login
Search: a144048 -id:a144048
     Sort: relevance | references | number | modified | created      Format: long | short | data
Row n=4 of A144048.
+20
2
5, 13, 40, 136, 490, 1828, 6970, 26956, 105250, 413668, 1633450, 6471676, 25703410, 102269908, 407460730, 1625010796, 6485595970, 25899140548, 103467028810, 413479908316, 1652755798930, 6607533265588, 26419666417690, 105647272028236, 422494919768290
OFFSET
0,1
FORMULA
a(n) = 1 + (9*2^(2*n+2) + 9*2^(n+2) + 8*3^(n+1))/24.
From Colin Barker, Mar 08 2017: (Start)
G.f.: (5 - 37*x + 85*x^2 - 59*x^3) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
a(n) = (2 + 3*2^n + 2*3^n + 3*4^n)/2.
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n>3. (End)
MATHEMATICA
LinearRecurrence[{10, -35, 50, -24}, {5, 13, 40, 136}, 30] (* Harvey P. Dale, Aug 09 2023 *)
PROG
(Ruby)
def A283456(n)
(0..n).map{|i| 1 + (9 * 2 ** (2 * i + 2) + 9 * 2 ** (i + 2) + 8 * 3 ** (i + 1)) / 24}
end
(PARI) Vec((5 - 37*x + 85*x^2 - 59*x^3) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Mar 08 2017
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 08 2017
STATUS
approved
Row n=5 of A144048.
+20
2
7, 24, 101, 477, 2411, 12729, 69251, 385017, 2175491, 12444489, 71865251, 418096857, 2446626371, 14383667049, 84875140451, 502327573497, 2980183394051, 17715498038409, 105478120962851, 628846706246937, 3753178627502531, 22420395331846569
OFFSET
0,1
LINKS
FORMULA
a(n) = 1 + (45*2^(2*n+2) + 45*2^(n+2) + 40*3^(n+1) + 5*2^(n+3)*3^(n+1) + 24*5^(n+1))/120.
From Colin Barker, Mar 08 2017: (Start)
G.f.: (7 - 123*x + 822*x^2 - 2589*x^3 + 3797*x^4 - 2034*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)).
a(n) = 1 + 3*2^(n-1) + 3*2^(2*n-1) + 3^n + 5^n + 6^n.
a(n) = 21*a(n-1) - 175*a(n-2) + 735*a(n-3) - 1624*a(n-4) + 1764*a(n-5) - 720*a(n-6) for n>5. (End)
PROG
(Ruby)
def A283457(n)
(0..n).map{|i| 1 + (45 * 2 ** (2 * i + 2) + 45 * 2 ** (i + 2) + 40 * 3 ** (i + 1) + 5 * 2 ** (i + 3) * 3 ** (i + 1) + 24 * 5 ** (i + 1)) / 120}
end
(PARI) Vec((7 - 123*x + 822*x^2 - 2589*x^3 + 3797*x^4 - 2034*x^5) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)) + O(x^30)) \\ Colin Barker, Mar 08 2017
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 08 2017
STATUS
approved
Number of planar partitions (or plane partitions) of n.
