipped squadrons and the already existing operationally-experienced crews could work in favor of a long-term adoption of Reaper as SCAVENGER platform.
The journalist correctly notes that General Atomics, Selex and Cobham have been working to show the RAF that there would be no particular problems of sovereignty over the system (one key concern), by recently flying and testing an “open architecture” Reaper fitted with a Selex Seaspray 7500E radar in a new radome under the fuselage. The 7500E is a larger variant of the family of AESA radars used by the Wildcat helicopter (the Wildcat specifically uses the 7000E). 

The new radome is very evident.
 
Certainly, the Reaper will have these factors playing to its favor, but personally, I think that this is a bit excessive to say, like the journalist does, that this represents a key advantage.
The UK is perfectly aware that the long term future of its defence aerospace sector is tied specifically to credible and exportable MALE and UCAV efforts. Lack of money have already pushed the MALE in-service date to 2020 (late, late, late… the market will be saturated by then) and the UCAV is not expected before 2030: this is already more than damaging enough for the british aerospace sector. It is hard to imagine the UK government turning away from TELEMOS after exposing itself so much.
Even a dramatic (and at this stage unlikely) rethink of France on the joint program would in my opinion not be enough to cause the UK to abandon its national ambitions to lean definitively on the US. It would be an epochal blow to the aerospace sector, from which industry in the UK might never recover.
A new TSR2 debacle, but with possibly even worse consequences.

The Reaper will, in my opinion, be a stopgap. An interim solution spanning from 2015 into the early 2020s, used to validate concepts and infrastructure that, as much as possible, will then be used by the actual SCAVENGER once it finally enters service. Because the MALE program is not only vital for the armed forces, but for the defence aerospace sector in the UK, already hit hard by the defection of Nimrod MRA4.
Producing parts for the F35, in itself, won’t be enough to keep it all going.   

 

Budget and numbers

At the moment, no updated information is available about the budget that might be committed to SCAVENGER, nor we have an up to date report on the RAF ambitions in terms of numbers. But some time ago, a MOD document put a nominal price and program size forward about Scavenger. Life-cycle costs are estimated at £2 billion ($3.3 billion). The procurement would be for 20 aircraft to support operational needs, although an additional 10 air vehicles would likely be needed as attrition reserve for a 15-year program life, it was noted.
The development and fielding timeline was expected to stretch eight years, so the ISD target date was set at around 2018. Unfortunately, it has since slipped to 2020 due to budget cuts in both the UK and France. 

The 2 billion figure for life-life total expense for the programme is a good starting point to try and determine the budget that is expected to be used for Scavenger. Normally, through-life support for an asset is the source of (indicatively) 60% of the cost. Assuming this empiric value for Scavenger, we see that perhaps as many as 1200 millions will be necessary for running the system in its 15-year operative life. This would leave 800 million pounds for acquisition of the machines, but a billion had also been previously mentioned as a possible budget for this procurement. A fleet of 30 machines would thus mean an unitary cost ranging from 27 to over 33 million pounds for each drone, little more than the current cost of a Reaper.  
This cost assumption might well prove way too optimistic, but on the other hand, the RAF take a different approach and avoid ordering “attrition” airframes early on, buying them later as and when necessary, eventually.
For this to be possible, however, the production like will have to be warm, if not hot, which means that drones must be in production for someone. France has in the past indicated a requirement for as many as 60 (!) drones, but this seems unrealistic and is likely to shrink considerably when actual orders are placed.

Gaining export orders will be extremely important.
Engaging, at least to some degree, Germany and Italy might be simply unavoidable to expand the number of buyer countries, share the financial burden and avoid the potential start of another fratricide war between European products, like happened with the Rafale/Typhoon rivalry. The UK, though, wants them to collaborate, eventually, on mostly industrial basis, without having the sort of control they have in the four-national Typhoon fighter jet program, since their hesitations have large “merit” in the Typhoon delays, cost overruns, and in its chronically inadequate weapon clearance situation. Lack of commitment to things such as AESA radar and integration of air-ground weaponry are impacting negatively the export effort, and causing troubles to the RAF. 
The UK, in other words, is at most willing to accept Telemos becoming a multinational program with a bi-national leadership, and with BAE as the leading horse in the industrial team.
It is all to be seen if the rest of Europe will accept, and how it will work out.