source: trunk/src/os2ahci/ata.c@ 110

Last change on this file since 110 was 110, checked in by Markus Thielen, 14 years ago

contains CMs changes for unaligned buffers; removed unused stack var; let driver continue boot on unknown command line switch

File size: 38.4 KB
Line 
1/******************************************************************************
2 * ata.c - ATA command processing
3 *
4 * Copyright (c) 2011 thi.guten Software Development
5 * Copyright (c) 2011 Mensys B.V.
6 *
7 * Authors: Christian Mueller, Markus Thielen
8 *
9 * Parts copied from/inspired by the Linux AHCI driver;
10 * those parts are (c) Linux AHCI/ATA maintainers
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27#include "os2ahci.h"
28#include "ata.h"
29
30/* -------------------------- macros and constants ------------------------- */
31
32/* ------------------------ typedefs and structures ------------------------ */
33
34/* -------------------------- function prototypes -------------------------- */
35
36static int ata_cmd_read (IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
37 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
38 ULONG sg_cnt);
39
40static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
41 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
42 ULONG sg_cnt, int write_through);
43
44/* ------------------------ global/static variables ------------------------ */
45
46/* ----------------------------- start of code ----------------------------- */
47
48/******************************************************************************
49 * Initialize AHCI command slot, FIS and S/G list for the specified ATA
50 * command. The command parameters are passed as a variable argument list
51 * of type and value(s). The list is terminated by AP_END.
52 *
53 * Notes:
54 *
55 * - The specified command slot is expected to be idle; no checks are
56 * performed to prevent messing with a busy port.
57 *
58 * - Port multipliers are not supported, yet, thus 'd' should always
59 * be 0 for the time being.
60 *
61 * - 'cmd' is passed as 16-bit integer because the compiler would push
62 * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
63 * macros would screw up the address of the first variable argument
64 * if the size of the last fixed argument wouldn't match what the
65 * compiler pushed on the stack.
66 *
67 * Return values:
68 * 0 : success
69 * > 0 : could not map all S/G entries; the return value is the number of
70 * S/G entries that could be mapped.
71 * < 0 : other error
72 */
73int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
74{
75 va_list va;
76 va_start(va, cmd);
77 return(v_ata_cmd(ai, p, d, slot, cmd, va));
78}
79
80int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
81{
82 AHCI_PORT_DMA _far *dma_base_virt;
83 AHCI_CMD_HDR _far *cmd_hdr;
84 AHCI_CMD_TBL _far *cmd_tbl;
85 SCATGATENTRY _far *sg_list = NULL;
86 SCATGATENTRY sg_single;
87 ATA_PARM ap;
88 ATA_CMD ata_cmd;
89 void _far *atapi_cmd = NULL;
90 u32 dma_base_phys;
91 u16 atapi_cmd_len = 0;
92 u16 ahci_flags = 0;
93 u16 sg_cnt = 0;
94 int i;
95 int n;
96
97 /* --------------------------------------------------------------------------
98 * Initialize ATA command. The ATA command is set up with the main command
99 * value and a variable list of additional parameters such as the sector
100 * address, transfer count, ...
101 */
102 memset(&ata_cmd, 0x00, sizeof(ata_cmd));
103 ata_cmd.cmd = (u8) cmd;
104
105 /* parse variable arguments */
106 do {
107 switch ((ap = va_arg(va, ATA_PARM))) {
108
109 case AP_AHCI_FLAGS:
110 ahci_flags |= va_arg(va, u16);
111 break;
112
113 case AP_WRITE:
114 if (va_arg(va, u16) != 0) {
115 ahci_flags |= AHCI_CMD_WRITE;
116 }
117 break;
118
119 case AP_FEATURES:
120 /* ATA features word */
121 ata_cmd.features |= va_arg(va, u16);
122 break;
123
124 case AP_COUNT:
125 /* transfer count */
126 ata_cmd.count = va_arg(va, u16);
127 break;
128
129 case AP_SECTOR_28:
130 /* 28-bit sector address */
131 ata_cmd.lba_l = va_arg(va, u32);
132 if (ata_cmd.lba_l & 0xf0000000UL) {
133 dprintf("error: LBA-28 address %ld has more than 28 bits\n", ata_cmd.lba_l);
134 return(ATA_CMD_INVALID_PARM);
135 }
136 /* add upper 4 bits to device field */
137 ata_cmd.device |= (ata_cmd.lba_l >> 24) & 0x0fU;
138 /* only lower 24 bits come into lba_l */
139 ata_cmd.lba_l &= 0x00ffffffUL;
140 break;
141
142 case AP_SECTOR_48:
143 /* 48-bit sector address */
144 ata_cmd.lba_l = va_arg(va, u32);
145 ata_cmd.lba_h = va_arg(va, u16);
146 break;
147
148 case AP_DEVICE:
149 /* ATA device byte; note that this byte contains the highest
150 * 4 bits of LBA-28 address; we have to leave them alone here. */
151 ata_cmd.device |= va_arg(va, u16) & 0xf0U;
152 break;
153
154 case AP_SGLIST:
155 /* scatter/gather list in SCATGATENTRY/count format */
156 sg_list = va_arg(va, void _far *);
157 sg_cnt = va_arg(va, u16);
158 break;
159
160 case AP_VADDR:
161 /* virtual buffer address in addr/len format (up to 4K) */
162 sg_single.ppXferBuf = virt_to_phys(va_arg(va, void _far *));
163 sg_single.XferBufLen = va_arg(va, u16);
164 sg_list = &sg_single;
165 sg_cnt = 1;
166 break;
167
168 case AP_ATAPI_CMD:
169 /* ATAPI command */
170 atapi_cmd = va_arg(va, void _far *);
171 atapi_cmd_len = va_arg(va, u16);
172 ahci_flags |= AHCI_CMD_ATAPI;
173 break;
174
175 case AP_ATA_CMD:
176 /* ATA command "pass-through" */
177 memcpy(&ata_cmd, va_arg(va, void _far *), sizeof(ATA_CMD));
178 break;
179
180 case AP_END:
181 break;
182
183 default:
184 dprintf("error: v_ata_cmd() called with invalid parameter type (%d)\n", (int) ap);
185 return(ATA_CMD_INVALID_PARM);
186 }
187
188 } while (ap != AP_END);
189
190 /* --------------------------------------------------------------------------
191 * Fill in AHCI ATA command information. This includes the port command slot,
192 * the corresponding command FIS and the S/G list. The layout of the AHCI
193 * port DMA region is based on the Linux AHCI driver and looks like this:
194 *
195 * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
196 * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
197 * - 32 AHCI command tables, each consisting of
198 * - 64 bytes for command FIS
199 * - 16 bytes for ATAPI comands
200 * - 48 bytes reserved
201 * - 48 S/G entries (AHCI_SG) with 32 bytes, each
202 *
203 * Since the whole DMA buffer for all ports is larger than 64KB and we need
204 * multiple segments to address all of them, there are no virtual pointers
205 * to the individual elements in AD_INFO. Instead, we're relying on macros
206 * for getting the base address of a particular port's DMA region, then
207 * map a structure on top of that for convenience (AHCI_PORT_DMA).
208 */
209 dma_base_virt = port_dma_base(ai, p);
210 dma_base_phys = port_dma_base_phys(ai, p);
211
212 /* AHCI command header */
213 cmd_hdr = dma_base_virt->cmd_hdr + slot;
214 memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
215 cmd_hdr->options = ((d & 0x0f) << 12);
216 cmd_hdr->options |= ahci_flags; /* AHCI command flags */
217 cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
218 cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
219
220 /* AHCI command table */
221 cmd_tbl = dma_base_virt->cmd_tbl + slot;
222 memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
223 ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
224
225 if (atapi_cmd != NULL) {
226 /* copy ATAPI command */
227 memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
228 }
229
230 /* PRDT (S/G list)
231 *
232 * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
233 * size of each element, thus we need to split S/G elements larger than
234 * 22 bits into 2 AHCI_SG elements.
235 *
236 * - The S/G element size for AHCI is what the spec calls "'0' based"
237 * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
238 * sizes to be even in the context of 16-bit transfers, thus bit '1'
239 * always needs to be set.
240 *
241 * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
242 * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
243 *
244 * - There's a limit on the maximum number of S/G elements in the port DMA
245 * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
246 * the control of this function to split commands which require more
247 * than AHCI_MAX_SG entries. In order to help the caller, the return value
248 * of this function will indicate how many OS/2 S/G entries were
249 * successfully mapped.
250 *
251 */
252 for (i = n = 0; i < sg_cnt; i++) {
253 u32 sg_addr = sg_list[i].ppXferBuf;
254 u32 sg_size = sg_list[i].XferBufLen;
255
256 do {
257 u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN
258 : sg_size;
259 if (n >= AHCI_MAX_SG) {
260 /* couldn't store all S/G elements in our DMA buffer */
261 ddprintf("ata_cmd(): too many S/G elements\n");
262 return(i - 1);
263 }
264 if ((sg_addr & 1) || (chunk & 1)) {
265 ddprintf("error: ata_cmd() called with unaligned S/G element(s)\n");
266 return(ATA_CMD_UNALIGNED_ADDR);
267 }
268 cmd_tbl->sg_list[n].addr = sg_addr;
269 cmd_tbl->sg_list[n].size = chunk - 1;
270 sg_addr += chunk;
271 sg_size -= chunk;
272 n++;
273 } while (sg_size > 0);
274 }
275
276 /* set final S/G count in AHCI command header */
277 cmd_hdr->options |= (u32) n << 16;
278
279 if (debug >= 2) {
280 printf("ATA command for %d.%d.%d:\n", ad_no(ai), p, d);
281 phex(cmd_hdr, offsetof(AHCI_CMD_HDR, reserved), "cmd_hdr: ");
282 phex(&ata_cmd, sizeof(ata_cmd), "ata_cmd: ");
283 if (atapi_cmd != NULL) {
284 phex(atapi_cmd, atapi_cmd_len, "atapi_cmd: ");
285 }
286 if (n > 0) {
287 phex(cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n, "sg_list: ");
288 }
289 }
290
291 return(ATA_CMD_SUCCESS);
292}
293
294/******************************************************************************
295 * Fill SATA command FIS with values extracted from an ATA command structure.
296 * The command FIS buffer (fis) is expected to be initialized to 0s. The
297 * structure of the FIS maps to the ATA shadow register block, including
298 * registers which can be written twice to store 16 bits (called 'exp').
299 *
300 * The FIS structure looks like this (using LSB notation):
301 *
302 * +----------------+----------------+----------------+----------------+
303 * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
304 * +----------------+----------------+----------------+----------------+
305 * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
306 * +----------------+----------------+----------------+----------------+
307 * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
308 * +----------------+----------------+----------------+----------------+
309 * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
310 * +----------------+----------------+----------------+----------------+
311 * 16 | Reserved | Reserved | Reserved | Reserved |
312 * +----------------+----------------+----------------+----------------+
313 */
314void ata_cmd_to_fis(u8 _far *fis, ATA_CMD _far *ata_cmd, int d)
315{
316 fis[0] = 0x27; /* register - host to device FIS */
317 fis[1] = (u8) (d & 0xf); /* port multiplier number */
318 fis[1] |= 0x80; /* bit 7 indicates Command FIS */
319 fis[2] = (u8) ata_cmd->cmd;
320 fis[3] = (u8) ata_cmd->features;
321
322 fis[4] = (u8) ata_cmd->lba_l;
323 fis[5] = (u8) (ata_cmd->lba_l >> 8);
324 fis[6] = (u8) (ata_cmd->lba_l >> 16);
325 fis[7] = (u8) ata_cmd->device;
326
327 fis[8] = (u8) (ata_cmd->lba_l >> 24);
328 fis[9] = (u8) ata_cmd->lba_h;
329 fis[10] = (u8) (ata_cmd->lba_h >> 8);
330 fis[11] = (u8) (ata_cmd->features >> 8);
331
332 fis[12] = (u8) ata_cmd->count;
333 fis[13] = (u8) (ata_cmd->count >> 8);
334}
335
336/******************************************************************************
337 * Get index in S/G list for the number of transferred sectors in the IORB.
338 *
339 * Returning io->cSGList indicates an error.
340 *
341 * NOTE: OS/2 makes sure S/G lists are set up such that entries at the HW
342 * limit will never cross sector boundaries. This means that splitting
343 * S/G lists into multiple commands can be done without editing the S/G
344 * lists.
345 */
346u16 ata_get_sg_indx(IORB_EXECUTEIO _far *io)
347{
348 ULONG offset = io->BlocksXferred * io->BlockSize;
349 USHORT i;
350
351 for (i = 0; i < io->cSGList && offset > 0; i++) {
352 offset -= io->pSGList[i].XferBufLen;
353 }
354
355 return(i);
356}
357
358/******************************************************************************
359 * Get max S/G count which will fit into our HW S/G buffers. This function is
360 * called when the S/G list is too long and we need to split the IORB into
361 * multiple commands. It returns both the number of sectors and S/G list
362 * elements that we can handle in a single command.
363 *
364 * The parameter 'sg_indx' indicates the current start index in the S/G list
365 * (0 if this is the first command iteration).
366 *
367 * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
368 * how many S/G elements were successfully mapped. Whatever we return needs to
369 * be less or equal to this value.
370 *
371 * Returning 0 in *sg_cnt indicates an error.
372 *
373 * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
374 * will never cross sector boundaries. This means that splitting S/G
375 * lists into multiple commands can be done without editing S/G list
376 * elements. Since AHCI only allows 22 bits for each S/G element, the
377 * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
378 * on the actual length of S/G elements. This function looks for the
379 * maximum number of S/G elements that can be mapped on sector
380 * boundaries which will still fit into our HW S/G list.
381 */
382void ata_max_sg_cnt(IORB_EXECUTEIO _far *io, USHORT sg_indx, USHORT sg_max,
383 USHORT _far *sg_cnt, USHORT _far *sector_cnt)
384{
385 ULONG max_sector_cnt = 0;
386 USHORT max_sg_cnt = 0;
387 ULONG offset = 0;
388 USHORT i;
389
390 for (i = sg_indx; i < io->cSGList; i++) {
391 if (i - sg_indx >= sg_max) {
392 /* we're beyond the number of S/G elements we can map */
393 break;
394 }
395
396 offset += io->pSGList[i].XferBufLen;
397 if (offset % io->BlockSize == 0) {
398 /* this S/G element ends on a sector boundary */
399 max_sector_cnt = offset / io->BlockSize;
400 max_sg_cnt = i + 1;
401 }
402 }
403
404 /* return the best match we found (0 indicating failure) */
405 *sector_cnt = max_sector_cnt;
406 *sg_cnt = max_sg_cnt;
407}
408
409
410/******************************************************************************
411 * Get device or media geometry. Device and media geometry are expected to be
412 * the same for non-removable devices, which will always be the case for the
413 * ATA devices we're dealing with (hard disks). ATAPI is a different story
414 * and handled by atapi_get_geometry().
415 */
416int ata_get_geometry(IORBH _far *iorb, int slot)
417{
418 ADD_WORKSPACE _far *aws = add_workspace(iorb);
419 int rc;
420
421 /* allocate buffer for ATA identify information */
422 if ((aws->buf = malloc(ATA_ID_WORDS * sizeof(u16))) == NULL) {
423 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
424 return(-1);
425 }
426
427 /* request ATA identify information */
428 aws->ppfunc = ata_get_geometry_pp;
429 rc = ata_cmd(ad_infos + iorb_unit_adapter(iorb),
430 iorb_unit_port(iorb),
431 iorb_unit_device(iorb),
432 slot,
433 ATA_CMD_ID_ATA,
434 AP_VADDR, (void _far *) aws->buf, ATA_ID_WORDS * sizeof(u16),
435 AP_END);
436
437 if (rc != 0) {
438 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
439 }
440
441 return(rc);
442}
443
444/******************************************************************************
445 * Post processing function for ata_get_geometry(): convert the ATA identify
446 * information to OS/2 IOCC_GEOMETRY information.
447 */
448void ata_get_geometry_pp(IORBH _far *iorb)
449{
450 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
451 USHORT geometry_len = ((IORB_GEOMETRY _far *) iorb)->GeometryLen;
452 u16 *id_buf = add_workspace(iorb)->buf;
453 int a = iorb_unit_adapter(iorb);
454 int p = iorb_unit_port(iorb);
455
456 /* Fill-in geometry information; the ATA-8 spec declares the geometry
457 * fields in the ATA ID buffer as obsolete but it's still the best
458 * guess in most cases. If the information stored in the geometry
459 * fields is apparently incorrect, we'll use the algorithm typically
460 * used by SCSI adapters and modern PC BIOS versions:
461 *
462 * - 512 bytes per sector
463 * - 255 heads
464 * - 63 sectors per track (or 56 with the parameter "/4")
465 * - x cylinders (calculated)
466 *
467 * Please note that os2ahci currently does not natively support ATA sectors
468 * larger than 512 bytes, therefore relies on the translation logic built
469 * into the corresponding ATA disks. In order to prevent file systems that
470 * use block sizes larger than 512 bytes (FAT, JFS, ...) from ending up on
471 * incorrectly aligned physical sector accesses, hence using more physical
472 * I/Os than necessary, the command line parameter "/4" can be used to force
473 * a track size of 56 sectors. This way, partitions will start on 4K
474 * boundaries.
475 *
476 * Another limitation is that OS/2 has a 32-bit variable for the total number
477 * of sectors, limiting the maximum capacity to roughly 2TB. This is another
478 * issue that needs to be addressed sooner or later; large sectors could
479 * raise this limit to something like 8TB but this is not really much of a
480 * difference. Maybe there's something in later DDKs that allows more than
481 * 32 bits?
482 */
483 memset(geometry, 0x00, geometry_len);
484 geometry->BytesPerSector = ATA_SECTOR_SIZE;
485
486 /* extract total number of sectors */
487 if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400) {
488 /* 48-bit LBA supported */
489 if (ATA_CAPACITY48_H(id_buf) != 0) {
490 /* more than 32 bits for number of sectors */
491 dprintf("warning: limiting disk %d.%d.%d to 2TB\n",
492 iorb_unit_adapter(iorb), iorb_unit_port(iorb),
493 iorb_unit_device(iorb));
494 geometry->TotalSectors = 0xffffffffUL;
495 } else {
496 geometry->TotalSectors = ATA_CAPACITY48_L(id_buf);
497 }
498 } else {
499 /* 28-bit LBA */
500 geometry->TotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffffUL;
501 }
502
503 /* fabricate the remaining geometry fields */
504 if (track_size[a][p] != 0) {
505 /* A specific track size has been requested for this port; this is
506 * typically done for disks with 4K sectors to make sure partitions
507 * start on 8-sector boundaries (parameter "/4").
508 */
509 geometry->NumHeads = 255;
510 geometry->SectorsPerTrack = track_size[a][p];
511 geometry->TotalCylinders = geometry->TotalSectors /
512 ((u32) geometry->NumHeads *
513 (u32) geometry->SectorsPerTrack);
514
515 } else if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 &&
516 CUR_SECTORS(id_buf) > 0 &&
517 CUR_CAPACITY(id_buf) == (u32) CUR_HEADS(id_buf) *
518 (u32) CUR_CYLS(id_buf) *
519 (u32) CUR_SECTORS(id_buf)) {
520 /* BIOS-supplied (aka "current") geometry values look valid */
521 geometry->NumHeads = CUR_HEADS(id_buf);
522 geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
523 geometry->TotalCylinders = CUR_CYLS(id_buf);
524
525 } else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 &&
526 ATA_SECTORS(id_buf) > 0) {
527 /* ATA-supplied values for geometry look valid */
528 geometry->NumHeads = ATA_HEADS(id_buf);
529 geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
530 geometry->TotalCylinders = ATA_CYLS(id_buf);
531
532 } else {
533 /* use typical SCSI geometry */
534 geometry->NumHeads = 255;
535 geometry->SectorsPerTrack = 63;
536 geometry->TotalCylinders = geometry->TotalSectors /
537 ((u32) geometry->NumHeads *
538 (u32) geometry->SectorsPerTrack);
539 }
540
541 if (debug) {
542 printf("geometry information:\n");
543 printf(" heads: %d\n", (u16) geometry->NumHeads);
544 printf(" sectors: %d\n", (u16) geometry->SectorsPerTrack);
545 printf(" cylinders: %d\n", (u16) geometry->TotalCylinders);
546 printf(" capacity: %ldMB\n", (u32) (geometry->TotalSectors / 2048));
547 }
548
549 /* tell interrupt handler that this IORB is complete */
550 add_workspace(iorb)->complete = 1;
551}
552
553/******************************************************************************
554 * Test whether unit is ready.
555 */
556int ata_unit_ready(IORBH _far *iorb, int slot)
557{
558 /* This is a NOP for ATA devices (at least right now); returning an error
559 * without setting an error code means ahci_exec_iorb() will not queue any
560 * HW command and the IORB will complete successfully.
561 */
562 ((IORB_UNIT_STATUS _far *) iorb)->UnitStatus = US_READY | US_POWER;
563 return(-1);
564}
565
566/******************************************************************************
567 * Read sectors from AHCI device.
568 */
569int ata_read(IORBH _far *iorb, int slot)
570{
571 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
572 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
573 ULONG sector = io->RBA + io->BlocksXferred;
574 USHORT count = io->BlockCount - io->BlocksXferred;
575 USHORT sg_indx;
576 USHORT sg_cnt;
577 int p = iorb_unit_port(iorb);
578 int d = iorb_unit_device(iorb);
579 int rc;
580
581 if (io->BlockCount == 0) {
582 /* NOP; return -1 without error in IORB to indicate success */
583 return(-1);
584 }
585
586 if (add_workspace(iorb)->unaligned) {
587 /* unaligned S/G addresses present; need to use double buffers */
588 return(ata_read_unaligned(iorb, slot));
589 }
590
591 /* Kludge: some I/O commands during boot use excessive S/G buffer lengths
592 * which cause NCQ commands to lock up. If there's only one S/G element
593 * and this element is already larger than what we can derive from the sector
594 * count, we'll adjust that element.
595 */
596 if (io->BlocksXferred == 0 && io->cSGList == 1 &&
597 io->pSGList[0].XferBufLen > (ULONG) io->BlockCount * io->BlockSize) {
598 io->pSGList[0].XferBufLen = (ULONG) io->BlockCount * io->BlockSize;
599 }
600
601 /* prepare read command while keeping an eye on S/G count limitations */
602 do {
603 sg_indx = ata_get_sg_indx(io);
604 sg_cnt = io->cSGList - sg_indx;
605 if ((rc = ata_cmd_read(iorb, ai, p, d, slot, sector, count,
606 io->pSGList + sg_indx, sg_cnt)) > 0) {
607 /* couldn't map all S/G elements */
608 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
609 }
610 } while (rc > 0 && sg_cnt > 0);
611
612 if (rc == 0) {
613 add_workspace(iorb)->blocks = count;
614 add_workspace(iorb)->ppfunc = ata_read_pp;
615
616 } else if (rc > 0) {
617 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
618
619 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
620 /* unaligned S/G addresses detected; need to use double buffers */
621 add_workspace(iorb)->unaligned = 1;
622 return(ata_read_unaligned(iorb, slot));
623
624 } else {
625 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
626 }
627
628 return(rc);
629}
630
631/******************************************************************************
632 * Read sectors from AHCI device with unaligned S/G element addresses. AHCI
633 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
634 * restrictions. This doesn't happen very often but when it does, we need to
635 * use a transfer buffer and copy the data manually.
636 */
637int ata_read_unaligned(IORBH _far *iorb, int slot)
638{
639 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
640 ADD_WORKSPACE _far *aws = add_workspace(iorb);
641 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
642 ULONG sector = io->RBA + io->BlocksXferred;
643 SCATGATENTRY sg_single;
644 int p = iorb_unit_port(iorb);
645 int d = iorb_unit_device(iorb);
646 int rc;
647
648 ddprintf("ata_read_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
649
650 /* allocate transfer buffer */
651 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
652 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
653 return(-1);
654 }
655
656 /* prepare read command using transfer buffer */
657 sg_single.ppXferBuf = virt_to_phys(aws->buf);
658 sg_single.XferBufLen = io->BlockSize;
659 rc = ata_cmd_read(iorb, ai, p, d, slot, sector, 1, &sg_single, 1);
660
661 if (rc == 0) {
662 add_workspace(iorb)->blocks = 1;
663 add_workspace(iorb)->ppfunc = ata_read_pp;
664
665 } else if (rc > 0) {
666 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
667
668 } else {
669 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
670 }
671
672 return(rc);
673}
674
675/******************************************************************************
676 * Post processing function for ata_read(); this function updates the
677 * BlocksXferred counter in the IORB and, if not all blocks have been
678 * transferred, requeues the IORB to process the remaining sectors. It also
679 * takes care of copying data from the transfer buffer for unaligned reads.
680 */
681void ata_read_pp(IORBH _far *iorb)
682{
683 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
684 ADD_WORKSPACE _far *aws = add_workspace(iorb);
685
686 if (aws->unaligned) {
687 /* copy transfer buffer to corresponding physical address in S/G list */
688 sg_memcpy(io->pSGList, io->cSGList,
689 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
690 aws->buf, io->BlockSize, BUF_TO_SG);
691 }
692
693 io->BlocksXferred += add_workspace(iorb)->blocks;
694 dprintf("ata_read_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
695
696 if (io->BlocksXferred >= io->BlockCount) {
697 /* we're done; tell IRQ handler the IORB is complete */
698 add_workspace(iorb)->complete = 1;
699 } else {
700 /* requeue this IORB for next iteration */
701 iorb_requeue(iorb);
702 }
703}
704
705/******************************************************************************
706 * Verify readability of sectors on ATA device.
707 */
708int ata_verify(IORBH _far *iorb, int slot)
709{
710 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
711 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
712 int p = iorb_unit_port(iorb);
713 int d = iorb_unit_device(iorb);
714 int rc;
715
716 if (io->BlockCount == 0) {
717 /* NOP; return -1 without error in IORB to indicate success */
718 return(-1);
719 }
720
721 /* prepare verify command */
722 if (io->RBA >= (1UL << 28) || io->BlockCount > 256) {
723 /* need LBA48 for this command */
724 if (!ai->ports[p].devs[d].lba48) {
725 iorb_seterr(iorb, IOERR_RBA_LIMIT);
726 return(-1);
727 }
728 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
729 AP_SECTOR_48, (u32) io->RBA, (u16) 0,
730 AP_COUNT, (u16) io->BlockCount,
731 AP_DEVICE, 0x40,
732 AP_END);
733 } else {
734 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
735 AP_SECTOR_28, (u32) io->RBA,
736 AP_COUNT, (u16) io->BlockCount & 0xffU,
737 AP_END);
738 }
739
740 return(rc);
741}
742
743/******************************************************************************
744 * Write sectors to AHCI device.
745 */
746int ata_write(IORBH _far *iorb, int slot)
747{
748 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
749 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
750 ULONG sector = io->RBA + io->BlocksXferred;
751 USHORT count = io->BlockCount - io->BlocksXferred;
752 USHORT sg_indx;
753 USHORT sg_cnt;
754 int p = iorb_unit_port(iorb);
755 int d = iorb_unit_device(iorb);
756 int rc;
757
758 if (io->BlockCount == 0) {
759 /* NOP; return -1 without error in IORB to indicate success */
760 return(-1);
761 }
762
763 if (add_workspace(iorb)->unaligned) {
764 /* unaligned S/G addresses present; need to use double buffers */
765 return(ata_write_unaligned(iorb, slot));
766 }
767
768 /* prepare write command while keeping an eye on S/G count limitations */
769 do {
770 sg_indx = ata_get_sg_indx(io);
771 sg_cnt = io->cSGList - sg_indx;
772 if ((rc = ata_cmd_write(iorb, ai, p, d, slot, sector, count,
773 io->pSGList + sg_indx, sg_cnt,
774 io->Flags & XIO_DISABLE_HW_WRITE_CACHE)) > 0) {
775 /* couldn't map all S/G elements */
776 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
777 }
778 } while (rc > 0 && sg_cnt > 0);
779
780 if (rc == 0) {
781 add_workspace(iorb)->blocks = count;
782 add_workspace(iorb)->ppfunc = ata_write_pp;
783
784 } else if (rc > 0) {
785 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
786
787 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
788 /* unaligned S/G addresses detected; need to use double buffers */
789 add_workspace(iorb)->unaligned = 1;
790 return(ata_write_unaligned(iorb, slot));
791
792 } else {
793 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
794 }
795
796 return(rc);
797}
798
799/******************************************************************************
800 * Write sectors from AHCI device with unaligned S/G element addresses. AHCI
801 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
802 * restrictions. This doesn't happen very often but when it does, we need to
803 * use a transfer buffer and copy the data manually.
804 */
805int ata_write_unaligned(IORBH _far *iorb, int slot)
806{
807 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
808 ADD_WORKSPACE _far *aws = add_workspace(iorb);
809 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
810 ULONG sector = io->RBA + io->BlocksXferred;
811 SCATGATENTRY sg_single;
812 int p = iorb_unit_port(iorb);
813 int d = iorb_unit_device(iorb);
814 int rc;
815
816 ddprintf("ata_write_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
817
818 /* allocate transfer buffer */
819 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
820 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
821 return(-1);
822 }
823
824 /* copy next sector from S/G list to transfer buffer */
825 sg_memcpy(io->pSGList, io->cSGList,
826 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
827 aws->buf, io->BlockSize, SG_TO_BUF);
828
829 /* prepare write command using transfer buffer */
830 sg_single.ppXferBuf = virt_to_phys(aws->buf);
831 sg_single.XferBufLen = io->BlockSize;
832 rc = ata_cmd_write(iorb, ai, p, d, slot, sector, 1, &sg_single, 1,
833 io->Flags & XIO_DISABLE_HW_WRITE_CACHE);
834
835 if (rc == 0) {
836 add_workspace(iorb)->blocks = 1;
837 add_workspace(iorb)->ppfunc = ata_write_pp;
838
839 } else if (rc > 0) {
840 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
841
842 } else {
843 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
844 }
845
846 return(rc);
847}
848
849
850/******************************************************************************
851 * Post processing function for ata_write(); this function updates the
852 * BlocksXferred counter in the IORB and, if not all blocks have been
853 * transferred, requeues the IORB to process the remaining sectors.
854 */
855void ata_write_pp(IORBH _far *iorb)
856{
857 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
858
859 io->BlocksXferred += add_workspace(iorb)->blocks;
860 dprintf("ata_write_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
861
862 if (io->BlocksXferred >= io->BlockCount) {
863 /* we're done; tell IRQ handler the IORB is complete */
864 add_workspace(iorb)->complete = 1;
865 } else {
866 /* requeue this IORB for next iteration */
867 iorb_requeue(iorb);
868 }
869}
870
871/******************************************************************************
872 * Execute ATA command.
873 */
874int ata_execute_ata(IORBH _far *iorb, int slot)
875{
876 IORB_ADAPTER_PASSTHRU _far *apt = (IORB_ADAPTER_PASSTHRU _far *) iorb;
877 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
878 int p = iorb_unit_port(iorb);
879 int d = iorb_unit_device(iorb);
880 int rc;
881
882 if (apt->ControllerCmdLen != sizeof(ATA_CMD)) {
883 iorb_seterr(iorb, IOERR_CMD_SYNTAX);
884 return(-1);
885 }
886
887 rc = ata_cmd(ai, p, d, slot, 0,
888 AP_SGLIST, apt->pSGList, apt->cSGList,
889 AP_ATA_CMD, apt->pControllerCmd,
890 AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
891 AP_END);
892
893 return(rc);
894}
895
896/******************************************************************************
897 * Request sense information for a failed command. Since there is no "request
898 * sense" command for ATA devices, we need to read the current error code from
899 * the AHCI task file register and fabricate the sense information.
900 *
901 * NOTES:
902 *
903 * - This function must be called right after an ATA command has failed and
904 * before any other commands are queued on the corresponding port. This
905 * function is typically called in the port restart context hook which is
906 * triggered by an AHCI error interrupt.
907 *
908 * - The ATA error bits are a complete mess. We'll try and catch the most
909 * interesting error codes (such as medium errors) and report everything
910 * else with a generic error code.
911 */
912int ata_req_sense(IORBH _far *iorb, int slot)
913{
914 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
915 u8 _far *port_mmio = port_base(ai, iorb_unit_port(iorb));
916 u32 tf_data = readl(port_mmio + PORT_TFDATA);
917 u8 err = (u8) (tf_data >> 8);
918 u8 sts = (u8) (tf_data);
919
920 if (sts & ATA_ERR) {
921 if (sts & ATA_DF) {
922 /* there is a device-specific error condition */
923 if (err & ATA_ICRC) {
924 iorb_seterr(iorb, IOERR_ADAPTER_DEVICEBUSCHECK);
925 } else if (err & ATA_UNC) {
926 iorb_seterr(iorb, IOERR_MEDIA);
927 } else if (err & ATA_IDNF) {
928 iorb_seterr(iorb, IOERR_RBA_ADDRESSING_ERROR);
929 } else {
930 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
931 }
932
933 } else {
934 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
935 }
936 } else {
937 /* this function only gets called when we received an error interrupt */
938 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
939 }
940
941 /* Return an error to indicate there's no HW command to be submitted and
942 * that the IORB can be completed "as is" (the upstream code expects the
943 * IORB error code, if any, to be set when this happens and this is exactly
944 * what this function is all about).
945 */
946 return(-1);
947}
948
949/******************************************************************************
950 * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
951 * in the indentify buffer are byte-swapped, we need to swap them back.
952 */
953char *ata_dev_name(u16 *id_buf)
954{
955 static char dev_name[ATA_ID_PROD_LEN + 1];
956 char *t = dev_name;
957 char *s = (char *) (id_buf + ATA_ID_PROD);
958 int i;
959
960 dev_name[sizeof(dev_name)-1] = '\0';
961
962 for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
963 *(t++) = s[1];
964 *(t++) = s[0];
965 s += 2;
966 }
967
968 return(dev_name);
969}
970
971/******************************************************************************
972 * Fabricate ATA READ command based on the capabilities of the corresponding
973 * device and the paramters set from above (NCQ, etc).
974 */
975static int ata_cmd_read(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
976 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
977 ULONG sg_cnt)
978{
979 int rc;
980
981 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
982 /* need LBA48 for this command */
983 if (!ai->ports[p].devs[d].lba48) {
984 iorb_seterr(iorb, IOERR_RBA_LIMIT);
985 return(-1);
986 }
987 if (add_workspace(iorb)->is_ncq) {
988 /* use NCQ read; count goes into feature register, tag into count! */
989 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
990 AP_SECTOR_48, (u32) sector, (u16) 0,
991 AP_FEATURES, (u16) count,
992 AP_COUNT, (u16) (slot << 3), /* tag == slot */
993 AP_SGLIST, sg_list, (u16) sg_cnt,
994 AP_DEVICE, 0x40,
995 AP_END);
996 } else {
997 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
998 AP_SECTOR_48, (u32) sector, (u16) 0,
999 AP_COUNT, (u16) count,
1000 AP_SGLIST, sg_list, (u16) sg_cnt,
1001 AP_DEVICE, 0x40,
1002 AP_END);
1003 }
1004
1005 } else {
1006 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
1007 AP_SECTOR_28, (u32) sector,
1008 AP_COUNT, (u16) count & 0xffU,
1009 AP_SGLIST, sg_list, (u16) sg_cnt,
1010 AP_DEVICE, 0x40,
1011 AP_END);
1012 }
1013
1014 return(rc);
1015}
1016
1017/******************************************************************************
1018 * Fabricate ATA WRITE command based on the capabilities of the corresponding
1019 * device and the paramters set from above (NCQ, etc)
1020 */
1021static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
1022 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
1023 ULONG sg_cnt, int write_through)
1024{
1025 int rc;
1026
1027 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
1028 /* need LBA48 for this command */
1029 if (!ai->ports[p].devs[d].lba48) {
1030 iorb_seterr(iorb, IOERR_RBA_LIMIT);
1031 return(-1);
1032 }
1033 if (add_workspace(iorb)->is_ncq) {
1034 /* use NCQ write; count goes into feature register, tag into count! */
1035 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
1036 AP_SECTOR_48, (u32) sector, (u16) 0,
1037 AP_FEATURES, (u16) count,
1038 AP_COUNT, (u16) (slot << 3), /* tag = slot */
1039 AP_SGLIST, sg_list, (u16) sg_cnt,
1040 AP_DEVICE, 0x40,
1041 AP_DEVICE, (write_through) ? 0x80 : 0, /* force unit access */
1042 AP_WRITE, 1,
1043 AP_END);
1044 } else {
1045 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
1046 AP_SECTOR_48, (u32) sector, (u16) 0,
1047 AP_COUNT, (u16) count,
1048 AP_SGLIST, sg_list, (u16) sg_cnt,
1049 AP_DEVICE, 0x40,
1050 AP_WRITE, 1,
1051 AP_END);
1052 }
1053
1054 } else {
1055 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
1056 AP_SECTOR_28, (u32) sector,
1057 AP_COUNT, (u16) count & 0xffU,
1058 AP_SGLIST, sg_list, (u16) sg_cnt,
1059 AP_DEVICE, 0x40,
1060 AP_WRITE, 1,
1061 AP_END);
1062 }
1063
1064 return(rc);
1065}
Note: See TracBrowser for help on using the repository browser.