previous next

Click on a word to bring up parses, dictionary entries, and frequency statistics



ὅμοια σχήματα εὐθύγραμμά ἐστιν, ὅσα τάς τε γωνίας ἴσας ἔχει κατὰ μίαν καὶ τὰς περὶ τὰς ἴσας γωνίας πλευρὰς ἀνάλογον. &`2* 1$

Ἀντιπεπονθότα δὲ σχήματά ἐστιν, ὅταν ἐν ἑκατέρῳ τῶν σχημάτων ἡγούμενοί τε καὶ ἑπόμενοι λόγοι ὦσιν.


ἄκρον καὶ μέσον λόγον εὐθεῖα τετμῆσθαι λέγεται, ὅταν ὡς ὅλη πρὸς τὸ μεῖζον τμῆμα, οὕτως τὸ μεῖζον πρὸς τὸ ἔλαττον.


ὕψος ἐστὶ παντὸς σχήματος ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν κάθετος ἀγομένη.


Λόγος ἐκ λόγων συγκεῖσθαι λέγεται, ὅταν αἱ τῶν λόγων πηλικότητες ἐφ᾽ ἑαυτὰς πολλαπλασιασθεῖσαι ποιῶσί τινα.



τὰ τρίγωνα καὶ τὰ παραλληλόγραμμα, τὰ ὑπὸ τὸ αὐτὸ ὕψος ὄντα πρὸς ἄλληλά ἐστιν ὡς αἱ βάσεις.

ἔστω τρίγωνα μὲν τὰ ΑΒΓ, ΑΓΔ, παραλληλόγραμμα
5δὲ τὰ ΕΓ, ΓΖ ὑπὸ τὸ αὐτὸ ὕψος τὸ ΑΓ: λέγω, ὅτι ἐστὶν ὡς ΒΓ βάσις πρὸς τὴν ΓΔ βάσιν, οὕτως τὸ ΑΒΓ τρίγωνον
10πρὸς τὸ ΑΓΔ τρίγωνον, καὶ τὸ ΕΓ παραλληλόγραμμον πρὸς τὸ ΓΖ παραλληλόγραμμον.

Ἐκβεβλήσθω γὰρ ΒΔ ἐφ᾽ ἑκάτερα τὰ μέρη ἐπὶ τὰ Θ, Λ σημεῖα, καὶ κείσθωσαν τῇ μὲν ΒΓ βάσει ἴσαι ὁσαιδηποτοῦν αἱ ΒΗ, ΗΘ, τῇ δὲ ΓΔ βάσει ἴσαι
15ὁσαιδηποτοῦν αἱ ΔΚ, ΚΛ, καὶ ἐπεζεύχθωσαν αἱ ΑΗ, ΑΘ, ΑΚ, ΑΛ.

καὶ ἐπεὶ ἴσαι εἰσὶν αἱ ΓΒ, ΒΗ, ΗΘ ἀλλήλαις, ἴσα ἐστὶ καὶ τὰ ΑΘΗ, ΑΗΒ, ΑΒΓ τρίγωνα ἀλλήλοις. ὁσαπλασίων ἄρα ἐστὶν ΘΓ βάσις τῆς ΒΓ βάσεως,
20τοσαυταπλάσιόν ἐστι καὶ τὸ ΑΘΓ τρίγωνον τοῦ ΑΒΓ τριγώνου. διὰ τὰ αὐτὰ δὴ ὁσαπλασίων ἐστὶν ΛΓ βάσις τῆς ΓΔ βάσεως, τοσαυταπλάσιόν ἐστι καὶ τὸ ΑΛΓ τρίγωνον τοῦ ΑΓΔ τριγώνου: καὶ εἰ ἴση ἐστὶν ΘΓ βάσις τῇ ΓΛ βάσει, ἴσον ἐστὶ καὶ τὸ ΑΘΓ τρίγωνον τῷ
25ΑΓΛ τριγώνῳ, καὶ εἰ ὑπερέχει ΘΓ βάσις τῆς ΓΛ βάσεως, ὑπερέχει καὶ τὸ ΑΘΓ τρίγωνον τοῦ ΑΓΛ τριγώνου, καὶ εἰ ἐλάσσων, ἔλασσον. τεσσάρων δὴ ὄντων μεγεθῶν δύο μὲν βάσεων τῶν ΒΓ, ΓΔ, δύο δὲ τριγώνων τῶν ΑΒΓ, ΑΓΔ εἴληπται ἰσάκις πολλαπλάσια τῆς μὲν
30ΒΓ βάσεως καὶ τοῦ ΑΒΓ τριγώνου τε ΘΓ βάσις καὶ τὸ ΑΘΓ τρίγωνον, τῆς δὲ ΓΔ βάσεως καὶ τοῦ ΑΔΓ τριγώνου ἄλλα, ἔτυχεν, ἰσάκις πολλαπλάσια τε ΛΓ βάσις καὶ τὸ ΑΛΓ τρίγωνον: καὶ δέδεικται, ὅτι, εἰ ὑπερέχει
30 ΘΓ βάσις τῆς ΓΛ βάσεως, ὑπερέχει καὶ τὸ ΑΘΓ
35τρίγωνον τοῦ ΑΛΓ τριγώνου, καὶ εἰ ἴση, ἴσον, καὶ εἰ ἐλάσσων, ἔλασσον: ἔστιν ἄρα ὡς ΒΓ βάσις πρὸς τὴν ΓΔ βάσιν, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΓΔ τρίγωνον.

καὶ ἐπεὶ τοῦ μὲν ΑΒΓ τριγώνου διπλάσιόν ἐστι τὸ
40ΕΓ παραλληλόγραμμον, τοῦ δὲ ΑΓΔ τριγώνου διπλάσιόν ἐστι τὸ ΖΓ παραλληλόγραμμον, τὰ δὲ μέρη τοῖς ὡσαύτως πολλαπλασίοις τὸν αὐτὸν ἔχει λόγον, ἔστιν ἄρα ὡς τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΓΔ τρίγωνον, οὕτως τὸ ΕΓ παραλληλόγραμμον πρὸς τὸ ΖΓ παραλληλόγραμμον.
45ἐπεὶ οὖν ἐδείχθη, ὡς μὲν ΒΓ βάσις πρὸς τὴν ΓΔ, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΓΔ τρίγωνον, ὡς δὲ τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΓΔ τρίγωνον, οὕτως τὸ ΕΓ παραλληλόγραμμον πρὸς τὸ ΓΖ παραλληλόγραμμον, καὶ ὡς ἄρα ΒΓ βάσις πρὸς τὴν ΓΔ βάσιν, οὕτως τὸ ΕΓ
50παραλληλόγραμμον πρὸς τὸ ΖΓ παραλληλόγραμμον.

τὰ ἄρα τρίγωνα καὶ τὰ παραλληλόγραμμα τὰ ὑπὸ τὸ αὐτὸ ὕψος ὄντα πρὸς ἄλληλά ἐστιν ὡς αἱ βάσεις: ὅπερ ἔδει δεῖξαι.


ἐὰν τριγώνου παρὰ μίαν τῶν πλευρῶν ἀχθῇ τις εὐθεῖα, ἀνάλογον τεμεῖ τὰς τοῦ τριγώνου πλευράς: καὶ ἐὰν αἱ τοῦ τριγώνου πλευραὶ ἀνάλογον τμηθῶσιν, ἐπὶ τὰς τομὰς ἐπιζευγνυμένη εὐθεῖα παρὰ
5τὴν λοιπὴν ἔσται τοῦ τριγώνου πλευράν.

τριγώνου γὰρ τοῦ ΑΒΓ παράλληλος μιᾷ τῶν πλευρῶν τῇ ΒΓ ἤχθω ΔΕ: λέγω, ὅτι
10ἐστὶν ὡς ΒΔ πρὸς τὴν ΔΑ, οὕτως ΓΕ πρὸς τὴν ΕΑ.

ἐπεζεύχθωσαν γὰρ αἱ ΒΕ, ΓΔ.

ἴσον ἄρα ἐστὶ ΒΔΕ τρίγωνον τῷ ΓΔΕ τριγώνῳ: ἐπὶ γὰρ τῆς αὐτῆς βάσεώς ἐστι τῆς ΔΕ καὶ ἐν ταῖς αὐταῖς
15παραλλήλοις ταῖς ΔΕ, ΒΓ: ἄλλο δέ τι τὸ ΑΔΕ τρίγωνον. τὰ δὲ ἴσα πρὸς τὸ αὐτὸ τὸν αὐτὸν ἔχει λόγον: ἔστιν ἄρα ὡς τὸ ΒΔΕ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον, οὕτως τὸ ΓΔΕ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον. ἀλλ᾽ ὡς μὲν τὸ ΒΔΕ τρίγωνον πρὸς τὸ ΑΔΕ, οὕτως ΒΔ πρὸς τὴν
20ΔΑ: ὑπὸ γὰρ τὸ αὐτὸ ὕψος ὄντα τὴν ἀπὸ τοῦ Ε ἐπὶ τὴν ΑΒ κάθετον ἀγομένην πρὸς ἄλληλά εἰσιν ὡς αἱ βάσεις. διὰ τὰ αὐτὰ δὴ ὡς τὸ ΓΔΕ τρίγωνον πρὸς τὸ ΑΔΕ, οὕτως ΓΕ πρὸς τὴν ΕΑ: καὶ ὡς ἄρα ΒΔ πρὸς τὴν ΔΑ, οὕτως ΓΕ πρὸς τὴν ΕΑ.
25

ἀλλὰ δὴ αἱ τοῦ ΑΒΓ τριγώνου πλευραὶ αἱ ΑΒ, ΑΓ ἀνάλογον τετμήσθωσαν, ὡς ΒΔ πρὸς τὴν ΔΑ, οὕτως ΓΕ πρὸς τὴν ΕΑ, καὶ ἐπεζεύχθω ΔΕ: λέγω, ὅτι παράλληλός ἐστιν ΔΕ τῇ ΒΓ.

τῶν γὰρ αὐτῶν κατασκευασθέντων, ἐπεί ἐστιν ὡς
30ΒΔ πρὸς τὴν ΔΑ, οὕτως ΓΕ πρὸς τὴν ΕΑ, ἀλλ᾽ ὡς μὲν ΒΔ πρὸς τὴν ΔΑ, οὕτως τὸ ΒΔΕ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον, ὡς δὲ ΓΕ πρὸς τὴν ΕΑ, οὕτως τὸ ΓΔΕ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον, καὶ ὡς ἄρα τὸ ΒΔΕ τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον, οὕτως τὸ ΓΔΕ
35τρίγωνον πρὸς τὸ ΑΔΕ τρίγωνον. ἑκάτερον ἄρα τῶν ΒΔΕ, ΓΔΕ τριγώνων πρὸς τὸ ΑΔΕ τὸν αὐτὸν ἔχει λόγον. ἴσον ἄρα ἐστὶ τὸ ΒΔΕ τρίγωνον τῷ ΓΔΕ τριγώνῳ: καί εἰσιν ἐπὶ τῆς αὐτῆς βάσεως τῆς ΔΕ. τὰ δὲ ἴσα τρίγωνα καὶ ἐπὶ τῆς αὐτῆς βάσεως ὄντα καὶ ἐν ταῖς αὐταῖς
40παραλλήλοις ἐστίν. παράλληλος ἄρα ἐστὶν ΔΕ τῇ ΒΓ.

ἐὰν ἄρα τριγώνου παρὰ μίαν τῶν πλευρῶν ἀχθῇ τις εὐθεῖα, ἀνάλογον τεμεῖ τὰς τοῦ τριγώνου πλευράς: καὶ ἐὰν αἱ τοῦ τριγώνου πλευραὶ ἀνάλογον τμηθῶσιν, ἐπὶ τὰς τομὰς ἐπιζευγνυμένη εὐθεῖα παρὰ τὴν λοιπὴν ἔσται
45τοῦ τριγώνου πλευράν: ὅπερ ἔδει δεῖξαι.


ἐὰν τριγώνου γωνία δίχα τμηθῇ, δὲ τέμνουσα τὴν γωνίαν εὐθεῖα τέμνῃ καὶ τὴν βάσιν, τὰ τῆς βάσεως τμήματα τὸν αὐτὸν ἕξει λόγον ταῖς λοιπαῖς τοῦ τριγώνου πλευραῖς: καὶ ἐὰν τὰ τῆς βάσεως τμήματα τὸν αὐτὸν ἔχῃ
5λόγον ταῖς λοιπαῖς τοῦ τριγώνου πλευραῖς, ἀπὸ τῆς κορυφῆς ἐπὶ τὴν τομὴν ἐπιζευγνυμένη εὐθεῖα δίχα τεμεῖ τὴν τοῦ τριγώνου γωνίαν.

ἔστω τρίγωνον τὸ ΑΒΓ, καὶ τετμήσθω ὑπὸ ΒΑΓ γωνία δίχα ὑπὸ τῆς ΑΔ εὐθείας: λέγω, ὅτι ἐστὶν ὡς ΒΔ
10πρὸς τὴν ΓΔ, οὕτως ΒΑ πρὸς τὴν ΑΓ.

ἤχθω γὰρ διὰ τοῦ Γ τῇ ΔΑ παράλληλος ΓΕ καὶ διαχθεῖσα ΒΑ συμπιπτέτω αὐτῇ κατὰ τὸ Ε.

καὶ ἐπεὶ εἰς παραλλήλους τὰς ΑΔ, ΕΓ εὐθεῖα ἐνέπεσεν
15 ΑΓ, ἄρα ὑπὸ ΑΓΕ γωνία ἴση ἐστὶ τῇ ὑπὸ ΓΑΔ. ἀλλ᾽ ὑπὸ ΓΑΔ τῇ ὑπὸ ΒΑΔ ὑπόκειται ἴση: καὶ ὑπὸ ΒΑΔ ἄρα τῇ ὑπὸ ΑΓΕ
20ἐστιν ἴση. πάλιν, ἐπεὶ εἰς παραλλήλους τὰς ΑΔ, ΕΓ εὐθεῖα ἐνέπεσεν ΒΑΕ, ἐκτὸς γωνία ὑπὸ ΒΑΔ ἴση ἐστὶ τῇ ἐντὸς τῇ ὑπὸ ΑΕΓ. ἐδείχθη δὲ καὶ ὑπὸ ΑΓΕ τῇ ὑπὸ ΒΑΔ ἴση: καὶ ὑπὸ ΑΓΕ ἄρα γωνία τῇ ὑπὸ ΑΕΓ ἐστιν ἴση: ὥστε καὶ
25πλευρὰ ΑΕ πλευρᾷ τῇ ΑΓ ἐστιν ἴση. καὶ ἐπεὶ τριγώνου τοῦ ΒΓΕ παρὰ μίαν τῶν πλευρῶν τὴν ΕΓ ἦκται ΑΔ, ἀνάλογον ἄρα ἐστὶν ὡς ΒΔ πρὸς τὴν ΔΓ, οὕτως ΒΑ πρὸς τὴν ΑΕ. ἴση δὲ ΑΕ τῇ ΑΓ: ὡς ἄρα ΒΔ πρὸς τὴν ΔΓ, οὕτως ΒΑ πρὸς τὴν ΑΓ.
30

ἀλλὰ δὴ ἔστω ὡς ΒΔ πρὸς τὴν ΔΓ, οὕτως ΒΑ πρὸς τὴν ΑΓ, καὶ ἐπεζεύχθω ΑΔ: λέγω, ὅτι δίχα τέτμηται ὑπὸ ΒΑΓ γωνία ὑπὸ τῆς ΑΔ εὐθείας.

τῶν γὰρ αὐτῶν κατασκευασθέντων, ἐπεί ἐστιν ὡς ΒΔ πρὸς τὴν ΔΓ, οὕτως ΒΑ πρὸς τὴν ΑΓ, ἀλλὰ καὶ
35ὡς ΒΔ πρὸς τὴν ΔΓ, οὕτως ἐστὶν ΒΑ πρὸς τὴν ΑΕ: τριγώνου γὰρ τοῦ ΒΓΕ παρὰ μίαν τὴν ΕΓ ἦκται ΑΔ: καὶ ὡς ἄρα ΒΑ πρὸς τὴν ΑΓ, οὕτως ΒΑ πρὸς τὴν ΑΕ. ἴση ἄρα ΑΓ τῇ ΑΕ: ὥστε καὶ γωνία ὑπὸ ΑΕΓ τῇ ὑπὸ ΑΓΕ ἐστιν ἴση. ἀλλ᾽ μὲν ὑπὸ ΑΕΓ τῇ ἐκτὸς τῇ
40ὑπὸ ΒΑΔ ἐστιν ἴση, δὲ ὑπὸ ΑΓΕ τῇ ἐναλλὰξ τῇ ὑπὸ ΓΑΔ ἐστιν ἴση: καὶ ὑπὸ ΒΑΔ ἄρα τῇ ὑπὸ ΓΑΔ ἐστιν ἴση. ἄρα ὑπὸ ΒΑΓ γωνία δίχα τέτμηται ὑπὸ τῆς ΑΔ εὐθείας.

ἐὰν ἄρα τριγώνου γωνία δίχα τμηθῇ, δὲ τέμνουσα
45τὴν γωνίαν εὐθεῖα τέμνῃ καὶ τὴν βάσιν, τὰ τῆς βάσεως τμήματα τὸν αὐτὸν ἕξει λόγον ταῖς λοιπαῖς τοῦ τριγώνου πλευραῖς: καὶ ἐὰν τὰ τῆς βάσεως τμήματα τὸν αὐτὸν ἔχῃ λόγον ταῖς λοιπαῖς τοῦ τριγώνου πλευραῖς, ἀπὸ τῆς κορυφῆς ἐπὶ τὴν τομὴν ἐπιζευγνυμένη εὐθεῖα δίχα τέμνει
50τὴν τοῦ τριγώνου γωνίαν: ὅπερ ἔδει δεῖξαι.


τῶν ἰσογωνίων τριγώνων ἀνάλογόν εἰσιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας καὶ ὁμόλογοι αἱ ὑπὸ τὰς ἴσας γωνίας ὑποτείνουσαι.

ἔστω ἰσογώνια τρίγωνα τὰ ΑΒΓ, ΔΓΕ ἴσην ἔχοντα
5τὴν μὲν ὑπὸ ΑΒΓ γωνίαν τῇ ὑπὸ ΔΓΕ, τὴν δὲ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ καὶ ἔτι τὴν ὑπὸ ΑΓΒ τῇ ὑπὸ ΓΕΔ: λέγω, ὅτι τῶν ΑΒΓ, ΔΓΕ τριγώνων ἀνάλογόν εἰσιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας καὶ ὁμόλογοι αἱ ὑπὸ τὰς ἴσας
10γωνίας ὑποτείνουσαι.

κείσθω γὰρ ἐπ᾽ εὐθείας ΒΓ τῇ ΓΕ. καὶ ἐπεὶ αἱ ὑπὸ ΑΒΓ, ΑΓΒ γωνίαι δύο ὀρθῶν ἐλάττονές εἰσιν, ἴση δὲ ὑπὸ
15ΑΓΒ τῇ ὑπὸ ΔΕΓ, αἱ ἄρα ὑπὸ ΑΒΓ, ΔΕΓ δύο ὀρθῶν ἐλάττονές εἰσιν: αἱ ΒΑ, ΕΔ ἄρα ἐκβαλλόμεναι συμπεσοῦνται. ἐκβεβλήσθωσαν καὶ συμπιπτέτωσαν κατὰ τὸ Ζ.

καὶ ἐπεὶ ἴση ἐστὶν ὑπὸ ΔΓΕ γωνία τῇ ὑπὸ ΑΒΓ,
20παράλληλός ἐστιν ΒΖ τῇ ΓΔ. πάλιν, ἐπεὶ ἴση ἐστὶν ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΕΓ, παράλληλός ἐστιν ΑΓ τῇ ΖΕ. παραλληλόγραμμον ἄρα ἐστὶ τὸ ΖΑΓΔ: ἴση ἄρα μὲν ΖΑ τῇ ΔΓ, δὲ ΑΓ τῇ ΖΔ. καὶ ἐπεὶ τριγώνου τοῦ ΖΒΕ παρὰ μίαν τὴν ΖΕ ἦκται ΑΓ, ἔστιν ἄρα ὡς
25ΒΑ πρὸς τὴν ΑΖ, οὕτως ΒΓ πρὸς τὴν ΓΕ. ἴση δὲ
25ΑΖ τῇ ΓΔ: ὡς ἄρα ΒΑ πρὸς τὴν ΓΔ, οὕτως ΒΓ πρὸς τὴν ΓΕ, καὶ ἐναλλὰξ ὡς ΑΒ πρὸς τὴν ΒΓ, οὕτως ΔΓ πρὸς τὴν ΓΕ. πάλιν, ἐπεὶ παράλληλός ἐστιν ΓΔ τῇ ΒΖ, ἔστιν ἄρα ὡς ΒΓ πρὸς τὴν ΓΕ, οὕτως ΖΔ
30πρὸς τὴν ΔΕ. ἴση δὲ ΖΔ τῇ ΑΓ: ὡς ἄρα ΒΓ πρὸς τὴν ΓΕ, οὕτως ΑΓ πρὸς τὴν ΔΕ, καὶ ἐναλλὰξ ὡς ΒΓ πρὸς τὴν ΓΑ, οὕτως ΓΕ πρὸς τὴν ΕΔ. ἐπεὶ οὖν ἐδείχθη ὡς μὲν ΑΒ πρὸς τὴν ΒΓ, οὕτως ΔΓ πρὸς τὴν ΓΕ, ὡς δὲ ΒΓ πρὸς τὴν ΓΑ, οὕτως ΓΕ πρὸς τὴν ΕΔ, δι᾽
35ἴσου ἄρα ὡς ΒΑ πρὸς τὴν ΑΓ, οὕτως ΓΔ πρὸς τὴν ΔΕ.

τῶν ἄρα ἰσογωνίων τριγώνων ἀνάλογόν εἰσιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας καὶ ὁμόλογοι αἱ ὑπὸ τὰς ἴσας γωνίας ὑποτείνουσαι: ὅπερ ἔδει δεῖξαι.


ἐὰν δύο τρίγωνα τὰς πλευρὰς ἀνάλογον ἔχῃ, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας, ὑφ᾽ ἃς αἱ ὁμόλογοι πλευραὶ ὑποτείνουσιν.
5

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ τὰς πλευρὰς ἀνάλογον ἔχοντα, ὡς μὲν τὴν ΑΒ πρὸς τὴν ΒΓ, οὕτως τὴν ΔΕ πρὸς τὴν ΕΖ, ὡς δὲ τὴν ΒΓ πρὸς τὴν
10ΓΑ, οὕτως τὴν ΕΖ πρὸς τὴν ΖΔ, καὶ ἔτι ὡς τὴν ΒΑ πρὸς τὴν ΑΓ, οὕτως τὴν ΕΔ πρὸς τὴν ΔΖ. λέγω, ὅτι ἰσογώνιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ καὶ ἴσας ἕξουσι τὰς γωνίας, ὑφ᾽ ἃς αἱ ὁμόλογοι πλευραὶ ὑποτείνουσιν, τὴν μὲν ὑπὸ ΑΒΓ τῇ ὑπὸ ΔΕΖ, τὴν δὲ ὑπὸ
15ΒΓΑ τῇ ὑπὸ ΕΖΔ καὶ ἔτι τὴν ὑπὸ ΒΑΓ τῇ ὑπὸ ΕΔΖ.

συνεστάτω γὰρ πρὸς τῇ ΕΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ σημείοις τοῖς Ε, Ζ τῇ μὲν ὑπὸ ΑΒΓ γωνίᾳ ἴση ὑπὸ ΖΕΗ, τῇ δὲ ὑπὸ ΑΓΒ ἴση ὑπὸ ΕΖΗ: λοιπὴ ἄρα πρὸς τῷ Α λοιπῇ τῇ πρὸς τῷ Η ἐστιν ἴση.
20

ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΕΗΖ τριγώνῳ. τῶν ἄρα ΑΒΓ, ΕΗΖ τριγώνων ἀνάλογόν εἰσιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας καὶ ὁμόλογοι αἱ ὑπὸ τὰς ἴσας γωνίας ὑποτείνουσαι: ἔστιν ἄρα ὡς ΑΒ πρὸς τὴν ΒΓ, οὕτως ΗΕ πρὸς τὴν ΕΖ. ἀλλ᾽ ὡς
25ΑΒ πρὸς τὴν ΒΓ, οὕτως ὑπόκειται ΔΕ πρὸς τὴν ΕΖ: ὡς ἄρα ΔΕ πρὸς τὴν ΕΖ, οὕτως ΗΕ πρὸς τὴν ΕΖ. ἑκατέρα ἄρα τῶν ΔΕ, ΗΕ πρὸς τὴν ΕΖ τὸν αὐτὸν ἔχει λόγον: ἴση ἄρα ἐστὶν ΔΕ τῇ ΗΕ. διὰ τὰ αὐτὰ δὴ καὶ ΔΖ τῇ ΗΖ ἐστιν ἴση. ἐπεὶ οὖν ἴση ἐστὶν ΔΕ τῇ ΕΗ,
30κοινὴ δὲ ΕΖ, δύο δὴ αἱ ΔΕ, ΕΖ δυσὶ ταῖς ΗΕ, ΕΖ ἴσαι εἰσίν: καὶ βάσις ΔΖ βάσει τῇ ΖΗ ἐστιν ἴση: γωνία ἄρα ὑπὸ ΔΕΖ γωνίᾳ τῇ ὑπὸ ΗΕΖ ἐστιν ἴση, καὶ τὸ ΔΕΖ τρίγωνον τῷ ΗΕΖ τριγώνῳ ἴσον, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι, ὑφ᾽ ἃς αἱ ἴσαι
35πλευραὶ ὑποτείνουσιν. ἴση ἄρα ἐστὶ καὶ μὲν ὑπὸ ΔΖΕ γωνία τῇ ὑπὸ ΗΖΕ, δὲ ὑπὸ ΕΔΖ τῇ ὑπὸ ΕΗΖ. καὶ ἐπεὶ μὲν ὑπὸ ΖΕΔ τῇ ὑπὸ ΗΕΖ ἐστιν ἴση, ἀλλ᾽ ὑπὸ ΗΕΖ τῇ ὑπὸ ΑΒΓ, καὶ ὑπὸ ΑΒΓ ἄρα γωνία τῇ ὑπὸ ΔΕΖ ἐστιν ἴση. διὰ τὰ αὐτὰ δὴ καὶ ὑπὸ ΑΓΒ τῇ ὑπὸ
40ΔΖΕ ἐστιν ἴση, καὶ ἔτι πρὸς τῷ Α τῇ πρὸς τῷ Δ: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ.

ἐὰν ἄρα δύο τρίγωνα τὰς πλευρὰς ἀνάλογον ἔχῃ, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας, ὑφ᾽ ἃς αἱ ὁμόλογοι πλευραὶ ὑποτείνουσιν: ὅπερ ἔδει δεῖξαι.


ἐὰν δύο τρίγωνα μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχῃ, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας, ὑφ᾽ ἃς αἱ ὁμόλογοι πλευραὶ
5ὑποτείνουσιν.

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ μίαν γωνίαν τὴν ὑπὸ ΒΑΓ μιᾷ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην ἔχοντα, περὶ δὲ τὰς ἴσας γωνίας τὰς
10πλευρὰς ἀνάλογον, ὡς τὴν ΒΑ πρὸς τὴν ΑΓ, οὕτως τὴν ΕΔ πρὸς τὴν ΔΖ: λέγω, ὅτι ἰσογώνιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ καὶ ἴσην ἕξει τὴν ὑπὸ ΑΒΓ γωνίαν τῇ ὑπὸ ΔΕΖ, τὴν δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ.
15

συνεστάτω γὰρ πρὸς τῇ ΔΖ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ σημείοις τοῖς Δ, Ζ ὁποτέρᾳ μὲν τῶν ὑπὸ ΒΑΓ, ΕΔΖ ἴση ὑπὸ ΖΔΗ, τῇ δὲ ὑπὸ ΑΓΒ ἴση ὑπὸ ΔΖΗ: λοιπὴ ἄρα πρὸς τῷ Β γωνία λοιπῇ τῇ πρὸς τῷ Η ἴση ἐστίν.
20

ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΗΖ τριγώνῳ. ἀνάλογον ἄρα ἐστὶν ὡς ΒΑ πρὸς τὴν ΑΓ, οὕτως ΗΔ πρὸς τὴν ΔΖ. ὑπόκειται δὲ καὶ ὡς ΒΑ πρὸς τὴν ΑΓ, οὕτως ΕΔ πρὸς τὴν ΔΖ: καὶ ὡς ἄρα ΕΔ πρὸς τὴν ΔΖ, οὕτως ΗΔ πρὸς τὴν ΔΖ. ἴση ἄρα
25ΕΔ τῇ ΔΗ: καὶ κοινὴ ΔΖ: δύο δὴ αἱ ΕΔ, ΔΖ δυσὶ ταῖς ΗΔ, ΔΖ ἴσαι εἰσίν: καὶ γωνία ὑπὸ ΕΔΖ γωνίᾳ τῇ ὑπὸ ΗΔΖ ἐστιν ἴση: βάσις ἄρα ΕΖ βάσει τῇ ΗΖ ἐστιν ἴση, καὶ τὸ ΔΕΖ τρίγωνον τῷ ΗΔΖ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι
30ἔσονται, ὑφ᾽ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν. ἴση ἄρα ἐστὶν μὲν ὑπὸ ΔΖΗ τῇ ὑπὸ ΔΖΕ, δὲ ὑπὸ ΔΗΖ τῇ ὑπὸ ΔΕΖ. ἀλλ᾽ ὑπὸ ΔΖΗ τῇ ὑπὸ ΑΓΒ ἐστιν ἴση: καὶ ὑπὸ ΑΓΒ ἄρα τῇ ὑπὸ ΔΖΕ ἐστιν ἴση. ὑπόκειται δὲ καὶ ὑπὸ ΒΑΓ τῇ ὑπὸ ΕΔΖ ἴση: καὶ λοιπὴ ἄρα
35πρὸς τῷ Β λοιπῇ τῇ πρὸς τῷ Ε ἴση ἐστίν: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ.

ἐὰν ἄρα δύο τρίγωνα μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχῃ, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας, ὑφ᾽ ἃς αἱ
40ὁμόλογοι πλευραὶ ὑποτείνουσιν: ὅπερ ἔδει δεῖξαι.


ἐὰν δύο τρίγωνα μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχῃ, περὶ δὲ ἄλλας γωνίας τὰς πλευρὰς ἀνάλογον, τῶν δὲ λοιπῶν ἑκατέραν ἅμα ἤτοι ἐλάσσονα μὴ ἐλάσσονα ὀρθῆς, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας, περὶ
5ἃς ἀνάλογόν εἰσιν αἱ πλευραί.

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα τὴν ὑπὸ ΒΑΓ τῇ ὑπὸ ΕΔΖ, περὶ δὲ ἄλλας γωνίας τὰς ὑπὸ ΑΒΓ, ΔΕΖ τὰς πλευρὰς ἀνάλογον, ὡς τὴν ΑΒ πρὸς τὴν ΒΓ, οὕτως τὴν ΔΕ πρὸς τὴν ΕΖ,
10τῶν δὲ λοιπῶν τῶν πρὸς τοῖς Γ, Ζ πρότερον ἑκατέραν ἅμα ἐλάσσονα ὀρθῆς: λέγω, ὅτι ἰσογώνιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ, καὶ ἴση ἔσται ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ, καὶ λοιπὴ
15δηλονότι πρὸς τῷ Γ λοιπῇ τῇ πρὸς τῷ Ζ ἴση.

εἰ γὰρ ἄνισός ἐστιν ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ, μία αὐτῶν μείζων ἐστίν. ἔστω μείζων ὑπὸ ΑΒΓ. καὶ συνεστάτω
20πρὸς τῇ ΑΒ εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Β τῇ ὑπὸ ΔΕΖ γωνίᾳ ἴση ὑπὸ ΑΒΗ.

καὶ ἐπεὶ ἴση ἐστὶν μὲν Α γωνία τῇ Δ, δὲ ὑπὸ ΑΒΗ τῇ ὑπὸ ΔΕΖ, λοιπὴ ἄρα ὑπὸ ΑΗΒ λοιπῇ τῇ ὑπὸ ΔΖΕ ἐστιν ἴση. ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΗ τρίγωνον
25τῷ ΔΕΖ τριγώνῳ. ἔστιν ἄρα ὡς ΑΒ πρὸς τὴν ΒΗ, οὕτως ΔΕ πρὸς τὴν ΕΖ. ὡς δὲ ΔΕ πρὸς τὴν ΕΖ, οὕτως ὑπόκειται ΑΒ πρὸς τὴν ΒΓ: ΑΒ ἄρα πρὸς ἑκατέραν τῶν ΒΓ, ΒΗ τὸν αὐτὸν ἔχει λόγον: ἴση ἄρα ΒΓ τῇ ΒΗ. ὥστε καὶ γωνία πρὸς τῷ Γ γωνίᾳ τῇ ὑπὸ
30ΒΗΓ ἐστιν ἴση. ἐλάττων δὲ ὀρθῆς ὑπόκειται πρὸς τῷ Γ: ἐλάττων ἄρα ἐστὶν ὀρθῆς καὶ ὑπὸ ΒΗΓ: ὥστε ἐφεξῆς αὐτῇ γωνία ὑπὸ ΑΗΒ μείζων ἐστὶν ὀρθῆς. καὶ ἐδείχθη ἴση οὖσα τῇ πρὸς τῷ Ζ: καὶ πρὸς τῷ Ζ ἄρα μείζων ἐστὶν ὀρθῆς. ὑπόκειται δὲ ἐλάσσων ὀρθῆς: ὅπερ
30ἐστὶν ἄτοπον. οὐκ ἄρα ἄνισός ἐστιν ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ: ἴση ἄρα. ἔστι δὲ καὶ πρὸς τῷ Α ἴση τῇ πρὸς τῷ Δ: καὶ λοιπὴ ἄρα πρὸς τῷ Γ λοιπῇ τῇ πρὸς τῷ Ζ ἴση ἐστίν. ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ.
40

ἀλλὰ δὴ πάλιν ὑποκείσθω ἑκατέρα τῶν πρὸς τοῖς Γ, Ζ μὴ ἐλάσσων ὀρθῆς: λέγω πάλιν, ὅτι καὶ οὕτως ἐστὶν ἰσογώνιον τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ.

τῶν γὰρ αὐτῶν κατασκευασθέντων ὁμοίως δείξομεν, ὅτι ἴση ἐστὶν ΒΓ
45τῇ ΒΗ: ὥστε καὶ γωνία πρὸς τῷ Γ τῇ ὑπὸ ΒΗΓ ἴση ἐστίν. οὐκ ἐλάττων δὲ ὀρθῆς πρὸς τῷ Γ: οὐκ ἐλάττων ἄρα ὀρθῆς οὐδὲ ὑπὸ ΒΗΓ. τριγώνου δὴ τοῦ ΒΗΓ αἱ δύο γωνίαι δύο ὀρθῶν
50οὔκ εἰσιν ἐλάττονες: ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα πάλιν ἄνισός ἐστιν ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ: ἴση ἄρα. ἔστι δὲ καὶ πρὸς τῷ Α τῇ πρὸς τῷ Δ ἴση: λοιπὴ ἄρα πρὸς τῷ Γ λοιπῇ τῇ πρὸς τῷ Ζ ἴση ἐστίν. ἰσογώνιον
55ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ.

ἐὰν ἄρα δύο τρίγωνα μίαν γωνίαν μιᾷ γωνίᾳ ἴσην ἔχῃ, περὶ δὲ ἄλλας γωνίας τὰς πλευρὰς ἀνάλογον, τῶν δὲ λοιπῶν ἑκατέραν ἅμα ἐλάττονα μὴ ἐλάττονα ὀρθῆς, ἰσογώνια ἔσται τὰ τρίγωνα καὶ ἴσας ἕξει τὰς γωνίας,
60περὶ ἃς ἀνάλογόν εἰσιν αἱ πλευραί: ὅπερ ἔδει δεῖξαι.


ἐὰν ἐν ὀρθογωνίῳ τριγώνῳ ἀπὸ τῆς ὀρθῆς γωνίας ἐπὶ τὴν βάσιν κάθετος ἀχθῇ, τὰ πρὸς τῇ καθέτῳ τρίγωνα ὅμοιά ἐστι τῷ τε ὅλῳ καὶ ἀλλήλοις.

ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν
5ὑπὸ ΒΑΓ γωνίαν, καὶ ἤχθω ἀπὸ τοῦ Α ἐπὶ τὴν ΒΓ κάθετος ΑΔ: λέγω, ὅτι ὅμοιόν ἐστιν ἑκάτερον τῶν ΑΒΔ, ΑΔΓ τριγώνων ὅλῳ τῷ ΑΒΓ καὶ ἔτι ἀλλήλοις.

ἐπεὶ γὰρ ἴση ἐστὶν ὑπὸ ΒΑΓ τῇ ὑπὸ ΑΔΒ: ὀρθὴ γὰρ ἑκατέρα:
10καὶ κοινὴ τῶν δύο τριγώνων τοῦ τε ΑΒΓ καὶ τοῦ ΑΒΔ πρὸς τῷ Β, λοιπὴ ἄρα ὑπὸ ΑΓΒ λοιπῇ τῇ ὑπὸ ΒΑΔ ἐστιν ἴση: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ
15τρίγωνον τῷ ΑΒΔ τριγώνῳ. ἔστιν ἄρα ὡς ΒΓ ὑποτείνουσα τὴν ὀρθὴν τοῦ ΑΒΓ τριγώνου πρὸς τὴν ΒΑ ὑποτείνουσαν τὴν ὀρθὴν τοῦ ΑΒΔ τριγώνου, οὕτως αὐτὴ ΑΒ ὑποτείνουσα τὴν πρὸς τῷ Γ γωνίαν τοῦ ΑΒΓ τριγώνου πρὸς τὴν ΒΔ ὑποτείνουσαν τὴν ἴσην τὴν ὑπὸ ΒΑΔ
20τοῦ ΑΒΔ τριγώνου, καὶ ἔτι ΑΓ πρὸς τὴν ΑΔ ὑποτείνουσαν τὴν πρὸς τῷ Β γωνίαν κοινὴν τῶν δύο τριγώνων. τὸ ΑΒΓ ἄρα τρίγωνον τῷ ΑΒΔ τριγώνῳ ἰσογώνιόν τέ ἐστι καὶ τὰς περὶ τὰς ἴσας γωνίας πλευρὰς ἀνάλογον ἔχει. ὅμοιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΑΒΔ τριγώνῳ.
25ὁμοίως δὴ δείξομεν, ὅτι καὶ τῷ ΑΔΓ τριγώνῳ ὅμοιόν ἐστι τὸ ΑΒΓ τρίγωνον: ἑκάτερον ἄρα τῶν ΑΒΔ, ΑΔΓ τριγώνων ὅμοιόν ἐστιν ὅλῳ τῷ ΑΒΓ.

λέγω δή, ὅτι καὶ ἀλλήλοις ἐστὶν ὅμοια τὰ ΑΒΔ, ΑΔΓ τρίγωνα.
30

ἐπεὶ γὰρ ὀρθὴ ὑπὸ ΒΔΑ ὀρθῇ τῇ ὑπὸ ΑΔΓ ἐστιν ἴση, ἀλλὰ μὴν καὶ ὑπὸ ΒΑΔ τῇ πρὸς τῷ Γ ἐδείχθη ἴση, καὶ λοιπὴ ἄρα πρὸς τῷ Β λοιπῇ τῇ ὑπὸ ΔΑΓ ἐστιν ἴση: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΔ τρίγωνον τῷ ΑΔΓ τριγώνῳ. ἔστιν ἄρα ὡς ΒΔ τοῦ ΑΒΔ τριγώνου ὑποτείνουσα
35τὴν ὑπὸ ΒΑΔ πρὸς τὴν ΔΑ τοῦ ΑΔΓ τριγώνου ὑποτείνουσαν τὴν πρὸς τῷ Γ ἴσην τῇ ὑπὸ ΒΑΔ, οὕτως αὐτὴ ΑΔ τοῦ ΑΒΔ τριγώνου ὑποτείνουσα τὴν πρὸς τῷ Β γωνίαν πρὸς τὴν ΔΓ ὑποτείνουσαν τὴν ὑπὸ ΔΑΓ τοῦ ΑΔΓ τριγώνου ἴσην τῇ πρὸς τῷ Β, καὶ ἔτι ΒΑ πρὸς τὴν
40ΑΓ ὑποτείνουσαι τὰς ὀρθάς: ὅμοιον ἄρα ἐστὶ τὸ ΑΒΔ τρίγωνον τῷ ΑΔΓ τριγώνῳ.

ἐὰν ἄρα ἐν ὀρθογωνίῳ τριγώνῳ ἀπὸ τῆς ὀρθῆς γωνίας ἐπὶ τὴν βάσιν κάθετος ἀχθῇ, τὰ πρὸς τῇ καθέτῳ τρίγωνα ὅμοιά ἐστι τῷ τε ὅλῳ καὶ ἀλλήλοις ὅπερ ἔδει δεῖξαι.
45

Πόρισμα

ἐκ δὴ τούτου φανερόν, ὅτι ἐὰν ἐν ὀρθογωνίῳ τριγώνῳ ἀπὸ τῆς ὀρθῆς ἐπὶ τὴν βάσιν κάθετος ἀχθῇ, ἀχθεῖσα τῶν τῆς βάσεως τμημάτων μέση ἀνάλογόν ἐστιν: ὅπερ ἔδει δεῖξαι καὶ ἔτι τῆς βάσεως καὶ ἑνὸς ὁποιουοῦν τῶν
50τμημάτων πρὸς τῷ τμήματι πλευρὰ μέση ἀνάλογόν ἐστιν.


τῆς δοθείσης εὐθείας τὸ προσταχθὲν μέρος ἀφελεῖν.

ἔστω δοθεῖσα εὐθεῖα ΑΒ: δεῖ δὴ τῆς ΑΒ τὸ προσταχθὲν μέρος ἀφελεῖν.

Ἐπιτετάχθω δὴ τὸ τρίτον. καὶ διήχθω τις ἀπὸ τοῦ
5α εὐθεῖα ΑΓ γωνίαν περιέχουσα μετὰ τῆς ΑΒ τυχοῦσαν: καὶ εἰλήφθω τυχὸν σημεῖον ἐπὶ τῆς ΑΓ τὸ Δ, καὶ κείσθωσαν τῇ ΑΔ ἴσαι αἱ ΔΕ, ΕΓ. καὶ ἐπεζεύχθω ΒΓ, καὶ διὰ τοῦ Δ
10παράλληλος αὐτῇ ἤχθω ΔΖ.

ἐπεὶ οὖν τριγώνου τοῦ ΑΒΓ παρὰ μίαν τῶν πλευρῶν τὴν ΒΓ ἦκται ΖΔ, ἀνάλογον ἄρα ἐστὶν ὡς ΓΔ πρὸς τὴν ΔΑ, οὕτως ΒΖ πρὸς τὴν ΖΑ. διπλῆ δὲ ΓΔ τῆς
15ΔΑ: διπλῆ ἄρα καὶ ΒΖ τῆς ΖΑ: τριπλῆ ἄρα ΒΑ τῆς ΑΖ.

τῆς ἄρα δοθείσης εὐθείας τῆς ΑΒ τὸ ἐπιταχθὲν τρίτον μέρος ἀφῄρηται τὸ ΑΖ: ὅπερ ἔδει ποιῆσαι.


τὴν δοθεῖσαν εὐθεῖαν ἄτμητον τῇ δοθείσῃ τετμημένῃ ὁμοίως τεμεῖν.

ἔστω μὲν δοθεῖσα εὐθεῖα ἄτμητος ΑΒ, δὲ τετμημένη ΑΓ κατὰ τὰ Δ, Ε σημεῖα, καὶ κείσθωσαν
5ὥστε γωνίαν τυχοῦσαν περιέχειν, καὶ ἐπεζεύχθω ΓΒ, καὶ διὰ τῶν Δ, Ε τῇ ΒΓ παράλληλοι ἤχθωσαν αἱ ΔΖ, ΕΗ, διὰ δὲ τοῦ Δ τῇ ΑΒ παράλληλος ἤχθω ΔΘΚ.
10

παραλληλόγραμμον ἄρα ἐστὶν ἑκάτερον τῶν ΖΘ, ΘΒ: ἴση ἄρα μὲν ΔΘ τῇ ΖΗ, δὲ ΘΚ τῇ ΗΒ. καὶ ἐπεὶ τριγώνου τοῦ ΔΚΓ παρὰ μίαν τῶν πλευρῶν τὴν ΚΓ
15εὐθεῖα ἦκται ΘΕ, ἀνάλογον ἄρα ἐστὶν ὡς ΓΕ πρὸς τὴν ΕΔ, οὕτως ΚΘ πρὸς τὴν ΘΔ. ἴση δὲ μὲν ΚΘ τῇ ΒΗ, δὲ ΘΔ τῇ ΗΖ. ἔστιν ἄρα ὡς ΓΕ πρὸς τὴν ΕΔ, οὕτως ΒΗ πρὸς τὴν ΗΖ. πάλιν, ἐπεὶ τριγώνου τοῦ ΑΗΕ παρὰ μίαν τῶν πλευρῶν τὴν ΗΕ ἦκται ΖΔ, ἀνάλογον
20ἄρα ἐστὶν ὡς ΕΔ πρὸς τὴν ΔΑ, οὕτως ΗΖ πρὸς τὴν ΖΑ. ἐδείχθη δὲ καὶ ὡς ΓΕ πρὸς τὴν ΕΔ, οὕτως ΒΗ πρὸς τὴν ΗΖ: ἔστιν ἄρα ὡς μὲν ΓΕ πρὸς τὴν ΕΔ, οὕτως ΒΗ πρὸς τὴν ΗΖ, ὡς δὲ ΕΔ πρὸς τὴν ΔΑ, οὕτως ΗΖ πρὸς τὴν ΖΑ.
25

ἄρα δοθεῖσα εὐθεῖα ἄτμητος ΑΒ τῇ δοθείσῃ εὐθείᾳ τετμημένῃ τῇ ΑΓ ὁμοίως τέτμηται: ὅπερ ἔδει ποιῆσαι.


δύο δοθεισῶν εὐθειῶν τρίτην ἀνάλογον προσευρεῖν.

ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι αἱ ΒΑ, ΑΓ καὶ κείσθωσαν γωνίαν περιέχουσαι τυχοῦσαν. δεῖ δὴ τῶν ΒΑ, ΑΓ τρίτην ἀνάλογον προσευρεῖν. ἐκβεβλήσθωσαν
5γὰρ ἐπὶ τὰ Δ, Ε σημεῖα, καὶ κείσθω τῇ ΑΓ ἴση ΒΔ, καὶ ἐπεζεύχθω ΒΓ, καὶ διὰ τοῦ Δ παράλληλος αὐτῇ ἤχθω ΔΕ.

ἐπεὶ οὖν τριγώνου τοῦ ΑΔΕ παρὰ μίαν
10τῶν πλευρῶν τὴν ΔΕ ἦκται ΒΓ, ἀνάλογόν ἐστιν ὡς ΑΒ πρὸς τὴν ΒΔ, οὕτως ΑΓ πρὸς τὴν ΓΕ. ἴση δὲ ΒΔ τῇ ΑΓ. ἔστιν ἄρα ὡς ΑΒ πρὸς τὴν ΑΓ, οὕτως ΑΓ πρὸς τὴν ΓΕ.
15

δύο ἄρα δοθεισῶν εὐθειῶν τῶν ΑΒ, ΑΓ τρίτη ἀνάλογον αὐταῖς προσεύρηται ΓΕ: ὅπερ ἔδει ποιῆσαι.


τριῶν δοθεισῶν εὐθειῶν τετάρτην ἀνάλογον προσευρεῖν.

ἔστωσαν αἱ δοθεῖσαι τρεῖς εὐθεῖαι αἱ Α, Β, Γ: δεῖ δὴ τῶν Α, Β, Γ τετάρτην ἀνάλογον προσευρεῖν.

Ἐκκείσθωσαν δύο εὐθεῖαι αἱ ΔΕ, ΔΖ γωνίαν περιέχουσαι
5τυχοῦσαν τὴν ὑπὸ ΕΔΖ: καὶ κείσθω τῇ μὲν Α ἴση ΔΗ, τῇ δὲ Β ἴση ΗΕ, καὶ ἔτι τῇ Γ ἴση ΔΘ: καὶ ἐπιζευχθείσης τῆς ΗΘ παράλληλος αὐτῇ ἤχθω διὰ τοῦ Ε ΕΖ.
5

ἐπεὶ οὖν τριγώνου τοῦ ΔΕΖ παρὰ μίαν τὴν ΕΖ ἦκται
10 ΗΘ, ἔστιν ἄρα ὡς ΔΗ πρὸς τὴν ΗΕ, οὕτως ΔΘ πρὸς τὴν ΘΖ. ἴση δὲ μὲν ΔΗ τῇ Α, δὲ ΗΕ τῇ Β, δὲ ΔΘ τῇ Γ: ἔστιν ἄρα ὡς Α πρὸς τὴν Β, οὕτως Γ πρὸς τὴν ΘΖ.

τριῶν ἄρα δοθεισῶν εὐθειῶν τῶν Α, Β, Γ τετάρτη
15ἀνάλογον προσεύρηται ΘΖ: ὅπερ ἔδει ποιῆσαι.


δύο δοθεισῶν εὐθειῶν μέσην ἀνάλογον προσευρεῖν.

ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι αἱ ΑΒ, ΒΓ: δεῖ δὴ τῶν ΑΒ, ΒΓ μέσην ἀνάλογον προσευρεῖν.

κείσθωσαν ἐπ᾽ εὐθείας, καὶ γεγράφθω ἐπὶ τῆς ΑΓ
5ἡμικύκλιον τὸ ΑΔΓ, καὶ ἤχθω ἀπὸ τοῦ Β σημείου τῇ ΑΓ εὐθείᾳ πρὸς ὀρθὰς ΒΔ, καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΔΓ.

ἐπεὶ ἐν ἡμικυκλίῳ γωνία ἐστὶν ὑπὸ ΑΔΓ, ὀρθή ἐστιν.
10καὶ ἐπεὶ ἐν ὀρθογωνίῳ τριγώνῳ τῷ ΑΔΓ ἀπὸ τῆς ὀρθῆς γωνίας ἐπὶ τὴν βάσιν κάθετος ἦκται ΔΒ, ΔΒ ἄρα τῶν τῆς βάσεως τμημάτων τῶν ΑΒ, ΒΓ μέση ἀνάλογόν ἐστιν.
15

δύο ἄρα δοθεισῶν εὐθειῶν τῶν ΑΒ, ΒΓ μέση ἀνάλογον προσεύρηται ΔΒ: ὅπερ ἔδει ποιῆσαι.


τῶν ἴσων τε καὶ ἰσογωνίων παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: καὶ ὧν ἰσογωνίων παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, ἴσα ἐστὶν ἐκεῖνα.
5

ἔστω ἴσα τε καὶ ἰσογώνια παραλληλόγραμμα τὰ ΑΒ, ΒΓ ἴσας ἔχοντα τὰς πρὸς τῷ Β γωνίας, καὶ κείσθωσαν ἐπ᾽ εὐθείας αἱ ΔΒ, ΒΕ: ἐπ᾽ εὐθείας ἄρα εἰσὶ καὶ αἱ ΖΒ, ΒΗ. λέγω, ὅτι τῶν ΑΒ, ΒΓ ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, τουτέστιν, ὅτι ἐστὶν ὡς
10 ΔΒ πρὸς τὴν ΒΕ, οὕτως ΗΒ πρὸς τὴν ΒΖ.

