
Solution to
Write a function called deleteRepeats that has a partially filled array of characters as a formal parameter and that deletes all repeated letters from the array. Since a partially filled array requires two arguments, the function will actually have two formal parameters: an array parameter and a formal parameter of type int that gives the number of array positions used. When a letter is deleted, the remaining letters are moved forward to fill in the gap. This will create empty positions at the end of the array so that less of the array is used. Since the formal parameter is a partially filled array, a second formal parameter of type int will tell how many array positions are filled. This second formal parameter will be a call-by-reference parameter and will be changed to show how much of the array is used after the repeated letters are deleted.
For example, consider the following code:
char a[10]; a[0] = 'a'; a[1] = 'b'; a[2] = 'a'; a[3] = 'c'; int size = 4; deleteRepeats(a, size); |
After this code is executed, the value of a[0] is 'a', the value of a[1] is 'b', the value of a[2] is 'c', and the value of size is 3. (The value of a[3] is no longer of any concern, since the partially filled array no longer uses this indexed variable.)
You may assume that the partially filled array contains only lowercase letters. Embed your function in a suitable test program.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Problem Solving with C++ (10th Edition)
Additional Engineering Textbook Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
SURVEY OF OPERATING SYSTEMS
Fluid Mechanics: Fundamentals and Applications
Introduction To Programming Using Visual Basic (11th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
- Please no AI! Or if you do use AI, Check the work please! Thank you!arrow_forward(Dynamic Programming.) Recall the problem presented in Assign- ment 3 where given a list L of n ordered integers you're tasked with removing m of them such that the distance between the closest two remaining integers is maxi- mized. See Assignment 1 for further clarification and examples. As it turns out there is no (known) greedy algorithm to solve this problem. However, there is a dynamic programming solution. Devise a dynamic programming solution which determines the maximum distance between the closest two points after removing m numbers. Note, it doesn't need to return the resulting list itself. Hint 1: Your sub-problems should be of the form S(i, j), where S(i, j) returns the maximum distance of the closest two numbers when only considering removing j of the first i numbers in L. As an example if L [3, 4, 6, 8, 9, 12, 13, 15], then S(4, 1) = 2, since the closest two values of L' = [3,4,6,8] are 6 and 8 after removing 4 (note, 8-6 = = 2). = Hint 2: For the sub-problem S(i, j),…arrow_forward
- (Greedy Algorithms) Describe an efficient algorithm that, given a set {x1, x2, . . ., xn} of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.arrow_forwardWhat does the value of the top variable indicate in this ArrayStack implementation? What will happen if we call pop on this stack? What value will be returned, and what changes will occur in the array and the top variable? 3. If we push the value "echo" onto the stack, where will it be stored in the array, and what will be the new value of top? 4. Explain why index 0 contains the string "alpha" even though top is currently 3. 5. What would the state of the stack look like (values in the array and value of top) after two consecutive pop 0 operations?arrow_forwardPlease solve and show all work. Suppose there are four routers between a source and a destination hosts. Ignoring fragmentation, an IP datagram sent from source to destination will travel over how many interfaces? How many forwarding tables will be indexed to move the datagram from the source to the destination?arrow_forward
- Please solve and show all work. When a large datagram is fragmented into multiple smaller datagrams, where are these smaller datagrams reassembled into a single large datagram?arrow_forwardPlease solve and show all steps. True or false? Consider congestion control in TCP. When the timer expires at the sender, the value of ssthresh is set to one-half of the last congestion window.arrow_forwardPlease solve and show all work. What are the purposes of the SNMP GetRequest and SetRequest messages?arrow_forward
- Please solve and show all steps. Three types of switching fabrics are discussed in our course. List and briefly describe each type. Which, if any, can send multiple packets across the fabric in parallel?arrow_forwardPlease solve and show steps. List the four broad classes of services that a transport protocol can provide. For each of the service classes, indicate if either UDP or TCP (or both) provides such a service.arrow_forwardPlease solve and show all work. What is the advantage of web caches, and how does it work?arrow_forward
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
- Microsoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTProgramming with Microsoft Visual Basic 2017Computer ScienceISBN:9781337102124Author:Diane ZakPublisher:Cengage Learning