(Formerly M2566 N1016)
+10
273
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, 2485, 4167, 6879, 11297, 18334, 29601, 47330, 75278, 118794, 186475, 290783, 451194, 696033, 1068745, 1632658, 2483234, 3759612, 5668963, 8512309, 12733429, 18974973, 28175955, 41691046, 61484961, 90379784, 132441995, 193487501, 281846923
OFFSET
0,3
COMMENTS
Two-dimensional partitions of n in which no row or column is longer than the one before it (compare A001970). E.g., a(4) = 13:
4.31.3.22.2.211.21..2.1111.111.11.11.1 but not 2
.....1....2.....1...1......1...11.1..1........ 11
....................1.............1..1
.....................................1
In the above, one also must require that rows & columns are nondecreasing, e.g., [1,1; 2] is also forbidden (which implies that row and column lengths are nondecreasing, if empty cells are identified with cells filled with 0's). - M. F. Hasler, Sep 22 2018
Can also be regarded as number of "safe pilings" of cubes in the corner of a room: the height should not increase away from the corner. - Wouter Meeussen
Also number of partitions of n objects of 2 colors, each part containing at least one black object; see example. - Christian G. Bower, Jan 08 2004
Number of partitions of n into 1 type of part 1, 2 types of part 2, ..., k types of part k. E.g., n=3 gives 111, 12, 12', 3, 3', 3''. - Jon Perry, May 27 2004
The bijection between the partitions in the two preceding comments goes by identifying a part with k black objects with a part of type k. - David Scambler and Joerg Arndt, May 01 2013
Can also be regarded as the number of Jordan canonical forms for an n X n matrix. (I.e., a 5 X 5 matrix has 24 distinct Jordan canonical forms, dependent on the algebraic and geometric multiplicity of each eigenvalue.) - Aaron Gable (agable(AT)hmc.edu), May 26 2009
(1/n) * convolution product of n terms * A001157 (sum of squares of divisors of n): (1, 5, 10, 21, 26, 50, 50, 85, ...) = a(n). As shown by [Bressoud, p. 12]: 1/6 * [1*24 + 5*13 + 10*6 + 21*3 + 26*1 + 50*1] = 288/6 = 48. - Gary W. Adamson, Jun 13 2009
Convolved with the aerated version (1, 0, 1, 0, 3, 0, 6, 0, 13, ...) = A026007: (1, 1, 2, 5, 8, 16, 28, 49, 83, ...). - Gary W. Adamson, Jun 13 2009
Starting with offset 1 = row sums of triangle A162453. - Gary W. Adamson, Jul 03 2009
Unfortunately, Wright's formula is also incomplete in the paper by G. Almkvist: "Asymptotic formulas and generalized Dedekind sums", p. 344, (the denominator should have sqrt(3*Pi) not sqrt(Pi)). This error was already corrected in the paper by Steven Finch: "Integer Partitions". - Vaclav Kotesovec, Aug 17 2015
Also the number of non-isomorphic weight-n chains of multisets whose dual is also a chain of multisets. The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. The weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Sep 25 2018
REFERENCES
G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 241.
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; pp(n) on p. 10.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575.
L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.6).
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (5.4.5).
P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Royal Soc., 211 (1912), 345-373.
P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - N. J. A. Sloane, May 21 2014
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Suresh Govindarajan, Table of n, a(n) for n = 0..6500 (first 401 terms from T. D. Noe)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
G. E. Andrews and P. Paule, MacMahon's partition analysis XII: Plane Partitions, J. Lond. Math. Soc., 76 (2007), 647-666.
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
Michael Beeler, R. William Gosper and Richard C. Schroeppel, HAKMEM, ITEM 18, Memo AIM-239, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 1972.
Edward A. Bender, Asymptotic methods in enumeration, SIAM Review 16 (1974), no. 4, p. 509.
E. A. Bender and D. E. Knuth, Enumeration of Plane Partitions, J. Combin. Theory A. 13, 40-54, 1972.
S. Benvenuti, B. Feng, A. Hanany and Y. H. He, Counting BPS operators in gauge theories: Quivers, syzygies and plethystics, arXiv:hep-th/0608050, p. 41-42.
D. M. Bressoud and J. Propp, How the alternating sign matrix conjecture was solved, Notices Amer. Math. Soc., 46 (No. 6, 1999), 637-646.
Shouvik Datta, M. R. Gaberdiel, W. Li, and C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016.
Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
Steven Finch, Integer Partitions, September 22, 2004. [Cached copy, with permission of the author]
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 580.
Bernhard Heim, Markus Neuhauser and Robert Tröger, Inequalities for Plane Partitions, arXiv:2109.15145 [math.CO], 2021.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016, p. 18.
