
Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 1.44CU
To determine
A control volume is a system that does not interact with the surrounding. The given statement is true or false.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Stress, ksi
220
200
180
160
140
120
100
80
Question P: Data for an extension spring is shown in the table below. Use only this table for this
question! Also shown is an abridged version of Table 18-2 and figure 18
Spring Material ASTM A228 Music wire
Max Operating Load: Fo=
21
Type of Service =
Average
Estimated Wahl Factor: K =
1.200
Required Mean Diameter: D =
0.550
Design Stress in Wire: Td
90,000
psi
TABLE 18-2 Wire Gages and Diameters for Springs
Gage no.
U.S. steel wire gage¹ (in)
Music wire gage² (in)
0.6
26
0.0181
0.063
27
0.0173
0.067
28
00162
0.071
29
00150
0.075
30
00140
0.080
31
0.0132
0.085
22
0.0128
0.090
33
00118
0.095
34
0.0104
0.100
35
0.0095
0.106
36
0.0090
Wire diameter, mm
Compression and extension springs,
Music Wire, ASTM A228
O'S
5.4
5.8
6.2
0.112
1515
1380
Light service
1240
1100
Average service
965
Severe service
825
690
Wire diameter, in
OLIO
0.190
0120
0.250
550
Stress, MPa
FIGURE 18-9 Design shear stresses for ASTM A228 steel wire
(music wire)
What is the…
Endurance limit,, (psi)
100 000
80 000
60 000
Ground
40 000
20 000
As-rolled
0
50 60
70
80
90
100
110
120
Polished
Machined or
cold drawn
As-forged
130 140 150 160 17
Tensile strength, s, (ksi)
(a) U.S. customary units
What is the minimum shaft diameter of D3 in inches? (Type in a three-decimal number).
Note: We want to know the diameter D3, of the shaft, not the diameter at the base of a ring groove, profile
keyseat or any other geometric feature on the shaft.
Answer:
x (3.008)
Question G: The machined shaft shown in the diagram below has the following components on it:
(A) Sheave
(B) Bearing
(C) Sprocket
(D) Bearing
(E) Spur Gear
Diameter D3 is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the
spur gear at point E are held in place with rings.
Diameter Dy is located underneath Bearing B. Only the sheave at point A, the sprocket at point C and the
spur gear at point E are held in place with rings.
PPENDIX 3 Design Properties of Carbon and Alloy Steels
Material designation (SAE number) Condition
Tensile strength
Yield strength
(ksi)
(MPa)
(MPa)
Bearing
Bearing
1020
Hot-rolled
55
379
207
V-belt sheave
6.00 in PD
DD
1020
Cold-drawn
61
420
352
Spur gear
Chain sprocket
10.00 in PD
20 FD
12.00 in PD
1020
Annealed
60
414
296
(a) Side view of shaft
10401
Hot-rolled
72
496
290
Belt drive
to conveyor
1040
Cold-drawn
80
552
1040
OQT 1300
88
607
1040
OQT 400
113
779
1050
Hot-rolled
90
620
leput from
water turbine
Gear E drives
Q
to…
Chapter 1 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 1.4ECh. 1 - Prob. 1.5ECh. 1 - Prob. 1.6ECh. 1 - Prob. 1.7ECh. 1 - Prob. 1.8ECh. 1 - Prob. 1.9ECh. 1 - Prob. 1.10ECh. 1 - Prob. 1.11E
Ch. 1 - Prob. 1.12ECh. 1 - Prob. 1.13ECh. 1 - Prob. 1.14ECh. 1 - Prob. 1.1CUCh. 1 - Prob. 1.2CUCh. 1 - Prob. 1.3CUCh. 1 - Prob. 1.4CUCh. 1 - Prob. 1.5CUCh. 1 - Prob. 1.6CUCh. 1 - Prob. 1.7CUCh. 1 - Prob. 1.8CUCh. 1 - Prob. 1.9CUCh. 1 - Prob. 1.10CUCh. 1 - Prob. 1.11CUCh. 1 - Prob. 1.12CUCh. 1 - Prob. 1.13CUCh. 1 - Prob. 1.14CUCh. 1 - Prob. 1.15CUCh. 1 - Prob. 1.16CUCh. 1 - Prob. 1.17CUCh. 1 - Prob. 1.18CUCh. 1 - Prob. 1.19CUCh. 1 - Prob. 1.20CUCh. 1 - Prob. 1.21CUCh. 1 - Prob. 1.22CUCh. 1 - Prob. 1.23CUCh. 1 - Prob. 1.24CUCh. 1 - Prob. 1.25CUCh. 1 - Prob. 1.26CUCh. 1 - Prob. 1.27CUCh. 1 - Prob. 1.28CUCh. 1 - Prob. 1.29CUCh. 1 - Prob. 1.30CUCh. 1 - Prob. 1.31CUCh. 1 - Prob. 1.32CUCh. 1 - Prob. 1.33CUCh. 1 - Prob. 1.34CUCh. 1 - Prob. 1.35CUCh. 1 - Prob. 1.36CUCh. 1 - Prob. 1.37CUCh. 1 - Prob. 1.38CUCh. 1 - Prob. 1.39CUCh. 1 - Prob. 1.40CUCh. 1 - Prob. 1.41CUCh. 1 - Prob. 1.42CUCh. 1 - Prob. 1.43CUCh. 1 - Prob. 1.44CUCh. 1 - Prob. 1.45CUCh. 1 - Prob. 1.46CUCh. 1 - Prob. 1.47CUCh. 1 - Prob. 1.48CUCh. 1 - Prob. 1.49CUCh. 1 - Prob. 1.50CUCh. 1 - Prob. 1.51CUCh. 1 - Prob. 1.52CUCh. 1 - Prob. 1.53CUCh. 1 - Prob. 1.54CUCh. 1 - Prob. 1.55CUCh. 1 - Prob. 1.56CUCh. 1 - Prob. 1.57CUCh. 1 - Prob. 1.58CUCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Prob. 1.6PCh. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10PCh. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 220 200 180 160 140 120 Stress, ksi 100 80 Question O: Data for an extension spring is shown in the table below. Use only this table for this question! Also shown is an abridged version of Table 18-2 and figure 18. Spring Material ASTM A228 Music wire Max Operating Load: F₁ = 57 Type of Service Average Estimated Wahl Factor: K= 1.200 Required Mean Diameter: D = 0.850 Design Stress in Wire: 1 = 115,000 psi TABLE 18-2 Wire Gages and Diameters for Springs 0.0181 27 0.0175 Gage no. U.S. steel wire gage (in) Music wire gage² (in) 0063 0.067 28 0.0162 0.071 29 0.0150 0.075 30 00140 0.080 31 0.0132 0085 32 00128 0.090 33 00118 0096 34 0.0104 0.100 35 0.0095 36 0.0090 1.8 Wire diameter, mm 0.106 0.112 5.4 5.8 6.2 1515 Compression and extension springs, Music Wire, ASTM A228. 1380 Light service 1240 Average service 1100 965 Severe service 825 690 P10100 OSO 0 0.150 0.170 061'0 0.210 0.230 F 0.250 550 Stress, MPa Wire diameter, in FIGURE 18-9 Design shear stresses for ASTM A228 steel wire (music…arrow_forwardPlease see attachment.arrow_forwardPlease see attachment.arrow_forward
- P3: A differential band brake shown in the figure below uses a woven lining having a design value of the friction coefficient f=0.20. Dimensions are b=80 mm, r=250 mm, c=700 mm, a = 150 mm, s=35 mm, and 0=240°. Find 1) the brake torque if the maximum lining pressure is 0.5 MPa, 2) the corresponding actuating force F, and 3) the values of dimensions that would cause the brake to be self-locking. (25%) -240° F-250 mm Band width, b-80 mm Rotation Friction coefficient, -0.20 Maximum lining pressure, P-0.5 MPa 3-35 mm la-150 mm e-700 mm-arrow_forwardInclude a grapharrow_forwardA particular furnace is shaped like a section of a cone. The top surface of the furnace is uniformly heated by a resistance heater. During operation, the top surface is measured to be 800 K and the power supplied to the resistance heater is 1750 W/m². The sidewall of the furnace is perfectly insulated with ε = 0.2. If the emissivity of the top and bottom surfaces are ε = 0.5 and > = 0.7, respectively, determine the temperatures of the sidewall and the bottom surface of the furnace. A1 D₂ = 20 mm A₂ L = 50 mm D₁ = 40 mmarrow_forward
- You are designing an industrial furnace to keep pieces of sheet metal at a fixed temperature. You decide a long, hemispherical furnace will be the best choice. The hemispherical portion is built from insulating brick to reflect the radiation from a ceramic plate onto the sheet metal and the ceramic plate is heated by gas burners from below. An insulating wall prevents direct transmission of radiative energy from the ceramic plate to the sheet metal. The radius of the hemisphere is 1 m and the rest of the system properties can be found in the table below. You may neglect convection during your analysis. Temperature Emissivity Ceramic Plate 1600 K ε = 0.85 Sheet Metal 500 K Insulating Brick unknown € = 1 ε = 0.6 a) Calculate the required heat input, in W, per unit length of the furnace (out of the page) that must be supplied by the gas burners to maintain the specified temperatures. b) What is the temperature of the insulating brick surface? Metal products (2) T₂ = 500 K, &- 1 -…arrow_forwardDerive common expressions for the radiative heat transfer rate between two surfaces below. Aσ (T-T) a) Infinite parallel plates: A1, T1 E1 912 = 1 1 + ε1 E2 1 A2, T2, E2 b) Infinitely long concentric cylinders: 912 c) Concentric spheres: 912 182 A₁σ (T-T) 1-82 (11) = 1 + ε1 E2 = A₁σ (T-T) 1 1-82 રંતુ + E2 2arrow_forwardFollowing page contains formulas.arrow_forward
- 1) The assembly is made of the slender rods that have a mass per unit length of 3 kg/m. Determine the mass moment of inertia of the assembly about an axis perpendicular to the page and passing through point O. 0.4 m 0.8 m 0.4 marrow_forwardanswer asaparrow_forwardA radio controlled aircraft is instrumented with an airspeed sensor and a power module, which measures the airspeed V [m/s] with an uncertainty of ± 0.8 [m/s], the battery voltage E [V] with an uncertainty of ± 0.8 [V] and the current draw i with an uncertainty of ± 0.8 [A]. These sensors are used to estimate the coefficient of drag CD of the aircraft. For this purpose, the aircraft was flown under cruise condition at a constant speed, maintaining a constant altitude and the airspeed was recorded as V=10 [m/s]. A battery voltage of E=11.1 [V] and current draw i= 1[A] was also recorded. Prior to take off the weight of the aircraft was recorded using a scale as 0.8 [N] ± 0.03 [N], and the planform area S of the aircraft was found using a CAD model as 0.35 [m^2]. The air density p relevant to flight conditions was found to be p =1.225 [kg/m^3] and the propulsion efficiency was found to be 0.4. The coefficient of drag CD for cruise flight is governed by the following equation. Provide the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning

Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning

Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning

Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY