
Concept explainers
BankAccount and SavingsAccount Classes
Design an abstract class named BankAccount to hold the following data for a bank account:
- Balance
- Number of deposits this month
- Number of withdrawals
- Annual interest rate
- Monthly service charges
The class should have the following methods:
Constructor: | The constructor should accept arguments for the balance and annual interest rate. |
deposit: | A method that accepts an argument for the amount of the deposit. The method should add the argument to the account balance. It should also increment the variable holding the number of deposits. |
withdraw: | A method that accepts an argument for the amount of the withdrawal. The method should subtract the argument from the balance. It should also increment the variable holding the number of withdrawals. |
calcinterest: | A method that updates the balance by calculating the monthly interest earned by the account, and adding this interest to the balance. This is performed by the following formulas:
|
monthlyProcess: | A method that subtracts the monthly service charges from the balance, calls the calclnterest method, and then sets the variables that hold the number of withdrawals, number of deposits, and monthly service charges to zero. |
Next, design a SavingsAccount class that extends the BankAccount class. The SavingsAccount class should have a status field to represent an active or inactive account. If the balance of a savings account falls below $25, it becomes inactive. (The status field could be a boolean variable.) No more withdrawals may be made until the balance is raised above $25, at which time the account becomes active again. The savings account class should have the following methods:
withdraw: | A method that determines whether the account is inactive before a withdrawal is made. (No withdrawal will be allowed if the account is not active.) A withdrawal is then made by calling the superclass version of the method. |
deposit: | A method that determines whether the account is inactive before a deposit is made. If the account is inactive and the deposit brings the balance above $25, the account becomes active again. A deposit is then made by calling the superclass version of the method. |
monthlyProcess: | Before the superclass method is called, this method checks the number of withdrawals. If the number of withdrawals for the month is more than 4, a service charge of $1 for each withdrawal above 4 is added to the superclass field that holds the monthly service charges. (Don’t forget to check the account balance after the service charge is taken. If the balance falls below $25, the account becomes inactive.) |

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Additional Engineering Textbook Solutions
Database Concepts (8th Edition)
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
SURVEY OF OPERATING SYSTEMS
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Mechanics of Materials (10th Edition)
- As a database administrator of a large manufacturing organization, you are in charge of their website database that handles suppliers, parts, catalog, customers, and payments of delivered items. The following relations are part of the large database: Supplier(SID, Sname, Saddress, Stelephone)Customer(CID, Cname, Caddress, Ctelephone)Part(PID, Pname, Pmodel, Pcolor)Catalog(SID, PID, Price) (The Catalog relation lists the prices charged for parts by Suppliers). Because the application is web-based and the database is accessed by many users, you want to increase the concurrency usage without compromising the data quality. For each of the following transactions, state the minimum SQL isolation level you would use in order to avoid any conflict problems in them. Please explain your choice. A transaction that adds a new part to a supplier’s catalog. A transaction that increases the price that a supplier charges for a part. A transaction that determines the total number of items for a given…arrow_forwardPlease no AI! Or if you do use AI, Check the work please! Thank you!arrow_forward(Dynamic Programming.) Recall the problem presented in Assign- ment 3 where given a list L of n ordered integers you're tasked with removing m of them such that the distance between the closest two remaining integers is maxi- mized. See Assignment 1 for further clarification and examples. As it turns out there is no (known) greedy algorithm to solve this problem. However, there is a dynamic programming solution. Devise a dynamic programming solution which determines the maximum distance between the closest two points after removing m numbers. Note, it doesn't need to return the resulting list itself. Hint 1: Your sub-problems should be of the form S(i, j), where S(i, j) returns the maximum distance of the closest two numbers when only considering removing j of the first i numbers in L. As an example if L [3, 4, 6, 8, 9, 12, 13, 15], then S(4, 1) = 2, since the closest two values of L' = [3,4,6,8] are 6 and 8 after removing 4 (note, 8-6 = = 2). = Hint 2: For the sub-problem S(i, j),…arrow_forward
- (Dynamic Programming.) A group of friends is visiting a number of attractions located along a highway, starting at kilometre 0, placed at distances ɑ1 < A2 < ···arrow_forward(Greedy Algorithms) Describe an efficient algorithm that, given a set {x1, x2, . . ., xn} of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.arrow_forwardWhat does the value of the top variable indicate in this ArrayStack implementation? What will happen if we call pop on this stack? What value will be returned, and what changes will occur in the array and the top variable? 3. If we push the value "echo" onto the stack, where will it be stored in the array, and what will be the new value of top? 4. Explain why index 0 contains the string "alpha" even though top is currently 3. 5. What would the state of the stack look like (values in the array and value of top) after two consecutive pop 0 operations?arrow_forward
- Please solve and show all work. Suppose there are four routers between a source and a destination hosts. Ignoring fragmentation, an IP datagram sent from source to destination will travel over how many interfaces? How many forwarding tables will be indexed to move the datagram from the source to the destination?arrow_forwardPlease solve and show all work. When a large datagram is fragmented into multiple smaller datagrams, where are these smaller datagrams reassembled into a single large datagram?arrow_forwardPlease solve and show all steps. True or false? Consider congestion control in TCP. When the timer expires at the sender, the value of ssthresh is set to one-half of the last congestion window.arrow_forward
- Please solve and show all work. What are the purposes of the SNMP GetRequest and SetRequest messages?arrow_forwardPlease solve and show all steps. Three types of switching fabrics are discussed in our course. List and briefly describe each type. Which, if any, can send multiple packets across the fabric in parallel?arrow_forwardPlease solve and show steps. List the four broad classes of services that a transport protocol can provide. For each of the service classes, indicate if either UDP or TCP (or both) provides such a service.arrow_forward
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningEBK JAVA PROGRAMMINGComputer ScienceISBN:9781305480537Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT




