Showing posts with label Complex exponentials. Show all posts
Showing posts with label Complex exponentials. Show all posts

Monday, 17 February 2014

Plot the spectrum of the real sinuoids and complex sinuoids.

Magnitude spectrum:
Magnitude spectrum of the sinusoids

Phase spectrum:

Phase spectrum (-fs/2 to +fs/2)

3D-Plots of Sinusoids: [note that Sin(-wt) should be read as Sin(wt)]
Sinusoids on Real and Imaginary axes

Complex Sinusoids 


%Code used to generate above plots

%% Clear the workspace
clear all;
close all;
clc;
home;

%% Parameters
fSamp = 1e3; % Hz
ts = 1/fSamp;
T = 1; % seconds - Data duration
t = 0:ts:T-ts;

fSig = 10; % Hz - Signal frequency
%% Real - sinusoids
% 1. Sine
s = sin(2*pi*fSig*t);

% 2. Co-sine
c = cos(2*pi*fSig*t);

% 3. Complex exponential
compExpoPositive = exp(1i*2*pi*fSig*t);
compExpoNegative = exp(-1i*2*pi*fSig*t);

%% Their Magnitude spectrum
df = fSamp / length(s);
freqIndex = -fSamp/2:df:fSamp/2 - df;

sFft = fftshift(fft(s)) ./ length(s);
% phaseSine = unwrap(angle((sFft))); %output is in radians but continuos (unwrap)
phaseSine = phase(sFft); %equal to unwrap and angle

cFft = fftshift(fft(c))./ length(s);
phaseCosine = unwrap(angle((cFft)));

fftCompPositive = fftshift(fft(compExpoPositive))./ length(s);
phaseCompPositive = phase(fftCompPositive);
fftCompNegative = fftshift(fft(compExpoNegative))./ length(s);
phaseCompNegative = phase(fftCompNegative);
% Sine
figure;
subplot(3,1,1);
stem(freqIndex,real(sFft),'b*'); hold on;
stem(freqIndex,imag(sFft),'ro');


xlim([-15 15]);
title('Sinusoid''s magnitude spectrum','color','b');
xlabel('Frequency (Hz)');
ylabel('Mag.');
legend('Real','Imag','location','best');

% Cosine
subplot(3,1,2);
stem(freqIndex,real(cFft),'g-'); hold on;
stem(freqIndex,imag(cFft),'m^');
xlim([-15 15]);
title('Co-sinusoid''s magnitude spectrum','color','b');
xlabel('Frequency (Hz)');
ylabel('Mag.');
legend('Real','Imag','location','best');

% Complex sinusoids
subplot(3,1,3);
stem(freqIndex,real(fftCompPositive),'b*'); hold on;
stem(freqIndex,imag(fftCompPositive),'ro');

stem(freqIndex,real(fftCompNegative),'g*');%,'markersize',5);
stem(freqIndex,imag(fftCompNegative),'mo');%,'markersize',5);
xlim([-15 15]);
title('Complex exponentials / Complex sinuoids','color','b');
xlabel('Frequency (Hz)');
ylabel('Mag. (arbitrary unit)');
legend('Real(exp(jwt))','Imag(exp(jwt))','Real(exp(-jwt))','Imag(exp(-jwt))','location','best');

% Setting plot properties
set(findall(gcf,'Type','line'),'linewidth',2);
set(findall(gcf,'type','axes'),'fontsize',12);
set(findall(gcf,'Type','text'),'FontSize',12);
saveas(gcf,'MagSpectrumFreqDomain.jpg');




%% Their Phase spectrum
figure;
plot(freqIndex,phaseSine*180/pi,'b');
hold on;
plot(freqIndex,phaseCosine*180/pi,'r');

plot(freqIndex,phaseCompPositive*180/pi,'g');
plot(freqIndex,phaseCompNegative*180/pi,'m');


xlim([-15 15]);
% Setting plot properties
title('Phase plot');
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');



legend('Sine','Co-sine','exp(+jwt)','exp(-jwt)','location','best');
set(findall(gcf,'Type','line'),'linewidth',2);
set(findall(gcf,'type','axes'),'fontsize',12);
set(findall(gcf,'Type','text'),'FontSize',12);

saveas(gcf,'PhaseSpecFreqDomain.jpg');




***************************************************************** 







%% 3D plot of the real and complex sinusoids

% Real sinusoids

% Complex sinusoids

% Code used to generate 3-D plots

%% Clear the workspace

clc;
clear all;
close all;

figure;

%% Plotting components of Co-Sinusoids

x=ones(1,6) .* 0.5;

y=0:0.1:0.5;

z=zeros(1,length(x));

plot3(x,y,z,'g');
hold on;

x=ones(1,6) .* -0.5;
y=0:0.1:0.5;
z=zeros(1,length(x));

plot3(x,y,z,'g+');

%% Plotting components of Sinusoids

x=ones(1,6) .* 0.5;
y=0:0.1:0.5;
z=zeros(1,length(x));

plot3(x,z,-y,'m');

x=ones(1,6) .* -0.5;
y=0:0.1:0.5;
z=zeros(1,length(x));
plot3(x,z,y,'m+');

%% Plotting axis lines

xL = [-1 1];%xlim;
yL = xL;
zL = yL;
line([0 0], yL, [0 0],'linewidth',3,'color','y'); %x-axis
line(xL, [0 0], [0 0],'linewidth',3,'color','k'); %y-axis
line([0 0], [0 0],zL,'linewidth',3,'color','b'); %y-axis
hold on;
grid on;

%%
axis equal;
set(findall(gcf,'Type','line'),'linewidth',2);
legend('Cos(wt) @ w', 'Cos(wt) @ -w', 'Sin(wt) @ w','Sin(-wt) @ -w');
ylabel('Real');
xlabel('Frequency (rad)');
zlabel('Imaginary')
view(36,25);
saveas(gcf,'RealSinusoids.jpg');

%% Plotting complex exponentials

figure;

x=ones(1,6) .* +0.5;
y=0:0.1:0.5;
z=zeros(1,length(x));
plot3(x,y,z,'r');
hold on;
x=ones(1,6) .* -0.5;
y=0:0.1:0.5;
z=zeros(1,length(x));
plot3(x,y,z,'b');

%
x=ones(1,6) .* 0.5;
y=0:0.1:0.5;
z=zeros(1,length(x));
plot3(x,z,-y,'r+');

x=ones(1,6) .* -0.5;
y=0:0.1:0.5;
z=zeros(1,length(x));
plot3(x,z,y,'b+');

%% Plotting lines
xL = [-1 1];%xlim;
yL = xL;
zL = yL;
line([0 0], yL, [0 0],'linewidth',3,'color','y'); %x-axis
line(xL, [0 0], [0 0],'linewidth',3,'color','k'); %y-axis
line([0 0], [0 0],zL,'linewidth',3,'color','b'); %y-axis
hold on;
grid on;
axis equal;
set(findall(gcf,'Type','line'),'linewidth',2);

legend('exp(+jwt) ','exp(-jwt)','-j*exp(+jwt)','j*exp(-jwt)');
ylabel('Real');
xlabel('Frequency (rad)');
zlabel('Imaginary')
whitebg('white');
% whitebg('blue')
view(36,25);
saveas(gcf,'ComplexExpo.jpg');