login
Search: a004188 -id:a004188
     Sort: relevance | references | number | modified | created      Format: long | short | data
The cubes: a(n) = n^3.
(Formerly M4499 N1905)
+10
1022
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507
OFFSET
0,3
COMMENTS
a(n) is the sum of the next n odd numbers; i.e., group the odd numbers so that the n-th group contains n elements like this: (1), (3, 5), (7, 9, 11), (13, 15, 17, 19), (21, 23, 25, 27, 29), ...; then each group sum = n^3 = a(n). Also the median of each group = n^2 = mean. As the sum of first n odd numbers is n^2 this gives another proof of the fact that the n-th partial sum = (n(n + 1)/2)^2. - Amarnath Murthy, Sep 14 2002
Total number of triangles resulting from criss-crossing cevians within a triangle so that two of its sides are each n-partitioned. - Lekraj Beedassy, Jun 02 2004
Also structured triakis tetrahedral numbers (vertex structure 7) (cf. A100175 = alternate vertex); structured tetragonal prism numbers (vertex structure 7) (cf. A100177 = structured prisms); structured hexagonal diamond numbers (vertex structure 7) (cf. A100178 = alternate vertex; A000447 = structured diamonds); and structured trigonal anti-diamond numbers (vertex structure 7) (cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Schlaefli symbol for this polyhedron: {4, 3}.
Least multiple of n such that every partial sum is a square. - Amarnath Murthy, Sep 09 2005
Draw a regular hexagon. Construct points on each side of the hexagon such that these points divide each side into equally sized segments (i.e., a midpoint on each side or two points on each side placed to divide each side into three equally sized segments or so on), do the same construction for every side of the hexagon so that each side is equally divided in the same way. Connect all such points to each other with lines that are parallel to at least one side of the polygon. The result is a triangular tiling of the hexagon and the creation of a number of smaller regular hexagons. The equation gives the total number of regular hexagons found where n = the number of points drawn + 1. For example, if 1 point is drawn on each side then n = 1 + 1 = 2 and a(n) = 2^3 = 8 so there are 8 regular hexagons in total. If 2 points are drawn on each side then n = 2 + 1 = 3 and a(n) = 3^3 = 27 so there are 27 regular hexagons in total. - Noah Priluck (npriluck(AT)gmail.com), May 02 2007
The solutions of the Diophantine equation: (X/Y)^2 - X*Y = 0 are of the form: (n^3, n) with n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^2k - XY = 0 are of the form: (m*n^(2k + 1), m*n^(2k - 1)) with m >= 1, k >= 1 and n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^(2k + 1) - XY = 0 are of the form: (m*n^(k + 1), m*n^k) with m >= 1, k >= 1 and n >= 1. - Mohamed Bouhamida, Oct 04 2007
Except for the first two terms, the sequence corresponds to the Wiener indices of C_{2n} i.e., the cycle on 2n vertices (n > 1). - K.V.Iyer, Mar 16 2009
Totally multiplicative sequence with a(p) = p^3 for prime p. - Jaroslav Krizek, Nov 01 2009
Sums of rows of the triangle in A176271, n > 0. - Reinhard Zumkeller, Apr 13 2010
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
Numbers n for which order of torsion subgroup t of the elliptic curve y^2 = x^3 - n is t = 2. - Artur Jasinski, Jun 30 2010
The sequence with the lengths of the Pisano periods mod k is 1, 2, 3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 20, ... for k >= 1, apparently multiplicative and derived from A000027 by dividing every ninth term through 3. Cubic variant of A186646. - R. J. Mathar, Mar 10 2011
The number of atoms in a bcc (body-centered cubic) rhombic hexahedron with n atoms along one edge is n^3 (T. P. Martin, Shells of atoms, eq. (8)). - Brigitte Stepanov, Jul 02 2011
The inverse binomial transform yields the (finite) 0, 1, 6, 6 (third row in A019538 and A131689). - R. J. Mathar, Jan 16 2013
Twice the area of a triangle with vertices at (0, 0), (t(n - 1), t(n)), and (t(n), t(n - 1)), where t = A000217 are triangular numbers. - J. M. Bergot, Jun 25 2013
If n > 0 is not congruent to 5 (mod 6) then A010888(a(n)) divides a(n). - Ivan N. Ianakiev, Oct 16 2013
For n > 2, a(n) = twice the area of a triangle with vertices at points (binomial(n,3),binomial(n+2,3)), (binomial(n+1,3),binomial(n+1,3)), and (binomial(n+2,3),binomial(n,3)). - J. M. Bergot, Jun 14 2014
Determinants of the spiral knots S(4,k,(1,1,-1)). a(k) = det(S(4,k,(1,1,-1))). - Ryan Stees, Dec 14 2014
One of the oldest-known examples of this sequence is shown in the Senkereh tablet, BM 92698, which displays the first 32 terms in cuneiform. - Charles R Greathouse IV, Jan 21 2015
From Bui Quang Tuan, Mar 31 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ... 2*n-1 as follows. The first column contains all the integers 1, 2, 3, ... 2*n-1. Each succeeding column is the same as the previous column but without the first and last items. The last column contains only n. The sum of all the numbers in the triangle is n^3.
Here is the example for n = 4, where 1 + 2*2 + 3*3 + 4*4 + 3*5 + 2*6 + 7 = 64 = a(4):
1
2 2
3 3 3
4 4 4 4
5 5 5
6 6
7
(End)
For n > 0, a(n) is the number of compositions of n+11 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Number of inequivalent face colorings of the cube using at most n colors such that each color appears at least twice. - David Nacin, Feb 22 2017
Consider A = {a,b,c} a set with three distinct members. The number of subsets of A is 8, including {a,b,c} and the empty set. The number of subsets from each of those 8 subsets is 27. If the number of such iterations is n, then the total number of subsets is a(n-1). - Gregory L. Simay, Jul 27 2018
By Fermat's Last Theorem, these are the integers of the form x^k with the least possible value of k such that x^k = y^k + z^k never has a solution in positive integers x, y, z for that k. - Felix Fröhlich, Jul 27 2018
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 191.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
T. Aaron Gulliver, "Sequences from cubes of integers", International Mathematical Journal, 4 (2003), no. 5, 439 - 445. See http://www.m-hikari.com/z2003.html for information about this journal. [I expanded the reference to make this easier to find. - N. J. A. Sloane, Feb 18 2019]
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, You Are A Mathematician, pp. 238-241, Penguin Books 1995.
LINKS
British National Museum, Tablet 92698
N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
Ralph Greenberg, Math For Poets
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets [Cached version at the Wayback Machine]
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75. - fixed by Felix Fröhlich, Jun 16 2014
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (8).
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
Eric Weisstein's World of Mathematics, Cubic Number, and Hex Pyramidal Number
Ronald Yannone, Hilbert Matrix Analyses
FORMULA
a(n) = Sum_{i=0..n-1} A003215(i).
Multiplicative with a(p^e) = p^(3e). - David W. Wilson, Aug 01 2001
G.f.: x*(1+4*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
Dirichlet generating function: zeta(s-3). - Franklin T. Adams-Watters, Sep 11 2005, Amarnath Murthy, Sep 09 2005
E.g.f.: (1+3*x+x^2)*x*exp(x). - Franklin T. Adams-Watters, Sep 11 2005 - Amarnath Murthy, Sep 09 2005
a(n) = Sum_{i=1..n} (Sum_{j=i..n+i-1} A002024(j,i)). - Reinhard Zumkeller, Jun 24 2007
a(n) = lcm(n, (n - 1)^2) - (n - 1)^2. E.g.: lcm(1, (1 - 1)^2) - (1 - 1)^2 = 0, lcm(2, (2 - 1)^2) - (2 - 1)^2 = 1, lcm(3, (3 - 1)^2) - (3 - 1)^2 = 8, ... - Mats Granvik, Sep 24 2007
Starting (1, 8, 27, 64, 125, ...), = binomial transform of [1, 7, 12, 6, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = A007531(n) + A000567(n). - Reinhard Zumkeller, Sep 18 2009
a(n) = binomial(n+2,3) + 4*binomial(n+1,3) + binomial(n,3). [Worpitzky's identity for cubes. See. e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n + 6*binomial(n+1,3) = binomial(n,1)+6*binomial(n+1,3). - Ron Knott, Jun 10 2019
A010057(a(n)) = 1. - Reinhard Zumkeller, Oct 22 2011
a(n) = A000537(n) - A000537(n-1), difference between 2 squares of consecutive triangular numbers. - Pierre CAMI, Feb 20 2012
a(n) = A048395(n) - 2*A006002(n). - J. M. Bergot, Nov 25 2012
a(n) = 1 + 7*(n-1) + 6*(n-1)*(n-2) + (n-1)*(n-2)*(n-3). - Antonio Alberto Olivares, Apr 03 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6. - Ant King Apr 29 2013
a(n) = A000330(n) + Sum_{i=1..n-1} A014105(i), n >= 1. - Ivan N. Ianakiev, Sep 20 2013
a(k) = det(S(4,k,(1,1,-1))) = k*b(k)^2, where b(1)=1, b(2)=2, b(k) = 2*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
For n >= 1, a(n) = A152618(n-1) + A033996(n-1). - Bui Quang Tuan, Apr 01 2015
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Jon Tavasanis, Feb 21 2016
a(n) = n + Sum_{j=0..n-1} Sum_{k=1..2} binomial(3,k)*j^(3-k). - Patrick J. McNab, Mar 28 2016
a(n) = A000292(n-1) * 6 + n. - Zhandos Mambetaliyev, Nov 24 2016
a(n) = n*binomial(n+1, 2) + 2*binomial(n+1, 3) + binomial(n,3). - Tony Foster III, Nov 14 2017
From Amiram Eldar, Jul 02 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(3) (A002117).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/4 (A197070). (End)
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi.
Product_{n>=2} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)/(3*Pi). (End)
a(n) = Sum_{d|n} sigma_3(d)*mu(n/d) = Sum_{d|n} A001158(d)*A008683(n/d). Moebius transform of sigma_3(n). - Ridouane Oudra, Apr 15 2021
EXAMPLE
For k=3, b(3) = 2 b(2) - b(1) = 4-1 = 3, so det(S(4,3,(1,1,-1))) = 3*3^2 = 27.
For n=3, a(3) = 3 + (3*0^2 + 3*0 + 3*1^2 + 3*1 + 3*2^2 + 3*2) = 27. - Patrick J. McNab, Mar 28 2016
MAPLE
A000578 := n->n^3;
seq(A000578(n), n=0..50);
isA000578 := proc(r)
local p;
if r = 0 or r =1 then
true;
else
for p in ifactors(r)[2] do
if op(2, p) mod 3 <> 0 then
return false;
end if;
end do:
true ;
end if;
end proc: # R. J. Mathar, Oct 08 2013
MATHEMATICA
Table[n^3, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jul 05 2014 *)
Accumulate[Table[3n^2+3n+1, {n, 0, 20}]] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 27, 64}, 20](* Harvey P. Dale, Aug 18 2018 *)
PROG
(PARI) A000578(n)=n^3 \\ M. F. Hasler, Apr 12 2008
(PARI) is(n)=ispower(n, 3) \\ Charles R Greathouse IV, Feb 20 2012
(Haskell)
a000578 = (^ 3)
a000578_list = 0 : 1 : 8 : zipWith (+)
(map (+ 6) a000578_list)
(map (* 3) $ tail $ zipWith (-) (tail a000578_list) a000578_list)
-- Reinhard Zumkeller, Sep 05 2015, May 24 2012, Oct 22 2011
(Maxima) A000578(n):=n^3$
makelist(A000578(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(Magma) [ n^3 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
(Magma) I:=[0, 1, 8, 27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jul 05 2014
(Python)
A000578_list, m = [], [6, -6, 1, 0]
for _ in range(10**2):
A000578_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
(Scheme) (define (A000578 n) (* n n n)) ;; Antti Karttunen, Oct 06 2017
CROSSREFS
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
For sums of cubes, cf. A000537 (partial sums), A003072, A003325, A024166, A024670, A101102 (fifth partial sums).
Cf. A001158 (inverse Möbius transform), A007412 (complement), A030078(n) (cubes of primes), A048766, A058645 (binomial transform), A065876, A101094, A101097.
Subsequence of A145784.
Cf. A260260 (comment). - Bruno Berselli, Jul 22 2015
Cf. A000292 (tetrahedral numbers), A005900 (octahedral numbers), A006566 (dodecahedral numbers), A006564 (icosahedral numbers).
Cf. A098737 (main diagonal).
KEYWORD
nonn,core,easy,nice,mult
STATUS
approved
a(n) = n*(n^2 + 1)/2.
(Formerly M3849)
+10
141
0, 1, 5, 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, 2465, 2925, 3439, 4010, 4641, 5335, 6095, 6924, 7825, 8801, 9855, 10990, 12209, 13515, 14911, 16400, 17985, 19669, 21455, 23346, 25345, 27455, 29679, 32020, 34481, 37065, 39775
OFFSET
0,3
COMMENTS
Write the natural numbers in groups: 1; 2,3; 4,5,6; 7,8,9,10; ... and add the groups. In other words, "sum of the next n natural numbers". - Felice Russo
Number of rhombi in an n X n rhombus, if 'crossformed' rhombi are allowed. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Also the sum of the integers between T(n-1)+1 and T(n), the n-th triangular number (A000217). Sum of n-th row of A000027 regarded as a triangular array.
Unlike the cubes which have a similar definition, it is possible for 2 terms of this sequence to sum to a third. E.g., a(36) + a(37) = 23346 + 25345 = 48691 = a(46). Might be called 2nd-order triangular numbers, thus defining 3rd-order triangular numbers (A027441) as n(n^3+1)/2, etc. - Jon Perry, Jan 14 2004
Also as a(n)=(1/6)*(3*n^3+3*n), n > 0: structured trigonal diamond numbers (vertex structure 4) (cf. A000330 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The sequence M(n) of magic constants for n X n magic squares (numbered 1 through n^2) from n=3 begins M(n) = 15, 34, 65, 111, 175, 260, ... - Lekraj Beedassy, Apr 16 2005 [comment corrected by Colin Hall, Sep 11 2009]
The sequence Q(n) of magic constants for the n-queens problem in chess begins 0, 0, 0, 0, 34, 65, 111, 175, 260, ... - Paul Muljadi, Aug 23 2005
Alternate terms of A057587. - Jeremy Gardiner, Apr 10 2005
Also partial differences of A063488(n) = (2*n-1)*(n^2-n+2)/2. a(n) = A063488(n) - A063488(n-1) for n>1. - Alexander Adamchuk, Jun 03 2006
In an n X n grid of numbers from 1 to n^2, select -- in any manner -- one number from each row and column. Sum the selected numbers. The sum is independent of the choices and is equal to the n-th term of this sequence. - F.-J. Papp (fjpapp(AT)umich.edu), Jun 06 2006
Nonnegative X values of solutions to the equation (X-Y)^3 - (X+Y) = 0. To find Y values: b(n) = (n^3-n)/2. - Mohamed Bouhamida, May 16 2006
For the equation: m*(X-Y)^k - (X+Y) = 0 with X >= Y, k >= 2 and m is an odd number the X values are given by the sequence defined by a(n) = (m*n^k+n)/2. The Y values are given by the sequence defined by b(n) = (m*n^k-n)/2. - Mohamed Bouhamida, May 16 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-3) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
(m*(2n)^k+n, m*(2n)^k-n) solves the Diophantine equation: 2m*(X-Y)^k - (X+Y) = 0 with X >= Y, k >= 2 where m is a positive integer. - Mohamed Bouhamida, Oct 02 2007
Also c^(1/2) in a^(1/2) + b^(1/2) = c^(1/2) such that a^2 + b = c. - Cino Hilliard, Feb 09 2008
a(n) = n*A000217(n) - Sum_{i=0..n-1} A001477(i). - Bruno Berselli, Apr 25 2010
a(n) is the number of triples (w,x,y) having all terms in {0,...,n} such that at least one of these inequalities fails: x+y < w, y+w < x, w+x < y. - Clark Kimberling, Jun 14 2012
Sum of n-th row of the triangle in A209297. - Reinhard Zumkeller, Jan 19 2013
The sequence starting with "1" is the third partial sum of (1, 2, 3, 3, 3, ...). - Gary W. Adamson, Sep 11 2015
a(n) is the largest eigenvalue of the matrix returned by the MATLAB command magic(n) for n > 0. - Altug Alkan, Nov 10 2015
a(n) is the number of triples (x,y,z) having all terms in {1,...,n} such that all these triangle inequalities are satisfied: x+y > z, y+z > x, z+x > y. - Heinz Dabrock, Jun 03 2016
Shares its digital root with the stella octangula numbers (A007588). See A267017. - Peter M. Chema, Aug 28 2016
Can be proved to be the number of nonnegative solutions of a system of three linear Diophantine equations for n >= 0 even: 2*a_{11} + a_{12} + a_{13} = n, 2*a_{22} + a_{12} + a_{23} = n and 2*a_{33} + a_{13} + a_{23} = n. The number of solutions is f(n) = (1/16)*(n+2)*(n^2 + 4n + 8) and a(n) = n*(n^2 + 1)/2 is obtained by remapping n -> 2*n-2. - Kamil Bradler, Oct 11 2016
For n > 0, a(n) coincides with the trace of the matrix formed by writing the numbers 1...n^2 back and forth along the antidiagonals (proved, see A078475 for the examples of matrix). - Stefano Spezia, Aug 07 2018
The trace of an n X n square matrix where the elements are entered on the ascending antidiagonals. The determinant is A069480. - Robert G. Wilson v, Aug 07 2018
Bisections are A317297 and A005917. - Omar E. Pol, Sep 01 2018
Number of achiral colorings of the vertices (or faces) of a regular tetrahedron with n available colors. An achiral coloring is identical to its reflection. - Robert A. Russell, Jan 22 2020
a(n) is the n-th centered triangular pyramidal number. - Lechoslaw Ratajczak, Nov 02 2021
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 15, p. 5, Ellipses, Paris 2008.
F.-J. Papp, Colloquium Talk, Department of Mathematics, University of Michigan-Dearborn, March 6, 2005.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795, arXiv:math/0408230 [math.CO], 2004-2005.
James Grime and Brady Haran, Magic Hexagon, Numberphile video (2014).
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - N. J. A. Sloane, Feb 13 2013
Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, Journal of Integer Sequences, 17 (2014), Article 14.3.5. - Felix Fröhlich, Oct 11 2016
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Ashish Kumar Pandey and Brajesh Kumar Sharma, A Note On Magic Squares And Magic Constants, Appl. Math. E-Notes (2023) Vol. 23, Art. No. 53, 577-582. See p. 577.
A. J. Turner and J. F. Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, preprint, Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation.
Eric Weisstein's World of Mathematics, Magic Constant.
Wikipedia, Floyd's triangle. - Paul Muljadi, Jan 25 2010
FORMULA
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + binomial(n, 3). [corrected by Michel Marcus, Jan 22 2020]
G.f.: x*(1+x+x^2)/(x-1)^4. - Floor van Lamoen, Feb 11 2002
Partial sums of A005448. - Jonathan Vos Post, Mar 16 2006
Binomial transform of [1, 4, 6, 3, 0, 0, 0, ...] = (1, 5, 15, 34, 65, ...). - Gary W. Adamson, Aug 10 2007
a(n) = -a(-n) for all n in Z. - Michael Somos, Dec 24 2011
a(n) = Sum_{k = 1..n} A(k-1, k-1-n) where A(i, j) = i^2 + i*j + j^2 + i + j + 1. - Michael Somos, Jan 02 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=0, a(1)=1, a(2)=5, a(3)=15. - Harvey P. Dale, May 16 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3. - Ant King, Jun 13 2012
a(n) = A000217(n) + n*A000217(n-1). - Bruno Berselli, Jun 07 2013
a(n) = A057145(n+3,n). - Luciano Ancora, Apr 10 2015
E.g.f.: (1/2)*(2*x + 3*x^2 + x^3)*exp(x). - G. C. Greubel, Dec 18 2015; corrected by Ilya Gutkovskiy, Oct 12 2016
a(n) = T(n) + T(n-1) + T(n-2), where T means the tetrahedral numbers, A000292. - Heinz Dabrock, Jun 03 2016
From Ilya Gutkovskiy, Oct 11 2016: (Start)
Convolution of A001477 and A008486.
Convolution of A000217 and A158799.
Sum_{n>=1} 1/a(n) = H(-i) + H(i) = 1.343731971048019675756781..., where H(k) is the harmonic number, i is the imaginary unit. (End)
a(n) = A000578(n) - A135503(n). - Miquel Cerda, Dec 25 2016
Euler transform of length 3 sequence [5, 0, -1]. - Michael Somos, Dec 25 2016
a(n) = A037270(n)/n for n > 0. - Kritsada Moomuang, Dec 15 2018
a(n) = 3*A000292(n-1) + n. - Bruce J. Nicholson, Nov 23 2019
a(n) = A011863(n) - A011863(n-2). - Bruce J. Nicholson, Dec 22 2019
From Robert A. Russell, Jan 22 2020: (Start)
a(n) = C(n,1) + 3*C(n,2) + 3*C(n,3), where the coefficient of C(n,k) is the number of tetrahedron colorings using exactly k colors.
a(n) = C(n+3,4) - C(n,4).
a(n) = 2*A000332(n+3) - A006008(n) = A006008(n) - 2*A000332(n) = A000332(n+3) - A000332(n).
a(n) = A325001(3,n). (End)
From Amiram Eldar, Aug 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2 * (A248177 + A001620).
Product_{n>=2} (1 - 1/a(n)) = cosh(sqrt(7)*Pi/2)*cosech(Pi)/4.
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)*cosech(Pi). (End)
EXAMPLE
G.f. = x + 5*x^2 + 15*x^3 + 34*x^4 + 65*x^5 + 111*x^6 + 175*x^7 + 260*x^8 + ...
For a(2)=5, the five tetrahedra have faces AAAA, AAAB, AABB, ABBB, and BBBB with colors A and B. - Robert A. Russell, Jan 31 2020
MATHEMATICA
Table[ n(n^2 + 1)/2, {n, 0, 45}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 5, 15}, 50] (* Harvey P. Dale, May 16 2012 *)
CoefficientList[Series[x (1 + x + x^2)/(x - 1)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
With[{n=50}, Total/@TakeList[Range[(n(n^2+1))/2], Range[0, n]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Nov 28 2017 *)
PROG
(PARI) {a(n) = n * (n^2 + 1) / 2}; /* Michael Somos, Dec 24 2011 */
(PARI) concat(0, Vec(x*(1+x+x^2)/(x-1)^4 + O(x^20))) \\ Felix Fröhlich, Oct 11 2016
(Haskell)
a006003 n = n * (n ^ 2 + 1) `div` 2
a006003_list = scanl (+) 0 a005448_list
-- Reinhard Zumkeller, Jun 20 2013
(Magma) [n*(n^2 + 1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
(Magma) [Binomial(n, 3)+Binomial(n-1, 3)+Binomial(n-2, 3): n in [2..60]]; // Vincenzo Librandi, Sep 12 2015
(MATLAB)
% Also works with FreeMat.
for(n=0:nmax); tm=n*(n^2 + 1)/2; fprintf('%d\t%0.f\n', n, tm); end
% Stefano Spezia, Aug 12 2018
(GAP)
a_n:=List([0..nmax], n->n*(n^2 + 1)/2); # Stefano Spezia, Aug 12 2018
(Maxima)
a(n):=n*(n^2 + 1)/2$ makelist(a(n), n, 0, nmax); /* Stefano Spezia, Aug 12 2018 */
(Python)
def A006003(n): return n*(n**2+1)>>1 # Chai Wah Wu, Mar 25 2024
CROSSREFS
Cf. A000330, A000537, A066886, A057587, A027480, A002817 (partial sums).
Cf. A000578 (cubes).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, this sequence, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Antidiagonal sums of array in A000027. Row sums of the triangular view of A000027.
Cf. A063488 (sum of two consecutive terms), A005917 (bisection), A317297 (bisection).
Cf. A105374 / 8.
Tetrahedron colorings: A006008 (oriented), A000332(n+3) (unoriented), A000332 (chiral), A037270 (edges).
Other polyhedron colorings: A337898 (cube faces, octahedron vertices), A337897 (octahedron faces, cube vertices), A337962 (dodecahedron faces, icosahedron vertices), A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of A325001 (simplex vertices and facets) and A337886 (simplex faces and peaks).
KEYWORD
nonn,easy,nice
EXTENSIONS
Better description from Albert Rich (Albert_Rich(AT)msn.com), March 1997
STATUS
approved
Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.
(Formerly M4128)
+10
114
0, 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891, 1156, 1469, 1834, 2255, 2736, 3281, 3894, 4579, 5340, 6181, 7106, 8119, 9224, 10425, 11726, 13131, 14644, 16269, 18010, 19871, 21856, 23969, 26214, 28595, 31116, 33781, 36594, 39559, 42680
OFFSET
0,3
COMMENTS
Series reversion of g.f.: A(x) is Sum_{n>0} - A066357(n)(-x)^n.
Partial sums of centered square numbers A001844. - Paul Barry, Jun 26 2003
Also as a(n) = (1/6)*(4n^3 + 2n), n>0: structured tetragonal diamond numbers (vertex structure 5) (cf. A000447 - structured diamonds); and structured trigonal anti-prism numbers (vertex structure 5) (cf. A100185 - structured anti-prisms). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Schlaefli symbol for this polyhedron: {3,4}.
If X is an n-set and Y and Z are disjoint 2-subsets of X then a(n-4) is equal to the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Starting with 1 = binomial transform of [1, 5, 8, 4, 0, 0, 0, ...] where (1, 5, 8, 4) = row 3 of the Chebyshev triangle A081277. - Gary W. Adamson, Jul 19 2008
a(n) = largest coefficient of (1 + ... + x^(n-1))^4. - R. H. Hardin, Jul 23 2009
Convolution square root of (1 + 6x + 19x^3 + ...) = (1 + 3x + 5x^2 + 7x^3 + ...) = A005408(x). - Gary W. Adamson, Jul 27 2009
Starting with offset 1 = the triangular series convolved with [1, 3, 4, 4, 4, ...]. - Gary W. Adamson, Jul 28 2009
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral, and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
Let b be any product of four different primes. Then the divisor lattice of b^n is of width a(n+1). - Jean Drabbe, Oct 13 2010
Arises in Bezdek's proof on contact numbers for congruent sphere packings (see preprint). - Jonathan Vos Post, Feb 08 2011
Euler transform of length 2 sequence [6, -2]. - Michael Somos, Mar 27 2011
a(n+1) is the number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = 2n. - Clark Kimberling, Mar 19 2012
a(n) is the number of semistandard Young tableaux over all partitions of 3 with maximal element <= n. - Alois P. Heinz, Mar 22 2012
Self convolution of the odd numbers. - Reinhard Zumkeller, Apr 04 2012
a(n) is the number of (w,x,y,z) with all terms in {1,...,n} and w+x=y+z; also the number of (w,x,y,z) with all terms in {0,...,n} and |w-x|<=y. - Clark Kimberling, Jun 02 2012
The sequence is the third partial sum of (0, 1, 3, 4, 4, 4, ...). - Gary W. Adamson, Sep 11 2015
a(n) is the number of join-irreducible elements in the Weyl group of type B_n with respect to the strong Bruhat order. - Rafael Mrden, Aug 26 2020
REFERENCES
H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Karoly Bezdek, Contact numbers for congruent sphere packings, arXiv:1102.1198 [math.MG], 2011.
Matteo Cavaleri and Alfredo Donno, Some degree and distance-based invariants of wreath products of graphs, arXiv:1805.08989 [math.CO], 2018.
Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (5), m=2.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Hankyung Ko, Volodymyr Mazorchuk and Rafael Mrđen, Join operation for the Bruhat order and Verma modules, arXiv:2109.01067 [math.RT], 2021. See Remark 5.10 p. 19.
A. Lascoux and M.-P. Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 3 (1996), #R27.
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
Eric Weisstein's World of Mathematics, Octahedral Number.
FORMULA
a(n) = 1^2 + 2^2 + ... + (n-1)^2 + n^2 + (n-1)^2 + ... + 2^2 + 1^2. - Amarnath Murthy, May 28 2001
G.f.: x * (1 + x)^2 / (1 - x)^4. a(n) = -a(-n) = (2*n^3 + n) / 3.
a(n) = ( ((n+1)^5-n^5) - (n^5-(n-1)^5) )/30. - Xavier Acloque, Oct 17 2003
a(n) is the sum of the products pq, where p and q are both positive and odd and p + q = 2n, e.g., a(4) = 7*1 + 5*3 + 3*5 + 1*7 = 44. - Jon Perry, May 17 2005
a(n) = 4*binomial(n,3) + 4*binomial(n,2) + binomial(n,1). - Mitch Harris, Jul 06 2006
a(n) = binomial(n+2,3) + 2*binomial(n+1,3) + binomial(n,3), (this pair generalizes; see A014820, the 4-cross polytope numbers).
Sum_{n>=1} 1/a(n) = 3*gamma + 3*Psi((I*(1/2))*sqrt(2)) - (1/2)*(3*I)*Pi*coth((1/2)*Pi*sqrt(2)) - (1/2)*(3*I)*sqrt(2) = A175577, where I=sqrt(-1). - Stephen Crowley, Jul 14 2009
a(n) = A035597(n)/2. - J. M. Bergot, Jun 11 2012
a(n) = A000578(n) - 2*A000292(n-1) for n>0. - J. M. Bergot, Apr 05 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Wesley Ivan Hurt, Sep 11 2015
E.g.f.: (1/3)*x*(3 + 6*x + 2*x^2)*exp(x). - Ilya Gutkovskiy, Mar 16 2017
a(n) = (A002061(A002061(n+1)) - A002061(A002061(n)))/6. - Daniel Poveda Parrilla, Jun 10 2017
a(n) = 6*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
Sum_{n >= 1} (-1)^(n+1)/(a(n)*a(n+1)) = 6*log(2) - 4 = 1/(6 + 2/(6 + 6/(6 + ... + n*(n-1)/(6 + ...)))). See A142983. - Peter Bala, Mar 06 2024
EXAMPLE
G.f. = x + 6*x^2 + 19*x^3 + 44*x^4 + 85*x^5 + 146*x^6 + 231*x^7 + ...
MAPLE
al:=proc(s, n) binomial(n+s-1, s); end; be:=proc(d, n) local r; add( (-1)^r*binomial(d-1, r)*2^(d-1-r)*al(d-r, n), r=0..d-1); end; [seq(be(3, n), n=0..100)];
A005900:=(z+1)**2/(z-1)**4; # Simon Plouffe in his 1992 dissertation
with(combinat): seq(fibonacci(4, 2*n)/12, n=0..40); # Zerinvary Lajos, Apr 21 2008
MATHEMATICA
Table[(2n^3+n)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 19}, 50] (* Harvey P. Dale, Oct 10 2013 *)
CoefficientList[Series[x (1 + x)^2/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
PROG
(PARI) {a(n) = n*(2*n^2+1)/3};
(PARI) concat([0], Vec(x*(1 + x)^2/(1 - x)^4 + O(x^50))) \\ Indranil Ghosh, Mar 16 2017
(Haskell)
a005900 n = sum $ zipWith (*) odds $ reverse odds
where odds = take n a005408_list
a005900_list = scanl (+) 0 a001844_list
-- Reinhard Zumkeller, Jun 16 2013, Apr 04 2012
(Maxima) makelist(n*(2*n^2+1)/3, n, 0, 20); /* Martin Ettl, Jan 07 2013 */
(Magma) [n*(2*n^2+1)/3: n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
(Magma) I:=[0, 1, 6, 19]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Sep 12 2015
(Python)
def a(n): return n*(2*n*n + 1)//3
print([a(n) for n in range(41)]) # Michael S. Branicky, Sep 03 2021
CROSSREFS
Sums of 2 consecutive terms give A001845. Cf. A001844.
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Cf. A022521.
Cf. A081277.
Row n=3 of A210391. - Alois P. Heinz, Mar 22 2012
Cf. A005408.
Cf. A002061.
Cf. A000292 (tetrahedral numbers), A000578 (cubes), A006566 (dodecahedral numbers), A006564 (icosahedral numbers).
Similar sequence: A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193(m=7), A099195 (m=8), A099196 (m=9), A099197 (m=10).
KEYWORD
nonn,easy
STATUS
approved
a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.
(Formerly M4697 N2006)
+10
84
0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
OFFSET
0,3
COMMENTS
4 times the variance of the area under an n-step random walk: e.g., with three steps, the area can be 9/2, 7/2, 3/2, 1/2, -1/2, -3/2, -7/2, or -9/2 each with probability 1/8, giving a variance of 35/4 or a(3)/4. - Henry Bottomley, Jul 14 2003
Number of standard tableaux of shape (2n-1,1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
Also a(n) = (1/6)*(8*n^3-2*n), n>0: structured octagonal diamond numbers (vertex structure 9). Cf. A059722 = alternate vertex; A000447 = structured diamonds; and structured tetragonal anti-diamond numbers (vertex structure 9). Cf. A096000 = alternate vertex; A100188 = structured anti-diamonds. Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The n-th tetrahedral (or pyramidal) number is n(n+1)(n+2)/6. This sequence contains the tetrahedral numbers of A000292 obtained for n= 1,3,5,7,... (see A015219). - Valentin Bakoev, Mar 03 2009
Using three consecutive numbers u, v, w, (u+v+w)^3-(u^3+v^3+w^3) equals 18 times the numbers in this sequence. - J. M. Bergot, Aug 24 2011
This sequence is related to A070893 by A070893(2*n-1) = n*a(n)-sum(i=0..n-1, a(i)). - Bruno Berselli, Aug 26 2011
Number of integer solutions to 1-n <= x <= y <= z <= n-1. - Michael Somos, Dec 27 2011
Partial sums of A016754. - Reinhard Zumkeller, Apr 02 2012
Also the number of cubes in the n-th Haüy square pyramid. - Eric W. Weisstein, Sep 27 2017
REFERENCES
G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
Valentin Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, Vol. 275 (2004), pp. 17-41. - Valentin Bakoev, Mar 03 2009
F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, eq. (11).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Eric Weisstein's World of Mathematics, Haüy Construction.
Eric Weisstein's World of Mathematics, Square Pyramid.
FORMULA
a(n) = binomial(2*n+1, 3) = A000292(2*n-1).
G.f.: x*(1+6*x+x^2)/(1-x)^4.
a(n) = -a(-n) for all n in Z.
a(n) = A000330(2*n)-4*A000330(n) = A000466(n)*n/3 = A000578(n)+A007290(n-2) = A000583(n)-2*A024196(n-1) = A035328(n)/3. - Henry Bottomley, Jul 14 2003
a(n+1) = (2*n+1)*(2*n+2)(2*n+3)/6. - Valentin Bakoev, Mar 03 2009
a(0)=0, a(1)=1, a(2)=10, a(3)=35, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, May 25 2012
a(n) = v(n,n-1), where v(n,k) is the central factorial numbers of the first kind with odd indices. - Mircea Merca, Jan 25 2014
a(n) = A005917(n+1) - A100157(n+1), where A005917 are the rhombic dodecahedral numbers and A100157 are the structured rhombic dodecahedral numbers (vertex structure 9). - Peter M. Chema, Jan 09 2016
For any nonnegative integers m and n, 8*(n^3)*a(m) + 2*m*a(n) = a(2*m*n). - Ivan N. Ianakiev, Mar 04 2017
E.g.f.: exp(x)*x*(1 + 4*x + (4/3)*x^2). - Wolfdieter Lang, Mar 11 2017
a(n) = A002412(n) + A016061(n-1), for n>0. - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 3*log(2). (End)
EXAMPLE
G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
MAPLE
A000447:=z*(1+6*z+z**2)/(z-1)**4; # Simon Plouffe, 1992 dissertation.
A000447:=n->n*(4*n^2 - 1)/3; seq(A000447(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
MATHEMATICA
Table[n (4 n^2 - 1)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 10, 35}, 80] (* Harvey P. Dale, May 25 2012 *)
Join[{0}, Accumulate[Range[1, 81, 2]^2]] (* Harvey P. Dale, Jul 18 2013 *)
CoefficientList[Series[x (1 + 6 x + x^2)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
PROG
(PARI) {a(n) = n * (4*n^2 - 1) / 3};
(Haskell)
a000447 n = a000447_list !! n
a000447_list = scanl1 (+) a016754_list
-- Reinhard Zumkeller, Apr 02 2012
(Maxima) A000447(n):=n*(4*n^2 - 1)/3$ makelist(A000447(n), n, 0, 20); /* Martin Ettl, Jan 07 2013 */
(PARI) concat(0, Vec(x*(1+6*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 11 2016
(Magma) [n*(4*n^2-1)/3: n in [0..50]]; // Vincenzo Librandi, Jan 12 2016
(Python)
def A000447(n): return n*((n**2<<2)-1)//3 # Chai Wah Wu, Feb 12 2023
CROSSREFS
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 in triangles A008956 and A008958.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of A002577. - Valentin Bakoev, Mar 03 2009
KEYWORD
nonn,nice,easy
EXTENSIONS
Chrystal and Durell references from R. K. Guy, Apr 02 2004
STATUS
approved
11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2.
+10
69
0, 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, 833, 960, 1096, 1241, 1395, 1558, 1730, 1911, 2101, 2300, 2508, 2725, 2951, 3186, 3430, 3683, 3945, 4216, 4496, 4785, 5083, 5390, 5706, 6031, 6365, 6708, 7060, 7421, 7791, 8170
OFFSET
0,3
COMMENTS
From Floor van Lamoen, Jul 21 2001: (Start)
Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,1,...
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ \ \
5 0---1 11
/ \
6---7---8---9--10
. (End)
(1), (4+7), (7+10+13), (10+13+16+19), ... - Jon Perry, Sep 10 2004
This sequence does not contain any triangular numbers other than 0 and 1. See A188892. - T. D. Noe, Apr 13 2011
Sequence found by reading the line from 0, in the direction 0, 11, ... and the parallel line from 1, in the direction 1, 30, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 18 2012
Starting with offset 1, the sequence is the binomial transform of (1, 10, 9, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
FORMULA
a(n) = n*(9*n-7)/2.
G.f.: x*(1+8*x)/(1-x)^3.
Row sums of triangle A131432. - Gary W. Adamson, Jul 10 2007
a(n) = 9*n + a(n-1) - 8 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=1, a(2)=11. - Harvey P. Dale, May 07 2012
a(n) = A218470(9n). - Philippe Deléham, Mar 27 2013
a(9*a(n)+37*n+1) = a(9*a(n)+37*n) + a(9*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+y) - a(n-y-1) = (a(n+x) - a(n-x-1))*(2*y+1)/(2*x+1), 0 <= x < n, y <= x, a(0)=0. - Gionata Neri, May 03 2015
a(n) = A000217(n-1) + A000217(3*n-2) - A000217(n-2). - Charlie Marion, Dec 21 2019
Product_{n>=2} (1 - 1/a(n)) = 9/11. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*x*(2 + 9*x)/2. - Stefano Spezia, Dec 25 2022
MATHEMATICA
Table[n (9n-7)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 11}, 51] (* Harvey P. Dale, May 07 2012 *)
PROG
(PARI) a(n)=(9*n-7)*n/2 \\ Charles R Greathouse IV, Jun 16 2011
(Magma) [n*(9*n-7)/2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 01 2015
CROSSREFS
First differences of A007586.
Cf. A093644 ((9, 1) Pascal, column m=2). Partial sums of A017173.
KEYWORD
nonn,easy
STATUS
approved
a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.
+10
66
0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469, 575, 696, 833, 987, 1159, 1350, 1561, 1793, 2047, 2324, 2625, 2951, 3303, 3682, 4089, 4525, 4991, 5488, 6017, 6579, 7175, 7806, 8473, 9177, 9919, 10700, 11521, 12383, 13287, 14234, 15225
OFFSET
0,3
COMMENTS
3-dimensional analog of centered polygonal numbers.
The Burnside group B(3,n) has order 3^a(n).
Answer to the question: if you have a tall building and 3 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries? - Leonid Broukhis, Oct 24 2000
Equals row sums of triangle A144329 starting with "1". - Gary W. Adamson, Sep 18 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=4, a(n-1)=-coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 24 2010
From J. M. Bergot, Aug 03 2011: (Start)
If one formed the 3 X 3 square
| n | n+1 | n+2 |
| n+3 | n+4 | n+5 |
| n+6 | n+7 | n+8 |
and found the sum of the horizontal products n*(n + 1)*(n + 2) + (n + 3)*(n + 4)*(n + 5) + (n + 6)*(n + 7)*(n + 8) and added the sum of the vertical products n*(n + 3)*(n + 6) + (n + 1)*(n + 4)*(n + 7) + (n + 2)*(n + 5)(n + 8) one gets 6*n^3 + 72*n^2 + 318*n + 504. This will give 36 times the values of all the terms in this sequence. (End)
a(n) is divisible by n for n congruent to {1,5} mod 6. (see A007310). - Gary Detlefs, Dec 08 2011
From Beimar Naranjo, Feb 22 2024: (Start)
Number of compositions with at most three parts and sum at most n.
Also the number of compositions with at most one part distinct from 1 and with a sum at most n. (End)
REFERENCES
W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
LINKS
Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. [From Parthasarathy Nambi, Sep 30 2009]
F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics, 2017, Vol. 41 Issue 6, pp. 849-853.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Laurent Saloff-Coste, Random walks on finite groups, in Probability on discrete structures, 263-346, Encyclopaedia Math. Sci., 110, Springer, 2004.
Bridget Eileen Tenner, Reduced word manipulation: patterns and enumeration, J. Algebr. Comb. 46, No. 1, 189-217 (2017), w in S_n(231) l(w)=3.
FORMULA
G.f.: x*(1-x+x^2)/(1-x)^4.
E.g.f.: x*(1 + x/2 + x^2/6) * exp(x).
a(-n) = -a(n).
a(n) = binomial(n+2,n-1) - binomial(n,n-2). - Zerinvary Lajos, May 11 2006
Euler transform of length 6 sequence [3, 1, 1, 0, 0, -1]. - Michael Somos, May 04 2007
Starting (1, 3, 7, 14, ...) = binomial transform of [1, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 24 2008
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 21 2011
a(n+1) = A000292(n) + n + 1. - Reinhard Zumkeller, Mar 31 2012
a(n) = 2*a(n-1) + (n-1) - a(n-2) with a(0) = 0, a(1) = 1. - Richard R. Forberg, Jan 23 2014
a(n) = Sum_{i=1..n} binomial(n-2i,2). - Wesley Ivan Hurt, Nov 18 2017
a(n) = n + Sum_{k=0..n} k*(n-k). - Gionata Neri, May 19 2018
a(n) = Sum_{k=0..n-1} A000124(k). - Torlach Rush, Aug 05 2018
G.f.: ((1 - x^5)/(1 - x)^5 - 1)/5. - Michael Somos, Dec 29 2019
G.f.: g(f(x)), where g is g.f. of A001477 and f is g.f. of A128834. - Oboifeng Dira, Jun 21 2020
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(5)) + polygamma(0, 1+i*sqrt(5))/5 = 1.6787729555834452106286261834348972248... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023
EXAMPLE
G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - Michael Somos, Dec 29 2019
MAPLE
A004006 := proc(n) n*(n^2+5)/6 ; end proc:
seq(A004006(n), n=0..10) ; # R. J. Mathar, Jun 05 2011
MATHEMATICA
Table[Total[Table[Binomial[n, i], {i, 3}]], {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 1, 3, 7}, 50] (* Harvey P. Dale, Aug 21 2011 *)
PROG
(PARI) {a(n) = n*(n^2 + 5)/6}; /* Michael Somos, May 04 2007 */
(Magma) [n*(n^2+5)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(Haskell)
a004006 n = a000292 n + n + 1 -- Reinhard Zumkeller, Mar 31 2012
(Maxima) A004006(n):=n*(n^2+5)/6$ makelist(A004006(n), n, 0, 30); /* Martin Ettl, Jan 08 2013 */
(Sage) [n*(n^2+5)/6 for n in (0..50)] # G. C. Greubel, Aug 27 2019
(GAP) List([0..50], n-> n*(n^2+5)/6); # G. C. Greubel, Aug 27 2019
CROSSREFS
Cf. A051576, A055795, A006552. Differences give A000217 + 1 or A000124.
