The Limits of Memory
-
by James Wallace Harris, 3/3/25 It annoys me more and more that I can’t
recall names and nouns. I don’t worry yet that it’s dementia because most
of my fri...
1 week ago
Well, all this is interesting to me, anyway, and that's what matters here. The Internet is a terrible thing for someone like me, who finds almost everything interesting.
Unlike the "modern math" theorists, who believe that mathematics is a creation of man and thus arbitrary and relative, A Beka Book teaches that the laws of mathematics are a creation of God and thus absolute. ...
A Beka Book provides attractive, legible, and workable traditional mathematics texts that are not burdened with modern theories such as set theory.
[Fox 'News' host Eric] Bolling advised parents to read their children’s history books because his son’s textbook addressed the Iraq war “and they were very, very liberally biased, saying George Bush went in there because he heard there were weapons of mass destruction and they were never found. It was a very liberal bias to the history books.”
One set of such studies, for instance, found that with the antidepressant Paxil, trials recorded more than twice the rate of suicidal incidents for participants given the drug compared with those given the placebo. For another antidepressant, Prozac, trials found fewer suicidal incidents with the drug than with the placebo. So it appeared that Paxil might be more dangerous than Prozac.
But actually, the rate of suicidal incidents was higher with Prozac than with Paxil. The apparent safety advantage of Prozac was due not to the behavior of kids on the drug, but to kids on placebo — in the Paxil trials, fewer kids on placebo reported incidents than those on placebo in the Prozac trials. So the original evidence for showing a possible danger signal from Paxil but not from Prozac was based on data from people in two placebo groups, none of whom received either drug.
For a simplified example, consider the use of drug tests to detect cheaters in sports. Suppose the test for steroid use among baseball players is 95 percent accurate — that is, it correctly identifies actual steroid users 95 percent of the time, and misidentifies non-users as users 5 percent of the time.
Suppose an anonymous player tests positive. What is the probability that he really is using steroids? Since the test really is accurate 95 percent of the time, the naïve answer would be that probability of guilt is 95 percent. But a Bayesian knows that such a conclusion cannot be drawn from the test alone. You would need to know some additional facts not included in this evidence. In this case, you need to know how many baseball players use steroids to begin with — that would be what a Bayesian would call the prior probability.
Now suppose, based on previous testing, that experts have established that about 5 percent of professional baseball players use steroids. Now suppose you test 400 players. How many would test positive?
• Out of the 400 players, 20 are users (5 percent) and 380 are not users.
• Of the 20 users, 19 (95 percent) would be identified correctly as users.
• Of the 380 nonusers, 19 (5 percent) would incorrectly be indicated as users.
So if you tested 400 players, 38 would test positive. Of those, 19 would be guilty users and 19 would be innocent nonusers. So if any single player’s test is positive, the chances that he really is a user are 50 percent, since an equal number of users and nonusers test positive.