συμπεπληρώσθω γὰρ τὸ ΖΕ παραλληλόγραμμον. ἐπεὶ οὖν ἴσον ἐστὶ τὸ ΑΒ παραλληλόγραμμον τῷ
15ΒΓ παραλληλογράμμῳ, ἄλλο δέ τι τὸ ΖΕ, ἔστιν ἄρα ὡς τὸ ΑΒ πρὸς τὸ ΖΕ, οὕτως τὸ ΒΓ πρὸς τὸ ΖΕ. ἀλλ᾽ ὡς μὲν τὸ ΑΒ πρὸς τὸ ΖΕ, οὕτως ΔΒ πρὸς τὴν ΒΕ,
20ὡς δὲ τὸ ΒΓ πρὸς τὸ ΖΕ, οὕτως ΗΒ πρὸς τὴν ΒΖ: καὶ ὡς ἄρα ΔΒ πρὸς τὴν ΒΕ, οὕτως ΗΒ πρὸς τὴν ΒΖ. τῶν ἄρα ΑΒ, ΒΓ παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας.

ἀλλὰ δὴ ἔστω ὡς ΔΒ πρὸς τὴν ΒΕ, οὕτως ΗΒ
25πρὸς τὴν ΒΖ: λέγω, ὅτι ἴσον ἐστὶ τὸ ΑΒ παραλληλόγραμμον τῷ ΒΓ παραλληλογράμμῳ.

ἐπεὶ γάρ ἐστιν ὡς ΔΒ πρὸς τὴν ΒΕ, οὕτως ΗΒ πρὸς τὴν ΒΖ, ἀλλ᾽ ὡς μὲν ΔΒ πρὸς τὴν ΒΕ, οὕτως τὸ ΑΒ παραλληλόγραμμον πρὸς τὸ ΖΕ παραλληλόγραμμον,
30ὡς δὲ ΗΒ πρὸς τὴν ΒΖ, οὕτως τὸ ΒΓ παραλληλόγραμμον πρὸς τὸ ΖΕ παραλληλόγραμμον, καὶ ὡς ἄρα τὸ ΑΒ πρὸς τὸ ΖΕ, οὕτως τὸ ΒΓ πρὸς τὸ ΖΕ: ἴσον ἄρα ἐστὶ τὸ ΑΒ παραλληλόγραμμον τῷ ΒΓ παραλληλογράμμῳ.

τῶν ἄρα ἴσων τε καὶ ἰσογωνίων παραλληλογράμμων
35ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: καὶ ὧν ἰσογωνίων παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, ἴσα ἐστὶν ἐκεῖνα: ὅπερ ἔδει δεῖξαι.


τῶν ἴσων καὶ μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: καὶ ὧν μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, ἴσα ἐστὶν
5ἐκεῖνα.

ἔστω ἴσα τρίγωνα τὰ ΑΒΓ, ΑΔΕ μίαν μιᾷ ἴσην ἔχοντα γωνίαν τὴν ὑπὸ ΒΑΓ τῇ ὑπὸ ΔΑΕ: λέγω, ὅτι τῶν ΑΒΓ, ΑΔΕ τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, τουτέστιν, ὅτι ἐστὶν ὡς ΓΑ
10πρὸς τὴν ΑΔ, οὕτως ΕΑ πρὸς τὴν ΑΒ.

κείσθω γὰρ ὥστε ἐπ᾽ εὐθείας εἶναι τὴν ΓΑ τῇ ΑΔ: ἐπ᾽ εὐθείας ἄρα ἐστὶ καὶ ΕΑ τῇ ΑΒ. καὶ ἐπεζεύχθω ΒΔ.

ἐπεὶ οὖν ἴσον ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΑΔΕ
15τριγώνῳ, ἄλλο δέ τι τὸ ΒΑΔ, ἔστιν ἄρα ὡς τὸ ΓΑΒ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον, οὕτως τὸ ΕΑΔ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον. ἀλλ᾽ ὡς μὲν τὸ ΓΑΒ πρὸς τὸ ΒΑΔ, οὕτως ΓΑ πρὸς τὴν ΑΔ, ὡς δὲ τὸ ΕΑΔ πρὸς τὸ ΒΑΔ, οὕτως ΕΑ πρὸς τὴν ΑΒ. καὶ ὡς ἄρα
20ΓΑ πρὸς τὴν ΑΔ, οὕτως ΕΑ πρὸς τὴν ΑΒ. τῶν ΑΒΓ, ΑΔΕ ἄρα τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας.

ἀλλὰ δὴ ἀντιπεπονθέτωσαν αἱ πλευραὶ τῶν ΑΒΓ, ΑΔΕ τριγώνων, καὶ ἔστω ὡς ΓΑ πρὸς τὴν ΑΔ, οὕτως
25 ΕΑ πρὸς τὴν ΑΒ: λέγω, ὅτι ἴσον ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΑΔΕ τριγώνῳ.

Ἐπιζευχθείσης γὰρ πάλιν τῆς ΒΔ, ἐπεί ἐστιν ὡς ΓΑ πρὸς τὴν ΑΔ, οὕτως ΕΑ πρὸς τὴν ΑΒ, ἀλλ᾽ ὡς μὲν ΓΑ πρὸς τὴν ΑΔ, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς
30τὸ ΒΑΔ τρίγωνον, ὡς δὲ ΕΑ πρὸς τὴν ΑΒ, οὕτως τὸ ΕΑΔ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον, ὡς ἄρα τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον, οὕτως τὸ ΕΑΔ τρίγωνον πρὸς τὸ ΒΑΔ τρίγωνον. ἑκάτερον ἄρα τῶν ΑΒΓ, ΕΑΔ πρὸς τὸ ΒΑΔ τὸν αὐτὸν ἔχει λόγον. ἴσον
35ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΕΑΔ τριγώνῳ.

τῶν ἄρα ἴσων καὶ μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: καὶ ὧν μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας,
40ἐκεῖνα ἴσα ἐστίν: ὅπερ ἔδει δεῖξαι.


ἐὰν τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν μέσων περιεχομένῳ ὀρθογωνίῳ: κἂν τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον τῷ ὑπὸ τῶν μέσων
5περιεχομένῳ ὀρθογωνίῳ, αἱ τέσσαρες εὐθεῖαι ἀνάλογον ἔσονται.

ἔστωσαν τέσσαρες εὐθεῖαι ἀνάλογον αἱ ΑΒ, ΓΔ, Ε, Ζ, ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως Ε πρὸς τὴν Ζ: λέγω, ὅτι τὸ ὑπὸ τῶν ΑΒ, Ζ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ
10τῷ ὑπὸ τῶν ΓΔ, Ε περιεχομένῳ ὀρθογωνίῳ.

ἤχθωσαν γὰρ ἀπὸ τῶν Α, Γ σημείων ταῖς ΑΒ, ΓΔ εὐθείαις πρὸς ὀρθὰς αἱ ΑΗ, ΓΘ, καὶ κείσθω τῇ μὲν Ζ ἴση ΑΓ, τῇ δὲ Ε ἴση ΓΘ. καὶ συμπεπληρώσθω τὰ ΒΗ, ΔΘ παραλληλόγραμμα.
15

καὶ ἐπεί ἐστιν ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως Ε πρὸς τὴν Ζ, ἴση δὲ μὲν Ε τῇ ΓΘ, δὲ Ζ τῇ ΑΗ, ἔστιν ἄρα ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΓΘ πρὸς τὴν ΑΗ. τῶν ΒΗ, ΔΘ ἄρα παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας. ὧν δὲ ἰσογωνίων
20παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, ἴσα ἐστὶν ἐκεῖνα: ἴσον ἄρα ἐστὶ τὸ ΒΗ παραλληλόγραμμον τῷ ΔΘ παραλληλογράμμῳ. καί ἐστι τὸ μὲν ΒΗ τὸ ὑπὸ τῶν ΑΒ, Ζ: ἴση γὰρ ΑΗ τῇ Ζ: τὸ δὲ ΔΘ τὸ ὑπὸ τῶν ΓΔ, Ε: ἴση γὰρ Ε τῇ ΓΘ: τὸ ἄρα
25ὑπὸ τῶν ΑΒ, Ζ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν ΓΔ, Ε περιεχομένῳ ὀρθογωνίῳ.

ἀλλὰ δὴ τὸ ὑπὸ τῶν ΑΒ, Ζ περιεχόμενον ὀρθογώνιον ἴσον ἔστω τῷ ὑπὸ τῶν ΓΔ, Ε περιεχομένῳ ὀρθογωνίῳ: λέγω, ὅτι αἱ τέσσαρες εὐθεῖαι ἀνάλογον ἔσονται, ὡς
30ΑΒ πρὸς τὴν ΓΔ, οὕτως Ε πρὸς τὴν Ζ.

τῶν γὰρ αὐτῶν κατασκευασθέντων, ἐπεὶ τὸ ὑπὸ τῶν ΑΒ, Ζ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΓΔ, Ε, καί ἐστι τὸ μὲν ὑπὸ τῶν ΑΒ, Ζ τὸ ΒΗ: ἴση γάρ ἐστιν ΑΗ τῇ Ζ: τὸ δὲ ὑπὸ τῶν ΓΔ, Ε τὸ ΔΘ: ἴση γὰρ ΓΘ τῇ Ε: τὸ ἄρα ΒΗ ἴσον
35ἐστὶ τῷ ΔΘ. καί ἐστιν ἰσογώνια. τῶν δὲ ἴσων καὶ ἰσογωνίων παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας. ἔστιν ἄρα ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΓΘ πρὸς τὴν ΑΗ. ἴση δὲ μὲν ΓΘ τῇ Ε, δὲ
35ΑΗ τῇ Ζ: ἔστιν ἄρα ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως Ε
40πρὸς τὴν Ζ.

ἐὰν ἄρα τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν μέσων περιεχομένῳ ὀρθογωνίῳ: κἂν τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον τῷ ὑπὸ τῶν μέσων
45περιεχομένῳ ὀρθογωνίῳ, αἱ τέσσαρες εὐθεῖαι ἀνάλογον ἔσονται: ὅπερ ἔδει δεῖξαι.


ἐὰν τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης τετραγώνῳ: κἂν τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον τῷ ἀπὸ τῆς μέσης τετραγώνῳ, αἱ τρεῖς
5εὐθεῖαι ἀνάλογον ἔσονται.

ἔστωσαν τρεῖς εὐθεῖαι ἀνάλογον αἱ Α, Β, Γ, ὡς Α πρὸς τὴν Β, οὕτως Β πρὸς τὴν Γ: λέγω, ὅτι τὸ ὑπὸ τῶν Α, Γ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τῆς
10β τετραγώνῳ.

κείσθω τῇ Β ἴση Δ.

καὶ ἐπεί ἐστιν ὡς Α πρὸς τὴν Β, οὕτως Β πρὸς τὴν Γ, ἴση δὲ Β τῇ Δ, ἔστιν ἄρα ὡς Α πρὸς τὴν Β, Δ πρὸς τὴν Γ. ἐὰν δὲ τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, τὸ ὑπὸ
15τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν μέσων περιεχομένῳ ὀρθογωνίῳ. τὸ ἄρα ὑπὸ τῶν Α, Γ ἴσον ἐστὶ τῷ ὑπὸ τῶν Β, Δ. ἀλλὰ τὸ ὑπὸ τῶν Β, Δ τὸ ἀπὸ τῆς Β ἐστιν: ἴση γὰρ Β τῇ Δ: τὸ ἄρα ὑπὸ τῶν Α, Γ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τῆς Β τετραγώνῳ.
20

ἀλλὰ δὴ τὸ ὑπὸ τῶν Α, Γ ἴσον ἔστω τῷ ἀπὸ τῆς Β: λέγω, ὅτι ἐστὶν ὡς Α πρὸς τὴν Β, οὕτως Β πρὸς τὴν Γ.

τῶν γὰρ αὐτῶν κατασκευασθέντων, ἐπεὶ τὸ ὑπὸ τῶν Α, Γ ἴσον ἐστὶ τῷ ἀπὸ τῆς Β, ἀλλὰ τὸ ἀπὸ τῆς Β τὸ ὑπὸ
25τῶν Β, Δ ἐστιν: ἴση γὰρ Β τῇ Δ: τὸ ἄρα ὑπὸ τῶν Α, Γ ἴσον ἐστὶ τῷ ὑπὸ τῶν Β, Δ. ἐὰν δὲ τὸ ὑπὸ τῶν ἄκρων ἴσον τῷ ὑπὸ τῶν μέσων, αἱ τέσσαρες εὐθεῖαι ἀνάλογόν εἰσιν. ἔστιν ἄρα ὡς Α πρὸς τὴν Β, οὕτως Δ πρὸς τὴν Γ. ἴση δὲ Β τῇ Δ: ὡς ἄρα Α πρὸς τὴν Β,
30οὕτως Β πρὸς τὴν Γ.

ἐὰν ἄρα τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τῆς μέσης τετραγώνῳ: κἂν τὸ ὑπὸ τῶν ἄκρων περιεχόμενον ὀρθογώνιον ἴσον τῷ ἀπὸ τῆς μέσης τετραγώνῳ, αἱ τρεῖς εὐθεῖαι
35ἀνάλογον ἔσονται: ὅπερ ἔδει δεῖξαι.


ἀπὸ τῆς δοθείσης εὐθείας τῷ δοθέντι εὐθυγράμμῳ ὅμοιόν τε καὶ ὁμοίως κείμενον εὐθύγραμμον ἀναγράψαι.

ἔστω μὲν δοθεῖσα εὐθεῖα ΑΒ, τὸ δὲ δοθὲν εὐθύγραμμον τὸ ΓΕ: δεῖ δὴ ἀπὸ τῆς ΑΒ εὐθείας τῷ ΓΕ
5εὐθυγράμμῳ ὅμοιόν τε καὶ ὁμοίως κείμενον εὐθύγραμμον ἀναγράψαι.

ἐπεζεύχθω ΔΖ, καὶ συνεστάτω πρὸς τῇ ΑΒ εὐθείᾳ
10καὶ τοῖς πρὸς αὐτῇ σημείοις τοῖς Α, Β τῇ μὲν πρὸς τῷ Γ γωνίᾳ ἴση ὑπὸ ΗΑΒ, τῇ δὲ ὑπὸ ΓΔΖ ἴση ὑπὸ ΑΒΗ. λοιπὴ ἄρα ὑπὸ ΓΖΔ τῇ ὑπὸ ΑΗΒ ἐστιν ἴση: ἰσογώνιον ἄρα ἐστὶ τὸ ΖΓΔ τρίγωνον τῷ ΗΑΒ τριγώνῳ.
15ἀνάλογον ἄρα ἐστὶν ὡς ΖΔ πρὸς τὴν ΗΒ, οὕτως ΖΓ πρὸς τὴν ΗΑ, καὶ ΓΔ πρὸς τὴν ΑΒ. πάλιν συνεστάτω πρὸς τῇ ΒΗ εὐθείᾳ καὶ τοῖς πρὸς αὐτῇ σημείοις τοῖς Β, Η τῇ μὲν ὑπὸ ΔΖΕ γωνίᾳ ἴση ὑπὸ ΒΗΘ, τῇ δὲ ὑπὸ ΖΔΕ ἴση ὑπὸ ΗΒΘ. λοιπὴ ἄρα πρὸς τῷ Ε
20λοιπῇ τῇ πρὸς τῷ Θ ἐστιν ἴση: ἰσογώνιον ἄρα ἐστὶ τὸ ΖΔΕ τρίγωνον τῷ ΗΘΒ τριγώνῳ: ἀνάλογον ἄρα ἐστὶν ὡς ΖΔ πρὸς τὴν ΗΒ, οὕτως ΖΕ πρὸς τὴν ΗΘ καὶ ΕΔ πρὸς τὴν ΘΒ. ἐδείχθη δὲ καὶ ὡς ΖΔ πρὸς τὴν ΗΒ, οὕτως ΖΓ πρὸς τὴν ΗΑ καὶ ΓΔ πρὸς τὴν ΑΒ:
25καὶ ὡς ἄρα ΖΓ πρὸς τὴν ΑΗ, οὕτως τε ΓΔ πρὸς τὴν ΑΒ καὶ ΖΕ πρὸς τὴν ΗΘ καὶ ἔτι ΕΔ πρὸς τὴν ΘΒ. καὶ ἐπεὶ ἴση ἐστὶν μὲν ὑπὸ ΓΖΔ γωνία τῇ ὑπὸ ΑΗΒ, δὲ ὑπὸ ΔΖΕ τῇ ὑπὸ ΒΗΘ, ὅλη ἄρα ὑπὸ ΓΖΕ ὅλῃ τῇ ὑπὸ ΑΗΘ ἐστιν ἴση. διὰ τὰ αὐτὰ δὴ καὶ
30 ὑπὸ ΓΔΕ τῇ ὑπὸ ΑΒΘ ἐστιν ἴση. ἔστι δὲ καὶ μὲν πρὸς τῷ Γ τῇ πρὸς τῷ Α ἴση, δὲ πρὸς τῷ Ε τῇ πρὸς τῷ Θ. ἰσογώνιον ἄρα ἐστὶ τὸ ΑΘ τῷ ΓΕ: καὶ τὰς περὶ τὰς ἴσας γωνίας αὐτῶν πλευρὰς ἀνάλογον ἔχει: ὅμοιον ἄρα ἐστὶ τὸ ΑΘ εὐθύγραμμον τῷ ΓΕ εὐθυγράμμῳ.
35

ἀπὸ τῆς δοθείσης ἄρα εὐθείας τῆς ΑΒ τῷ δοθέντι εὐθυγράμμῳ τῷ ΓΕ ὅμοιόν τε καὶ ὁμοίως κείμενον εὐθύγραμμον ἀναγέγραπται τὸ ΑΘ: ὅπερ ἔδει ποιῆσαι.