D. E. Knuth, A Note on Solid Partitions, Math. Comp. 24, 955-961, 1970.
Oleg Lazarev, Matt Mizuhara and Ben Reid, Some Results in Partitions, Plane Partitions, and Multipartitions, 13 August 2010.
P. A. MacMahon, Combinatory analysis.
J. Mangual, McMahon's Formula via Free Fermions, arXiv preprint arXiv:1210.7109 [math.CO], 2012. - From N. J. A. Sloane, Jan 01 2013
Ville Mustonen and R. Rajesh, Numerical Estimation of the Asymptotic Behaviour of Solid Partitions ..., arXiv:cond-mat/0303607 [cond-mat.stat-mech], 2003.
L. Mutafchiev and E. Kamenov, On The Asymptotic Formula for the Number of Plane Partitions..., arXiv:math/0601253 [math.CO], 2006; C. R. Acad. Bulgare Sci. 59(2006), No. 4, 361-366.
Ken Ono, Sudhir Pujahari and Larry Rolen, Turán inequalities for the plane partition function, arXiv:2201.01352 [math.NT], 2022.
I. Pak, Partition bijections, a survey, Ramanujan J. 12 (2006) 5-75.
A. Rovenchak, Enumeration of plane partitions with a restricted number of parts, arXiv preprint arXiv:1401.4367 [math-ph], 2014.
Raphael Schumacher, The self-counting identity, Fib. Quart., 55 (No. 2 2017), 157-167.
N. J. A. Sloane, Transforms
J. Stienstra, Mahler measure, Eisenstein series and dimers, arXiv:math/0502197 [math.NT], 2005.
Balázs Szendrői, Non-commutative Donaldson-Thomas invariants and the conifold, Geometry & Topology 12.2 (2008): 1171-1202.
Eric Weisstein's World of Mathematics, Plane Partition
E. M. Wright, Rotatable partitions, J. London Math. Soc., 43 (1968), 501-505.
FORMULA
G.f.: Product_{k >= 1} 1/(1 - x^k)^k. - MacMahon, 1912.
Euler transform of sequence [1, 2, 3, ...].
a(n) ~ (c_2 / n^(25/36)) * exp( c_1 * n^(2/3) ), where c_1 = A249387 = 2.00945... and c_2 = A249386 = 0.23151... - Wright, 1931. Corrected Jun 01 2010 by Rod Canfield - see Mutafchiev and Kamenov. The exact value of c_2 is e^(2c)*2^(-11/36)*zeta(3)^(7/36)*(3*Pi)^(-1/2), where c = Integral_{y=0..inf} (y*log(y)/(e^(2*Pi*y)-1))dy = (1/2)*zeta'(-1).
The exact value of c_1 is 3*2^(-2/3)*Zeta(3)^(1/3) = 2.0094456608770137530649... - Vaclav Kotesovec, Sep 14 2014
a(n) = (1/n) * Sum_{k=1..n} a(n-k)*sigma_2(k), n > 0, a(0)=1, where sigma_2(n) = A001157(n) = sum of squares of divisors of n. - Vladeta Jovovic, Jan 20 2002
G.f.: exp(Sum_{n>0} sigma_2(n)*x^n/n). a(n) = Sum_{pi} Product_{i=1..n} binomial(k(i)+i-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Jan 10 2003
From Vaclav Kotesovec, Nov 07 2016: (Start)
More precise asymptotics: a(n) ~ Zeta(3)^(7/36) * exp(3 * Zeta(3)^(1/3) * (n/2)^(2/3) + 1/12) / (A * sqrt(3*Pi) * 2^(11/36) * n^(25/36))
* (1 + c1/n^(2/3) + c2/n^(4/3) + c3/n^2), where
c1 = -0.23994424421250649114273759... = -277/(864*(2*Zeta(3))^(1/3)) - Zeta(3)^(2/3)/(1440*2^(1/3))
c2 = -0.02576771365117401620018082... = 353*Zeta(3)^(1/3)/(248832*2^(2/3)) - 17*Zeta(3)^(4/3)/(3225600*2^(2/3)) - 71575/(1492992*(2*Zeta(3))^(2/3))
c3 = -0.00533195302658826100834286... = -629557/859963392 - 42944125/(7739670528*Zeta(3)) + 14977*Zeta(3)/1114767360 - 22567*Zeta(3)^2/250822656000
and A = A074962 is the Glaisher-Kinkelin constant.
(End)
EXAMPLE
A planar partition of 13:
4 3 1 1
2 1
1
a(5) = (1/5!)*(sigma_2(1)^5+10*sigma_2(2)*sigma_2(1)^3+20*sigma_2(3)*sigma_2(1)^2+ 15*sigma_2(1)*sigma_2(2)^2+30*sigma_2(4)*sigma_2(1)+20*sigma_2(2)*sigma_2(3)+24*sigma_2(5)) = 24. - Vladeta Jovovic, Jan 10 2003
From David Scambler and Joerg Arndt, May 01 2013: (Start)
There are a(4) = 13 partitions of 4 objects of 2 colors ('b' and 'w'), each part containing at least one black object:
1 black part:
[ bwww ]
2 black parts:
[ bbww ]
[ bww, b ]
[ bw, bw ]
3 black parts:
[ bbbw ]
[ bbw, b ]
[ bb, bw ]
(but not: [bw, bb ] )
[ bw, b, b ]
4 black parts:
[ bbbb ]
[ bbb, b ]
[ bb, bb ]
[ bb, b, b ]
[ b, b, b, b ]
(End)
The corresponding partitions of the integer 4 are:
4'''
4''
3'' + 1
2' + 2'
4'
3' + 1
2 + 2'
2' + 1 + 1
4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1. - Geoffrey Critzer, Nov 29 2014
From Gus Wiseman, Sep 25 2018: (Start)
Non-isomorphic representatives of the a(4) = 13 chains of multisets whose dual is also a chain of multisets:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{2},{1,2,2}}
{{3},{1,2,3}}
{{1,1},{1,1}}
{{1,2},{1,2}}
{{1},{1},{1,1}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
(End)
G.f. = 1 + x + 3*x^2 + 6*x^3 + 13*x^4 + 24*x^5 + 48*x^6 + 86*x^7 + 160*x^8 + ...
MAPLE
series(mul((1-x^k)^(-k), k=1..64), x, 63);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Aug 17 2015
MATHEMATICA
CoefficientList[Series[Product[(1 - x^k)^-k, {k, 64}], {x, 0, 64}], x]
Zeta[3]^(7/36)/2^(11/36)/Sqrt[3 Pi]/Glaisher E^(3 Zeta[3]^(1/3) (n/2)^(2/3) + 1/12)/n^(25/36) (* asymptotic formula after Wright; Vaclav Kotesovec, Jun 23 2014 *)
a[0] = 1; a[n_] := a[n] = Sum[a[n - j] DivisorSigma[2, j], {j, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
CoefficientList[Series[Exp[Sum[DivisorSigma[2, n] x^n/n, {n, 50}]], {x, 0, 50}], x] (* Eric W. Weisstein, Feb 01 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, x^k / (1 - x^k)^2 / k, x * O(x^n))), n))}; /* Michael Somos, Jan 29 2005 */
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^-k), n))}; /* Michael Somos, Jan 29 2005 */
(PARI) my(N=66, x='x+O('x^N)); Vec( prod(n=1, N, (1-x^n)^-n) ) \\ Joerg Arndt, Mar 25 2014
(PARI) A000219(n)=#PlanePartitions(n) \\ See A091298 for PlanePartitions(). For illustrative use: much slower than the above. - M. F. Hasler, Sep 24 2018
(Python)
from sympy import cacheit
from sympy.ntheory import divisor_sigma
@cacheit
def A000219(n):
if n <= 1:
return 1
return sum(A000219(n - k) * divisor_sigma(k, 2) for k in range(1, n + 1)) // n
print([A000219(n) for n in range(20)])
# R. J. Mathar, Oct 18 2009
(Julia)
using Nemo, Memoize
@memoize function a(n)
if n == 0 return 1 end
s = sum(a(n - j) * divisor_sigma(j, 2) for j in 1:n)
return div(s, n)
end
[a(n) for n in 0:20] # Peter Luschny, May 03 2020
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: n)
print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020
CROSSREFS
Differences: A191659, A191660, A191661.
Row sums of A089353 and A091438 and A091298.
Column k=1 of A144048. - Alois P. Heinz, Nov 02 2012
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).
KEYWORD
nonn,nice,easy,core
EXTENSIONS
Corrected by N. J. A. Sloane, Jul 29 2006
Minor edits by Vaclav Kotesovec, Oct 27 2014
STATUS
approved
Expansion of Product_{k>=1} (1 - x^k)^(-k^2).
+10
28
1, 1, 5, 14, 40, 101, 266, 649, 1593, 3765, 8813, 20168, 45649, 101591, 223654, 486046, 1045541, 2225167, 4692421, 9804734, 20318249, 41766843, 85218989, 172628766, 347338117, 694330731, 1379437080, 2724353422, 5350185097, 10449901555, 20304465729, 39254599832
OFFSET
0,3
COMMENTS
In general, if g.f. = Product_{k>=1} 1/(1 - x^k)^(c2*k^2 + c1*k + c0) and c2 > 0, then a(n) ~ exp(4*Pi * c2^(1/4) * n^(3/4) / (3*15^(1/4)) + c1*Zeta(3) / Pi^2 * sqrt(15*n/c2) + (Pi * 5^(1/4) * c0 / (2*3^(3/4) * c2^(1/4)) - 15^(5/4) * c1^2 * Zeta(3)^2 / (2*c2^(5/4) * Pi^5)) * n^(1/4) + c1/12 + 75 * c1^3 * Zeta(3)^3 / (c2^2 * Pi^8) - 5*c0 * c1 * Zeta(3) / (4*c2 * Pi^2) - c2*Zeta(3) / (4*Pi^2)) * Pi^(c1/12) * (c2/15)^(1/8 + c0/8 + c1/48) / (A^c1 * 2^((c0 + 3)/2) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from Alois P. Heinz)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
FORMULA
a(n) = 1/n*Sum_{k=1..n} a(n-k)*sigma_3(k), n > 0, a(0)=1, where sigma_3(n) = A001158(n) = sum of cubes of divisors of n. - Vladeta Jovovic, Jan 20 2002
G.f.: Prod_{n>=1} exp(sigma_3(n)*x^n/n), where sigma_3(n) is the sum of cubes of divisors of n (=A001158(n)). - N-E. Fahssi, Mar 28 2010
G.f. (conjectured): 1/prod(n>=1, E(x^n)^J2(n))) where E(x) = prod(n>=1,1-x^n) and J2(n) = A007434(n). - Joerg Arndt, Jan 25 2011
a(n) ~ exp(4 * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - Zeta(3) / (4*Pi^2)) / (2^(3/2) * 15^(1/8) * n^(5/8)), where Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 27 2015
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^2, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
max = 31; Series[ Product[ 1/(1-x^k)^k^2, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^2)) \\ G. C. Greubel, Oct 29 2018
(Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^2: k in [1..m]]) )); // G. C. Greubel, Oct 29 2018
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: n^2)
print([b(n) for n in range(32)]) # Peter Luschny, Nov 11 2020
CROSSREFS
Euler transform of squares (A000290).
Column k=2 of A144048. - Alois P. Heinz, Nov 02 2012
KEYWORD
nonn
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006
STATUS
approved
Expansion of Product_{k>=1} (1 - x^k)^(-k^3).
+10
20
1, 1, 9, 36, 136, 477, 1703, 5746, 19099, 61622, 195366, 607069, 1856516, 5586870, 16579850, 48549116, 140438966, 401592524, 1136121837, 3181700219, 8825733603, 24261363403, 66124058839, 178757752892, 479513547399, 1276792213203, 3375707760306, 8864712158225
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..5422 (first 1001 terms from Alois P. Heinz)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
FORMULA
a(n) ~ (3*Zeta(5))^(59/600) * exp(5 * n^(4/5) * (3*Zeta(5))^(1/5) / 2^(7/5) + Zeta'(-3)) / (2^(41/200) * n^(359/600) * sqrt(5*Pi)), where Zeta(5) = A013663 = 1.036927755143369926..., Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4 = 0.00537857635777430114441697421... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_4(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_4(k)*a(n-k). - Seiichi Manyama, Mar 04 2017
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^3, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
max = 27; Series[ Product[ 1/(1-x^k)^k^3, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^3)) \\ G. C. Greubel, Oct 30 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^3: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
(SageMath) # uses[EulerTransform from A166861]
b = EulerTransform(lambda n: n^3)
print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020
CROSSREFS
Column k=3 of A144048.
KEYWORD
nonn
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006
STATUS
approved
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is expansion of Product_{j>=1} (1-x^j)^(j^k) in power of x.
+10
15
1, 1, -1, 1, -1, -1, 1, -1, -2, 0, 1, -1, -4, -1, 0, 1, -1, -8, -5, 0, 1, 1, -1, -16, -19, -1, 4, 0, 1, -1, -32, -65, -9, 21, 4, 1, 1, -1, -64, -211, -55, 127, 49, 7, 0, 1, -1, -128, -665, -285, 807, 500, 81, 3, 0, 1, -1, -256, -2059, -1351, 5179, 4809, 1038, 45
OFFSET
0,9
LINKS
FORMULA
G.f. of column k: Product_{j>=1} (1-x^j)^(j^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
-1, -2, -4, -8, -16, -32, ...
0, -1, -5, -19, -65, -211, ...
0, 0, -1, -9, -55, -285, ...
1, 4, 21, 127, 807, 5179, ...
CROSSREFS
Row k=5 gives A281581.
Main diagonal gives A283333.
Cf. A144048.
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 04 2017
STATUS
approved
a(n) = n-th term of Euler transform of n-th powers.
+10
12
1, 1, 5, 36, 490, 12729, 689896, 70223666, 13803604854, 5567490203192, 4386006155453382, 6711625359213752077, 21048250447828058144403, 131214686495783317936950378, 1603891839732647136012816743764, 40296598014204065945778862754895836
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] Product_{j>=1} 1/(1-x^j)^(j^n).
Conjecture: limit n->infinity a(n)^(1/n^2) = exp(exp(-1)) = 1.444667861... . - Vaclav Kotesovec, Mar 25 2016
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*d^k, d=divisors(j))*A(n-j, k), j=1..n)/n)
end:
a:= n-> A(n$2):
seq(a(n), n=0..20);
MATHEMATICA
Table[SeriesCoefficient[Product[1/(1-x^k)^(k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 01 2015 *)
CROSSREFS
Main diagonal of A144048.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 21 2014
STATUS
approved
Expansion of Product_{k>=1} (1 - x^k)^(-k^9).
+10
7
1, 1, 513, 20196, 413668, 12444489, 372960863, 9158023846, 223763768245, 5567490203192, 132000248840652, 3018181447183141, 68165389692659690, 1512302997486058542, 32793035921825542778, 698432551205542941608, 14654522099892985823429, 302753023792981375706399
OFFSET
0,3
COMMENTS
In general, column m > 0 of A144048 is asymptotic to (Gamma(m+2)*Zeta(m+2))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * (Gamma(m+2)*Zeta(m+2))^(1/(m+2)) * n^((m+1)/(m+2)) + Zeta'(-m)) / (sqrt(2*Pi*(m+2)) * n^((m+3-2*Zeta(-m))/(2*m+4))). - Vaclav Kotesovec, Mar 01 2015
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..995 (first 301 terms from Alois P. Heinz)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
FORMULA
a(n) ~ 3^(67/363) * 5^(67/726) * (7*Zeta(11))^(67/1452) * exp(11 * 3^(4/11) * n^(10/11) * (7*Zeta(11))^(1/11) / (2^(3/11) * 5^(9/11)) + Zeta'(-9)) / (2^(95/726) * sqrt(11*Pi) * n^(793/1452)), where Zeta(11) = A013669 = 1.00049418860411946..., Zeta'(-9) = (5*(7129/2520 - gamma - log(2*Pi))/66 + 14175*Zeta'(10) / (2*Pi^10))/10 = 0.00313014531978857275492576829... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_10(n)*x^n/n ). - Seiichi Manyama, Mar 05 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_10(k)*a(n-k). - Seiichi Manyama, Mar 05 2017
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^9, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
nmax=30; CoefficientList[Series[Product[1/(1-x^k)^(k^9), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 01 2015 *)
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^9)) \\ G. C. Greubel, Oct 31 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^9: k in [1..m]]) )); // G. C. Greubel, Oct 3012018
CROSSREFS
Column k=9 of A144048. - Alois P. Heinz, Nov 02 2012
KEYWORD
nonn
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006
STATUS
approved
Expansion of Product_{k>=1} (1 - x^k)^(-k^4).
+10
6
1, 1, 17, 98, 490, 2411, 11940, 56093, 256274, 1140980, 4977222, 21273772, 89281011, 368408970, 1496993290, 5996312751, 23700208290, 92510062036, 356887002352, 1361671469470, 5141380256124, 19221678032134, 71190778935805, 261320839754142, 951091521384860
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..3339 (first 801 terms from Alois P. Heinz)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
FORMULA
a(n) ~ exp(Pi * 2^(3/2) * 3^(2/3) * n^(5/6) / (5 * 7^(1/6)) + 3*Zeta(5) / (4*Pi^4)) / (2^(3/4) * 3^(2/3) * 7^(1/12) * n^(7/12)), where Zeta(5) = A013663 = 1.036927755143369926... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_5(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_5(k)*a(n-k). - Seiichi Manyama, Mar 04 2017
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^4, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
max = 27; Series[ Product[1/(1 - x^k)^k^4, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^4)) \\ G. C. Greubel, Oct 30 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^4: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
CROSSREFS
Column k=4 of A144048.
KEYWORD
nonn
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006
STATUS
approved
Expansion of Product_{k>=1} (1 - x^k)^(-k^5).
+10
6
1, 1, 33, 276, 1828, 12729, 88903, 582846, 3690325, 22864592, 138658796, 822374485, 4781447342, 27314310586, 153519181630, 849786024496, 4637270263913, 24970548655999, 132788838463944, 697863705334941, 3626864249759775, 18650694625385462, 94948991121030892
OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..2338 (first 601 terms from Alois P. Heinz)
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.
FORMULA
a(n) ~ 3^(127/882) * (5*Zeta(7))^(127/1764) * exp(7 * n^(6/7) * (5*Zeta(7))^(1/7) / (2^(3/7) * 3^(5/7)) + Zeta'(-5)) / (2^(187/882) * n^(1009/1764) * sqrt(7*Pi)), where Zeta(7) = A013665 = 1.008349277381922826..., Zeta'(-5) = ((137/60 - gamma - log(2*Pi))/42 + 45*Zeta'(6) / (2*Pi^6))/6 = -0.0005729859801986352... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_6(n)*x^n/n ). - Seiichi Manyama, Mar 05 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_6(k)*a(n-k). - Seiichi Manyama, Mar 05 2017
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*d^5, d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 02 2012
MATHEMATICA
max = 22; Series[ Product[1/(1 - x^k)^k^5, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^5)) \\ G. C. Greubel, Oct 30 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^5: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
CROSSREFS
Column k=5 of A144048.
KEYWORD
nonn
EXTENSIONS
Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006
STATUS
approved

Search completed in 0.014 seconds