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
KEYWORD
nonn,nice,easy
AUTHOR
Albert D. Rich (Albert_Rich(AT)msn.com)
STATUS
approved
a(n) = (n^3 + 2*n)/3.
(Formerly M3410)
+10
56
0, 1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531, 28424, 30405
OFFSET
0,3
COMMENTS
Number of ways to color vertices (or edges) of a triangle using <= n colors, allowing only rotations.
Also: dot_product (1,2,...,n)*(2,3,...,n,1), n >= 0. - Clark Kimberling
Start from triacid and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink below on chemistry. - Robert G. Wilson v, Aug 02 2002
Starting with offset 1 = row sums of triangle A158822 and binomial transform of (1, 3, 4, 2, 0, 0, 0, ...). - Gary W. Adamson, Mar 28 2009
One-ninth of sum of three consecutive cubes: a(n) = ((n-1)^3 + n^3 + (n+1)^3)/9. - Zak Seidov, Jul 22 2013
For n > 2, number of different cubes, formed after splitting a cube in color C_1, by parallel planes in the colors C_2, C_3, ..., C_n in three spatial dimensions (in the order of the colors from a fixed vertex). Generally, in a large hypercube n^d is f(n,d) = C(n+d-1, d) + C(n, d) different small hypercubes. See below for my formula a(n) = f(n,3). - Thomas Ordowski, Jun 15 2014
a(n) is a square for n = 1, 2 & 24; and for no other values up to 10^7 (see M. Gardner). - Michel Marcus, Sep 06 2015
Number of unit tetrahedra contained in an n-scale tetrahedron composed of a tetrahedral-octahedral honeycomb. - Jason Pruski, Aug 23 2017
REFERENCES
M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246.
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Babcock and A. van Tuyl, Revisiting the spreading and covering numbers, arXiv preprint arXiv:1109.5847 [math.AC], 2011.
Richard A. Brualdi and Geir Dahl, Alternating Sign Matrices and Hypermatrices, and a Generalization of Latin Square, arXiv:1704.07752 [math.CO], 2017. See p. 8.
Peter Esser?, Guenter Stertenbrink, Triangles with Mac Mahon's pieces, digest of 14 messages in polyforms Yahoo group, Apr 14 - May 2, 2002.
Th. Gruner, A. Kerber, R. Laue and M. Meringer, Mathematics for Combinatorial Chemistry
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(0)=0, a(1)=1, a(2)=4, a(3)=11; for n > 3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jun 13 2011
From Paul Barry, Mar 13 2003: (Start)
a(n) = 2*binomial(n+1, 3) + binomial(n, 1).
G.f.: x*(1+x^2)/(1-x)^4. (End)
a(n) = A000292(n) + A000292(n-2). - Alexander Adamchuk, May 20 2006
a(n) = n*A059100(n)/3. - Lekraj Beedassy, Feb 06 2007
a(n) = A054602(n)/3. - Zerinvary Lajos, Apr 20 2008
a(n) = ( n + Sum_{i=1..n} A177342(i) )/(n+1), with n > 0. - Bruno Berselli, May 19 2010
a(n) = A002264(A000578(n) + A005843(n)). - Reinhard Zumkeller, Jun 16 2011
a(n) = binomial(n+2, 3) + binomial(n, 3). - Thomas Ordowski, Jun 15 2014
a(n) = A000292(n) - A000292(-n). - Bruno Berselli, Sep 22 2016
E.g.f.: (x/3)*(3 + 3*x + x^2)*exp(x). - G. C. Greubel, Sep 01 2017
From Robert A. Russell, Oct 20 2020: (Start)
a(n) = 1*C(n,1) + 2*C(n,2) + 2*C(n,3), where the coefficient of C(n,k) is the number of oriented triangle colorings using exactly k colors.
a(n) = 2*A000292(n) - A000290(n) = 2*A000292(n-2) + A000290(n). (End)
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(2)) + polygamma(0, 1+i*sqrt(2))/4 = 1.45245201414472469745354677573358867... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023
MAPLE
A006527:=z*(1+z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
with(combinat):seq(lcm(fibonacci(4, n), fibonacci(2, n))/3, n=0..42); # Zerinvary Lajos, Apr 20 2008
MATHEMATICA
Table[ (n^3 + 2*n)/3, {n, 0, 45} ]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 4, 11}, 46] (* or *) CoefficientList[ Series[(x+x^3)/(x-1)^4, {x, 0, 49}], x] (* Harvey P. Dale, Jun 13 2011 *)
PROG
(Magma) [(n^3 + 2*n)/3: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(PARI) a(n)=n*(n^2+2)/3 \\ Charles R Greathouse IV, Jul 25 2011
(Haskell)
a006527 n = n * (n ^ 2 + 2) `div` 3 -- Reinhard Zumkeller, Jan 06 2014
CROSSREFS
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 of triangle A094414. Row 6 of the array in A107735.
Cf. A000292 (unoriented), A000292(n-2) (chiral), A000290 (achiral) triangle colorings.
Row 2 of A324999 (simplex vertices and facets) and A327083 (simplex edges and ridges).
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Alexander Adamchuk, May 20 2006
Corrected and replaced 5th formula from Harvey P. Dale, Jun 13 2011
Deleted an erroneous comment. - N. J. A. Sloane, Dec 10 2018
STATUS
approved
Stella octangula numbers: a(n) = n*(2*n^2 - 1).
(Formerly M4932)
+10
38
0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, 5474, 6735, 8176, 9809, 11646, 13699, 15980, 18501, 21274, 24311, 27624, 31225, 35126, 39339, 43876, 48749, 53970, 59551, 65504, 71841, 78574, 85715, 93276, 101269, 109706, 118599, 127960
OFFSET
0,3
COMMENTS
Also as a(n)=(1/6)*(12*n^3-6*n), n>0: structured hexagonal anti-diamond numbers (vertex structure 13) (Cf. A005915 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The only known square stella octangula number for n>1 is a(169) = 169*(2*169^2 - 1) = 9653449 = 3107^2. - Alexander Adamchuk, Jun 02 2008
Ljunggren proved that 9653449 = (13*239)^2 is the only square stella octangula number for n>1. See A229384 and the Wikipedia link. - Jonathan Sondow, Sep 30 2013
4*A007588 = A144138(ChebyshevU[3,n]). - Vladimir Joseph Stephan Orlovsky, Jun 30 2011
If A016813 is regarded as a regular triangle (with leading terms listed in A001844), a(n) provides the row sums of this triangle: 1, 5+9=14, 13+17+21=51 and so on. - J. M. Bergot, Jul 05 2013
Shares its digital root, A267017, with n*(n^2 + 1)/2 ("sum of the next n natural numbers" see A006003). - Peter M. Chema, Aug 28 2016
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 51.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alexander Adamchuk and Vincenzo Librandi, Table of n, a(n) for n = 0..10000 [Alexander Adamchuk computed terms 0 - 169, Jun 02, 2008; Vincenzo Librandi computed the first 10000 terms, Aug 18 2011]
A. Bremner, R. Høibakk and D. Lukkassen, Crossed ladders and Euler’s quartic, Annales Mathematicae et Informaticae, 36 (2009) pp. 29-41. See p. 33.
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Amelia Carolina Sparavigna, Generalized Sum of Stella Octangula Numbers, Politecnico di Torino (Italy, 2021).
Amelia Carolina Sparavigna, Cardano Formula and Some Figurate Numbers, Politecnico di Torino (Italy, 2021).
Eric Weisstein's World of Mathematics, Stella Octangula Number
FORMULA
G.f.: x*(1+10*x+x^2)/(1-x)^4.
a(n) = n*A056220(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Harvey P. Dale, Sep 16 2011
From Ilya Gutkovskiy, Jul 02 2016: (Start)
E.g.f.: x*(1 + 6*x + 2*x^2)*exp(x).
Dirichlet g.f.: 2*zeta(s-3) - zeta(s-1). (End)
a(n) = A004188(n) + A135503(n). - Miquel Cerda, Dec 25 2016
MAPLE
A007588:=n->n*(2*n^2 - 1); seq(A007588(n), n=0..40); # Wesley Ivan Hurt, Mar 10 2014
MATHEMATICA
Table[ n(2n^2-1), {n, 0, 169} ] (* Alexander Adamchuk, Jun 02 2008 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 14, 51}, 50] (* Harvey P. Dale, Sep 16 2011 *)
PROG
(PARI) a(n)=n*(2*n^2-1)
(Magma) [n*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Aug 18 2011
(Python)
def A007588(n): return n*(2*n**2-1) # Chai Wah Wu, Feb 18 2022
CROSSREFS
Backwards differences give star numbers A003154: A003154(n)=a(n)-a(n-1).
1/12*t*(n^3-n)+ n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Cf. A001653 = Numbers n such that 2*n^2 - 1 is a square.
a(169) = (A229384(3)*A229384(4))^2.
KEYWORD
nonn,easy,nice
EXTENSIONS
In the formula given in the 1995 Encyclopedia of Integer Sequences, the second 2 should be an exponent.
STATUS
approved
Number of atoms in a decahedron with n shells.
+10
30
0, 1, 7, 23, 54, 105, 181, 287, 428, 609, 835, 1111, 1442, 1833, 2289, 2815, 3416, 4097, 4863, 5719, 6670, 7721, 8877, 10143, 11524, 13025, 14651, 16407, 18298, 20329, 22505, 24831, 27312, 29953, 32759, 35735, 38886, 42217, 45733, 49439
OFFSET
0,3
COMMENTS
Also as a(n)=(n/6)*(5*n^2+1), n>0: structured pentagonal diamond numbers (vertex structure 6) (cf. A081436 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of atoms in decahedron with n shells, number = 5/6*(n^3) + 1/6*(n) (T. P. Martin, Shells of atoms, eq.(3)). - Brigitte Stepanov, Jul 02 2011
a(n+1) is the number of triples (w,x,y) having all terms in {0,...,n} and x+y >= w. - Clark Kimberling, Jun 14 2012
a(n) = Sum_{k=1..n} A215630(n,k) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) - a(n-2) = A010001(n-1), for n>1. - K. G. Stier, Dec 21 2012
a(n) is also a figurate number representing a cube of side n with a vertex cut off by a tetrahedron of side n-1. As such, a(n) = A000578(n) - A000292(n-1), n > 0. - Jean M. Morales, Aug 11 2013
The sequence starting with 1 is the third partial sum of (1, 4, 5, 5, 5, ...) and the binomial transform of (1, 6, 10, 5, 0, 0, 0, ...). - Gary W. Adamson, Sep 27 2015
LINKS
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (3).
FORMULA
a(n) = 5*binomial(n + 1, 3) + binomial(n, 1).
a(n) = 5*n^3/6 + n/6.
a(n) = Sum_{i=0..n-1} A005891(i). - Xavier Acloque, Oct 08 2003
G.f.: x*(1+3*x+x^2) / (1-x)^4. - R. J. Mathar, Jun 05 2011
E.g.f.: (x/6)*(5x^2 + 15x + 6)*exp(x). - G. C. Greubel, Sep 27 2015
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i/sqrt(5)) + polygamma(0, 1+i/sqrt(5)) = 1.233988011257952852492845364799197179252... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023
MATHEMATICA
Table[5*n^3/6+n/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
PROG
(Magma) [5*n^3/6+n/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(Maxima) A004068(n):=5*n^3/6+n/6$ makelist(A004068(n), n, 0, 20); /* Martin Ettl, Jan 07 2013 */
(PARI) a(n)=5*n^3/6+n/6 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
KEYWORD
nonn,easy
AUTHOR
Albert D. Rich (Albert_Rich(AT)msn.com)
EXTENSIONS
Typo in definition corrected by Jean M. Morales, Aug 11 2013
STATUS
approved
a(n) = n*(5*n^2 - 2)/3.
+10
22
0, 1, 12, 43, 104, 205, 356, 567, 848, 1209, 1660, 2211, 2872, 3653, 4564, 5615, 6816, 8177, 9708, 11419, 13320, 15421, 17732, 20263, 23024, 26025, 29276, 32787, 36568, 40629, 44980, 49631, 54592
OFFSET
0,3
COMMENTS
3-dimensional analog of centered polygonal numbers.
Also as a(n)=(1/6)*(10*n^3-4*n), n>0: structured pentagonal anti-diamond numbers (vertex structure 11) (Cf. A051673 = alternate vertex A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n+1)-10*a(n) = (n+1)*(5*(n+1)^2-2)/3 - (10n(n+1)(n+2)/6) = n. The unit digits are 0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,... . - Eric Desbiaux, Aug 18 2008
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
LINKS
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
FORMULA
G.f.: x*(1+8*x+x^2)/(1-x)^4. - Colin Barker, Jan 08 2012
E.g.f.: (x/3)*(3 + 15*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 01 2017
MAPLE
A004466:=n->n*(5*n^2 - 2)/3; seq(A004466(n), n=0..50); # Wesley Ivan Hurt, Mar 10 2014
MATHEMATICA
Table[n(5n^2-2)/3, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
PROG
(Magma) [n*(5*n^2-2)/3: n in [0..50]]; // Vincenzo Librandi, May 15 2011
(PARI) a(n)=n*(5*n^2-2)/3 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A062786 (first differences), A264853 (partial sums).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
KEYWORD
nonn,easy
AUTHOR
Albert D. Rich (Albert_Rich(AT)msn.com)
STATUS
approved

Search completed in 0.034 seconds