
Find the equivalent present worth, annual worth, and future worth of the cash flow diagram.

Answer to Problem 18P
The equivalent present worth, annual worth, and future worth of the cash flow diagram is
Explanation of Solution
Given data:
The normal interest rate
Formula used:
Formula to calculate the present worth for the given cash flow diagram is,
Here,
Refer the Problem 20.18 Figure in the textbook, the equation (1) is rewritten with respect to the given number of years is,
Formula to calculate the present cost for the given uniform series payment is,
Formula to calculate the present cost for the given future value is,
Formula to calculate the annual worth for the given cash flow diagram is,
Here,
Refer the Problem 20.18 figure, the equation (5) is rewritten with respect to the given number of years is,
Formula to calculate the uniform series payment for the given present cost is,
Formula to calculate the future worth for the given cash flow diagram is,
Refer the Problem 20.18 figure, the equation (8) is rewritten with respect to the given number of years is,
Formula to calculate the future cost for the given present cost is,
Calculation:
Case (i): Equivalent present worth.
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Case (ii): Equivalent annual worth.
Substitute
Substitute
Case (iii): Equivalent future worth.
Substitute
Substitute
Therefore, the equivalent present worth, annual worth, and future worth of the cash flow diagram is
Conclusion:
Thus, the equivalent present worth, annual worth, and future worth of the cash flow diagram is
Want to see more full solutions like this?
Chapter 20 Solutions
LMS Integrated for MindTap Engineering, 2 terms (12 months) Printed Access Card for Moavni's Engineering Fundamentals: An Introduction to Engineering, 5th
- What are some relative code requirements specific to a roof system components?arrow_forwardThe ____________ costs can often be the determining factor in a successful project. Group of answer choices Overhead Material Labor Profitarrow_forwardWho is responsible for conducting special inspections and ensuring the work completed complies with design documents and referenced standards, why are specical inspections required?arrow_forward
- You are viewing Attempt 1/Continue Work * Incorrect The 123-kg industrial door with mass center at G is being positioned for repair by insertion of the 8° wedge under corner B. Horizontal movement is prevented by the small ledge at corner A. If the coefficients of static friction at both the top and bottom wedge surfaces are 0.65, determine the force P required to lift the door at B. Assume a = 1.4 m, b = 1.2 m, a = 8° A Answer: P = 1144.28 N Barrow_forwardHow can new sustainable materials change dead load calculations in future designs in earthquake-prone areas?arrow_forwardGiven the truss with loading shown. Note that the roller connection at Joint D is in atrack so that it cannot move in the x-direction, but it can roll in the y-direction.Solve the truss with the virtual load you would use if you are going to solve for the verticaldeflection at Joint E using the method of virtual work.Note: Just solve the truss. You DO NOT need to find the vertical deflection at Joint E.arrow_forward
- Question (1): (18 Marks) Gaza City has a total population of 650,000 inhabitant, where 75% of the population is connected to wastewater collection system. The water consumption per capita is 100 L/day. Currently, the collected flow treated partially by aerated lagoon system. The municipality intend to change the treatment system to a completely mixed activated sludge system to be used for organic matter removal only to fulfill the Palestinian standards for reuse (Soluble BOD 30 mg/l). The given data from the municipality laboratory and assumptions: ⚫ The influent soluble Biological Oxygen demand = 500 mg/l. Biomass yield (Y) = 0.5 mg VSS/mg BOD removed • Endogenous decay rate constant (Ka) = 0.05d¹ • • The concentration of biomass (X) = 3000 mg MLVSS The concentration of recycled biomass (X) = 10000 mg MLVSS/L Growth rate (d) 2.5 1.25 100 For the completely mixed activated sludge system find the following: a) The average flow to the treatment plant. b) The mean cell residence time. c)…arrow_forwardQuestion (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forwardQuestion (3): (20 Marks) You have been assigned to design a secondary wastewater treatment component based on a tricking filter technique. The flow rate is 3500 m³/day, the raw wastewater has a BOD5 of 600 mg/l. This wastewater is primarily treated with an efficiency of 35%. • Assume suitable design criteria to obtain a BOD effluent of 15 mg/l. Design the secondary clarifier • Perform all the necessary cheeks on your design.arrow_forward
- Data:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Perform the following analyses of the project based on the data given above.a. Cost Variance b. Schedule Variancearrow_forwardPlease explain why large initial separations on the EV S-Curve between the lines for ACWPand BCWP with BCWP above the ACWP may be an indicator of excessive front loading.arrow_forwardData:Total budget = $25,000BCWS = $ 8,333BCWP = $ 6,400ACWP = $ 7,800Project duration = 40 daysData date: 10 days Plot an S-Curve and show Cost Variance and Schedule Variance on it.arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning



