source: trunk/src/os2ahci/ata.c@ 111

Last change on this file since 111 was 111, checked in by Markus Thielen, 14 years ago

added support for os2trace (buggy; messages get swallowed); reverted last change that ignored unknown command line arguments

File size: 38.5 KB
Line 
1/******************************************************************************
2 * ata.c - ATA command processing
3 *
4 * Copyright (c) 2011 thi.guten Software Development
5 * Copyright (c) 2011 Mensys B.V.
6 *
7 * Authors: Christian Mueller, Markus Thielen
8 *
9 * Parts copied from/inspired by the Linux AHCI driver;
10 * those parts are (c) Linux AHCI/ATA maintainers
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27#include "os2ahci.h"
28#include "ata.h"
29
30/* -------------------------- macros and constants ------------------------- */
31
32/* ------------------------ typedefs and structures ------------------------ */
33
34/* -------------------------- function prototypes -------------------------- */
35
36static int ata_cmd_read (IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
37 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
38 ULONG sg_cnt);
39
40static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
41 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
42 ULONG sg_cnt, int write_through);
43
44/* ------------------------ global/static variables ------------------------ */
45
46/* ----------------------------- start of code ----------------------------- */
47
48/******************************************************************************
49 * Initialize AHCI command slot, FIS and S/G list for the specified ATA
50 * command. The command parameters are passed as a variable argument list
51 * of type and value(s). The list is terminated by AP_END.
52 *
53 * Notes:
54 *
55 * - The specified command slot is expected to be idle; no checks are
56 * performed to prevent messing with a busy port.
57 *
58 * - Port multipliers are not supported, yet, thus 'd' should always
59 * be 0 for the time being.
60 *
61 * - 'cmd' is passed as 16-bit integer because the compiler would push
62 * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
63 * macros would screw up the address of the first variable argument
64 * if the size of the last fixed argument wouldn't match what the
65 * compiler pushed on the stack.
66 *
67 * Return values:
68 * 0 : success
69 * > 0 : could not map all S/G entries; the return value is the number of
70 * S/G entries that could be mapped.
71 * < 0 : other error
72 */
73int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
74{
75 va_list va;
76 va_start(va, cmd);
77 return(v_ata_cmd(ai, p, d, slot, cmd, va));
78}
79
80int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
81{
82 AHCI_PORT_DMA _far *dma_base_virt;
83 AHCI_CMD_HDR _far *cmd_hdr;
84 AHCI_CMD_TBL _far *cmd_tbl;
85 SCATGATENTRY _far *sg_list = NULL;
86 SCATGATENTRY sg_single;
87 ATA_PARM ap;
88 ATA_CMD ata_cmd;
89 void _far *atapi_cmd = NULL;
90 u32 dma_base_phys;
91 u16 atapi_cmd_len = 0;
92 u16 ahci_flags = 0;
93 u16 sg_cnt = 0;
94 int i;
95 int n;
96
97 /* --------------------------------------------------------------------------
98 * Initialize ATA command. The ATA command is set up with the main command
99 * value and a variable list of additional parameters such as the sector
100 * address, transfer count, ...
101 */
102 memset(&ata_cmd, 0x00, sizeof(ata_cmd));
103 ata_cmd.cmd = (u8) cmd;
104
105 /* parse variable arguments */
106 do {
107 switch ((ap = va_arg(va, ATA_PARM))) {
108
109 case AP_AHCI_FLAGS:
110 ahci_flags |= va_arg(va, u16);
111 break;
112
113 case AP_WRITE:
114 if (va_arg(va, u16) != 0) {
115 ahci_flags |= AHCI_CMD_WRITE;
116 }
117 break;
118
119 case AP_FEATURES:
120 /* ATA features word */
121 ata_cmd.features |= va_arg(va, u16);
122 break;
123
124 case AP_COUNT:
125 /* transfer count */
126 ata_cmd.count = va_arg(va, u16);
127 break;
128
129 case AP_SECTOR_28:
130 /* 28-bit sector address */
131 ata_cmd.lba_l = va_arg(va, u32);
132 if (ata_cmd.lba_l & 0xf0000000UL) {
133 dprintf("error: LBA-28 address %ld has more than 28 bits\n", ata_cmd.lba_l);
134 return(ATA_CMD_INVALID_PARM);
135 }
136 /* add upper 4 bits to device field */
137 ata_cmd.device |= (ata_cmd.lba_l >> 24) & 0x0fU;
138 /* only lower 24 bits come into lba_l */
139 ata_cmd.lba_l &= 0x00ffffffUL;
140 break;
141
142 case AP_SECTOR_48:
143 /* 48-bit sector address */
144 ata_cmd.lba_l = va_arg(va, u32);
145 ata_cmd.lba_h = va_arg(va, u16);
146 break;
147
148 case AP_DEVICE:
149 /* ATA device byte; note that this byte contains the highest
150 * 4 bits of LBA-28 address; we have to leave them alone here. */
151 ata_cmd.device |= va_arg(va, u16) & 0xf0U;
152 break;
153
154 case AP_SGLIST:
155 /* scatter/gather list in SCATGATENTRY/count format */
156 sg_list = va_arg(va, void _far *);
157 sg_cnt = va_arg(va, u16);
158 break;
159
160 case AP_VADDR:
161 /* virtual buffer address in addr/len format (up to 4K) */
162 sg_single.ppXferBuf = virt_to_phys(va_arg(va, void _far *));
163 sg_single.XferBufLen = va_arg(va, u16);
164 sg_list = &sg_single;
165 sg_cnt = 1;
166 break;
167
168 case AP_ATAPI_CMD:
169 /* ATAPI command */
170 atapi_cmd = va_arg(va, void _far *);
171 atapi_cmd_len = va_arg(va, u16);
172 ahci_flags |= AHCI_CMD_ATAPI;
173 break;
174
175 case AP_ATA_CMD:
176 /* ATA command "pass-through" */
177 memcpy(&ata_cmd, va_arg(va, void _far *), sizeof(ATA_CMD));
178 break;
179
180 case AP_END:
181 break;
182
183 default:
184 dprintf("error: v_ata_cmd() called with invalid parameter type (%d)\n", (int) ap);
185 return(ATA_CMD_INVALID_PARM);
186 }
187
188 } while (ap != AP_END);
189
190 /* --------------------------------------------------------------------------
191 * Fill in AHCI ATA command information. This includes the port command slot,
192 * the corresponding command FIS and the S/G list. The layout of the AHCI
193 * port DMA region is based on the Linux AHCI driver and looks like this:
194 *
195 * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
196 * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
197 * - 32 AHCI command tables, each consisting of
198 * - 64 bytes for command FIS
199 * - 16 bytes for ATAPI comands
200 * - 48 bytes reserved
201 * - 48 S/G entries (AHCI_SG) with 32 bytes, each
202 *
203 * Since the whole DMA buffer for all ports is larger than 64KB and we need
204 * multiple segments to address all of them, there are no virtual pointers
205 * to the individual elements in AD_INFO. Instead, we're relying on macros
206 * for getting the base address of a particular port's DMA region, then
207 * map a structure on top of that for convenience (AHCI_PORT_DMA).
208 */
209 dma_base_virt = port_dma_base(ai, p);
210 dma_base_phys = port_dma_base_phys(ai, p);
211
212 /* AHCI command header */
213 cmd_hdr = dma_base_virt->cmd_hdr + slot;
214 memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
215 cmd_hdr->options = ((d & 0x0f) << 12);
216 cmd_hdr->options |= ahci_flags; /* AHCI command flags */
217 cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
218 cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
219
220 /* AHCI command table */
221 cmd_tbl = dma_base_virt->cmd_tbl + slot;
222 memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
223 ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
224
225 if (atapi_cmd != NULL) {
226 /* copy ATAPI command */
227 memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
228 }
229
230 /* PRDT (S/G list)
231 *
232 * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
233 * size of each element, thus we need to split S/G elements larger than
234 * 22 bits into 2 AHCI_SG elements.
235 *
236 * - The S/G element size for AHCI is what the spec calls "'0' based"
237 * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
238 * sizes to be even in the context of 16-bit transfers, thus bit '1'
239 * always needs to be set.
240 *
241 * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
242 * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
243 *
244 * - There's a limit on the maximum number of S/G elements in the port DMA
245 * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
246 * the control of this function to split commands which require more
247 * than AHCI_MAX_SG entries. In order to help the caller, the return value
248 * of this function will indicate how many OS/2 S/G entries were
249 * successfully mapped.
250 *
251 */
252 for (i = n = 0; i < sg_cnt; i++) {
253 u32 sg_addr = sg_list[i].ppXferBuf;
254 u32 sg_size = sg_list[i].XferBufLen;
255
256 do {
257 u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN
258 : sg_size;
259 if (n >= AHCI_MAX_SG) {
260 /* couldn't store all S/G elements in our DMA buffer */
261 ddprintf("ata_cmd(): too many S/G elements\n");
262 return(i - 1);
263 }
264 if ((sg_addr & 1) || (chunk & 1)) {
265 ddprintf("error: ata_cmd() called with unaligned S/G element(s)\n");
266 return(ATA_CMD_UNALIGNED_ADDR);
267 }
268 cmd_tbl->sg_list[n].addr = sg_addr;
269 cmd_tbl->sg_list[n].size = chunk - 1;
270 sg_addr += chunk;
271 sg_size -= chunk;
272 n++;
273 } while (sg_size > 0);
274 }
275
276 /* set final S/G count in AHCI command header */
277 cmd_hdr->options |= (u32) n << 16;
278
279 if (debug >= 2) {
280 printf("ATA command for %d.%d.%d:\n", ad_no(ai), p, d);
281 phex(cmd_hdr, offsetof(AHCI_CMD_HDR, reserved),
282 TRACE_MINOR_CMD_HDR, "cmd_hdr: ");
283 phex(&ata_cmd, sizeof(ata_cmd), TRACE_MINOR_ATA_CMD, "ata_cmd: ");
284 if (atapi_cmd != NULL) {
285 phex(atapi_cmd, atapi_cmd_len, TRACE_MINOR_ATAPI_CMD, "atapi_cmd: ");
286 }
287 if (n > 0) {
288 phex(cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n,
289 TRACE_MINOR_SG_LIST, "sg_list: ");
290 }
291 }
292
293 return(ATA_CMD_SUCCESS);
294}
295
296/******************************************************************************
297 * Fill SATA command FIS with values extracted from an ATA command structure.
298 * The command FIS buffer (fis) is expected to be initialized to 0s. The
299 * structure of the FIS maps to the ATA shadow register block, including
300 * registers which can be written twice to store 16 bits (called 'exp').
301 *
302 * The FIS structure looks like this (using LSB notation):
303 *
304 * +----------------+----------------+----------------+----------------+
305 * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
306 * +----------------+----------------+----------------+----------------+
307 * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
308 * +----------------+----------------+----------------+----------------+
309 * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
310 * +----------------+----------------+----------------+----------------+
311 * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
312 * +----------------+----------------+----------------+----------------+
313 * 16 | Reserved | Reserved | Reserved | Reserved |
314 * +----------------+----------------+----------------+----------------+
315 */
316void ata_cmd_to_fis(u8 _far *fis, ATA_CMD _far *ata_cmd, int d)
317{
318 fis[0] = 0x27; /* register - host to device FIS */
319 fis[1] = (u8) (d & 0xf); /* port multiplier number */
320 fis[1] |= 0x80; /* bit 7 indicates Command FIS */
321 fis[2] = (u8) ata_cmd->cmd;
322 fis[3] = (u8) ata_cmd->features;
323
324 fis[4] = (u8) ata_cmd->lba_l;
325 fis[5] = (u8) (ata_cmd->lba_l >> 8);
326 fis[6] = (u8) (ata_cmd->lba_l >> 16);
327 fis[7] = (u8) ata_cmd->device;
328
329 fis[8] = (u8) (ata_cmd->lba_l >> 24);
330 fis[9] = (u8) ata_cmd->lba_h;
331 fis[10] = (u8) (ata_cmd->lba_h >> 8);
332 fis[11] = (u8) (ata_cmd->features >> 8);
333
334 fis[12] = (u8) ata_cmd->count;
335 fis[13] = (u8) (ata_cmd->count >> 8);
336}
337
338/******************************************************************************
339 * Get index in S/G list for the number of transferred sectors in the IORB.
340 *
341 * Returning io->cSGList indicates an error.
342 *
343 * NOTE: OS/2 makes sure S/G lists are set up such that entries at the HW
344 * limit will never cross sector boundaries. This means that splitting
345 * S/G lists into multiple commands can be done without editing the S/G
346 * lists.
347 */
348u16 ata_get_sg_indx(IORB_EXECUTEIO _far *io)
349{
350 ULONG offset = io->BlocksXferred * io->BlockSize;
351 USHORT i;
352
353 for (i = 0; i < io->cSGList && offset > 0; i++) {
354 offset -= io->pSGList[i].XferBufLen;
355 }
356
357 return(i);
358}
359
360/******************************************************************************
361 * Get max S/G count which will fit into our HW S/G buffers. This function is
362 * called when the S/G list is too long and we need to split the IORB into
363 * multiple commands. It returns both the number of sectors and S/G list
364 * elements that we can handle in a single command.
365 *
366 * The parameter 'sg_indx' indicates the current start index in the S/G list
367 * (0 if this is the first command iteration).
368 *
369 * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
370 * how many S/G elements were successfully mapped. Whatever we return needs to
371 * be less or equal to this value.
372 *
373 * Returning 0 in *sg_cnt indicates an error.
374 *
375 * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
376 * will never cross sector boundaries. This means that splitting S/G
377 * lists into multiple commands can be done without editing S/G list
378 * elements. Since AHCI only allows 22 bits for each S/G element, the
379 * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
380 * on the actual length of S/G elements. This function looks for the
381 * maximum number of S/G elements that can be mapped on sector
382 * boundaries which will still fit into our HW S/G list.
383 */
384void ata_max_sg_cnt(IORB_EXECUTEIO _far *io, USHORT sg_indx, USHORT sg_max,
385 USHORT _far *sg_cnt, USHORT _far *sector_cnt)
386{
387 ULONG max_sector_cnt = 0;
388 USHORT max_sg_cnt = 0;
389 ULONG offset = 0;
390 USHORT i;
391
392 for (i = sg_indx; i < io->cSGList; i++) {
393 if (i - sg_indx >= sg_max) {
394 /* we're beyond the number of S/G elements we can map */
395 break;
396 }
397
398 offset += io->pSGList[i].XferBufLen;
399 if (offset % io->BlockSize == 0) {
400 /* this S/G element ends on a sector boundary */
401 max_sector_cnt = offset / io->BlockSize;
402 max_sg_cnt = i + 1;
403 }
404 }
405
406 /* return the best match we found (0 indicating failure) */
407 *sector_cnt = max_sector_cnt;
408 *sg_cnt = max_sg_cnt;
409}
410
411
412/******************************************************************************
413 * Get device or media geometry. Device and media geometry are expected to be
414 * the same for non-removable devices, which will always be the case for the
415 * ATA devices we're dealing with (hard disks). ATAPI is a different story
416 * and handled by atapi_get_geometry().
417 */
418int ata_get_geometry(IORBH _far *iorb, int slot)
419{
420 ADD_WORKSPACE _far *aws = add_workspace(iorb);
421 int rc;
422
423 /* allocate buffer for ATA identify information */
424 if ((aws->buf = malloc(ATA_ID_WORDS * sizeof(u16))) == NULL) {
425 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
426 return(-1);
427 }
428
429 /* request ATA identify information */
430 aws->ppfunc = ata_get_geometry_pp;
431 rc = ata_cmd(ad_infos + iorb_unit_adapter(iorb),
432 iorb_unit_port(iorb),
433 iorb_unit_device(iorb),
434 slot,
435 ATA_CMD_ID_ATA,
436 AP_VADDR, (void _far *) aws->buf, ATA_ID_WORDS * sizeof(u16),
437 AP_END);
438
439 if (rc != 0) {
440 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
441 }
442
443 return(rc);
444}
445
446/******************************************************************************
447 * Post processing function for ata_get_geometry(): convert the ATA identify
448 * information to OS/2 IOCC_GEOMETRY information.
449 */
450void ata_get_geometry_pp(IORBH _far *iorb)
451{
452 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
453 USHORT geometry_len = ((IORB_GEOMETRY _far *) iorb)->GeometryLen;
454 u16 *id_buf = add_workspace(iorb)->buf;
455 int a = iorb_unit_adapter(iorb);
456 int p = iorb_unit_port(iorb);
457
458 /* Fill-in geometry information; the ATA-8 spec declares the geometry
459 * fields in the ATA ID buffer as obsolete but it's still the best
460 * guess in most cases. If the information stored in the geometry
461 * fields is apparently incorrect, we'll use the algorithm typically
462 * used by SCSI adapters and modern PC BIOS versions:
463 *
464 * - 512 bytes per sector
465 * - 255 heads
466 * - 63 sectors per track (or 56 with the parameter "/4")
467 * - x cylinders (calculated)
468 *
469 * Please note that os2ahci currently does not natively support ATA sectors
470 * larger than 512 bytes, therefore relies on the translation logic built
471 * into the corresponding ATA disks. In order to prevent file systems that
472 * use block sizes larger than 512 bytes (FAT, JFS, ...) from ending up on
473 * incorrectly aligned physical sector accesses, hence using more physical
474 * I/Os than necessary, the command line parameter "/4" can be used to force
475 * a track size of 56 sectors. This way, partitions will start on 4K
476 * boundaries.
477 *
478 * Another limitation is that OS/2 has a 32-bit variable for the total number
479 * of sectors, limiting the maximum capacity to roughly 2TB. This is another
480 * issue that needs to be addressed sooner or later; large sectors could
481 * raise this limit to something like 8TB but this is not really much of a
482 * difference. Maybe there's something in later DDKs that allows more than
483 * 32 bits?
484 */
485 memset(geometry, 0x00, geometry_len);
486 geometry->BytesPerSector = ATA_SECTOR_SIZE;
487
488 /* extract total number of sectors */
489 if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400) {
490 /* 48-bit LBA supported */
491 if (ATA_CAPACITY48_H(id_buf) != 0) {
492 /* more than 32 bits for number of sectors */
493 dprintf("warning: limiting disk %d.%d.%d to 2TB\n",
494 iorb_unit_adapter(iorb), iorb_unit_port(iorb),
495 iorb_unit_device(iorb));
496 geometry->TotalSectors = 0xffffffffUL;
497 } else {
498 geometry->TotalSectors = ATA_CAPACITY48_L(id_buf);
499 }
500 } else {
501 /* 28-bit LBA */
502 geometry->TotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffffUL;
503 }
504
505 /* fabricate the remaining geometry fields */
506 if (track_size[a][p] != 0) {
507 /* A specific track size has been requested for this port; this is
508 * typically done for disks with 4K sectors to make sure partitions
509 * start on 8-sector boundaries (parameter "/4").
510 */
511 geometry->NumHeads = 255;
512 geometry->SectorsPerTrack = track_size[a][p];
513 geometry->TotalCylinders = geometry->TotalSectors /
514 ((u32) geometry->NumHeads *
515 (u32) geometry->SectorsPerTrack);
516
517 } else if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 &&
518 CUR_SECTORS(id_buf) > 0 &&
519 CUR_CAPACITY(id_buf) == (u32) CUR_HEADS(id_buf) *
520 (u32) CUR_CYLS(id_buf) *
521 (u32) CUR_SECTORS(id_buf)) {
522 /* BIOS-supplied (aka "current") geometry values look valid */
523 geometry->NumHeads = CUR_HEADS(id_buf);
524 geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
525 geometry->TotalCylinders = CUR_CYLS(id_buf);
526
527 } else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 &&
528 ATA_SECTORS(id_buf) > 0) {
529 /* ATA-supplied values for geometry look valid */
530 geometry->NumHeads = ATA_HEADS(id_buf);
531 geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
532 geometry->TotalCylinders = ATA_CYLS(id_buf);
533
534 } else {
535 /* use typical SCSI geometry */
536 geometry->NumHeads = 255;
537 geometry->SectorsPerTrack = 63;
538 geometry->TotalCylinders = geometry->TotalSectors /
539 ((u32) geometry->NumHeads *
540 (u32) geometry->SectorsPerTrack);
541 }
542
543 if (debug) {
544 printf("geometry information:\n");
545 printf(" heads: %d\n", (u16) geometry->NumHeads);
546 printf(" sectors: %d\n", (u16) geometry->SectorsPerTrack);
547 printf(" cylinders: %d\n", (u16) geometry->TotalCylinders);
548 printf(" capacity: %ldMB\n", (u32) (geometry->TotalSectors / 2048));
549 }
550
551 /* tell interrupt handler that this IORB is complete */
552 add_workspace(iorb)->complete = 1;
553}
554
555/******************************************************************************
556 * Test whether unit is ready.
557 */
558int ata_unit_ready(IORBH _far *iorb, int slot)
559{
560 /* This is a NOP for ATA devices (at least right now); returning an error
561 * without setting an error code means ahci_exec_iorb() will not queue any
562 * HW command and the IORB will complete successfully.
563 */
564 ((IORB_UNIT_STATUS _far *) iorb)->UnitStatus = US_READY | US_POWER;
565 return(-1);
566}
567
568/******************************************************************************
569 * Read sectors from AHCI device.
570 */
571int ata_read(IORBH _far *iorb, int slot)
572{
573 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
574 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
575 ULONG sector = io->RBA + io->BlocksXferred;
576 USHORT count = io->BlockCount - io->BlocksXferred;
577 USHORT sg_indx;
578 USHORT sg_cnt;
579 int p = iorb_unit_port(iorb);
580 int d = iorb_unit_device(iorb);
581 int rc;
582
583 if (io->BlockCount == 0) {
584 /* NOP; return -1 without error in IORB to indicate success */
585 return(-1);
586 }
587
588 if (add_workspace(iorb)->unaligned) {
589 /* unaligned S/G addresses present; need to use double buffers */
590 return(ata_read_unaligned(iorb, slot));
591 }
592
593 /* Kludge: some I/O commands during boot use excessive S/G buffer lengths
594 * which cause NCQ commands to lock up. If there's only one S/G element
595 * and this element is already larger than what we can derive from the sector
596 * count, we'll adjust that element.
597 */
598 if (io->BlocksXferred == 0 && io->cSGList == 1 &&
599 io->pSGList[0].XferBufLen > (ULONG) io->BlockCount * io->BlockSize) {
600 io->pSGList[0].XferBufLen = (ULONG) io->BlockCount * io->BlockSize;
601 }
602
603 /* prepare read command while keeping an eye on S/G count limitations */
604 do {
605 sg_indx = ata_get_sg_indx(io);
606 sg_cnt = io->cSGList - sg_indx;
607 if ((rc = ata_cmd_read(iorb, ai, p, d, slot, sector, count,
608 io->pSGList + sg_indx, sg_cnt)) > 0) {
609 /* couldn't map all S/G elements */
610 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
611 }
612 } while (rc > 0 && sg_cnt > 0);
613
614 if (rc == 0) {
615 add_workspace(iorb)->blocks = count;
616 add_workspace(iorb)->ppfunc = ata_read_pp;
617
618 } else if (rc > 0) {
619 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
620
621 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
622 /* unaligned S/G addresses detected; need to use double buffers */
623 add_workspace(iorb)->unaligned = 1;
624 return(ata_read_unaligned(iorb, slot));
625
626 } else {
627 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
628 }
629
630 return(rc);
631}
632
633/******************************************************************************
634 * Read sectors from AHCI device with unaligned S/G element addresses. AHCI
635 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
636 * restrictions. This doesn't happen very often but when it does, we need to
637 * use a transfer buffer and copy the data manually.
638 */
639int ata_read_unaligned(IORBH _far *iorb, int slot)
640{
641 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
642 ADD_WORKSPACE _far *aws = add_workspace(iorb);
643 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
644 ULONG sector = io->RBA + io->BlocksXferred;
645 SCATGATENTRY sg_single;
646 int p = iorb_unit_port(iorb);
647 int d = iorb_unit_device(iorb);
648 int rc;
649
650 ddprintf("ata_read_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
651
652 /* allocate transfer buffer */
653 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
654 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
655 return(-1);
656 }
657
658 /* prepare read command using transfer buffer */
659 sg_single.ppXferBuf = virt_to_phys(aws->buf);
660 sg_single.XferBufLen = io->BlockSize;
661 rc = ata_cmd_read(iorb, ai, p, d, slot, sector, 1, &sg_single, 1);
662
663 if (rc == 0) {
664 add_workspace(iorb)->blocks = 1;
665 add_workspace(iorb)->ppfunc = ata_read_pp;
666
667 } else if (rc > 0) {
668 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
669
670 } else {
671 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
672 }
673
674 return(rc);
675}
676
677/******************************************************************************
678 * Post processing function for ata_read(); this function updates the
679 * BlocksXferred counter in the IORB and, if not all blocks have been
680 * transferred, requeues the IORB to process the remaining sectors. It also
681 * takes care of copying data from the transfer buffer for unaligned reads.
682 */
683void ata_read_pp(IORBH _far *iorb)
684{
685 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
686 ADD_WORKSPACE _far *aws = add_workspace(iorb);
687
688 if (aws->unaligned) {
689 /* copy transfer buffer to corresponding physical address in S/G list */
690 sg_memcpy(io->pSGList, io->cSGList,
691 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
692 aws->buf, io->BlockSize, BUF_TO_SG);
693 }
694
695 io->BlocksXferred += add_workspace(iorb)->blocks;
696 dprintf("ata_read_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
697
698 if (io->BlocksXferred >= io->BlockCount) {
699 /* we're done; tell IRQ handler the IORB is complete */
700 add_workspace(iorb)->complete = 1;
701 } else {
702 /* requeue this IORB for next iteration */
703 iorb_requeue(iorb);
704 }
705}
706
707/******************************************************************************
708 * Verify readability of sectors on ATA device.
709 */
710int ata_verify(IORBH _far *iorb, int slot)
711{
712 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
713 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
714 int p = iorb_unit_port(iorb);
715 int d = iorb_unit_device(iorb);
716 int rc;
717
718 if (io->BlockCount == 0) {
719 /* NOP; return -1 without error in IORB to indicate success */
720 return(-1);
721 }
722
723 /* prepare verify command */
724 if (io->RBA >= (1UL << 28) || io->BlockCount > 256) {
725 /* need LBA48 for this command */
726 if (!ai->ports[p].devs[d].lba48) {
727 iorb_seterr(iorb, IOERR_RBA_LIMIT);
728 return(-1);
729 }
730 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
731 AP_SECTOR_48, (u32) io->RBA, (u16) 0,
732 AP_COUNT, (u16) io->BlockCount,
733 AP_DEVICE, 0x40,
734 AP_END);
735 } else {
736 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
737 AP_SECTOR_28, (u32) io->RBA,
738 AP_COUNT, (u16) io->BlockCount & 0xffU,
739 AP_END);
740 }
741
742 return(rc);
743}
744
745/******************************************************************************
746 * Write sectors to AHCI device.
747 */
748int ata_write(IORBH _far *iorb, int slot)
749{
750 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
751 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
752 ULONG sector = io->RBA + io->BlocksXferred;
753 USHORT count = io->BlockCount - io->BlocksXferred;
754 USHORT sg_indx;
755 USHORT sg_cnt;
756 int p = iorb_unit_port(iorb);
757 int d = iorb_unit_device(iorb);
758 int rc;
759
760 if (io->BlockCount == 0) {
761 /* NOP; return -1 without error in IORB to indicate success */
762 return(-1);
763 }
764
765 if (add_workspace(iorb)->unaligned) {
766 /* unaligned S/G addresses present; need to use double buffers */
767 return(ata_write_unaligned(iorb, slot));
768 }
769
770 /* prepare write command while keeping an eye on S/G count limitations */
771 do {
772 sg_indx = ata_get_sg_indx(io);
773 sg_cnt = io->cSGList - sg_indx;
774 if ((rc = ata_cmd_write(iorb, ai, p, d, slot, sector, count,
775 io->pSGList + sg_indx, sg_cnt,
776 io->Flags & XIO_DISABLE_HW_WRITE_CACHE)) > 0) {
777 /* couldn't map all S/G elements */
778 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
779 }
780 } while (rc > 0 && sg_cnt > 0);
781
782 if (rc == 0) {
783 add_workspace(iorb)->blocks = count;
784 add_workspace(iorb)->ppfunc = ata_write_pp;
785
786 } else if (rc > 0) {
787 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
788
789 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
790 /* unaligned S/G addresses detected; need to use double buffers */
791 add_workspace(iorb)->unaligned = 1;
792 return(ata_write_unaligned(iorb, slot));
793
794 } else {
795 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
796 }
797
798 return(rc);
799}
800
801/******************************************************************************
802 * Write sectors from AHCI device with unaligned S/G element addresses. AHCI
803 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
804 * restrictions. This doesn't happen very often but when it does, we need to
805 * use a transfer buffer and copy the data manually.
806 */
807int ata_write_unaligned(IORBH _far *iorb, int slot)
808{
809 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
810 ADD_WORKSPACE _far *aws = add_workspace(iorb);
811 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
812 ULONG sector = io->RBA + io->BlocksXferred;
813 SCATGATENTRY sg_single;
814 int p = iorb_unit_port(iorb);
815 int d = iorb_unit_device(iorb);
816 int rc;
817
818 ddprintf("ata_write_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
819
820 /* allocate transfer buffer */
821 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
822 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
823 return(-1);
824 }
825
826 /* copy next sector from S/G list to transfer buffer */
827 sg_memcpy(io->pSGList, io->cSGList,
828 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
829 aws->buf, io->BlockSize, SG_TO_BUF);
830
831 /* prepare write command using transfer buffer */
832 sg_single.ppXferBuf = virt_to_phys(aws->buf);
833 sg_single.XferBufLen = io->BlockSize;
834 rc = ata_cmd_write(iorb, ai, p, d, slot, sector, 1, &sg_single, 1,
835 io->Flags & XIO_DISABLE_HW_WRITE_CACHE);
836
837 if (rc == 0) {
838 add_workspace(iorb)->blocks = 1;
839 add_workspace(iorb)->ppfunc = ata_write_pp;
840
841 } else if (rc > 0) {
842 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
843
844 } else {
845 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
846 }
847
848 return(rc);
849}
850
851
852/******************************************************************************
853 * Post processing function for ata_write(); this function updates the
854 * BlocksXferred counter in the IORB and, if not all blocks have been
855 * transferred, requeues the IORB to process the remaining sectors.
856 */
857void ata_write_pp(IORBH _far *iorb)
858{
859 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
860
861 io->BlocksXferred += add_workspace(iorb)->blocks;
862 dprintf("ata_write_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
863
864 if (io->BlocksXferred >= io->BlockCount) {
865 /* we're done; tell IRQ handler the IORB is complete */
866 add_workspace(iorb)->complete = 1;
867 } else {
868 /* requeue this IORB for next iteration */
869 iorb_requeue(iorb);
870 }
871}
872
873/******************************************************************************
874 * Execute ATA command.
875 */
876int ata_execute_ata(IORBH _far *iorb, int slot)
877{
878 IORB_ADAPTER_PASSTHRU _far *apt = (IORB_ADAPTER_PASSTHRU _far *) iorb;
879 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
880 int p = iorb_unit_port(iorb);
881 int d = iorb_unit_device(iorb);
882 int rc;
883
884 if (apt->ControllerCmdLen != sizeof(ATA_CMD)) {
885 iorb_seterr(iorb, IOERR_CMD_SYNTAX);
886 return(-1);
887 }
888
889 rc = ata_cmd(ai, p, d, slot, 0,
890 AP_SGLIST, apt->pSGList, apt->cSGList,
891 AP_ATA_CMD, apt->pControllerCmd,
892 AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
893 AP_END);
894
895 return(rc);
896}
897
898/******************************************************************************
899 * Request sense information for a failed command. Since there is no "request
900 * sense" command for ATA devices, we need to read the current error code from
901 * the AHCI task file register and fabricate the sense information.
902 *
903 * NOTES:
904 *
905 * - This function must be called right after an ATA command has failed and
906 * before any other commands are queued on the corresponding port. This
907 * function is typically called in the port restart context hook which is
908 * triggered by an AHCI error interrupt.
909 *
910 * - The ATA error bits are a complete mess. We'll try and catch the most
911 * interesting error codes (such as medium errors) and report everything
912 * else with a generic error code.
913 */
914int ata_req_sense(IORBH _far *iorb, int slot)
915{
916 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
917 u8 _far *port_mmio = port_base(ai, iorb_unit_port(iorb));
918 u32 tf_data = readl(port_mmio + PORT_TFDATA);
919 u8 err = (u8) (tf_data >> 8);
920 u8 sts = (u8) (tf_data);
921
922 if (sts & ATA_ERR) {
923 if (sts & ATA_DF) {
924 /* there is a device-specific error condition */
925 if (err & ATA_ICRC) {
926 iorb_seterr(iorb, IOERR_ADAPTER_DEVICEBUSCHECK);
927 } else if (err & ATA_UNC) {
928 iorb_seterr(iorb, IOERR_MEDIA);
929 } else if (err & ATA_IDNF) {
930 iorb_seterr(iorb, IOERR_RBA_ADDRESSING_ERROR);
931 } else {
932 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
933 }
934
935 } else {
936 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
937 }
938 } else {
939 /* this function only gets called when we received an error interrupt */
940 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
941 }
942
943 /* Return an error to indicate there's no HW command to be submitted and
944 * that the IORB can be completed "as is" (the upstream code expects the
945 * IORB error code, if any, to be set when this happens and this is exactly
946 * what this function is all about).
947 */
948 return(-1);
949}
950
951/******************************************************************************
952 * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
953 * in the indentify buffer are byte-swapped, we need to swap them back.
954 */
955char *ata_dev_name(u16 *id_buf)
956{
957 static char dev_name[ATA_ID_PROD_LEN + 1];
958 char *t = dev_name;
959 char *s = (char *) (id_buf + ATA_ID_PROD);
960 int i;
961
962 dev_name[sizeof(dev_name)-1] = '\0';
963
964 for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
965 *(t++) = s[1];
966 *(t++) = s[0];
967 s += 2;
968 }
969
970 return(dev_name);
971}
972
973/******************************************************************************
974 * Fabricate ATA READ command based on the capabilities of the corresponding
975 * device and the paramters set from above (NCQ, etc).
976 */
977static int ata_cmd_read(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
978 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
979 ULONG sg_cnt)
980{
981 int rc;
982
983 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
984 /* need LBA48 for this command */
985 if (!ai->ports[p].devs[d].lba48) {
986 iorb_seterr(iorb, IOERR_RBA_LIMIT);
987 return(-1);
988 }
989 if (add_workspace(iorb)->is_ncq) {
990 /* use NCQ read; count goes into feature register, tag into count! */
991 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
992 AP_SECTOR_48, (u32) sector, (u16) 0,
993 AP_FEATURES, (u16) count,
994 AP_COUNT, (u16) (slot << 3), /* tag == slot */
995 AP_SGLIST, sg_list, (u16) sg_cnt,
996 AP_DEVICE, 0x40,
997 AP_END);
998 } else {
999 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
1000 AP_SECTOR_48, (u32) sector, (u16) 0,
1001 AP_COUNT, (u16) count,
1002 AP_SGLIST, sg_list, (u16) sg_cnt,
1003 AP_DEVICE, 0x40,
1004 AP_END);
1005 }
1006
1007 } else {
1008 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
1009 AP_SECTOR_28, (u32) sector,
1010 AP_COUNT, (u16) count & 0xffU,
1011 AP_SGLIST, sg_list, (u16) sg_cnt,
1012 AP_DEVICE, 0x40,
1013 AP_END);
1014 }
1015
1016 return(rc);
1017}
1018
1019/******************************************************************************
1020 * Fabricate ATA WRITE command based on the capabilities of the corresponding
1021 * device and the paramters set from above (NCQ, etc)
1022 */
1023static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
1024 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
1025 ULONG sg_cnt, int write_through)
1026{
1027 int rc;
1028
1029 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
1030 /* need LBA48 for this command */
1031 if (!ai->ports[p].devs[d].lba48) {
1032 iorb_seterr(iorb, IOERR_RBA_LIMIT);
1033 return(-1);
1034 }
1035 if (add_workspace(iorb)->is_ncq) {
1036 /* use NCQ write; count goes into feature register, tag into count! */
1037 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
1038 AP_SECTOR_48, (u32) sector, (u16) 0,
1039 AP_FEATURES, (u16) count,
1040 AP_COUNT, (u16) (slot << 3), /* tag = slot */
1041 AP_SGLIST, sg_list, (u16) sg_cnt,
1042 AP_DEVICE, 0x40,
1043 AP_DEVICE, (write_through) ? 0x80 : 0, /* force unit access */
1044 AP_WRITE, 1,
1045 AP_END);
1046 } else {
1047 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
1048 AP_SECTOR_48, (u32) sector, (u16) 0,
1049 AP_COUNT, (u16) count,
1050 AP_SGLIST, sg_list, (u16) sg_cnt,
1051 AP_DEVICE, 0x40,
1052 AP_WRITE, 1,
1053 AP_END);
1054 }
1055
1056 } else {
1057 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
1058 AP_SECTOR_28, (u32) sector,
1059 AP_COUNT, (u16) count & 0xffU,
1060 AP_SGLIST, sg_list, (u16) sg_cnt,
1061 AP_DEVICE, 0x40,
1062 AP_WRITE, 1,
1063 AP_END);
1064 }
1065
1066 return(rc);
1067}
Note: See TracBrowser for help on using the repository browser.