τὰ ὅμοια τρίγωνα πρὸς ἄλληλα ἐν διπλασίονι λόγῳ ἐστὶ τῶν ὁμολόγων πλευρῶν.

ἔστω ὅμοια τρίγωνα τὰ ΑΒΓ, ΔΕΖ ἴσην ἔχοντα τὴν πρὸς τῷ Β γωνίαν τῇ πρὸς τῷ Ε, ὡς δὲ τὴν ΑΒ πρὸς τὴν
5ΒΓ, οὕτως τὴν ΔΕ πρὸς τὴν ΕΖ, ὥστε ὁμόλογον εἶναι τὴν ΒΓ τῇ ΕΖ: λέγω, ὅτι τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον διπλασίονα
10λόγον ἔχει ἤπερ ΒΓ πρὸς τὴν ΕΖ.

εἰλήφθω γὰρ τῶν ΒΓ, ΕΖ τρίτη ἀνάλογον ΒΗ, ὥστε εἶναι ὡς τὴν ΒΓ πρὸς τὴν ΕΖ, οὕτως τὴν ΕΖ πρὸς τὴν ΒΗ: καὶ ἐπεζεύχθω ΑΗ.
15

ἐπεὶ οὖν ἐστιν ὡς ΑΒ πρὸς τὴν ΒΓ, οὕτως ΔΕ πρὸς τὴν ΕΖ, ἐναλλὰξ ἄρα ἐστὶν ὡς ΑΒ πρὸς τὴν ΔΕ, οὕτως ΒΓ πρὸς τὴν ΕΖ. ἀλλ᾽ ὡς ΒΓ πρὸς ΕΖ, οὕτως ἐστὶν ΕΖ πρὸς ΒΗ. καὶ ὡς ἄρα ΑΒ πρὸς ΔΕ, οὕτως ΕΖ πρὸς ΒΗ: τῶν ΑΒΗ, ΔΕΖ ἄρα
20τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας. ὧν δὲ μίαν μιᾷ ἴσην ἐχόντων γωνίαν τριγώνων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας, ἴσα ἐστὶν ἐκεῖνα. ἴσον ἄρα ἐστὶ τὸ ΑΒΗ τρίγωνον τῷ ΔΕΖ τριγώνῳ. καὶ ἐπεί ἐστιν ὡς ΒΓ πρὸς τὴν ΕΖ, οὕτως
25 ΕΖ πρὸς τὴν ΒΗ, ἐὰν δὲ τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, πρώτη πρὸς τὴν τρίτην διπλασίονα λόγον ἔχει ἤπερ πρὸς τὴν δευτέραν, ΒΓ ἄρα πρὸς τὴν ΒΗ διπλασίονα λόγον ἔχει ἤπερ ΓΒ πρὸς τὴν ΕΖ. ὡς δὲ ΓΒ πρὸς τὴν ΒΗ, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΒΗ τρίγωνον:
30καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΑΒΗ διπλασίονα λόγον ἔχει ἤπερ ΒΓ πρὸς τὴν ΕΖ. ἴσον δὲ τὸ ΑΒΗ τρίγωνον τῷ ΔΕΖ τριγώνῳ: καὶ τὸ ΑΒΓ ἄρα τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ ΒΓ πρὸς τὴν ΕΖ.
35

τὰ ἄρα ὅμοια τρίγωνα πρὸς ἄλληλα ἐν διπλασίονι λόγῳ ἐστὶ τῶν ὁμολόγων πλευρῶν: ὅπερ ἔδει δεῖξαι.

Πόρισμα

ἐκ δὴ τούτου φανερόν, ὅτι, ἐὰν τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, ἔστιν ὡς πρώτη πρὸς τὴν τρίτην, οὕτως τὸ ἀπὸ
40τῆς πρώτης εἶδος πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον ἐπείπερ ἐδείχθη, ὡς ΓΒ πρὸς ΒΗ, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΑΒΗ τρίγωνον, τουτέστι τὸ ΔΕΖ: ὅπερ ἔδει δεῖξαι.


τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν.
5

ἔστω ὅμοια πολύγωνα τὰ ΑΒΓΔΕ, ΖΗΘΚΛ, ὁμόλογος δὲ ἔστω ΑΒ τῇ ΖΗ: λέγω, ὅτι τὰ ΑΒΓΔΕ, ΖΗΘΚΛ πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον
10διπλασίονα λόγον ἔχει ἤπερ ΑΒ πρὸς τὴν ΖΗ.

ἐπεζεύχθωσαν αἱ ΒΕ, ΕΓ, ΗΛ, ΛΘ.

καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓΔΕ πολύγωνον τῷ
15ΖΗΘΚΛ πολυγώνῳ, ἴση ἐστὶν ὑπὸ ΒΑΕ γωνία τῇ ὑπὸ ΗΖΛ. καί ἐστιν ὡς ΒΑ πρὸς ΑΕ, οὕτως ΗΖ
15πρὸς ΖΛ. ἐπεὶ οὖν δύο τρίγωνά ἐστι τὰ ΑΒΕ, ΖΗΛ μίαν
20γωνίαν μιᾷ γωνίᾳ ἴσην ἔχοντα, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΕ τρίγωνον τῷ ΖΗΛ τριγώνῳ: ὥστε καὶ ὅμοιον: ἴση ἄρα ἐστὶν ὑπὸ ΑΒΕ γωνία τῇ ὑπὸ ΖΗΛ. ἔστι δὲ καὶ ὅλη ὑπὸ ΑΒΓ ὅλῃ τῇ ὑπὸ ΖΗΘ ἴση διὰ τὴν ὁμοιότητα τῶν
25πολυγώνων: λοιπὴ ἄρα ὑπὸ ΕΒΓ γωνία τῇ ὑπὸ ΛΗΘ ἐστιν ἴση. καὶ ἐπεὶ διὰ τὴν ὁμοιότητα τῶν ΑΒΕ, ΖΗΛ τριγώνων ἐστὶν ὡς ΕΒ πρὸς ΒΑ, οὕτως ΛΗ πρὸς ΗΖ, ἀλλὰ μὴν καὶ διὰ τὴν ὁμοιότητα τῶν πολυγώνων ἐστὶν ὡς ΑΒ πρὸς ΒΓ, οὕτως ΖΗ πρὸς ΗΘ, δι᾽
30ἴσου ἄρα ἐστὶν ὡς ΕΒ πρὸς ΒΓ, οὕτως ΛΗ πρὸς ΗΘ, καὶ περὶ τὰς ἴσας γωνίας τὰς ὑπὸ ΕΒΓ, ΛΗΘ αἱ πλευραὶ ἀνάλογόν εἰσιν: ἰσογώνιον ἄρα ἐστὶ τὸ ΕΒΓ τρίγωνον τῷ ΛΗΘ τριγώνῳ: ὥστε καὶ ὅμοιόν ἐστι τὸ ΕΒΓ τρίγωνον τῷ ΛΗΘ τριγώνῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ
35ΕΓΔ τρίγωνον ὅμοιόν ἐστι τῷ ΛΘΚ τριγώνῳ. τὰ ἄρα ὅμοια πολύγωνα τὰ ΑΒΓΔΕ, ΖΗΘΚΛ εἴς τε ὅμοια τρίγωνα διῄρηται καὶ εἰς ἴσα τὸ πλῆθος.

λέγω, ὅτι καὶ ὁμόλογα τοῖς ὅλοις, τουτέστιν ὥστε ἀνάλογον εἶναι τὰ τρίγωνα, καὶ ἡγούμενα μὲν εἶναι τὰ
40ΑΒΕ, ΕΒΓ, ΕΓΔ, ἑπόμενα δὲ αὐτῶν τὰ ΖΗΛ, ΛΗΘ, ΛΘΚ, καὶ ὅτι τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν, τουτέστιν ΑΒ πρὸς τὴν ΖΗ.
45

ἐπεζεύχθωσαν γὰρ αἱ ΑΓ, ΖΘ. καὶ ἐπεὶ διὰ τὴν ὁμοιότητα τῶν πολυγώνων ἴση ἐστὶν ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΖΗΘ, καί ἐστιν ὡς ΑΒ πρὸς ΒΓ, οὕτως ΖΗ πρὸς ΗΘ, ἰσογώνιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΖΗΘ τριγώνῳ: ἴση ἄρα ἐστὶν μὲν ὑπὸ ΒΑΓ γωνία τῇ ὑπὸ
50ΗΖΘ, δὲ ὑπὸ ΒΓΑ τῇ ὑπὸ ΗΘΖ. καὶ ἐπεὶ ἴση ἐστὶν ὑπὸ ΒΑΜ γωνία τῇ ὑπὸ ΗΖΝ, ἔστι δὲ καὶ ὑπὸ ΑΒΜ τῇ ὑπὸ ΖΗΝ ἴση, καὶ λοιπὴ ἄρα ὑπὸ ΑΜΒ λοιπῇ τῇ ὑπὸ ΖΝΗ ἴση ἐστίν: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΜ τρίγωνον τῷ ΖΗΝ τριγώνῳ. ὁμοίως δὴ δείξομεν, ὅτι καὶ
55τὸ ΒΜΓ τρίγωνον ἰσογώνιόν ἐστι τῷ ΗΝΘ τριγώνῳ. ἀνάλογον ἄρα ἐστίν, ὡς μὲν ΑΜ πρὸς ΜΒ, οὕτως ΖΝ πρὸς ΝΗ, ὡς δὲ ΒΜ πρὸς ΜΓ, οὕτως ΗΝ πρὸς ΝΘ: ὥστε καὶ δι᾽ ἴσου, ὡς ΑΜ πρὸς ΜΓ, οὕτως ΖΝ πρὸς ΝΘ. ἀλλ᾽ ὡς ΑΜ πρὸς ΜΓ, οὕτως τὸ
60ΑΒΜ τρίγωνον πρὸς τὸ ΜΒΓ, καὶ τὸ ΑΜΕ πρὸς τὸ ΕΜΓ: πρὸς ἄλληλα γάρ εἰσιν ὡς αἱ βάσεις. καὶ ὡς ἄρα ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα: ὡς ἄρα τὸ ΑΜΒ τρίγωνον πρὸς τὸ ΒΜΓ, οὕτως τὸ ΑΒΕ πρὸς τὸ ΓΒΕ.
65ἀλλ᾽ ὡς τὸ ΑΜΒ πρὸς τὸ ΒΜΓ, οὕτως ΑΜ πρὸς ΜΓ: καὶ ὡς ἄρα ΑΜ πρὸς ΜΓ, οὕτως τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΕΒΓ τρίγωνον. διὰ τὰ αὐτὰ δὴ καὶ ὡς ΖΝ πρὸς ΝΘ, οὕτως τὸ ΖΗΛ τρίγωνον πρὸς τὸ ΗΛΘ τρίγωνον. καί ἐστιν ὡς ΑΜ πρὸς ΜΓ, οὕτως ΖΝ
70πρὸς ΝΘ: καὶ ὡς ἄρα τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΒΕΓ τρίγωνον, οὕτως τὸ ΖΗΛ τρίγωνον πρὸς τὸ ΗΛΘ τρίγωνον, καὶ ἐναλλὰξ, ὡς τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον, οὕτως τὸ ΒΕΓ τρίγωνον πρὸς τὸ ΗΛΘ τρίγωνον. ὁμοίως δὴ δείξομεν ἐπιζευχθεισῶν τῶν ΒΔ,
75ΗΚ, ὅτι καὶ ὡς τὸ ΒΕΓ τρίγωνον πρὸς τὸ ΛΗΘ τρίγωνον, οὕτως τὸ ΕΓΔ τρίγωνον πρὸς τὸ ΛΘΚ τρίγωνον. καὶ ἐπεί ἐστιν ὡς τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον, οὕτως τὸ ΕΒΓ πρὸς τὸ ΛΗΘ, καὶ ἔτι τὸ ΕΓΔ πρὸς τὸ ΛΘΚ, καὶ ὡς ἄρα ἓν τῶν ἡγουμένων
80πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα: ἔστιν ἄρα ὡς τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον, οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον. ἀλλὰ τὸ ΑΒΕ τρίγωνον πρὸς τὸ ΖΗΛ τρίγωνον διπλασίονα λόγον ἔχει ἤπερ
85ΑΒ ὁμόλογος πλευρὰ πρὸς τὴν ΖΗ ὁμόλογον πλευράν: τὰ γὰρ ὅμοια τρίγωνα ἐν διπλασίονι λόγῳ ἐστὶ τῶν ὁμολόγων πλευρῶν. καὶ τὸ ΑΒΓΔΕ ἄρα πολύγωνον πρὸς τὸ ΖΗΘΚΛ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ΑΒ ὁμόλογος πλευρὰ πρὸς τὴν ΖΗ ὁμόλογον πλευράν.
90

τὰ ἄρα ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν: ὅπερ ἔδει δεῖξαι.
95

Πόρισμα

ὡσαύτως δὲ καὶ ἐπὶ τῶν ὁμοίων τετραπλεύρων δειχθήσεται, ὅτι ἐν διπλασίονι λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν. ἐδείχθη δὲ καὶ ἐπὶ τῶν τριγώνων: ὥστε καὶ καθόλου τὰ ὅμοια εὐθύγραμμα σχήματα πρὸς ἄλληλα ἐν διπλασίονι
100λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν. ὅπερ ἔδει δεῖξαι.

πόρισμα β#

καὶ ἐὰν τῶν ΑΒ, ΖΗ τρίτην ἀνάλογον λάβωμεν τὴν Ξ, ΒΑ πρὸς τὴν Ξ διπλασίονα λόγον ἔχει ἤπερ ΑΒ πρὸς τὴν ΖΗ. ἔχει δὲ καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον
105 τὸ τετράπλευρον πρὸς τὸ τετράπλευρον διπλασίονα λόγον ἤπερ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν, τουτέστιν ΑΒ πρὸς τὴν ΖΗ: ἐδείχθη δὲ τοῦτο καὶ ἐπὶ τῶν τριγώνων: ὥστε καὶ καθόλου φανερόν, ὅτι, ἐὰν τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, ἔσται ὡς πρώτη πρὸς
110τὴν τρίτην, οὕτως τὸ ἀπὸ τῆς πρώτης εἶδος πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον.


τὰ τῷ αὐτῷ εὐθυγράμμῳ ὅμοια καὶ ἀλλήλοις ἐστὶν ὅμοια.

ἔστω γὰρ ἑκάτερον τῶν Α, Β εὐθυγράμμων τῷ Γ ὅμοιον: λέγω, ὅτι καὶ τὸ Α τῷ Β ἐστιν ὅμοιον.
5

ἐπεὶ γὰρ ὅμοιόν ἐστι τὸ Α τῷ Γ, ἰσογώνιόν τέ ἐστιν αὐτῷ καὶ τὰς περὶ τὰς ἴσας γωνίας πλευρὰς ἀνάλογον ἔχει. πάλιν, ἐπεὶ ὅμοιόν ἐστι τὸ Β τῷ Γ, ἰσογώνιόν τέ ἐστιν αὐτῷ καὶ τὰς περὶ τὰς ἴσας γωνίας πλευρὰς ἀνάλογον ἔχει. ἑκάτερον ἄρα
10τῶν Α, Β τῷ Γ ἰσογώνιόν τέ ἐστι καὶ τὰς περὶ τὰς ἴσας γωνίας πλευρὰς ἀνάλογον ἔχει ὥστε καὶ τὸ Α τῷ Β ἰσογώνιόν τέ ἐστι καὶ τὰς περὶ τὰς ἴσας γωνίας πλευρὰς ἀνάλογον ἔχει. ὅμοιον
15ἄρα ἐστὶ τὸ Α τῷ Β: ὅπερ ἔδει δεῖξαι.


ἐὰν τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, καὶ τὰ ἀπ᾽ αὐτῶν εὐθύγραμμα ὅμοιά τε καὶ ὁμοίως ἀναγεγραμμένα ἀνάλογον ἔσται: κἂν τὰ ἀπ᾽ αὐτῶν εὐθύγραμμα ὅμοιά τε καὶ ὁμοίως ἀναγεγραμμένα ἀνάλογον , καὶ αὐταὶ αἱ
5εὐθεῖαι ἀνάλογον ἔσονται.

ἔστωσαν τέσσαρες εὐθεῖαι ἀνάλογον αἱ ΑΒ, ΓΔ, ΕΖ, ΗΘ, ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΕΖ πρὸς τὴν ΗΘ, καὶ ἀναγεγράφθωσαν ἀπὸ μὲν τῶν ΑΒ, ΓΔ ὅμοιά τε καὶ ὁμοίως κείμενα
10εὐθύγραμμα τὰ ΚΑΒ, ΛΓΔ, ἀπὸ δὲ τῶν ΕΖ, ΗΘ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΜΖ, ΝΘ: λέγω, ὅτι ἐστὶν ὡς τὸ ΚΑΒ πρὸς τὸ ΛΓΔ, οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ.
15

εἰλήφθω γὰρ τῶν μὲν ΑΒ, ΓΔ τρίτη ἀνάλογον Ξ, τῶν δὲ ΕΖ, ΗΘ τρίτη ἀνάλογον Ο. καὶ ἐπεί ἐστιν ὡς μὲν ΑΒ πρὸς τὴν ΓΔ, οὕτως ΕΖ πρὸς τὴν ΗΘ, ὡς δὲ ΓΔ πρὸς τὴν Ξ, οὕτως ΗΘ πρὸς τὴν Ο, δι᾽ ἴσου ἄρα ἐστὶν ὡς ΑΒ πρὸς τὴν Ξ, οὕτως ΕΖ
20πρὸς τὴν Ο. ἀλλ᾽ ὡς μὲν ΑΒ πρὸς τὴν Ξ, οὕτως καὶ τὸ ΚΑΒ πρὸς τὸ ΛΓΔ, ὡς δὲ ΕΖ πρὸς τὴν Ο, οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ: καὶ ὡς ἄρα τὸ ΚΑΒ πρὸς τὸ ΛΓΔ, οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ.
25

ἀλλὰ δὴ ἔστω ὡς τὸ ΚΑΒ πρὸς τὸ ΛΓΔ, οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ: λέγω, ὅτι ἐστὶ καὶ ὡς ΑΒ πρὸς τὴν
25ΓΔ, οὕτως ΕΖ πρὸς τὴν ΗΘ. εἰ γὰρ μή ἐστιν, ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΕΖ πρὸς τὴν ΗΘ, ἔστω ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΕΖ πρὸς τὴν ΠΡ, καὶ
30ἀναγεγράφθω ἀπὸ τῆς ΠΡ ὁποτέρῳ τῶν ΜΖ, ΝΘ ὅμοιόν τε καὶ ὁμοίως κείμενον εὐθύγραμμον τὸ ΣΡ.

ἐπεὶ οὖν ἐστιν ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΕΖ πρὸς τὴν ΠΡ, καὶ ἀναγέγραπται ἀπὸ μὲν τῶν ΑΒ, ΓΔ ὅμοιά τε καὶ ὁμοίως κείμενα τὰ ΚΑΒ, ΛΓΔ, ἀπὸ δὲ τῶν
35ΕΖ, ΠΡ ὅμοιά τε καὶ ὁμοίως κείμενα τὰ ΜΖ, ΣΡ, ἔστιν ἄρα ὡς τὸ ΚΑΒ πρὸς τὸ ΛΓΔ, οὕτως τὸ ΜΖ πρὸς τὸ ΣΡ. ὑπόκειται δὲ καὶ ὡς τὸ ΚΑΒ πρὸς τὸ ΛΓΔ, οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ: καὶ ὡς ἄρα τὸ ΜΖ πρὸς τὸ ΣΡ, οὕτως τὸ ΜΖ πρὸς τὸ ΝΘ. τὸ ΜΖ ἄρα πρὸς ἑκάτερον
40τῶν ΝΘ, ΣΡ τὸν αὐτὸν ἔχει λόγον: ἴσον ἄρα ἐστὶ τὸ ΝΘ τῷ ΣΡ. ἔστι δὲ αὐτῷ καὶ ὅμοιον καὶ ὁμοίως κείμενον: ἴση ἄρα ΗΘ τῇ ΠΡ. καὶ ἐπεί ἐστιν ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΕΖ πρὸς τὴν ΠΡ, ἴση δὲ ΠΡ τῇ ΗΘ, ἔστιν ἄρα ὡς ΑΒ πρὸς τὴν ΓΔ, οὕτως ΕΖ πρὸς
45τὴν ΗΘ.

ἐὰν ἄρα τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, καὶ τὰ ἀπ᾽ αὐτῶν εὐθύγραμμα ὅμοιά τε καὶ ὁμοίως ἀναγεγραμμένα ἀνάλογον ἔσται: κἂν τὰ ἀπ᾽ αὐτῶν εὐθύγραμμα ὅμοιά τε καὶ ὁμοίως ἀναγεγραμμένα ἀνάλογον , καὶ αὐταὶ αἱ
50εὐθεῖαι ἀνάλογον ἔσονται: ὅπερ ἔδει δεῖξαι.

λῆμμα

ὅτι δέ, ἐὰν εὐθύγραμμα ἴσα καὶ ὅμοια, αἱ ὁμόλογοι αὐτῶν πλευραὶ ἴσαι ἀλλήλαις εἰσίν, δείξομεν οὕτως.

ἔστω ἴσα καὶ ὅμοια εὐθύγραμμα τὰ ΝΘ, ΣΡ, καὶ
55ἔστω ὡς ΘΗ πρὸς τὴν ΗΝ, οὕτως ΡΠ πρὸς τὴν ΠΣ: λέγω, ὅτι ἴση ἐστὶν ΡΠ τῇ ΘΗ.

εἰ γὰρ ἄνισοί εἰσιν, μία αὐτῶν μείζων ἐστίν. ἔστω μείζων ΡΠ τῆς ΘΗ. καὶ ἐπεί ἐστιν ὡς ΡΠ πρὸς ΠΣ, οὕτως ΘΗ πρὸς τὴν ΗΝ, καὶ ἐναλλάξ, ὡς ΡΠ
60πρὸς τὴν ΘΗ, οὕτως ΠΣ πρὸς τὴν ΗΝ, μείζων δὲ ΠΡ τῆς ΘΗ, μείζων ἄρα καὶ ΠΣ τῆς ΗΝ: ὥστε καὶ τὸ ΡΣ μεῖζόν ἐστι τοῦ ΘΝ. ἀλλὰ καὶ ἴσον: ὅπερ ἀδύνατον. οὐκ ἄρα ἄνισός ἐστιν ΠΡ τῇ ΗΘ: ἴση ἄρα: ὅπερ ἔδει δεῖξαι.


τὰ ἰσογώνια παραλληλόγραμμα πρὸς ἄλληλα λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν.

ἔστω ἰσογώνια παραλληλόγραμμα τὰ ΑΓ, ΓΖ ἴσην
5ἔχοντα τὴν ὑπὸ ΒΓΔ γωνίαν τῇ ὑπὸ ΕΓΗ: λέγω, ὅτι τὸ ΑΓ παραλληλόγραμμον πρὸς τὸ ΓΖ παραλληλόγραμμον λόγον ἔχει τὸν συγκείμενον ἐκ
10τῶν πλευρῶν.

κείσθω γὰρ ὥστε ἐπ᾽ εὐθείας εἶναι τὴν ΒΓ τῇ ΓΗ: ἐπ᾽ εὐθείας ἄρα ἐστὶ καὶ ΔΓ τῇ ΓΕ. καὶ συμπεπληρώσθω τὸ ΔΗ παραλληλόγραμμον, καὶ ἐκκείσθω τις εὐθεῖα Κ, καὶ γεγονέτω ὡς μὲν ΒΓ πρὸς τὴν ΓΗ,
15οὕτως Κ πρὸς τὴν Λ, ὡς δὲ ΔΓ πρὸς τὴν ΓΕ, οὕτως Λ πρὸς τὴν Μ.

οἱ ἄρα λόγοι τῆς τε Κ πρὸς τὴν Λ καὶ τῆς Λ πρὸς τὴν Μ οἱ αὐτοί εἰσι τοῖς λόγοις τῶν πλευρῶν, τῆς τε ΒΓ πρὸς τὴν ΓΗ καὶ τῆς ΔΓ πρὸς τὴν ΓΕ. ἀλλ᾽ τῆς Κ πρὸς Μ
20λόγος σύγκειται ἔκ τε τοῦ τῆς Κ πρὸς Λ λόγου καὶ τοῦ τῆς Λ πρὸς Μ: ὥστε καὶ Κ πρὸς τὴν Μ λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν. καὶ ἐπεί ἐστιν ὡς ΒΓ πρὸς τὴν ΓΗ, οὕτως τὸ ΑΓ παραλληλόγραμμον πρὸς τὸ ΓΘ, ἀλλ᾽ ὡς ΒΓ πρὸς τὴν ΓΗ, οὕτως Κ πρὸς τὴν
25λ, καὶ ὡς ἄρα Κ πρὸς τὴν Λ, οὕτως τὸ ΑΓ πρὸς τὸ ΓΘ. πάλιν, ἐπεί ἐστιν ὡς ΔΓ πρὸς τὴν ΓΕ, οὕτως τὸ ΓΘ παραλληλόγραμμον πρὸς τὸ ΓΖ, ἀλλ᾽ ὡς ΔΓ πρὸς τὴν ΓΕ, οὕτως Λ πρὸς τὴν Μ, καὶ ὡς ἄρα Λ πρὸς τὴν Μ, οὕτως τὸ ΓΘ παραλληλόγραμμον πρὸς τὸ ΓΖ παραλληλόγραμμον.
30ἐπεὶ οὖν ἐδείχθη, ὡς μὲν Κ πρὸς τὴν Λ, οὕτως τὸ ΑΓ παραλληλόγραμμον πρὸς τὸ ΓΘ παραλληλόγραμμον, ὡς δὲ Λ πρὸς τὴν Μ, οὕτως τὸ ΓΘ παραλληλόγραμμον πρὸς τὸ ΓΖ παραλληλόγραμμον, δι᾽ ἴσου ἄρα ἐστὶν ὡς Κ πρὸς τὴν Μ, οὕτως τὸ ΑΓ πρὸς τὸ
35ΓΖ παραλληλόγραμμον. δὲ Κ πρὸς τὴν Μ λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν: καὶ τὸ ΑΓ ἄρα πρὸς τὸ ΓΖ λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν.

τὰ ἄρα ἰσογώνια παραλληλόγραμμα πρὸς ἄλληλα λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν: ὅπερ ἔδει δεῖξαι.


παντὸς παραλληλογράμμου τὰ περὶ τὴν διάμετρον παραλληλόγραμμα ὅμοιά ἐστι τῷ τε ὅλῳ καὶ ἀλλήλοις.

ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ, διάμετρος δὲ αὐτοῦ ΑΓ, περὶ δὲ τὴν ΑΓ παραλληλόγραμμα ἔστω
5τὰ ΕΗ, ΘΚ: λέγω, ὅτι ἑκάτερον τῶν ΕΗ, ΘΚ παραλληλογράμμων ὅμοιόν ἐστι ὅλῳ τῷ ΑΒΓΔ καὶ ἀλλήλοις.

ἐπεὶ γὰρ τριγώνου τοῦ ΑΒΓ παρὰ μίαν τῶν πλευρῶν τὴν ΒΓ ἦκται ΕΖ, ἀνάλογόν ἐστιν ὡς
10ΒΕ πρὸς τὴν ΕΑ, οὕτως, ΓΖ πρὸς τὴν ΖΑ. πάλιν, ἐπεὶ τριγώνου τοῦ ΑΓΔ παρὰ μίαν τὴν ΓΔ ἦκται ΖΗ, ἀνάλογόν ἐστιν ὡς ΓΖ πρὸς τὴν ΖΑ, οὕτως ΔΗ πρὸς τὴν ΗΑ. ἀλλ᾽
15ὡς ΓΖ πρὸς τὴν ΖΑ, οὕτως ἐδείχθη καὶ ΒΕ πρὸς τὴν ΕΑ: καὶ ὡς ἄρα ΒΕ πρὸς τὴν ΕΑ, οὕτως ΔΗ πρὸς τὴν ΗΑ, καὶ συνθέντι ἄρα ὡς ΒΑ πρὸς ΑΕ, οὕτως ΔΑ πρὸς ΑΗ, καὶ ἐναλλὰξ ὡς ΒΑ πρὸς τὴν ΑΔ, οὕτως ΕΑ πρὸς τὴν ΑΗ. τῶν ἄρα ΑΒΓΔ, ΕΗ παραλληλογράμμων
20ἀνάλογόν εἰσιν αἱ πλευραὶ αἱ περὶ τὴν κοινὴν γωνίαν τὴν ὑπὸ ΒΑΔ. καὶ ἐπεὶ παράλληλός ἐστιν ΗΖ τῇ ΔΓ, ἴση ἐστὶν μὲν ὑπὸ ΑΖΗ γωνία τῇ ὑπὸ ΔΓΑ: καὶ κοινὴ τῶν δύο τριγώνων τῶν ΑΔΓ, ΑΗΖ ὑπὸ ΔΑΓ γωνία: ἰσογώνιον ἄρα ἐστὶ τὸ ΑΔΓ τρίγωνον
25τῷ ΑΗΖ τριγώνῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ ΑΓΒ τρίγωνον ἰσογώνιόν ἐστι τῷ ΑΖΕ τριγώνῳ, καὶ ὅλον τὸ ΑΒΓΔ παραλληλόγραμμον τῷ ΕΗ παραλληλογράμμῳ ἰσογώνιόν ἐστιν. ἀνάλογον ἄρα ἐστὶν ὡς ΑΔ πρὸς τὴν ΔΓ, οὕτως ΑΗ πρὸς τὴν ΗΖ, ὡς δὲ ΔΓ πρὸς τὴν ΓΑ, οὕτως
30ΗΖ πρὸς τὴν ΖΑ, ὡς δὲ ΑΓ πρὸς τὴν ΓΒ, οὕτως ΑΖ πρὸς τὴν ΖΕ, καὶ ἔτι ὡς ΓΒ πρὸς τὴν ΒΑ, οὕτως ΖΕ πρὸς τὴν ΕΑ. καὶ ἐπεὶ ἐδείχθη ὡς μὲν ΔΓ πρὸς τὴν ΓΑ, οὕτως ΗΖ πρὸς τὴν ΖΑ, ὡς δὲ ΑΓ πρὸς τὴν ΓΒ, οὕτως ΑΖ πρὸς τὴν ΖΕ, δι᾽ ἴσου ἄρα ἐστὶν ὡς
35ΔΓ πρὸς τὴν ΓΒ, οὕτως ΗΖ πρὸς τὴν ΖΕ. τῶν ἄρα ΑΒΓΔ, ΕΗ παραλληλογράμμων ἀνάλογόν εἰσιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: ὅμοιον ἄρα ἐστὶ τὸ ΑΒΓΔ παραλληλόγραμμον τῷ ΕΗ παραλληλογράμμῳ. διὰ τὰ αὐτὰ δὴ τὸ ΑΒΓΔ παραλληλόγραμμον καὶ τῷ ΚΘ
40παραλληλογράμμῳ ὅμοιόν ἐστιν: ἑκάτερον ἄρα τῶν ΕΗ, ΘΚ παραλληλογράμμων τῷ ΑΒΓΔ παραλληλογράμμῳ ὅμοιόν ἐστιν. τὰ δὲ τῷ αὐτῷ εὐθυγράμμῳ ὅμοια καὶ ἀλλήλοις ἐστὶν ὅμοια: καὶ τὸ ΕΗ ἄρα παραλληλόγραμμον τῷ ΘΚ παραλληλογράμμῳ ὅμοιόν ἐστιν.
45

παντὸς ἄρα παραλληλογράμμου τὰ περὶ τὴν διάμετρον παραλληλόγραμμα ὅμοιά ἐστι τῷ τε ὅλῳ καὶ ἀλλήλοις: ὅπερ ἔδει δεῖξαι.


τῷ δοθέντι εὐθυγράμμῳ ὅμοιον καὶ ἄλλῳ τῷ δοθέντι ἴσον τὸ αὐτὸ συστήσασθαι.

ἔστω τὸ μὲν δοθὲν εὐθύγραμμον, δεῖ ὅμοιον συστήσασθαι, τὸ ΑΒΓ, δὲ δεῖ ἴσον, τὸ Δ: δεῖ δὴ τῷ μὲν
5ΑΒΓ ὅμοιον, τῷ δὲ Δ ἴσον τὸ αὐτὸ συστήσασθαι.

παραβεβλήσθω γὰρ παρὰ μὲν τὴν ΒΓ τῷ ΑΒΓ τριγώνῳ ἴσον παραλληλόγραμμον τὸ ΒΕ, παρὰ δὲ τὴν ΓΕ τῷ Δ ἴσον παραλληλόγραμμον τὸ ΓΜ ἐν γωνίᾳ τῇ ὑπὸ ΖΓΕ, ἐστιν ἴση τῇ ὑπὸ ΓΒΛ. ἐπ᾽ εὐθείας ἄρα ἐστὶν μὲν ΒΓ
10τῇ ΓΖ, δὲ ΛΕ τῇ ΕΜ. καὶ εἰλήφθω τῶν ΒΓ, ΓΖ μέση ἀνάλογον ΗΘ, καὶ ἀναγεγράφθω ἀπὸ τῆς ΗΘ τῷ ΑΒΓ
10ὅμοιόν τε καὶ ὁμοίως κείμενον τὸ ΚΗΘ.

καὶ ἐπεί ἐστιν ὡς ΒΓ πρὸς τὴν ΗΘ, οὕτως ΗΘ πρὸς τὴν ΓΖ, ἐὰν δὲ τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, ἔστιν
15ὡς πρώτη πρὸς τὴν τρίτην, οὕτως τὸ ἀπὸ τῆς πρώτης εἶδος πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον, ἔστιν ἄρα ὡς ΒΓ πρὸς τὴν ΓΖ, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΚΗΘ τρίγωνον. ἀλλὰ καὶ ὡς ΒΓ πρὸς τὴν ΓΖ, οὕτως τὸ ΒΕ παραλληλόγραμμον
20πρὸς τὸ ΕΖ παραλληλόγραμμον. καὶ ὡς ἄρα τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΚΗΘ τρίγωνον, οὕτως τὸ ΒΕ παραλληλόγραμμον πρὸς τὸ ΕΖ παραλληλόγραμμον: ἐναλλὰξ ἄρα ὡς τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΒΕ παραλληλόγραμμον, οὕτως τὸ ΚΗΘ τρίγωνον πρὸς τὸ ΕΖ παραλληλόγραμμον.
25ἴσον δὲ τὸ ΑΒΓ τρίγωνον τῷ ΒΕ παραλληλογράμμῳ: ἴσον ἄρα καὶ τὸ ΚΗΘ τρίγωνον τῷ ΕΖ παραλληλογράμμῳ. ἀλλὰ τὸ ΕΖ παραλληλόγραμμον τῷ Δ ἐστιν ἴσον: καὶ τὸ ΚΗΘ ἄρα τῷ Δ ἐστιν ἴσον. ἔστι δὲ τὸ ΚΗΘ καὶ τῷ ΑΒΓ ὅμοιον.
30

τῷ ἄρα δοθέντι εὐθυγράμμῳ τῷ ΑΒΓ ὅμοιον καὶ ἄλλῳ τῷ δοθέντι τῷ Δ ἴσον τὸ αὐτὸ συνέσταται τὸ ΚΗΘ: ὅπερ ἔδει ποιῆσαι.


ἐὰν ἀπὸ παραλληλογράμμου παραλληλόγραμμον ἀφαιρεθῇ ὅμοιόν τε τῷ ὅλῳ καὶ ὁμοίως κείμενον κοινὴν γωνίαν ἔχον αὐτῷ, περὶ τὴν αὐτὴν διάμετρόν ἐστι τῷ ὅλῳ.

ἀπὸ γὰρ παραλληλογράμμου
5τοῦ ΑΒΓΔ παραλληλόγραμμον ἀφῃρήσθω τὸ ΑΖ ὅμοιον τῷ ΑΒΓΔ καὶ ὁμοίως κείμενον κοινὴν γωνίαν ἔχον αὐτῷ τὴν ὑπὸ ΔΑΒ: λέγω,
10ὅτι περὶ τὴν αὐτὴν διάμετρόν ἐστι τὸ ΑΒΓΔ τῷ ΑΖ.

μὴ γάρ, ἀλλ᾽ εἰ δυνατόν, ἔστω αὐτῶν διάμετρος ΑΘΓ, καὶ ἐκβληθεῖσα ΗΖ διήχθω ἐπὶ τὸ Θ, καὶ ἤχθω διὰ τοῦ Θ ὁποτέρᾳ τῶν ΑΔ, ΒΓ παράλληλος
15 ΘΚ.

ἐπεὶ οὖν περὶ τὴν αὐτὴν διάμετρόν ἐστι τὸ ΑΒΓΔ τῷ ΚΗ, ἔστιν ἄρα ὡς ΔΑ πρὸς τὴν ΑΒ, οὕτως ΗΑ πρὸς τὴν ΑΚ. ἔστι δὲ καὶ διὰ τὴν ὁμοιότητα τῶν ΑΒΓΔ, ΕΗ καὶ ὡς ΔΑ πρὸς τὴν ΑΒ, οὕτως ΗΑ πρὸς τὴν
20ΑΕ: καὶ ὡς ἄρα ΗΑ πρὸς τὴν ΑΚ, οὕτως ΗΑ πρὸς τὴν ΑΕ. ΗΑ ἄρα πρὸς ἑκατέραν τῶν ΑΚ, ΑΕ τὸν αὐτὸν ἔχει λόγον. ἴση ἄρα ἐστὶν ΑΕ τῇ ΑΚ ἐλάττων τῇ μείζονι: ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οὔκ ἐστι περὶ τὴν αὐτὴν διάμετρον τὸ ΑΒΓΔ τῷ ΑΖ: περὶ τὴν αὐτὴν
25ἄρα ἐστὶ διάμετρον τὸ ΑΒΓΔ παραλληλόγραμμον τῷ ΑΖ παραλληλογράμμῳ.

ἐὰν ἄρα ἀπὸ παραλληλογράμμου παραλληλόγραμμον ἀφαιρεθῇ ὅμοιόν τε τῷ ὅλῳ καὶ ὁμοίως κείμενον κοινὴν γωνίαν ἔχον αὐτῷ, περὶ τὴν αὐτὴν διάμετρόν ἐστι τῷ
30ὅλῳ: ὅπερ ἔδει δεῖξαι.


πάντων τῶν παρὰ τὴν αὐτὴν εὐθεῖαν παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι παραλληλογράμμοις ὁμοίοις τε καὶ ὁμοίως κειμένοις τῷ ἀπὸ τῆς ἡμισείας ἀναγραφομένῳ μέγιστόν ἐστι τὸ ἀπὸ τῆς
5ἡμισείας παραβαλλόμενον παραλληλόγραμμον ὅμοιον ὂν τῷ ἐλλείμματι.

ἔστω εὐθεῖα ΑΒ καὶ τετμήσθω δίχα κατὰ τὸ Γ, καὶ παραβεβλήσθω παρὰ τὴν ΑΒ εὐθεῖαν τὸ ΑΔ παραλληλόγραμμον ἐλλεῖπον εἴδει παραλληλογράμμῳ τῷ ΔΒ ἀναγραφέντι
10ἀπὸ τῆς ἡμισείας τῆς ΑΒ, τουτέστι τῆς ΓΒ: λέγω, ὅτι πάντων τῶν παρὰ τὴν ΑΒ παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι παραλληλογράμμοις ὁμοίοις τε καὶ ὁμοίως κειμένοις τῷ ΔΒ μέγιστόν ἐστι τὸ ΑΔ. παραβεβλήσθω γὰρ παρὰ
15τὴν ΑΒ εὐθεῖαν τὸ ΑΖ παραλληλόγραμμον ἐλλεῖπον εἴδει παραλληλογράμμῳ τῷ ΖΒ ὁμοίῳ τε καὶ ὁμοίως κειμένῳ τῷ ΔΒ: λέγω, ὅτι μεῖζόν ἐστι τὸ ΑΔ τοῦ ΑΖ.
20

ἐπεὶ γὰρ ὅμοιόν ἐστι τὸ ΔΒ παραλληλόγραμμον τῷ ΖΒ παραλληλογράμμῳ, περὶ τὴν αὐτήν εἰσι διάμετρον. ἤχθω αὐτῶν διάμετρος ΔΒ, καὶ καταγεγράφθω τὸ σχῆμα.

ἐπεὶ οὖν ἴσον ἐστὶ τὸ ΓΖ τῷ ΖΕ, κοινὸν δὲ τὸ ΖΒ,
25ὅλον ἄρα τὸ ΓΘ ὅλῳ τῷ ΚΕ ἐστιν ἴσον. ἀλλὰ τὸ ΓΘ τῷ ΓΗ ἐστιν ἴσον, ἐπεὶ καὶ ΑΓ τῇ ΓΒ. καὶ τὸ ΗΓ ἄρα τῷ ΕΚ ἐστιν ἴσον. κοινὸν προσκείσθω τὸ ΓΖ: ὅλον ἄρα τὸ ΑΖ τῷ ΛΜΝ γνώμονί ἐστιν ἴσον: ὥστε τὸ ΔΒ παραλληλόγραμμον, τουτέστι τὸ ΑΔ, τοῦ ΑΖ παραλληλογράμμου
30μεῖζόν ἐστιν.

πάντων ἄρα τῶν παρὰ τὴν αὐτὴν εὐθεῖαν παραβαλλομένων παραλληλογράμμων καὶ ἐλλειπόντων εἴδεσι παραλληλογράμμοις ὁμοίοις τε καὶ ὁμοίως κειμένοις τῷ ἀπὸ τῆς ἡμισείας ἀναγραφομένῳ μέγιστόν ἐστι τὸ ἀπὸ τῆς
35ἡμισείας παραβληθέν: ὅπερ ἔδει δεῖξαι.


παρὰ τὴν δοθεῖσαν εὐθεῖαν τῷ δοθέντι εὐθυγράμμῳ ἴσον παραλληλόγραμμον παραβαλεῖν ἐλλεῖπον εἴδει παραλληλογράμμῳ ὁμοίῳ τῷ δοθέντι: δεῖ δὲ τὸ διδόμενον εὐθύγραμμον δεῖ ἴσον παραβαλεῖν μὴ μεῖζον εἶναι τοῦ
5ἀπὸ τῆς ἡμισείας ἀναγραφομένου ὁμοίου τῷ ἐλλείμματι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ δεῖ ὅμοιον ἐλλείπειν.

ἔστω μὲν δοθεῖσα εὐθεῖα ΑΒ, τὸ δὲ δοθὲν εὐθύγραμμον, δεῖ ἴσον παρὰ τὴν ΑΒ παραβαλεῖν, τὸ Γ μὴ μεῖζον ὂν τοῦ ἀπὸ τῆς ἡμισείας τῆς ΑΒ ἀναγραφομένου
10ὁμοίου τῷ ἐλλείμματι, δὲ δεῖ ὅμοιον ἐλλείπειν, τὸ Δ: δεῖ δὴ παρὰ τὴν δοθεῖσαν εὐθεῖαν τὴν ΑΒ τῷ δοθέντι εὐθυγράμμῳ τῷ Γ ἴσον παραλληλόγραμμον παραβαλεῖν ἐλλεῖπον εἴδει παραλληλογράμμῳ ὁμοίῳ ὄντι τῷ Δ.

τετμήσθω ΑΒ δίχα κατὰ τὸ Ε σημεῖον, καὶ ἀναγεγράφθω
15ἀπὸ τῆς ΕΒ τῷ Δ ὅμοιον καὶ ὁμοίως κείμενον τὸ ΕΒΖΗ, καὶ συμπεπληρώσθω τὸ ΑΗ παραλληλόγραμμον.

εἰ μὲν οὖν ἴσον ἐστὶ τὸ ΑΗ τῷ Γ, γεγονὸς ἂν εἴη τὸ ἐπιταχθέν: παραβέβληται γὰρ παρὰ τὴν δοθεῖσαν εὐθεῖαν
20τὴν ΑΒ τῷ δοθέντι εὐθυγράμμῳ τῷ Γ ἴσον παραλληλόγραμμον τὸ ΑΗ ἐλλεῖπον εἴδει παραλληλογράμμῳ τῷ ΗΒ ὁμοίῳ ὄντι τῷ Δ. εἰ δὲ οὔ, μεῖζον ἔστω τὸ ΘΕ τοῦ Γ. ἴσον δὲ τὸ ΘΕ τῷ ΗΒ: μεῖζον ἄρα καὶ τὸ ΗΒ τοῦ Γ. δὴ μεῖζόν ἐστι τὸ ΗΒ τοῦ Γ, ταύτῃ τῇ ὑπεροχῇ ἴσον, τῷ δὲ Δ
25ὅμοιον καὶ ὁμοίως κείμενον τὸ αὐτὸ συνεστάτω τὸ ΚΛΜΝ. ἀλλὰ τὸ Δ τῷ ΗΒ ἐστιν ὅμοιον: καὶ τὸ ΚΜ ἄρα τῷ ΗΒ ἐστιν ὅμοιον. ἔστω οὖν ὁμόλογος μὲν ΚΛ τῇ ΗΕ, δὲ ΛΜ τῇ ΗΖ. καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΗΒ τοῖς Γ, ΚΜ, μεῖζον ἄρα ἐστὶ τὸ ΗΒ τοῦ ΚΜ: μείζων ἄρα ἐστὶ καὶ
30 μὲν ΗΕ τῆς ΚΛ, δὲ ΗΖ τῆς ΛΜ. κείσθω τῇ μὲν ΚΛ ἴση ΗΞ, τῇ δὲ ΛΜ ἴση ΗΟ, καὶ συμπεπληρώσθω τὸ ΞΗΟΠ παραλληλόγραμμον: ἴσον ἄρα καὶ ὅμοιόν ἐστι τὸ ΗΠ τῷ ΚΜ ἀλλὰ τὸ ΚΜ τῷ ΗΒ ὅμοιόν ἐστιν. καὶ τὸ ΗΠ ἄρα τῷ ΗΒ ὅμοιόν ἐστιν: περὶ τὴν αὐτὴν ἄρα
35διάμετρόν ἐστι τὸ ΗΠ τῷ ΗΒ. ἔστω αὐτῶν διάμετρος ΗΠΒ, καὶ καταγεγράφθω τὸ σχῆμα.

ἐπεὶ οὖν ἴσον ἐστὶ τὸ ΒΗ τοῖς Γ, ΚΜ, ὧν τὸ ΗΠ τῷ ΚΜ ἐστιν ἴσον, λοιπὸς ἄρα ΥΧΦ γνώμων λοιπῷ τῷ Γ ἴσος ἐστίν. καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΟΡ τῷ ΞΣ, κοινὸν
40προσκείσθω τὸ ΠΒ: ὅλον ἄρα τὸ ΟΒ ὅλῳ τῷ ΞΒ ἴσον ἐστίν. ἀλλὰ τὸ ΞΒ τῷ ΤΕ ἐστιν ἴσον, ἐπεὶ καὶ πλευρὰ ΑΕ πλευρᾷ τῇ ΕΒ ἐστιν ἴση: καὶ τὸ ΤΕ ἄρα τῷ ΟΒ ἐστιν ἴσον. κοινὸν προσκείσθω τὸ ΞΣ: ὅλον ἄρα τὸ ΤΣ ὅλῳ τῷ ΦΧΥ γνώμονί ἐστιν ἴσον. ἀλλ᾽ ΦΧΥ γνώμων τῷ Γ
45ἐδείχθη ἴσος: καὶ τὸ ΤΣ ἄρα τῷ Γ ἐστιν ἴσον.

παρὰ τὴν δοθεῖσαν ἄρα εὐθεῖαν τὴν ΑΒ τῷ δοθέντι εὐθυγράμμῳ τῷ Γ ἴσον παραλληλόγραμμον παραβέβληται τὸ ΣΤ ἐλλεῖπον εἴδει παραλληλογράμμῳ τῷ ΠΒ ὁμοίῳ ὄντι τῷ Δ ἐπειδήπερ τὸ ΠΒ τῷ ΗΠ ὅμοιόν ἐστιν: ὅπερ
50ἔδει ποιῆσαι.


παρὰ τὴν δοθεῖσαν εὐθεῖαν τῷ δοθέντι εὐθυγράμμῳ
ἴσον παραλληλόγραμμον παραβαλεῖν ὑπερβάλλον εἴδει παραλληλογράμμῳ ὁμοίῳ τῷ δοθέντι.

ἔστω μὲν δοθεῖσα εὐθεῖα ΑΒ, τὸ δὲ δοθὲν εὐθύγραμμον,
5 δεῖ ἴσον παρὰ τὴν ΑΒ παραβαλεῖν, τὸ Γ, δὲ δεῖ ὅμοιον ὑπερβάλλειν, τὸ Δ: δεῖ δὴ παρὰ τὴν ΑΒ εὐθεῖαν τῷ Γ εὐθυγράμμῳ ἴσον παραλληλόγραμμον παραβαλεῖν ὑπερβάλλον εἴδει παραλληλογράμμῳ ὁμοίῳ τῷ Δ.
10

τετμήσθω ΑΒ δίχα κατὰ τὸ Ε, καὶ ἀναγεγράφθω ἀπὸ τῆς ΕΒ τῷ Δ ὅμοιον καὶ ὁμοίως κείμενον παραλληλόγραμμον τὸ ΒΖ, καὶ συναμφοτέροις μὲν τοῖς ΒΖ, Γ ἴσον, τῷ δὲ Δ ὅμοιον καὶ ὁμοίως κείμενον τὸ αὐτὸ συνεστάτω τὸ ΗΘ. ὁμόλογος δὲ ἔστω μὲν ΚΘ τῇ ΖΛ,
15 δὲ ΚΗ τῇ ΖΕ. καὶ ἐπεὶ μεῖζόν ἐστι τὸ ΗΘ τοῦ ΖΒ, μείζων ἄρα ἐστὶ καὶ μὲν ΚΘ τῆς ΖΛ, δὲ ΚΗ τῆς ΖΕ. ἐκβεβλήσθωσαν αἱ ΖΛ, ΖΕ, καὶ τῇ μὲν ΚΘ ἴση ἔστω ΖΛΜ, τῇ δὲ ΚΗ ἴση ΖΕΝ, καὶ συμπεπληρώσθω τὸ ΜΝ: τὸ ΜΝ ἄρα τῷ ΗΘ ἴσον τέ ἐστι καὶ
20ὅμοιον. ἀλλὰ τὸ ΗΘ τῷ ΕΛ ἐστιν ὅμοιον: καὶ τὸ ΜΝ ἄρα τῷ ΕΛ ὅμοιόν ἐστιν: περὶ τὴν αὐτὴν ἄρα διάμετρόν ἐστι τὸ ΕΛ τῷ ΜΝ. ἤχθω αὐτῶν διάμετρος ΖΞ, καὶ καταγεγράφθω τὸ σχῆμα.

ἐπεὶ ἴσον ἐστὶ τὸ ΗΘ τοῖς ΕΛ, Γ, ἀλλὰ τὸ ΗΘ τῷ
25ΜΝ ἴσον ἐστίν, καὶ τὸ ΜΝ ἄρα τοῖς ΕΛ, Γ ἴσον ἐστίν. κοινὸν ἀφῃρήσθω τὸ ΕΛ: λοιπὸς ἄρα ΨΧΦ γνώμων τῷ Γ ἐστιν ἴσος. καὶ ἐπεὶ ἴση ἐστὶν ΑΕ τῇ ΕΒ, ἴσον ἐστὶ καὶ τὸ ΑΝ τῷ ΝΒ, τουτέστι τῷ ΛΟ. κοινὸν προσκείσθω τὸ ΕΞ: ὅλον ἄρα τὸ ΑΞ ἴσον ἐστὶ τῷ ΦΧΨ
30γνώμονι. ἀλλὰ ΦΧΨ γνώμων τῷ Γ ἴσος ἐστίν: καὶ τὸ ΑΞ ἄρα τῷ Γ ἴσον ἐστίν.

παρὰ τὴν δοθεῖσαν ἄρα εὐθεῖαν τὴν ΑΒ τῷ δοθέντι εὐθυγράμμῳ τῷ Γ ἴσον παραλληλόγραμμον παραβέβληται τὸ ΑΞ ὑπερβάλλον εἴδει παραλληλογράμμῳ τῷ ΠΟ
35ὁμοίῳ ὄντι τῷ Δ, ἐπεὶ καὶ τῷ ΕΛ ἐστιν ὅμοιον τὸ ΟΠ: ὅπερ ἔδει ποιῆσαι.


τὴν δοθεῖσαν εὐθεῖαν πεπερασμένην ἄκρον καὶ μέσον λόγον τεμεῖν.

ἔστω δοθεῖσα εὐθεῖα πεπερασμένη ΑΒ: δεῖ δὴ τὴν ΑΒ εὐθεῖαν ἄκρον καὶ μέσον λόγον τεμεῖν.
5

Ἀναγεγράφθω ἀπὸ τῆς ΑΒ τετράγωνον τὸ ΒΓ, καὶ παραβεβλήσθω παρὰ τὴν ΑΓ τῇ ΒΓ ἴσον παραλληλόγραμμον τὸ ΓΔ ὑπερβάλλον εἴδει τῷ ΑΔ ὁμοίῳ τῷ ΒΓ.

τετράγωνον δέ ἐστι τὸ ΒΓ: τετράγωνον ἄρα ἐστὶ καὶ
10τὸ ΑΔ. καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΒΓ τῷ ΓΔ, κοινὸν ἀφῃρήσθω τὸ ΓΕ: λοιπὸν ἄρα τὸ ΒΖ λοιπῷ τῷ ΑΔ ἐστιν ἴσον. ἔστι δὲ αὐτῷ καὶ ἰσογώνιον: τῶν ΒΖ, ΑΔ ἄρα ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας: ἔστιν ἄρα ὡς ΖΕ πρὸς τὴν ΕΔ, οὕτως ΑΕ πρὸς τὴν ΕΒ.
15ἴση δὲ μὲν ΖΕ τῇ ΑΒ, δὲ ΕΔ τῇ ΑΕ. ἔστιν ἄρα ὡς ΒΑ πρὸς τὴν ΑΕ, οὕτως ΑΕ πρὸς τὴν ΕΒ. μείζων δὲ ΑΒ τῆς ΑΕ: μείζων ἄρα καὶ ΑΕ τῆς ΕΒ.

ἄρα ΑΒ εὐθεῖα ἄκρον καὶ μέσον λόγον τέτμηται κατὰ τὸ Ε, καὶ τὸ μεῖζον αὐτῆς τμῆμά ἐστι τὸ ΑΕ:
20ὅπερ ἔδει ποιῆσαι.


ἐν τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς εἶδος ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν εἴδεσι τοῖς ὁμοίοις τε καὶ ὁμοίως ἀναγραφομένοις.
5

ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν: λέγω, ὅτι τὸ ἀπὸ τῆς ΒΓ εἶδος ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΒΑ, ΑΓ εἴδεσι τοῖς ὁμοίοις τε καὶ ὁμοίως ἀναγραφομένοις.

ἤχθω κάθετος ΑΔ.
10

ἐπεὶ οὖν ἐν ὀρθογωνίῳ τριγώνῳ τῷ ΑΒΓ ἀπὸ τῆς πρὸς τῷ Α ὀρθῆς γωνίας ἐπὶ τὴν ΒΓ βάσιν κάθετος ἦκται ΑΔ, τὰ ΑΒΔ, ΑΔΓ πρὸς τῇ καθέτῳ τρίγωνα ὅμοιά ἐστι τῷ τε ὅλῳ τῷ ΑΒΓ καὶ ἀλλήλοις. καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓ τῷ ΑΒΔ, ἔστιν ἄρα ὡς ΓΒ πρὸς τὴν ΒΑ,
15οὕτως ΑΒ πρὸς τὴν ΒΔ. καὶ ἐπεὶ τρεῖς εὐθεῖαι ἀνάλογόν εἰσιν, ἔστιν ὡς πρώτη πρὸς τὴν τρίτην, οὕτως τὸ ἀπὸ τῆς πρώτης εἶδος πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον. ὡς ἄρα ΓΒ πρὸς τὴν ΒΔ, οὕτως τὸ ἀπὸ τῆς ΓΒ εἶδος πρὸς τὸ ἀπὸ τῆς ΒΑ
20τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον. διὰ τὰ αὐτὰ δὴ καὶ ὡς ΒΓ πρὸς τὴν ΓΔ, οὕτως τὸ ἀπὸ τῆς ΒΓ εἶδος πρὸς τὸ ἀπὸ τῆς ΓΑ. ὥστε καὶ ὡς ΒΓ πρὸς τὰς ΒΔ, ΔΓ, οὕτως τὸ ἀπὸ τῆς ΒΓ εἶδος πρὸς τὰ ἀπὸ τῶν ΒΑ, ΑΓ τὰ ὅμοια καὶ ὁμοίως ἀναγραφόμενα. ἴση δὲ ΒΓ ταῖς ΒΔ,
25ΔΓ: ἴσον ἄρα καὶ τὸ ἀπὸ τῆς ΒΓ εἶδος τοῖς ἀπὸ τῶν ΒΑ, ΑΓ εἴδεσι τοῖς ὁμοίοις τε καὶ ὁμοίως ἀναγραφομένοις.

ἐν ἄρα τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς εἶδος ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν εἴδεσι
30τοῖς ὁμοίοις τε καὶ ὁμοίως ἀναγραφομένοις: ὅπερ ἔδει δεῖξαι.


ἐὰν δύο τρίγωνα συντεθῇ κατὰ μίαν γωνίαν τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς ἀνάλογον ἔχοντα ὥστε τὰς ὁμολόγους αὐτῶν πλευρὰς καὶ παραλλήλους εἶναι, αἱ λοιπαὶ τῶν τριγώνων πλευραὶ ἐπ᾽ εὐθείας ἔσονται.
5

ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΓΕ τὰς δύο πλευρὰς τὰς ΒΑ, ΑΓ ταῖς δυσὶ πλευραῖς ταῖς ΔΓ, ΔΕ ἀνάλογον ἔχοντα, ὡς μὲν τὴν ΑΒ πρὸς τὴν ΑΓ, οὕτως τὴν ΔΓ πρὸς τὴν ΔΕ, παράλληλον δὲ τὴν μὲν ΑΒ τῇ ΔΓ, τὴν δὲ ΑΓ τῇ ΔΕ: λέγω, ὅτι ἐπ᾽ εὐθείας ἐστὶν ΒΓ τῇ ΓΕ.
10

ἐπεὶ γὰρ παράλληλός ἐστιν ΑΒ τῇ ΔΓ, καὶ εἰς αὐτὰς ἐμπέπτωκεν εὐθεῖα ΑΓ, αἱ ἐναλλὰξ γωνίαι αἱ ὑπὸ ΒΑΓ, ΑΓΔ ἴσαι ἀλλήλαις εἰσίν. διὰ τὰ αὐτὰ δὴ καὶ ὑπὸ ΓΔΕ τῇ ὑπὸ ΑΓΔ ἴση ἐστίν. ὥστε καὶ ὑπὸ ΒΑΓ τῇ ὑπὸ ΓΔΕ ἐστιν ἴση. καὶ ἐπεὶ δύο τρίγωνά ἐστι τὰ ΑΒΓ,
15ΔΓΕ μίαν γωνίαν τὴν πρὸς τῷ Α μιᾷ γωνίᾳ τῇ πρὸς τῷ Δ ἴσην ἔχοντα, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον, ὡς τὴν ΒΑ πρὸς τὴν ΑΓ, οὕτως τὴν ΓΔ πρὸς τὴν ΔΕ, ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΔΓΕ τριγώνῳ: ἴση ἄρα ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΓΕ.
20ἐδείχθη δὲ καὶ ὑπὸ ΑΓΔ τῇ ὑπὸ ΒΑΓ ἴση: ὅλη ἄρα ὑπὸ ΑΓΕ δυσὶ ταῖς ὑπὸ ΑΒΓ, ΒΑΓ ἴση ἐστίν. κοινὴ προσκείσθω ὑπὸ ΑΓΒ: αἱ ἄρα ὑπὸ ΑΓΕ, ΑΓΒ ταῖς ὑπὸ ΒΑΓ, ΑΓΒ, ΓΒΑ ἴσαι εἰσίν. ἀλλ᾽ αἱ ὑπὸ ΒΑΓ, ΑΒΓ, ΑΓΒ δυσὶν ὀρθαῖς ἴσαι εἰσίν: καὶ αἱ ὑπὸ ΑΓΕ,
25ΑΓΒ ἄρα δυσὶν ὀρθαῖς ἴσαι εἰσίν. πρὸς δή τινι εὐθείᾳ τῇ ΑΓ καὶ τῷ πρὸς αὐτῇ σημείῳ τῷ Γ δύο εὐθεῖαι αἱ ΒΓ, ΓΕ μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΓΕ, ΑΓΒ δυσὶν ὀρθαῖς ἴσας ποιοῦσιν: ἐπ᾽ εὐθείας ἄρα ἐστὶν ΒΓ τῇ ΓΕ.
30

ἐὰν ἄρα δύο τρίγωνα συντεθῇ κατὰ μίαν γωνίαν τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς ἀνάλογον ἔχοντα ὥστε τὰς ὁμολόγους αὐτῶν πλευρὰς καὶ παραλλήλους εἶναι, αἱ λοιπαὶ τῶν τριγώνων πλευραὶ ἐπ᾽ εὐθείας ἔσονται: ὅπερ ἔδει δεῖξαι.


ἐν τοῖς ἴσοις κύκλοις αἱ γωνίαι τὸν αὐτὸν ἔχουσι λόγον ταῖς περιφερείαις, ἐφ᾽ ὧν βεβήκασιν, ἐάν τε πρὸς τοῖς κέντροις ἐάν τε πρὸς ταῖς περιφερείαις ὦσι βεβηκυῖαι.

ἔστωσαν ἴσοι κύκλοι οἱ ΑΒΓ, ΔΕΖ, καὶ πρὸς μὲν
5τοῖς κέντροις αὐτῶν τοῖς Η, Θ γωνίαι ἔστωσαν αἱ ὑπὸ ΒΗΓ, ΕΘΖ, πρὸς δὲ ταῖς περιφερείαις αἱ ὑπὸ ΒΑΓ, ΕΔΖ: λέγω, ὅτι ἐστὶν ὡς ΒΓ περιφέρεια πρὸς τὴν ΕΖ περιφέρειαν, οὕτως τε ὑπὸ ΒΗΓ γωνία πρὸς τὴν ὑπὸ ΕΘΖ καὶ ὑπὸ ΒΑΓ πρὸς τὴν ὑπὸ ΕΔΖ.
10

κείσθωσαν γὰρ τῇ μὲν ΒΓ περιφερείᾳ ἴσαι κατὰ τὸ
10ἑξῆς ὁσαιδηποτοῦν αἱ ΓΚ, ΚΛ, τῇ δὲ ΕΖ περιφερείᾳ ἴσαι ὁσαιδηποτοῦν αἱ ΖΜ, ΜΝ, καὶ ἐπεζεύχθωσαν αἱ ΗΚ, ΗΛ, ΘΜ, ΘΝ.

ἐπεὶ οὖν ἴσαι εἰσὶν αἱ ΒΓ, ΓΚ, ΚΛ περιφέρειαι
15ἀλλήλαις, ἴσαι εἰσὶ καὶ αἱ ὑπὸ ΒΗΓ, ΓΗΚ, ΚΗΛ γωνίαι ἀλλήλαις: ὁσαπλασίων ἄρα ἐστὶν ΒΛ περιφέρεια τῆς ΒΓ, τοσαυταπλασίων ἐστὶ καὶ ὑπὸ ΒΗΛ γωνία τῆς ὑπὸ ΒΗΓ. διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ΝΕ περιφέρεια τῆς ΕΖ, τοσαυταπλασίων ἐστὶ
20καὶ ὑπὸ ΝΘΕ γωνία τῆς ὑπὸ ΕΘΖ. εἰ ἄρα ἴση ἐστὶν ΒΛ περιφέρεια τῇ ΕΝ περιφερείᾳ, ἴση ἐστὶ καὶ γωνία ὑπὸ ΒΗΛ τῇ ὑπὸ ΕΘΝ, καὶ εἰ μείζων ἐστὶν ΒΛ περιφέρεια τῆς ΕΝ περιφερείας, μείζων ἐστὶ καὶ ὑπὸ ΒΗΛ γωνία τῆς ὑπὸ ΕΘΝ, καὶ εἰ ἐλάσσων,
25ἐλάσσων. τεσσάρων δὴ ὄντων μεγεθῶν, δύο μὲν περιφερειῶν τῶν ΒΓ, ΕΖ, δύο δὲ γωνιῶν τῶν ὑπὸ ΒΗΓ, ΕΘΖ, εἴληπται τῆς μὲν ΒΓ περιφερείας καὶ τῆς ὑπὸ ΒΗΓ γωνίας ἰσάκις πολλαπλασίων τε ΒΛ περιφέρεια καὶ ὑπὸ ΒΗΛ γωνία, τῆς δὲ ΕΖ περιφερείας καὶ τῆς
30ὑπὸ ΕΘΖ γωνίας τε ΕΝ περιφέρεια καὶ ὑπὸ ΕΘΝ γωνία. καὶ δέδεικται, ὅτι εἰ ὑπερέχει ΒΛ περιφέρεια τῆς ΕΝ περιφερείας, ὑπερέχει καὶ ὑπὸ ΒΗΛ γωνία τῆς ὑπὸ ΕΘΝ γωνίας, καὶ εἰ ἴση, ἴση, καὶ εἰ ἐλάσσων, ἐλάσσων. ἔστιν ἄρα, ὡς ΒΓ περιφέρεια πρὸς τὴν ΕΖ, οὕτως
35ὑπὸ ΒΗΓ γωνία πρὸς τὴν ὑπὸ ΕΘΖ. ἀλλ᾽ ὡς ὑπὸ ΒΗΓ γωνία πρὸς τὴν ὑπὸ ΕΘΖ, οὕτως ὑπὸ ΒΑΓ πρὸς τὴν ὑπὸ ΕΔΖ: διπλασία γὰρ ἑκατέρα ἑκατέρας. καὶ ὡς ἄρα ΒΓ περιφέρεια πρὸς τὴν ΕΖ περιφέρειαν, οὕτως τε ὑπὸ ΒΗΓ γωνία πρὸς τὴν ὑπὸ ΕΘΖ καὶ ὑπὸ
40ΒΑΓ πρὸς τὴν ὑπὸ ΕΔΖ.

ἐν ἄρα τοῖς ἴσοις κύκλοις αἱ γωνίαι τὸν αὐτὸν ἔχουσι λόγον ταῖς περιφερείαις, ἐφ᾽ ὧν βεβήκασιν, ἐάν τε πρὸς τοῖς κέντροις ἐάν τε πρὸς ταῖς περιφερείαις ὦσι βεβηκυῖαι: ὅπερ ἔδει δεῖξαι.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 United States License.

An XML version of this text is available for download, with the additional restriction that you offer Perseus any modifications you make. Perseus provides credit for all accepted changes, storing new additions in a versioning system.

load focus English (Thomas L. Heath, Sir Thomas Little Heath, 1956)
hide References (2 total)
load Vocabulary Tool
hide Display Preferences
Greek Display:
Arabic Display:
View by Default:
Browse Bar: