1 | /**
|
---|
2 | * ata.c - ATA command processing
|
---|
3 | *
|
---|
4 | * Copyright (c) 2011 thi.guten Software Development
|
---|
5 | * Copyright (c) 2011 Mensys B.V.
|
---|
6 | * Copyright (c) 2013-2023 David Azarewicz <david@88watts.net>
|
---|
7 | *
|
---|
8 | * Authors: Christian Mueller, Markus Thielen
|
---|
9 | *
|
---|
10 | * Parts copied from/inspired by the Linux AHCI driver;
|
---|
11 | * those parts are (c) Linux AHCI/ATA maintainers
|
---|
12 | *
|
---|
13 | * This program is free software; you can redistribute it and/or modify
|
---|
14 | * it under the terms of the GNU General Public License as published by
|
---|
15 | * the Free Software Foundation; either version 2 of the License, or
|
---|
16 | * (at your option) any later version.
|
---|
17 | *
|
---|
18 | * This program is distributed in the hope that it will be useful,
|
---|
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
21 | * GNU General Public License for more details.
|
---|
22 | *
|
---|
23 | * You should have received a copy of the GNU General Public License
|
---|
24 | * along with this program; if not, write to the Free Software
|
---|
25 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
26 | */
|
---|
27 |
|
---|
28 | #define INCL_LONGLONG
|
---|
29 | #include "os2ahci.h"
|
---|
30 | #include "ata.h"
|
---|
31 |
|
---|
32 | #define MAKEULL(h,l) (((ULONGLONG)h<<32)|l)
|
---|
33 |
|
---|
34 | /******************************************************************************
|
---|
35 | * Initialize AHCI command slot, FIS and S/G list for the specified ATA
|
---|
36 | * command. The command parameters are passed as a variable argument list
|
---|
37 | * of type and value(s). The list is terminated by AP_END.
|
---|
38 | *
|
---|
39 | * Notes:
|
---|
40 | *
|
---|
41 | * - The specified command slot is expected to be idle; no checks are
|
---|
42 | * performed to prevent messing with a busy port.
|
---|
43 | *
|
---|
44 | * - Port multipliers are not supported, yet, thus 'd' should always
|
---|
45 | * be 0 for the time being.
|
---|
46 | *
|
---|
47 | * - 'cmd' is passed as 16-bit integer because the compiler would push
|
---|
48 | * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
|
---|
49 | * macros would screw up the address of the first variable argument
|
---|
50 | * if the size of the last fixed argument wouldn't match what the
|
---|
51 | * compiler pushed on the stack.
|
---|
52 | *
|
---|
53 | * Return values:
|
---|
54 | * 0 : success
|
---|
55 | * > 0 : could not map all S/G entries; the return value is the number of
|
---|
56 | * S/G entries that could be mapped.
|
---|
57 | * < 0 : other error
|
---|
58 | */
|
---|
59 | int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
|
---|
60 | {
|
---|
61 | va_list va;
|
---|
62 | va_start(va, cmd);
|
---|
63 | return(v_ata_cmd(ai, p, d, slot, cmd, va));
|
---|
64 | }
|
---|
65 |
|
---|
66 | int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
|
---|
67 | {
|
---|
68 | AHCI_PORT_DMA *dma_base_virt;
|
---|
69 | AHCI_CMD_HDR *cmd_hdr;
|
---|
70 | AHCI_CMD_TBL *cmd_tbl;
|
---|
71 | SCATGATENTRY *sg_list = NULL;
|
---|
72 | SCATGATENTRY sg_single;
|
---|
73 | ATA_PARM ap;
|
---|
74 | ATA_CMD ata_cmd;
|
---|
75 | void *atapi_cmd = NULL;
|
---|
76 | u32 dma_base_phys;
|
---|
77 | u32 atapi_cmd_len = 0;
|
---|
78 | u32 ahci_flags = 0;
|
---|
79 | u32 sg_cnt = 0;
|
---|
80 | u32 i;
|
---|
81 | u32 n;
|
---|
82 |
|
---|
83 | /* --------------------------------------------------------------------------
|
---|
84 | * Initialize ATA command. The ATA command is set up with the main command
|
---|
85 | * value and a variable list of additional parameters such as the sector
|
---|
86 | * address, transfer count, ...
|
---|
87 | */
|
---|
88 | memset(&ata_cmd, 0x00, sizeof(ata_cmd));
|
---|
89 | ata_cmd.cmd = cmd;
|
---|
90 |
|
---|
91 | /* parse variable arguments */
|
---|
92 | do
|
---|
93 | {
|
---|
94 | switch ((ap = va_arg(va, ATA_PARM)))
|
---|
95 | {
|
---|
96 |
|
---|
97 | case AP_AHCI_FLAGS:
|
---|
98 | ahci_flags |= va_arg(va, u32);
|
---|
99 | break;
|
---|
100 |
|
---|
101 | case AP_WRITE:
|
---|
102 | if (va_arg(va, u32) != 0)
|
---|
103 | {
|
---|
104 | ahci_flags |= AHCI_CMD_WRITE;
|
---|
105 | }
|
---|
106 | break;
|
---|
107 |
|
---|
108 | case AP_FEATURES:
|
---|
109 | /* ATA features word */
|
---|
110 | ata_cmd.features |= va_arg(va, u32);
|
---|
111 | break;
|
---|
112 |
|
---|
113 | case AP_COUNT:
|
---|
114 | /* transfer count */
|
---|
115 | ata_cmd.count = va_arg(va, u32);
|
---|
116 | break;
|
---|
117 |
|
---|
118 | case AP_SECTOR_28:
|
---|
119 | /* 28-bit sector address */
|
---|
120 | ata_cmd.lba_l = va_arg(va, u32);
|
---|
121 | if (ata_cmd.lba_l & 0xf0000000UL)
|
---|
122 | {
|
---|
123 | dprintf(0, DBG_PREFIX": error: LBA-28 address %d has more than 28 bits\n", ata_cmd.lba_l);
|
---|
124 | return(ATA_CMD_INVALID_PARM);
|
---|
125 | }
|
---|
126 | /* add upper 4 bits to device field */
|
---|
127 | ata_cmd.device |= (ata_cmd.lba_l >> 24) & 0x0fU;
|
---|
128 | /* only lower 24 bits come into lba_l */
|
---|
129 | ata_cmd.lba_l &= 0x00ffffffUL;
|
---|
130 | break;
|
---|
131 |
|
---|
132 | case AP_SECTOR_48:
|
---|
133 | /* 48-bit sector address */
|
---|
134 | ata_cmd.lba_l = va_arg(va, u32);
|
---|
135 | ata_cmd.lba_h = va_arg(va, u32);
|
---|
136 | break;
|
---|
137 |
|
---|
138 | case AP_DEVICE:
|
---|
139 | /* ATA device byte; note that this byte contains the highest
|
---|
140 | * 4 bits of LBA-28 address; we have to leave them alone here. */
|
---|
141 | ata_cmd.device |= va_arg(va, u32) & 0xf0;
|
---|
142 | break;
|
---|
143 |
|
---|
144 | case AP_SGLIST:
|
---|
145 | /* scatter/gather list in SCATGATENTRY/count format */
|
---|
146 | sg_list = va_arg(va, void *);
|
---|
147 | sg_cnt = va_arg(va, u32);
|
---|
148 | break;
|
---|
149 |
|
---|
150 | case AP_VADDR:
|
---|
151 | /* virtual buffer address in addr/len format (up to 4K) */
|
---|
152 | sg_single.ppXferBuf = MemPhysAdr(va_arg(va, void *));
|
---|
153 | sg_single.XferBufLen = va_arg(va, u32);
|
---|
154 | sg_list = &sg_single;
|
---|
155 | sg_cnt = 1;
|
---|
156 | break;
|
---|
157 |
|
---|
158 | case AP_ATAPI_CMD:
|
---|
159 | /* ATAPI command */
|
---|
160 | atapi_cmd = va_arg(va, void *);
|
---|
161 | atapi_cmd_len = va_arg(va, u32);
|
---|
162 | ahci_flags |= AHCI_CMD_ATAPI;
|
---|
163 | break;
|
---|
164 |
|
---|
165 | case AP_ATA_CMD:
|
---|
166 | /* ATA command "pass-through" */
|
---|
167 | memcpy(&ata_cmd, va_arg(va, void *), sizeof(ATA_CMD));
|
---|
168 | break;
|
---|
169 |
|
---|
170 | case AP_END:
|
---|
171 | break;
|
---|
172 |
|
---|
173 | default:
|
---|
174 | dprintf(0, DBG_PREFIX": error: called with invalid parameter type (%d)\n", (int) ap);
|
---|
175 | return(ATA_CMD_INVALID_PARM);
|
---|
176 | }
|
---|
177 |
|
---|
178 | } while (ap != AP_END);
|
---|
179 |
|
---|
180 | /* --------------------------------------------------------------------------
|
---|
181 | * Fill in AHCI ATA command information. This includes the port command slot,
|
---|
182 | * the corresponding command FIS and the S/G list. The layout of the AHCI
|
---|
183 | * port DMA region is based on the Linux AHCI driver and looks like this:
|
---|
184 | *
|
---|
185 | * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
|
---|
186 | * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
|
---|
187 | * - 32 AHCI command tables, each consisting of
|
---|
188 | * - 64 bytes for command FIS
|
---|
189 | * - 16 bytes for ATAPI comands
|
---|
190 | * - 48 bytes reserved
|
---|
191 | * - 48 S/G entries (AHCI_SG) with 32 bytes, each
|
---|
192 | *
|
---|
193 | * Since the whole DMA buffer for all ports is larger than 64KB and we need
|
---|
194 | * multiple segments to address all of them, there are no virtual pointers
|
---|
195 | * to the individual elements in AD_INFO. Instead, we're relying on macros
|
---|
196 | * for getting the base address of a particular port's DMA region, then
|
---|
197 | * map a structure on top of that for convenience (AHCI_PORT_DMA).
|
---|
198 | */
|
---|
199 | dma_base_virt = port_dma_base(ai, p);
|
---|
200 | dma_base_phys = port_dma_base_phys(ai, p);
|
---|
201 |
|
---|
202 | /* AHCI command header */
|
---|
203 | cmd_hdr = &dma_base_virt->cmd_hdr[slot];
|
---|
204 | memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
|
---|
205 | cmd_hdr->options = ((d & 0x0f) << 12);
|
---|
206 | cmd_hdr->options |= ahci_flags; /* AHCI command flags */
|
---|
207 | cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
|
---|
208 | cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
|
---|
209 | /* DAZ can use MemPhysAdr(&dma_base_virt->cmd_tbl[slot]), but is probably slower. */
|
---|
210 |
|
---|
211 | /* AHCI command table */
|
---|
212 | cmd_tbl = &dma_base_virt->cmd_tbl[slot];
|
---|
213 | memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
|
---|
214 | ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
|
---|
215 |
|
---|
216 | if (atapi_cmd != NULL)
|
---|
217 | {
|
---|
218 | /* copy ATAPI command */
|
---|
219 | memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
|
---|
220 | }
|
---|
221 |
|
---|
222 | /* PRDT (S/G list)
|
---|
223 | *
|
---|
224 | * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
|
---|
225 | * size of each element, thus we need to split S/G elements larger than
|
---|
226 | * 22 bits into 2 AHCI_SG elements.
|
---|
227 | *
|
---|
228 | * - The S/G element size for AHCI is what the spec calls '0'-based
|
---|
229 | * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
|
---|
230 | * sizes to be even in the context of 16-bit transfers, thus bit '1'
|
---|
231 | * always needs to be set.
|
---|
232 | *
|
---|
233 | * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
|
---|
234 | * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
|
---|
235 | *
|
---|
236 | * - There's a limit on the maximum number of S/G elements in the port DMA
|
---|
237 | * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
|
---|
238 | * the control of this function to split commands which require more
|
---|
239 | * than AHCI_MAX_SG entries. In order to help the caller, the return value
|
---|
240 | * of this function will indicate how many OS/2 S/G entries were
|
---|
241 | * successfully mapped.
|
---|
242 | */
|
---|
243 | for (i = n = 0; i < sg_cnt; i++)
|
---|
244 | {
|
---|
245 | u32 sg_addr = sg_list[i].ppXferBuf;
|
---|
246 | u32 sg_size = sg_list[i].XferBufLen;
|
---|
247 |
|
---|
248 | do
|
---|
249 | {
|
---|
250 | u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN : sg_size;
|
---|
251 |
|
---|
252 | if (n >= AHCI_MAX_SG)
|
---|
253 | {
|
---|
254 | /* couldn't store all S/G elements in our DMA buffer */
|
---|
255 | if (sg_size)
|
---|
256 | {
|
---|
257 | dprintf(0, DBG_PREFIX": unaligned SG element\n");
|
---|
258 | return -1;
|
---|
259 | }
|
---|
260 | dprintf(0, DBG_PREFIX": too many S/G elements\n");
|
---|
261 | return(i - 1);
|
---|
262 | }
|
---|
263 | if ((sg_addr & 1) || (chunk & 1))
|
---|
264 | {
|
---|
265 | DPRINTF(0, DBG_PREFIX": warning: called with unaligned S/G element(s)\n");
|
---|
266 | return(ATA_CMD_UNALIGNED_ADDR);
|
---|
267 | }
|
---|
268 | cmd_tbl->sg_list[n].addr = sg_addr;
|
---|
269 | cmd_tbl->sg_list[n].size = chunk - 1;
|
---|
270 | sg_addr += chunk;
|
---|
271 | sg_size -= chunk;
|
---|
272 | n++;
|
---|
273 | } while (sg_size > 0);
|
---|
274 | }
|
---|
275 |
|
---|
276 | /* set final S/G count in AHCI command header */
|
---|
277 | cmd_hdr->options |= n << 16;
|
---|
278 |
|
---|
279 | #if DEBUG & DBG_DETAILED
|
---|
280 | dprintf(0, DBG_PREFIX": ATA command for %d.%d.%d, slot %d:\n", ad_no(ai), p, d, slot);
|
---|
281 | dHexDump(0,cmd_hdr, offsetof(AHCI_CMD_HDR, reserved), "cmd_hdr: ");
|
---|
282 | dHexDump(0,&ata_cmd, sizeof(ata_cmd), "ata_cmd: ");
|
---|
283 | if (atapi_cmd != NULL)
|
---|
284 | {
|
---|
285 | dHexDump(0,atapi_cmd, atapi_cmd_len, "atapi_cmd: ");
|
---|
286 | }
|
---|
287 | if (n > 0)
|
---|
288 | {
|
---|
289 | dHexDump(0,cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n, "sg_list: ");
|
---|
290 | }
|
---|
291 | #endif
|
---|
292 |
|
---|
293 | return(ATA_CMD_SUCCESS);
|
---|
294 | }
|
---|
295 |
|
---|
296 | /******************************************************************************
|
---|
297 | * Fill SATA command FIS with values extracted from an ATA command structure.
|
---|
298 | * The command FIS buffer (fis) is expected to be initialized to 0s. The
|
---|
299 | * structure of the FIS maps to the ATA shadow register block, including
|
---|
300 | * registers which can be written twice to store 16 bits (called 'exp').
|
---|
301 | *
|
---|
302 | * The FIS structure looks like this (using LSB notation):
|
---|
303 | *
|
---|
304 | * +----------------+----------------+----------------+----------------+
|
---|
305 | * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
|
---|
306 | * +----------------+----------------+----------------+----------------+
|
---|
307 | * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
|
---|
308 | * +----------------+----------------+----------------+----------------+
|
---|
309 | * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
|
---|
310 | * +----------------+----------------+----------------+----------------+
|
---|
311 | * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
|
---|
312 | * +----------------+----------------+----------------+----------------+
|
---|
313 | * 16 | Reserved | Reserved | Reserved | Reserved |
|
---|
314 | * +----------------+----------------+----------------+----------------+
|
---|
315 | */
|
---|
316 | void ata_cmd_to_fis(u8 *fis, ATA_CMD *ata_cmd, int d)
|
---|
317 | {
|
---|
318 | fis[0] = 0x27; /* register - host to device FIS */
|
---|
319 | fis[1] = (u8) (d & 0xf); /* port multiplier number */
|
---|
320 | fis[1] |= 0x80; /* bit 7 indicates Command FIS */
|
---|
321 | fis[2] = (u8) ata_cmd->cmd;
|
---|
322 | fis[3] = (u8) ata_cmd->features;
|
---|
323 |
|
---|
324 | fis[4] = (u8) ata_cmd->lba_l;
|
---|
325 | fis[5] = (u8) (ata_cmd->lba_l >> 8);
|
---|
326 | fis[6] = (u8) (ata_cmd->lba_l >> 16);
|
---|
327 | fis[7] = (u8) ata_cmd->device;
|
---|
328 |
|
---|
329 | fis[8] = (u8) (ata_cmd->lba_l >> 24);
|
---|
330 | fis[9] = (u8) ata_cmd->lba_h;
|
---|
331 | fis[10] = (u8) (ata_cmd->lba_h >> 8);
|
---|
332 | fis[11] = (u8) (ata_cmd->features >> 8);
|
---|
333 |
|
---|
334 | fis[12] = (u8) ata_cmd->count;
|
---|
335 | fis[13] = (u8) (ata_cmd->count >> 8);
|
---|
336 | }
|
---|
337 |
|
---|
338 | /******************************************************************************
|
---|
339 | * Get max S/G count which will fit into our HW S/G buffers. This function is
|
---|
340 | * called when the S/G list is too long and we need to split the IORB into
|
---|
341 | * multiple commands. It returns both the number of sectors and S/G list
|
---|
342 | * elements that we can handle in a single command.
|
---|
343 | *
|
---|
344 | * The parameter 'sg_indx' indicates the current start index in the S/G list
|
---|
345 | * (0 if this is the first command iteration).
|
---|
346 | *
|
---|
347 | * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
|
---|
348 | * how many S/G elements were successfully mapped. Whatever we return needs to
|
---|
349 | * be less or equal to this value.
|
---|
350 | *
|
---|
351 | * Returning 0 in *sg_cnt indicates an error.
|
---|
352 | *
|
---|
353 | * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
|
---|
354 | * will never cross sector boundaries. This means that splitting S/G
|
---|
355 | * lists into multiple commands can be done without editing S/G list
|
---|
356 | * elements. Since AHCI only allows 22 bits for each S/G element, the
|
---|
357 | * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
|
---|
358 | * on the actual length of S/G elements. This function looks for the
|
---|
359 | * maximum number of S/G elements that can be mapped on sector
|
---|
360 | * boundaries which will still fit into our HW S/G list.
|
---|
361 | */
|
---|
362 | void ata_max_sg_cnt(IORB_EXECUTEIO *io, USHORT sg_indx, USHORT sg_max,
|
---|
363 | USHORT *sg_cnt, USHORT *sector_cnt)
|
---|
364 | {
|
---|
365 | ULONG max_sector_cnt = 0;
|
---|
366 | USHORT max_sg_cnt = 0;
|
---|
367 | ULONG offset = 0;
|
---|
368 | USHORT i;
|
---|
369 | SCATGATENTRY *pSGList = (SCATGATENTRY*)Far16ToFlat(io->f16SGList);
|
---|
370 |
|
---|
371 | for (i = sg_indx; i < io->cSGList; i++)
|
---|
372 | {
|
---|
373 | if (i - sg_indx >= sg_max)
|
---|
374 | {
|
---|
375 | /* we're beyond the number of S/G elements we can map */
|
---|
376 | break;
|
---|
377 | }
|
---|
378 |
|
---|
379 | offset += pSGList[i].XferBufLen;
|
---|
380 | if (offset % io->BlockSize == 0)
|
---|
381 | {
|
---|
382 | /* this S/G element ends on a sector boundary */
|
---|
383 | max_sector_cnt = offset / io->BlockSize;
|
---|
384 | max_sg_cnt = i + 1;
|
---|
385 | }
|
---|
386 | }
|
---|
387 |
|
---|
388 | /* return the best match we found (0 indicating failure) */
|
---|
389 | *sector_cnt = max_sector_cnt;
|
---|
390 | *sg_cnt = max_sg_cnt;
|
---|
391 | }
|
---|
392 |
|
---|
393 |
|
---|
394 | /******************************************************************************
|
---|
395 | * Get device or media geometry. Device and media geometry are expected to be
|
---|
396 | * the same for non-removable devices, which will always be the case for the
|
---|
397 | * ATA devices we're dealing with (hard disks). ATAPI is a different story
|
---|
398 | * and handled by atapi_get_geometry().
|
---|
399 | */
|
---|
400 | int ata_get_geometry(IORBH FAR16DATA *vIorb, IORBH *pIorb, int slot)
|
---|
401 | {
|
---|
402 | ADD_WORKSPACE *aws = add_workspace(pIorb);
|
---|
403 | int rc;
|
---|
404 |
|
---|
405 | /* allocate buffer for ATA identify information */
|
---|
406 | if ((aws->buf = MemAlloc(ATA_ID_WORDS * sizeof(u16))) == NULL)
|
---|
407 | {
|
---|
408 | iorb_seterr(pIorb, IOERR_CMD_SW_RESOURCE);
|
---|
409 | return(-1);
|
---|
410 | }
|
---|
411 |
|
---|
412 | /* request ATA identify information */
|
---|
413 | aws->ppfunc = ata_get_geometry_pp;
|
---|
414 | rc = ata_cmd(ad_infos + iorb_unit_adapter(pIorb),
|
---|
415 | iorb_unit_port(pIorb),
|
---|
416 | iorb_unit_device(pIorb),
|
---|
417 | slot,
|
---|
418 | ATA_CMD_ID_ATA,
|
---|
419 | AP_VADDR, (void *) aws->buf, ATA_ID_WORDS * sizeof(u16),
|
---|
420 | AP_END);
|
---|
421 |
|
---|
422 | if (rc != 0)
|
---|
423 | {
|
---|
424 | iorb_seterr(pIorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
---|
425 | }
|
---|
426 |
|
---|
427 | return(rc);
|
---|
428 | }
|
---|
429 |
|
---|
430 | int check_lvm(IORBH *pIorb, ULONG sector)
|
---|
431 | {
|
---|
432 | DLA_Table_Sector *pDLA = (DLA_Table_Sector*)add_workspace(pIorb)->buf;
|
---|
433 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
434 | GEOMETRY64 *geometry = (GEOMETRY64*)((IORB_GEOMETRY*)pIorb)->f16Geometry;
|
---|
435 | int p = iorb_unit_port(pIorb);
|
---|
436 | int rc;
|
---|
437 |
|
---|
438 | rc = ahci_exec_polled_cmd(ai, p, 0, 500, ATA_CMD_READ,
|
---|
439 | AP_SECTOR_28, sector-1,
|
---|
440 | AP_COUNT, 1,
|
---|
441 | AP_VADDR, (void *)pDLA, 512,
|
---|
442 | AP_DEVICE, 0x40,
|
---|
443 | AP_END);
|
---|
444 | if (rc) return 0;
|
---|
445 |
|
---|
446 | DHEXDUMP(DBG_DETAILED, pDLA, sizeof(DLA_Table_Sector), "DLA sector %d:\n", sector-1);
|
---|
447 |
|
---|
448 | if ((pDLA->DLA_Signature1 == DLA_TABLE_SIGNATURE1) && (pDLA->DLA_Signature2 == DLA_TABLE_SIGNATURE2))
|
---|
449 | {
|
---|
450 | DPRINTF(DBG_ATTACH, DBG_PREFIX": DLA found at sector %d\n", sector-1);
|
---|
451 | geometry->TotalCylinders = pDLA->Cylinders;
|
---|
452 | geometry->NumHeads = pDLA->Heads_Per_Cylinder;
|
---|
453 | geometry->SectorsPerTrack = pDLA->Sectors_Per_Track;
|
---|
454 | if (add_workspace(pIorb)->fIs64bit)
|
---|
455 | geometry->ullTotalSectors = pDLA->Cylinders * pDLA->Heads_Per_Cylinder * pDLA->Sectors_Per_Track;
|
---|
456 | else
|
---|
457 | geometry->TotalSectors = pDLA->Cylinders * pDLA->Heads_Per_Cylinder * pDLA->Sectors_Per_Track;
|
---|
458 | return 1;
|
---|
459 | }
|
---|
460 |
|
---|
461 | return 0;
|
---|
462 | }
|
---|
463 |
|
---|
464 | /******************************************************************************
|
---|
465 | * Try to read LVM information from the disk. If found, use the LVM geometry.
|
---|
466 | * This function will only work at init time. A better strategy would be to
|
---|
467 | * calculate the geometry during ahci_scan_ports and save it away and then just
|
---|
468 | * return the saved values when ata_get_geometry() is called.
|
---|
469 | */
|
---|
470 | int is_lvm_geometry(IORBH *pIorb)
|
---|
471 | {
|
---|
472 | GEOMETRY *geometry = ((IORB_GEOMETRY*)pIorb)->f16Geometry;
|
---|
473 | ULONG sector;
|
---|
474 |
|
---|
475 | if (init_complete) return 0; /* We cannot use ahci_exec_polled_cmd() after init_complete */
|
---|
476 |
|
---|
477 | #ifdef DEBUG
|
---|
478 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
479 | int p = iorb_unit_port(pIorb);
|
---|
480 | int d = iorb_unit_device(pIorb);
|
---|
481 | dprintf(DBG_DETAILED, DBG_PREFIX": (%d.%d.%d)\n", ad_no(ai), p, d);
|
---|
482 | #endif
|
---|
483 |
|
---|
484 | /* First check the sector reported by the hardware */
|
---|
485 | if (check_lvm(pIorb, geometry->SectorsPerTrack)) return 1;
|
---|
486 |
|
---|
487 | for (sector = 255; sector >= 63; sector >>= 1)
|
---|
488 | {
|
---|
489 | if (sector == geometry->SectorsPerTrack) continue;
|
---|
490 | if (check_lvm(pIorb, sector)) return 1;
|
---|
491 | }
|
---|
492 |
|
---|
493 | return 0;
|
---|
494 | }
|
---|
495 |
|
---|
496 | /******************************************************************************
|
---|
497 | * Post processing function for ata_get_geometry(): convert the ATA identify
|
---|
498 | * information to OS/2 IOCC_GEOMETRY information.
|
---|
499 | */
|
---|
500 | void ata_get_geometry_pp(IORBH FAR16DATA *vIorb, IORBH *pIorb)
|
---|
501 | {
|
---|
502 | GEOMETRY64 *geometry = (GEOMETRY64*)((IORB_GEOMETRY*)pIorb)->f16Geometry;
|
---|
503 | USHORT geometry_len = ((IORB_GEOMETRY *)pIorb)->GeometryLen;
|
---|
504 | ULONGLONG ullTotalSectors;
|
---|
505 | u16 *id_buf = add_workspace(pIorb)->buf;
|
---|
506 | int a = iorb_unit_adapter(pIorb);
|
---|
507 | int p = iorb_unit_port(pIorb);
|
---|
508 | char *Method;
|
---|
509 |
|
---|
510 | /* Fill-in geometry information; the ATA-8 spec declares the geometry
|
---|
511 | * fields in the ATA ID buffer as obsolete but it's still the best
|
---|
512 | * guess in most cases. If the information stored in the geometry
|
---|
513 | * fields is apparently incorrect, we'll use the algorithm typically
|
---|
514 | * used by SCSI adapters and modern PC BIOS versions:
|
---|
515 | *
|
---|
516 | * - 512 bytes per sector
|
---|
517 | * - 255 heads
|
---|
518 | * - 63 sectors per track (or 56 with the parameter "/4")
|
---|
519 | * - x cylinders (calculated)
|
---|
520 | *
|
---|
521 | * Please note that os2ahci currently does not natively support ATA sectors
|
---|
522 | * larger than 512 bytes, therefore relies on the translation logic built
|
---|
523 | * into the corresponding ATA disks. In order to prevent file systems that
|
---|
524 | * use block sizes larger than 512 bytes (FAT, JFS, ...) from ending up on
|
---|
525 | * incorrectly aligned physical sector accesses, hence using more physical
|
---|
526 | * I/Os than necessary, the command line parameter "/4" can be used to force
|
---|
527 | * a track size of 56 sectors. This way, partitions will start on 4K
|
---|
528 | * boundaries.
|
---|
529 | *
|
---|
530 | * Another limitation is that OS/2 has a 32-bit variable for the total number
|
---|
531 | * of sectors, limiting the maximum capacity to roughly 2TB. This is another
|
---|
532 | * issue that needs to be addressed sooner or later; large sectors could
|
---|
533 | * raise this limit to something like 8TB but this is not really much of a
|
---|
534 | * difference. Maybe there's something in later DDKs that allows more than
|
---|
535 | * 32 bits?
|
---|
536 | *
|
---|
537 | * Warning: Do not change the algorithm for calculating disk geometry without
|
---|
538 | * fully understaing the consequences. Side effects of even slight changes
|
---|
539 | * can be unexpected and catastrophic.
|
---|
540 | */
|
---|
541 | memset(geometry, 0, geometry_len);
|
---|
542 | geometry->BytesPerSector = ATA_SECTOR_SIZE;
|
---|
543 |
|
---|
544 | /* extract total number of sectors */
|
---|
545 | if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400)
|
---|
546 | {
|
---|
547 | /* 48-bit LBA supported */
|
---|
548 | if ((ATA_CAPACITY48_H(id_buf) != 0) && !add_workspace(pIorb)->fIs64bit)
|
---|
549 | {
|
---|
550 | /* more than 32 bits for number of sectors */
|
---|
551 | dprintf(0, DBG_PREFIX": warning: limiting disk %d.%d.%d to 2TB\n",
|
---|
552 | iorb_unit_adapter(pIorb), iorb_unit_port(pIorb),
|
---|
553 | iorb_unit_device(pIorb));
|
---|
554 | ullTotalSectors = 0xffffffff;
|
---|
555 | }
|
---|
556 | else
|
---|
557 | {
|
---|
558 | ullTotalSectors = MAKEULL(ATA_CAPACITY48_H(id_buf), ATA_CAPACITY48_L(id_buf));
|
---|
559 | }
|
---|
560 | }
|
---|
561 | else
|
---|
562 | {
|
---|
563 | /* 28-bit LBA */
|
---|
564 | ullTotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffff;
|
---|
565 | }
|
---|
566 |
|
---|
567 | Method = "None";
|
---|
568 | /* fabricate the remaining geometry fields */
|
---|
569 | if (track_size[a][p] != 0)
|
---|
570 | {
|
---|
571 | /* A specific track size has been requested for this port; this is
|
---|
572 | * typically done for disks with 4K sectors to make sure partitions
|
---|
573 | * start on 8-sector boundaries (parameter "/4").
|
---|
574 | */
|
---|
575 | geometry->NumHeads = 255;
|
---|
576 | geometry->SectorsPerTrack = track_size[a][p];
|
---|
577 | geometry->TotalCylinders = ullTotalSectors / ((u32)geometry->NumHeads * (u32)geometry->SectorsPerTrack);
|
---|
578 | Method = "Custom";
|
---|
579 | }
|
---|
580 | else if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 && CUR_SECTORS(id_buf) > 0 &&
|
---|
581 | CUR_CAPACITY(id_buf) == (u32) CUR_HEADS(id_buf) * (u32) CUR_CYLS(id_buf) * (u32) CUR_SECTORS(id_buf))
|
---|
582 | {
|
---|
583 | /* BIOS-supplied (aka "current") geometry values look valid */
|
---|
584 | geometry->NumHeads = CUR_HEADS(id_buf);
|
---|
585 | geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
|
---|
586 | geometry->TotalCylinders = CUR_CYLS(id_buf);
|
---|
587 | Method = "BIOS";
|
---|
588 | }
|
---|
589 | else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 && ATA_SECTORS(id_buf) > 0)
|
---|
590 | {
|
---|
591 | /* ATA-supplied values for geometry look valid */
|
---|
592 | geometry->NumHeads = ATA_HEADS(id_buf);
|
---|
593 | geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
|
---|
594 | geometry->TotalCylinders = ATA_CYLS(id_buf);
|
---|
595 | Method = "ATA";
|
---|
596 | }
|
---|
597 | else
|
---|
598 | {
|
---|
599 | /* use typical SCSI geometry */
|
---|
600 | geometry->NumHeads = 255;
|
---|
601 | geometry->SectorsPerTrack = 63;
|
---|
602 | geometry->TotalCylinders = ullTotalSectors / ((u32)geometry->NumHeads * (u32)geometry->SectorsPerTrack);
|
---|
603 | Method = "SCSI";
|
---|
604 | }
|
---|
605 |
|
---|
606 | DPRINTF(DBG_ATTACH, DBG_PREFIX": Physical geometry: %d cylinders, %d heads, %d sectors per track (%dMB) (%s)\n",
|
---|
607 | geometry->TotalCylinders, geometry->NumHeads, geometry->SectorsPerTrack,
|
---|
608 | (ULONG)(ullTotalSectors / 2048), Method);
|
---|
609 |
|
---|
610 | if (is_lvm_geometry(pIorb)) Method = "LVM"; /* Writes TotalSectors/ullTotalSectors */
|
---|
611 | else CalculateLogicalGeometry(geometry, add_workspace(pIorb)->fIs64bit, ullTotalSectors);
|
---|
612 | if (add_workspace(pIorb)->fIs64bit) ullTotalSectors = geometry->ullTotalSectors;
|
---|
613 | else ullTotalSectors = geometry->TotalSectors;
|
---|
614 |
|
---|
615 | ad_infos[a].ports[p].devs[0].dev_info.ulCylinders = geometry->TotalCylinders;
|
---|
616 | ad_infos[a].ports[p].devs[0].dev_info.usHeadsPerCylinder = geometry->NumHeads;
|
---|
617 | ad_infos[a].ports[p].devs[0].dev_info.usSectorsPerTrack = geometry->SectorsPerTrack;
|
---|
618 | ad_infos[a].ports[p].devs[0].dev_info.ullTotalSectors = ullTotalSectors;
|
---|
619 | ad_infos[a].ports[p].devs[0].dev_info.pMethod = Method;
|
---|
620 |
|
---|
621 | //DAZ DPRINTF(2,"Reported geometry: %d cylinders, %d heads, %d sectors per track (%dMB) (%s)\n",
|
---|
622 | DPRINTF(DBG_ATTACH, DBG_PREFIX": Reported geometry: %d cylinders, %d heads, %d sectors per track (%dMB) (%s)\n",
|
---|
623 | geometry->TotalCylinders, geometry->NumHeads, geometry->SectorsPerTrack,
|
---|
624 | (ULONG)(ullTotalSectors / 2048), Method);
|
---|
625 |
|
---|
626 | /* tell interrupt handler that this IORB is complete */
|
---|
627 | add_workspace(pIorb)->complete = 1;
|
---|
628 | }
|
---|
629 |
|
---|
630 | /******************************************************************************
|
---|
631 | * Test whether unit is ready.
|
---|
632 | */
|
---|
633 | int ata_unit_ready(IORBH FAR16DATA *vIorb, IORBH *pIorb, int slot)
|
---|
634 | {
|
---|
635 | /* This is a NOP for ATA devices (at least right now); returning an error
|
---|
636 | * without setting an error code means ahci_exec_iorb() will not queue any
|
---|
637 | * HW command and the IORB will complete successfully.
|
---|
638 | */
|
---|
639 | ((IORB_UNIT_STATUS *)pIorb)->UnitStatus = US_READY | US_POWER;
|
---|
640 | return(-1);
|
---|
641 | }
|
---|
642 |
|
---|
643 | /******************************************************************************
|
---|
644 | * Fabricate ATA READ command based on the capabilities of the corresponding
|
---|
645 | * device and the paramters set from above (NCQ, etc).
|
---|
646 | */
|
---|
647 | static int ata_cmd_read(IORBH *pIorb, AD_INFO *ai, int p, int d, int slot,
|
---|
648 | ULONGLONG ullLba, ULONG count, SCATGATENTRY *sg_list,
|
---|
649 | ULONG sg_cnt)
|
---|
650 | {
|
---|
651 | int rc;
|
---|
652 |
|
---|
653 | if (add_workspace(pIorb)->is_ncq || ullLba >= (1 << 28) || count > 256 || (ullLba+count) >= (1 << 28))
|
---|
654 | {
|
---|
655 | /* need LBA48 for this command */
|
---|
656 | if (!ai->ports[p].devs[d].lba48)
|
---|
657 | {
|
---|
658 | iorb_seterr(pIorb, IOERR_RBA_LIMIT);
|
---|
659 | return(-1);
|
---|
660 | }
|
---|
661 | if (add_workspace(pIorb)->is_ncq)
|
---|
662 | {
|
---|
663 | /* use NCQ read; count goes into feature register, tag into count! */
|
---|
664 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
|
---|
665 | AP_SECTOR_48, ullLba,
|
---|
666 | AP_FEATURES, count,
|
---|
667 | AP_COUNT, (slot << 3), /* tag == slot */
|
---|
668 | AP_SGLIST, sg_list, sg_cnt,
|
---|
669 | AP_DEVICE, 0x40,
|
---|
670 | AP_END);
|
---|
671 | }
|
---|
672 | else
|
---|
673 | {
|
---|
674 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
|
---|
675 | AP_SECTOR_48, ullLba,
|
---|
676 | AP_COUNT, count,
|
---|
677 | AP_SGLIST, sg_list, sg_cnt,
|
---|
678 | AP_DEVICE, 0x40,
|
---|
679 | AP_END);
|
---|
680 | }
|
---|
681 |
|
---|
682 | }
|
---|
683 | else
|
---|
684 | {
|
---|
685 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
|
---|
686 | AP_SECTOR_28, (ULONG)ullLba,
|
---|
687 | AP_COUNT, count & 0xffU,
|
---|
688 | AP_SGLIST, sg_list, sg_cnt,
|
---|
689 | AP_DEVICE, 0x40,
|
---|
690 | AP_END);
|
---|
691 | }
|
---|
692 |
|
---|
693 | return(rc);
|
---|
694 | }
|
---|
695 |
|
---|
696 | /******************************************************************************
|
---|
697 | * Read sectors from AHCI device.
|
---|
698 | */
|
---|
699 | int ata_read(IORBH FAR16DATA *vIorb, IORBH *pIorb, int slot)
|
---|
700 | {
|
---|
701 | IORB_EXECUTEIO *io = (IORB_EXECUTEIO *)pIorb;
|
---|
702 | SCATGATENTRY *pSGList = (SCATGATENTRY*)Far16ToFlat(io->f16SGList);
|
---|
703 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
704 | ULONGLONG ullLba = io->RBA + io->BlocksXferred;
|
---|
705 | USHORT count = io->BlockCount - io->BlocksXferred;
|
---|
706 | USHORT sg_indx;
|
---|
707 | USHORT sg_cnt;
|
---|
708 | int p = iorb_unit_port(pIorb);
|
---|
709 | int d = iorb_unit_device(pIorb);
|
---|
710 | int rc;
|
---|
711 |
|
---|
712 | if (io->BlockCount == 0)
|
---|
713 | {
|
---|
714 | /* NOP; return -1 without error in IORB to indicate success */
|
---|
715 | return(-1);
|
---|
716 | }
|
---|
717 |
|
---|
718 | if (add_workspace(pIorb)->unaligned)
|
---|
719 | {
|
---|
720 | /* unaligned S/G addresses present; need to use double buffers */
|
---|
721 | return(ata_read_unaligned(pIorb, slot));
|
---|
722 | }
|
---|
723 |
|
---|
724 | if (add_workspace(pIorb)->fIs64bit)
|
---|
725 | {
|
---|
726 | ullLba = ((IORB_EXECUTEIO64*)pIorb)->ullRBA + io->BlocksXferred;
|
---|
727 | }
|
---|
728 |
|
---|
729 | /* Kludge: some I/O commands during boot use excessive S/G buffer lengths
|
---|
730 | * which cause NCQ commands to lock up. If there's only one S/G element
|
---|
731 | * and this element is already larger than what we can derive from the sector
|
---|
732 | * count, we'll adjust that element.
|
---|
733 | */
|
---|
734 | if (io->BlocksXferred == 0 && io->cSGList == 1 &&
|
---|
735 | pSGList[0].XferBufLen > (ULONG) io->BlockCount * io->BlockSize)
|
---|
736 | {
|
---|
737 | pSGList[0].XferBufLen = (ULONG) io->BlockCount * io->BlockSize;
|
---|
738 | }
|
---|
739 |
|
---|
740 | /* prepare read command while keeping an eye on S/G count limitations */
|
---|
741 | do
|
---|
742 | {
|
---|
743 | sg_indx = SgIndexFromOffset(pSGList, io->cSGList, io->BlocksXferred * io->BlockSize);
|
---|
744 | sg_cnt = io->cSGList - sg_indx;
|
---|
745 | rc = ata_cmd_read(pIorb, ai, p, d, slot, ullLba, count, pSGList + sg_indx, sg_cnt);
|
---|
746 | if (rc > 0)
|
---|
747 | {
|
---|
748 | /* couldn't map all S/G elements */
|
---|
749 | ata_max_sg_cnt(io, sg_indx, rc, &sg_cnt, &count);
|
---|
750 | }
|
---|
751 | } while (rc > 0 && sg_cnt > 0);
|
---|
752 |
|
---|
753 | if (rc == 0)
|
---|
754 | {
|
---|
755 | add_workspace(pIorb)->blocks = count;
|
---|
756 | add_workspace(pIorb)->ppfunc = ata_read_pp;
|
---|
757 | }
|
---|
758 | else if (rc > 0)
|
---|
759 | {
|
---|
760 | iorb_seterr(pIorb, IOERR_CMD_SGLIST_BAD);
|
---|
761 | }
|
---|
762 | else if (rc == ATA_CMD_UNALIGNED_ADDR)
|
---|
763 | {
|
---|
764 | /* unaligned S/G addresses detected; need to use double buffers */
|
---|
765 | add_workspace(pIorb)->unaligned = 1;
|
---|
766 | return(ata_read_unaligned(pIorb, slot));
|
---|
767 | }
|
---|
768 | else
|
---|
769 | {
|
---|
770 | iorb_seterr(pIorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
---|
771 | }
|
---|
772 |
|
---|
773 | return(rc);
|
---|
774 | }
|
---|
775 |
|
---|
776 | /******************************************************************************
|
---|
777 | * Read sectors from AHCI device with unaligned S/G element addresses. AHCI
|
---|
778 | * only allows aligned S/G addresses while OS/2 doesn't have these kind of
|
---|
779 | * restrictions. This doesn't happen very often but when it does, we need to
|
---|
780 | * use a transfer buffer and copy the data manually.
|
---|
781 | */
|
---|
782 | int ata_read_unaligned(IORBH *pIorb, int slot)
|
---|
783 | {
|
---|
784 | IORB_EXECUTEIO *io = (IORB_EXECUTEIO *)pIorb;
|
---|
785 | ADD_WORKSPACE *aws = add_workspace(pIorb);
|
---|
786 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
787 | ULONGLONG ullLba = io->RBA + io->BlocksXferred;
|
---|
788 | SCATGATENTRY sg_single;
|
---|
789 | int p = iorb_unit_port(pIorb);
|
---|
790 | int d = iorb_unit_device(pIorb);
|
---|
791 | int rc;
|
---|
792 |
|
---|
793 | if (add_workspace(pIorb)->fIs64bit)
|
---|
794 | {
|
---|
795 | ullLba = ((IORB_EXECUTEIO64*)pIorb)->ullRBA + io->BlocksXferred;
|
---|
796 | }
|
---|
797 |
|
---|
798 | DPRINTF(DBG_DETAILED, DBG_PREFIX": ata_read_unaligned(%d.%d.%d, %lld)\n", ad_no(ai), p, d, ullLba);
|
---|
799 | ai->ports[p].unaligned_read_count++;
|
---|
800 |
|
---|
801 | /* allocate transfer buffer */
|
---|
802 | if ((aws->buf = MemAlloc(io->BlockSize)) == NULL)
|
---|
803 | {
|
---|
804 | iorb_seterr(pIorb, IOERR_CMD_SW_RESOURCE);
|
---|
805 | return(-1);
|
---|
806 | }
|
---|
807 |
|
---|
808 | /* prepare read command using transfer buffer */
|
---|
809 | sg_single.ppXferBuf = MemPhysAdr(aws->buf);
|
---|
810 | sg_single.XferBufLen = io->BlockSize;
|
---|
811 | rc = ata_cmd_read(pIorb, ai, p, d, slot, ullLba, 1, &sg_single, 1);
|
---|
812 |
|
---|
813 | if (rc == 0) {
|
---|
814 | add_workspace(pIorb)->blocks = 1;
|
---|
815 | add_workspace(pIorb)->ppfunc = ata_read_pp;
|
---|
816 |
|
---|
817 | } else if (rc > 0) {
|
---|
818 | iorb_seterr(pIorb, IOERR_CMD_SGLIST_BAD);
|
---|
819 |
|
---|
820 | } else {
|
---|
821 | iorb_seterr(pIorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
---|
822 | }
|
---|
823 |
|
---|
824 | return(rc);
|
---|
825 | }
|
---|
826 |
|
---|
827 | /******************************************************************************
|
---|
828 | * Post processing function for ata_read(); this function updates the
|
---|
829 | * BlocksXferred counter in the IORB and, if not all blocks have been
|
---|
830 | * transferred, requeues the IORB to process the remaining sectors. It also
|
---|
831 | * takes care of copying data from the transfer buffer for unaligned reads.
|
---|
832 | */
|
---|
833 | void ata_read_pp(IORBH FAR16DATA *vIorb, IORBH *pIorb)
|
---|
834 | {
|
---|
835 | IORB_EXECUTEIO *io = (IORB_EXECUTEIO *)pIorb;
|
---|
836 | SCATGATENTRY *pSGList = (SCATGATENTRY*)Far16ToFlat(io->f16SGList);
|
---|
837 | ADD_WORKSPACE *aws = add_workspace(pIorb);
|
---|
838 |
|
---|
839 | if (aws->unaligned)
|
---|
840 | {
|
---|
841 | /* copy transfer buffer to corresponding physical address in S/G list */
|
---|
842 | CopySgBuf(pSGList, io->cSGList, (ULONG)io->BlocksXferred * (ULONG)io->BlockSize,
|
---|
843 | aws->buf, io->BlockSize, BUF_TO_SGL);
|
---|
844 | }
|
---|
845 |
|
---|
846 | io->BlocksXferred += add_workspace(pIorb)->blocks;
|
---|
847 | DPRINTF(DBG_DETAILED, DBG_PREFIX": blocks transferred = %d\n", io->BlocksXferred);
|
---|
848 |
|
---|
849 | if (io->BlocksXferred >= io->BlockCount)
|
---|
850 | {
|
---|
851 | /* we're done; tell IRQ handler the IORB is complete */
|
---|
852 | add_workspace(pIorb)->complete = 1;
|
---|
853 | }
|
---|
854 | else
|
---|
855 | {
|
---|
856 | /* requeue this IORB for next iteration */
|
---|
857 | iorb_requeue(pIorb);
|
---|
858 | }
|
---|
859 | }
|
---|
860 |
|
---|
861 | /******************************************************************************
|
---|
862 | * Verify readability of sectors on ATA device.
|
---|
863 | */
|
---|
864 | int ata_verify(IORBH FAR16DATA *vIorb, IORBH *pIorb, int slot)
|
---|
865 | {
|
---|
866 | IORB_EXECUTEIO *io = (IORB_EXECUTEIO *)pIorb;
|
---|
867 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
868 | int p = iorb_unit_port(pIorb);
|
---|
869 | int d = iorb_unit_device(pIorb);
|
---|
870 | ULONGLONG ullLba = io->RBA;
|
---|
871 | int rc;
|
---|
872 |
|
---|
873 | if (io->BlockCount == 0)
|
---|
874 | {
|
---|
875 | /* NOP; return -1 without error in IORB to indicate success */
|
---|
876 | return(-1);
|
---|
877 | }
|
---|
878 |
|
---|
879 | if (add_workspace(pIorb)->fIs64bit)
|
---|
880 | {
|
---|
881 | ullLba = ((IORB_EXECUTEIO64*)pIorb)->ullRBA;
|
---|
882 | }
|
---|
883 |
|
---|
884 | /* prepare verify command */
|
---|
885 | if (ullLba >= (1UL << 28) || io->BlockCount > 256)
|
---|
886 | {
|
---|
887 | /* need LBA48 for this command */
|
---|
888 | if (!ai->ports[p].devs[d].lba48) {
|
---|
889 | iorb_seterr(pIorb, IOERR_RBA_LIMIT);
|
---|
890 | return(-1);
|
---|
891 | }
|
---|
892 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
|
---|
893 | AP_SECTOR_48, ullLba,
|
---|
894 | AP_COUNT, io->BlockCount,
|
---|
895 | AP_DEVICE, 0x40,
|
---|
896 | AP_END);
|
---|
897 | } else {
|
---|
898 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
|
---|
899 | AP_SECTOR_28, (ULONG)ullLba,
|
---|
900 | AP_COUNT, io->BlockCount & 0xffU,
|
---|
901 | AP_DEVICE, 0x40,
|
---|
902 | AP_END);
|
---|
903 | }
|
---|
904 |
|
---|
905 | return(rc);
|
---|
906 | }
|
---|
907 |
|
---|
908 | /******************************************************************************
|
---|
909 | * Fabricate ATA WRITE command based on the capabilities of the corresponding
|
---|
910 | * device and the paramters set from above (NCQ, etc)
|
---|
911 | */
|
---|
912 | static int ata_cmd_write(IORBH *pIorb, AD_INFO *ai, int p, int d, int slot,
|
---|
913 | ULONGLONG ullLba, ULONG count, SCATGATENTRY *sg_list,
|
---|
914 | ULONG sg_cnt, int write_through)
|
---|
915 | {
|
---|
916 | int rc;
|
---|
917 |
|
---|
918 | if (ullLba >= (1UL << 28) || count > 256 || add_workspace(pIorb)->is_ncq)
|
---|
919 | {
|
---|
920 | /* need LBA48 for this command */
|
---|
921 | if (!ai->ports[p].devs[d].lba48)
|
---|
922 | {
|
---|
923 | iorb_seterr(pIorb, IOERR_RBA_LIMIT);
|
---|
924 | return(-1);
|
---|
925 | }
|
---|
926 | if (add_workspace(pIorb)->is_ncq)
|
---|
927 | {
|
---|
928 | /* use NCQ write; count goes into feature register, tag into count! */
|
---|
929 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
|
---|
930 | AP_SECTOR_48, ullLba,
|
---|
931 | AP_FEATURES, count,
|
---|
932 | /* tag = slot */
|
---|
933 | AP_COUNT, (slot << 3),
|
---|
934 | AP_SGLIST, sg_list, sg_cnt,
|
---|
935 | AP_DEVICE, 0x40,
|
---|
936 | /* force unit access */
|
---|
937 | AP_DEVICE, (write_through && !force_write_cache) ? 0x80 : 0,
|
---|
938 | AP_WRITE, 1,
|
---|
939 | AP_END);
|
---|
940 | }
|
---|
941 | else
|
---|
942 | {
|
---|
943 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
|
---|
944 | AP_SECTOR_48, ullLba,
|
---|
945 | AP_COUNT, count,
|
---|
946 | AP_SGLIST, sg_list, sg_cnt,
|
---|
947 | AP_DEVICE, 0x40,
|
---|
948 | AP_WRITE, 1,
|
---|
949 | AP_END);
|
---|
950 | }
|
---|
951 | }
|
---|
952 | else
|
---|
953 | {
|
---|
954 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
|
---|
955 | AP_SECTOR_28, (ULONG)ullLba,
|
---|
956 | AP_COUNT, count & 0xffU,
|
---|
957 | AP_SGLIST, sg_list, sg_cnt,
|
---|
958 | AP_DEVICE, 0x40,
|
---|
959 | AP_WRITE, 1,
|
---|
960 | AP_END);
|
---|
961 | }
|
---|
962 |
|
---|
963 | return(rc);
|
---|
964 | }
|
---|
965 |
|
---|
966 | /******************************************************************************
|
---|
967 | * Write sectors to AHCI device.
|
---|
968 | */
|
---|
969 | int ata_write(IORBH FAR16DATA *vIorb, IORBH *pIorb, int slot)
|
---|
970 | {
|
---|
971 | IORB_EXECUTEIO *io = (IORB_EXECUTEIO *)pIorb;
|
---|
972 | SCATGATENTRY *pSGList = (SCATGATENTRY*)Far16ToFlat(io->f16SGList);
|
---|
973 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
974 | ULONGLONG ullLba = io->RBA + io->BlocksXferred;
|
---|
975 | USHORT count = io->BlockCount - io->BlocksXferred;
|
---|
976 | USHORT sg_indx;
|
---|
977 | USHORT sg_cnt;
|
---|
978 | int p = iorb_unit_port(pIorb);
|
---|
979 | int d = iorb_unit_device(pIorb);
|
---|
980 | int rc;
|
---|
981 |
|
---|
982 | if (io->BlockCount == 0)
|
---|
983 | {
|
---|
984 | /* NOP; return -1 without error in IORB to indicate success */
|
---|
985 | return(-1);
|
---|
986 | }
|
---|
987 |
|
---|
988 | if (add_workspace(pIorb)->unaligned)
|
---|
989 | {
|
---|
990 | /* unaligned S/G addresses present; need to use double buffers */
|
---|
991 | return(ata_write_unaligned(pIorb, slot));
|
---|
992 | }
|
---|
993 |
|
---|
994 | if (add_workspace(pIorb)->fIs64bit)
|
---|
995 | {
|
---|
996 | ullLba = ((IORB_EXECUTEIO64*)pIorb)->ullRBA + io->BlocksXferred;
|
---|
997 | }
|
---|
998 |
|
---|
999 | /* prepare write command while keeping an eye on S/G count limitations */
|
---|
1000 | do {
|
---|
1001 | sg_indx = SgIndexFromOffset(pSGList, io->cSGList, io->BlocksXferred * io->BlockSize);
|
---|
1002 | sg_cnt = io->cSGList - sg_indx;
|
---|
1003 | if ((rc = ata_cmd_write(pIorb, ai, p, d, slot, ullLba, count,
|
---|
1004 | pSGList + sg_indx, sg_cnt,
|
---|
1005 | io->Flags & XIO_DISABLE_HW_WRITE_CACHE)) > 0)
|
---|
1006 | {
|
---|
1007 | /* couldn't map all S/G elements */
|
---|
1008 | ata_max_sg_cnt(io, sg_indx, (USHORT)rc, &sg_cnt, &count);
|
---|
1009 | }
|
---|
1010 | } while (rc > 0 && sg_cnt > 0);
|
---|
1011 |
|
---|
1012 | if (rc == 0)
|
---|
1013 | {
|
---|
1014 | add_workspace(pIorb)->blocks = count;
|
---|
1015 | add_workspace(pIorb)->ppfunc = ata_write_pp;
|
---|
1016 | }
|
---|
1017 | else if (rc > 0)
|
---|
1018 | {
|
---|
1019 | iorb_seterr(pIorb, IOERR_CMD_SGLIST_BAD);
|
---|
1020 | }
|
---|
1021 | else if (rc == ATA_CMD_UNALIGNED_ADDR)
|
---|
1022 | {
|
---|
1023 | /* unaligned S/G addresses detected; need to use double buffers */
|
---|
1024 | add_workspace(pIorb)->unaligned = 1;
|
---|
1025 | return(ata_write_unaligned(pIorb, slot));
|
---|
1026 | }
|
---|
1027 | else
|
---|
1028 | {
|
---|
1029 | iorb_seterr(pIorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | return(rc);
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | /******************************************************************************
|
---|
1036 | * Write sectors from AHCI device with unaligned S/G element addresses. AHCI
|
---|
1037 | * only allows aligned S/G addresses while OS/2 doesn't have these kind of
|
---|
1038 | * restrictions. This doesn't happen very often but when it does, we need to
|
---|
1039 | * use a transfer buffer and copy the data manually.
|
---|
1040 | */
|
---|
1041 | int ata_write_unaligned(IORBH *pIorb, int slot)
|
---|
1042 | {
|
---|
1043 | IORB_EXECUTEIO *io = (IORB_EXECUTEIO *)pIorb;
|
---|
1044 | SCATGATENTRY *pSGList = (SCATGATENTRY*)Far16ToFlat(io->f16SGList);
|
---|
1045 | ADD_WORKSPACE *aws = add_workspace(pIorb);
|
---|
1046 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
1047 | ULONGLONG ullLba = io->RBA + io->BlocksXferred;
|
---|
1048 | SCATGATENTRY sg_single;
|
---|
1049 | int p = iorb_unit_port(pIorb);
|
---|
1050 | int d = iorb_unit_device(pIorb);
|
---|
1051 | int rc;
|
---|
1052 |
|
---|
1053 | if (add_workspace(pIorb)->fIs64bit)
|
---|
1054 | {
|
---|
1055 | ullLba = ((IORB_EXECUTEIO64*)pIorb)->ullRBA + io->BlocksXferred;
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | DPRINTF(DBG_DETAILED, DBG_PREFIX": ata_write_unaligned(%d.%d.%d, %lld)\n", ad_no(ai), p, d, ullLba);
|
---|
1059 |
|
---|
1060 | /* allocate transfer buffer */
|
---|
1061 | if ((aws->buf = MemAlloc(io->BlockSize)) == NULL)
|
---|
1062 | {
|
---|
1063 | iorb_seterr(pIorb, IOERR_CMD_SW_RESOURCE);
|
---|
1064 | return(-1);
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | /* copy next sector from S/G list to transfer buffer */
|
---|
1068 | CopySgBuf(pSGList, io->cSGList, (ULONG)io->BlocksXferred * (ULONG)io->BlockSize,
|
---|
1069 | aws->buf, io->BlockSize, SGL_TO_BUF);
|
---|
1070 |
|
---|
1071 | /* prepare write command using transfer buffer */
|
---|
1072 | sg_single.ppXferBuf = MemPhysAdr(aws->buf);
|
---|
1073 | sg_single.XferBufLen = io->BlockSize;
|
---|
1074 | rc = ata_cmd_write(pIorb, ai, p, d, slot, ullLba, 1, &sg_single, 1,
|
---|
1075 | io->Flags & XIO_DISABLE_HW_WRITE_CACHE);
|
---|
1076 |
|
---|
1077 | if (rc == 0)
|
---|
1078 | {
|
---|
1079 | add_workspace(pIorb)->blocks = 1;
|
---|
1080 | add_workspace(pIorb)->ppfunc = ata_write_pp;
|
---|
1081 | }
|
---|
1082 | else if (rc > 0)
|
---|
1083 | {
|
---|
1084 | iorb_seterr(pIorb, IOERR_CMD_SGLIST_BAD);
|
---|
1085 | }
|
---|
1086 | else
|
---|
1087 | {
|
---|
1088 | iorb_seterr(pIorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | return(rc);
|
---|
1092 | }
|
---|
1093 |
|
---|
1094 |
|
---|
1095 | /******************************************************************************
|
---|
1096 | * Post processing function for ata_write(); this function updates the
|
---|
1097 | * BlocksXferred counter in the IORB and, if not all blocks have been
|
---|
1098 | * transferred, requeues the IORB to process the remaining sectors.
|
---|
1099 | */
|
---|
1100 | void ata_write_pp(IORBH FAR16DATA *vIorb, IORBH *pIorb)
|
---|
1101 | {
|
---|
1102 | IORB_EXECUTEIO *io = (IORB_EXECUTEIO *)pIorb;
|
---|
1103 |
|
---|
1104 | io->BlocksXferred += add_workspace(pIorb)->blocks;
|
---|
1105 | DPRINTF(DBG_DETAILED, DBG_PREFIX": ata_write_pp(): blocks transferred = %d\n", io->BlocksXferred);
|
---|
1106 |
|
---|
1107 | if (io->BlocksXferred >= io->BlockCount)
|
---|
1108 | {
|
---|
1109 | /* we're done; tell IRQ handler the IORB is complete */
|
---|
1110 | add_workspace(pIorb)->complete = 1;
|
---|
1111 | }
|
---|
1112 | else
|
---|
1113 | {
|
---|
1114 | /* requeue this IORB for next iteration */
|
---|
1115 | iorb_requeue(pIorb);
|
---|
1116 | }
|
---|
1117 | }
|
---|
1118 |
|
---|
1119 | /******************************************************************************
|
---|
1120 | * Execute ATA command.
|
---|
1121 | */
|
---|
1122 | int ata_execute_ata(IORBH FAR16DATA *vIorb, IORBH *pIorb, int slot)
|
---|
1123 | {
|
---|
1124 | IORB_ADAPTER_PASSTHRU *apt = (IORB_ADAPTER_PASSTHRU *)pIorb;
|
---|
1125 | SCATGATENTRY *pSGList = (SCATGATENTRY*)Far16ToFlat(apt->f16SGList);
|
---|
1126 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
1127 | int p = iorb_unit_port(pIorb);
|
---|
1128 | int d = iorb_unit_device(pIorb);
|
---|
1129 | int rc;
|
---|
1130 |
|
---|
1131 | if (apt->ControllerCmdLen != sizeof(ATA_CMD))
|
---|
1132 | {
|
---|
1133 | iorb_seterr(pIorb, IOERR_CMD_SYNTAX);
|
---|
1134 | return(-1);
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 | rc = ata_cmd(ai, p, d, slot, 0,
|
---|
1138 | AP_SGLIST, pSGList, apt->cSGList,
|
---|
1139 | AP_ATA_CMD, Far16ToFlat(apt->f16ControllerCmd),
|
---|
1140 | AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
|
---|
1141 | AP_END);
|
---|
1142 |
|
---|
1143 | if (rc == 0)
|
---|
1144 | {
|
---|
1145 | add_workspace(pIorb)->ppfunc = ata_execute_ata_pp;
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | return(rc);
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 | /******************************************************************************
|
---|
1152 | * Post processing function for ata_execute_ata(); the main purpose of this
|
---|
1153 | * function is to copy the received D2H FIS (i.e. the device registers after
|
---|
1154 | * command completion) back to the ATA command structure.
|
---|
1155 | *
|
---|
1156 | * See ata_cmd_to_fis() for an explanation of the mapping.
|
---|
1157 | */
|
---|
1158 | void ata_execute_ata_pp(IORBH FAR16DATA *vIorb, IORBH *pIorb)
|
---|
1159 | {
|
---|
1160 | AHCI_PORT_DMA *dma_base;
|
---|
1161 | ATA_CMD *cmd;
|
---|
1162 | AD_INFO *ai;
|
---|
1163 | u8 *fis;
|
---|
1164 | int p;
|
---|
1165 |
|
---|
1166 | /* get address of D2H FIS */
|
---|
1167 | ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
1168 | p = iorb_unit_port(pIorb);
|
---|
1169 | dma_base = port_dma_base(ai, p);
|
---|
1170 | fis = dma_base->rx_fis + 0x40;
|
---|
1171 |
|
---|
1172 | if (fis[0] != 0x34)
|
---|
1173 | {
|
---|
1174 | /* this is not a D2H FIS - give up silently */
|
---|
1175 | DPRINTF(DBG_DETAILED, DBG_PREFIX": ata_execute_ata_pp(): D2H FIS type incorrect: %d\n", fis[0]);
|
---|
1176 | add_workspace(pIorb)->complete = 1;
|
---|
1177 | return;
|
---|
1178 | }
|
---|
1179 |
|
---|
1180 | /* map D2H FIS to the original ATA controller command structure */
|
---|
1181 | cmd = (ATA_CMD *)Far16ToFlat(((IORB_ADAPTER_PASSTHRU*)pIorb)->f16ControllerCmd);
|
---|
1182 |
|
---|
1183 | cmd->cmd = fis[2];
|
---|
1184 | cmd->device = fis[7];
|
---|
1185 | cmd->features = ((u16) fis[3])
|
---|
1186 | | ((u16) fis[11]);
|
---|
1187 | cmd->lba_l = ((u32) fis[4])
|
---|
1188 | | ((u32) fis[5] << 8)
|
---|
1189 | | ((u32) fis[6] << 16)
|
---|
1190 | | ((u32) fis[8] << 24);
|
---|
1191 | cmd->lba_h = ((u16) fis[9])
|
---|
1192 | | ((u16) fis[10] << 8);
|
---|
1193 | cmd->count = ((u16) fis[12])
|
---|
1194 | | ((u16) fis[13] << 8);
|
---|
1195 |
|
---|
1196 | DHEXDUMP(DBG_DETAILED, cmd, sizeof(*cmd), "ahci_execute_ata_pp(): cmd after completion:\n");
|
---|
1197 |
|
---|
1198 | /* signal completion to interrupt handler */
|
---|
1199 | add_workspace(pIorb)->complete = 1;
|
---|
1200 | }
|
---|
1201 |
|
---|
1202 | /******************************************************************************
|
---|
1203 | * Request sense information for a failed command. Since there is no "request
|
---|
1204 | * sense" command for ATA devices, we need to read the current error code from
|
---|
1205 | * the AHCI task file register and fabricate the sense information.
|
---|
1206 | *
|
---|
1207 | * NOTES:
|
---|
1208 | *
|
---|
1209 | * - This function must be called right after an ATA command has failed and
|
---|
1210 | * before any other commands are queued on the corresponding port. This
|
---|
1211 | * function is typically called in the port restart context hook which is
|
---|
1212 | * triggered by an AHCI error interrupt.
|
---|
1213 | *
|
---|
1214 | * - The ATA error bits are a complete mess. We'll try and catch the most
|
---|
1215 | * interesting error codes (such as medium errors) and report everything
|
---|
1216 | * else with a generic error code.
|
---|
1217 | */
|
---|
1218 | int ata_req_sense(IORBH FAR16DATA *vIorb, IORBH *pIorb, int slot)
|
---|
1219 | {
|
---|
1220 | AD_INFO *ai = ad_infos + iorb_unit_adapter(pIorb);
|
---|
1221 | u8 *port_mmio = port_base(ai, iorb_unit_port(pIorb));
|
---|
1222 | u32 tf_data = readl(port_mmio + PORT_TFDATA);
|
---|
1223 | u8 err = (tf_data >> 8);
|
---|
1224 | u8 sts = (tf_data);
|
---|
1225 |
|
---|
1226 | if (sts & ATA_ERR)
|
---|
1227 | {
|
---|
1228 | if (sts & ATA_DF)
|
---|
1229 | {
|
---|
1230 | /* there is a device-specific error condition */
|
---|
1231 | if (err & ATA_ICRC)
|
---|
1232 | {
|
---|
1233 | iorb_seterr(pIorb, IOERR_ADAPTER_DEVICEBUSCHECK);
|
---|
1234 | }
|
---|
1235 | else if (err & ATA_UNC)
|
---|
1236 | {
|
---|
1237 | iorb_seterr(pIorb, IOERR_MEDIA);
|
---|
1238 | }
|
---|
1239 | else if (err & ATA_IDNF)
|
---|
1240 | {
|
---|
1241 | iorb_seterr(pIorb, IOERR_RBA_ADDRESSING_ERROR);
|
---|
1242 | }
|
---|
1243 | else
|
---|
1244 | {
|
---|
1245 | iorb_seterr(pIorb, IOERR_DEVICE_NONSPECIFIC);
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 | }
|
---|
1249 | else
|
---|
1250 | {
|
---|
1251 | iorb_seterr(pIorb, IOERR_DEVICE_NONSPECIFIC);
|
---|
1252 | }
|
---|
1253 | }
|
---|
1254 | else
|
---|
1255 | {
|
---|
1256 | /* this function only gets called when we received an error interrupt */
|
---|
1257 | iorb_seterr(pIorb, IOERR_DEVICE_NONSPECIFIC);
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | /* Return an error to indicate there's no HW command to be submitted and
|
---|
1261 | * that the IORB can be completed "as is" (the upstream code expects the
|
---|
1262 | * IORB error code, if any, to be set when this happens and this is exactly
|
---|
1263 | * what this function is all about).
|
---|
1264 | */
|
---|
1265 | return(-1);
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 | /******************************************************************************
|
---|
1269 | * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
|
---|
1270 | * in the indentify buffer are byte-swapped, we need to swap them back.
|
---|
1271 | */
|
---|
1272 | char *ata_dev_name(u16 *id_buf)
|
---|
1273 | {
|
---|
1274 | static char dev_name[ATA_ID_PROD_LEN + 1];
|
---|
1275 | char *t = dev_name;
|
---|
1276 | char *s = (char *) (id_buf + ATA_ID_PROD);
|
---|
1277 | int i;
|
---|
1278 |
|
---|
1279 | dev_name[sizeof(dev_name)-1] = '\0';
|
---|
1280 |
|
---|
1281 | for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
|
---|
1282 | *(t++) = s[1];
|
---|
1283 | *(t++) = s[0];
|
---|
1284 | s += 2;
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 | return(dev_name);
|
---|
1288 | }
|
---|
1289 |
|
---|
1290 | /******************************************************************************
|
---|
1291 | * Halt processing by submitting an internal error. This is a last resort and
|
---|
1292 | * should only be called when the system state is corrupt.
|
---|
1293 | */
|
---|
1294 | void panic(char *msg)
|
---|
1295 | {
|
---|
1296 | Dev32Help_InternalError(msg, strlen(msg));
|
---|
1297 | }
|
---|
1298 |
|
---|