
Find the interest rates charged by the banks.

Answer to Problem 22P
The interest rate of the first bank and second bank is
Explanation of Solution
Given data:
Total amount borrowed
In First bank, uniform series payment at the end of each year
In Second bank, uniform series payment at the end of each month
Formula used:
Consider the following expression obtained from the payment details of first bank,
Here,
The equation (1) is rewritten with respect to the given values is,
Consider the following expression obtained from the payment details of second bank,
Here,
The equation (3) is rewritten with respect to the given values is,
Formula to calculate the present cost for the given uniform series payment is,
Formula to calculate the present cost for the given uniform series payment when the interest compounds
Calculation:
Case 1: Interest rate of first bank
Substitute the equation (5) in equation (2) and substitute
By using trial and error method, calculate the value of
(i) Interest rate of
Substitute
Reduce the equation as,
From the equation (8), it is clear that
(ii) Interest rate of
Substitute
Reduce the equation as,
From the equation (9), it is clear that
Case 2: Interest rate of second bank:
Substitute the equation (6) in equation (4), and substitute
Rewrite the equation as follows,
By using trial and error method, calculate the value of
(i) Interest rate of
Substitute
Reduce the equation as,
From the equation (11), it is clear that
(ii) Interest rate of
Substitute
Reduce the equation as,
From the equation (12), it is clear that
Therefore, from the analysis the interest rate of the first bank and second bank is
The second bank is highly preferable because it provides less interest rate than the first bank.
Conclusion:
Thus, the interest rate of the first bank and second bank is
Want to see more full solutions like this?
Chapter 20 Solutions
LMS Integrated for MindTap Engineering, 2 terms (12 months) Printed Access Card for Moavni's Engineering Fundamentals: An Introduction to Engineering, 5th
- Who is responsible for conducting special inspections and ensuring the work completed complies with design documents and referenced standards, why are specical inspections required?arrow_forwardYou are viewing Attempt 1/Continue Work * Incorrect The 123-kg industrial door with mass center at G is being positioned for repair by insertion of the 8° wedge under corner B. Horizontal movement is prevented by the small ledge at corner A. If the coefficients of static friction at both the top and bottom wedge surfaces are 0.65, determine the force P required to lift the door at B. Assume a = 1.4 m, b = 1.2 m, a = 8° A Answer: P = 1144.28 N Barrow_forwardHow can new sustainable materials change dead load calculations in future designs in earthquake-prone areas?arrow_forward
- Given the truss with loading shown. Note that the roller connection at Joint D is in atrack so that it cannot move in the x-direction, but it can roll in the y-direction.Solve the truss with the virtual load you would use if you are going to solve for the verticaldeflection at Joint E using the method of virtual work.Note: Just solve the truss. You DO NOT need to find the vertical deflection at Joint E.arrow_forwardQuestion (1): (18 Marks) Gaza City has a total population of 650,000 inhabitant, where 75% of the population is connected to wastewater collection system. The water consumption per capita is 100 L/day. Currently, the collected flow treated partially by aerated lagoon system. The municipality intend to change the treatment system to a completely mixed activated sludge system to be used for organic matter removal only to fulfill the Palestinian standards for reuse (Soluble BOD 30 mg/l). The given data from the municipality laboratory and assumptions: ⚫ The influent soluble Biological Oxygen demand = 500 mg/l. Biomass yield (Y) = 0.5 mg VSS/mg BOD removed • Endogenous decay rate constant (Ka) = 0.05d¹ • • The concentration of biomass (X) = 3000 mg MLVSS The concentration of recycled biomass (X) = 10000 mg MLVSS/L Growth rate (d) 2.5 1.25 100 For the completely mixed activated sludge system find the following: a) The average flow to the treatment plant. b) The mean cell residence time. c)…arrow_forwardQuestion (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forward
- Question (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forwardData:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Perform the following analyses of the project based on the data given above.a. Cost Variance b. Schedule Variancearrow_forwardPlease explain why large initial separations on the EV S-Curve between the lines for ACWPand BCWP with BCWP above the ACWP may be an indicator of excessive front loading.arrow_forward
- Data:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Plot an S-Curve and show Cost Variance and Schedule Variance on it.arrow_forwardWater table A L₁ = 2 m Sand y = 15.9 kN/m³ c' = 0 $' = 32° E L₂ = 3 m D Determine: a) Theoretical Depth and actual depth of penetration Sand Ysat 19.33 kN/m³ c' = 0 $' = 32° Clay c = 47 kN/m² =0arrow_forward3. The following Sheet Pile is to be designed for a granular soil without the influence of the water table: Determine: L = 5m Y = 15.9kN/m³ $' = 32° Gall = 172MN/m² e) Theoretical Embedment Deptharrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,




