login
A317297
a(n) = (n - 1)*(4*n^2 - 8*n + 5).
5
0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
OFFSET
1,2
COMMENTS
Conjecture: For n > 1, a(n) is the maximum eigenvalue of a 2*(n-1) X 2*(n-1) square matrix M defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). - Stefano Spezia, Dec 27 2018
Connections can be made to A022144 and A010014. Namely, a formula for A022144 is (2*n+1)^2 - (2*n-1)^2. A formula for A010014 is (2*n+1)^3 - (2*n-1)^3. The general form can be represented by (2*n+1)^d - (2*n-1)^d, where d designates the number of dimensions. When d is 4, a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16, namely the general form shifted by 1 and divided by 16 is a(n). - Yigit Oktar, Aug 16 2024
FORMULA
a(n) = 4*n^3 - 12*n^2 + 13*n - 5 = A033430(n) - A135453(n) + A008595(n) - 5.
G.f.: x^2*(5 + 14*x + 5*x^2)/(1 - x)^4. - Colin Barker, Sep 01 2018
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4) for n > 4. - Stefano Spezia, Sep 01 2018
E.g.f.: exp(x)*(5*x + 12*x^2 + 4*x^3). - Stefano Spezia, Jan 15 2019
a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16. - Yigit Oktar, Aug 16 2024
MATHEMATICA
Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
PROG
(PARI) a(n) = (n - 1)*(4*n^2 - 8*n + 5)
(PARI) concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018
CROSSREFS
First bisection of A006003.
Nonzero terms give the row sums of A007607.
Conjecture: 0 together with a bisection of A246697.
Cf. A219086 (partial sums).
Cf. A010014, A022144 (see comments)
Sequence in context: A039773 A289947 A272955 * A135973 A186636 A034224
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 01 2018
STATUS
approved