login
Search: a106315 -id:a106315
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A106315(A005940(1+n)).
+20
9
0, 1, 2, 5, 4, 0, 1, 2, 6, 4, 12, 16, 13, 30, 28, 18, 10, 8, 20, 36, 44, 24, 36, 12, 33, 21, 78, 51, 32, 72, 42, 3, 12, 16, 36, 0, 4, 48, 66, 50, 20, 128, 72, 48, 58, 144, 120, 108, 97, 75, 198, 32, 102, 312, 10, 84, 172, 128, 504, 176, 1, 168, 2, 67, 16, 20, 44, 12, 8, 96, 126, 88, 28, 16, 168, 112, 162, 264, 232, 56, 68, 80, 312, 0, 200, 480, 36, 120
OFFSET
0,3
FORMULA
a(n) = A106315(A005940(1+n)).
a(n) = A005940(1+n)*A106737(n) mod A324054(n).
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
A106315(n) = (n*numdiv(n) % sigma(n));
A324057(n) = A106315(A005940(1+n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 14 2019
STATUS
approved
a(n) = A106315(A163511(n)).
+20
7
0, 1, 5, 2, 2, 1, 0, 4, 18, 28, 30, 13, 16, 12, 4, 6, 3, 42, 72, 32, 51, 78, 21, 33, 12, 36, 24, 44, 36, 20, 8, 10, 67, 2, 168, 1, 176, 504, 128, 172, 84, 10, 312, 102, 32, 198, 75, 97, 108, 120, 144, 58, 48, 72, 128, 20, 50, 66, 48, 4, 0, 36, 16, 12, 4, 731, 372, 3126, 625, 6, 785, 801, 456, 1332, 768, 1720, 540, 232, 688, 932, 145, 660
OFFSET
0,3
FORMULA
a(n) = A106315(A163511(n)) = (A163511(n)*A324183(n)) mod A324184(n).
For n > 0, a(n) = A324057(A054429(n)).
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
(PARI)
A324183(n) = if(!n, 1, n = ((3<<#binary(n\2))-n-1); my(e=0, m=1); while(n>0, if(!(n%2), m *= (1+e); e=0, e++); n >>= 1); (m*(1+e)));
A324184(n) = if(!n, 1, my(p=2, mp=p*p, m=1); while(n>1, if(n%2, p=nextprime(1+p); mp = p*p, if((2==n)||!(n%4), mp *= p, m *= (mp-1)/(p-1))); n >>= 1); (m*(mp-1)/(p-1)));
A324187(n) = ((A163511(n)*A324183(n))%A324184(n));
CROSSREFS
Cf. A324199 (positions of zeros).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 17 2019
STATUS
approved
a(n) = A106315(A156552(n)).
+20
6
0, 1, 2, 5, 4, 2, 6, 0, 1, 18, 10, 3, 16, 4, 12, 67, 12, 4, 18, 30, 36, 260, 22, 16, 8, 8, 44, 5, 20, 1029, 30, 28, 164, 36, 28, 6, 256, 96, 44, 4102, 36, 7, 66, 16, 104, 16391, 46, 12, 13, 32, 130, 8, 28, 51, 70, 480, 942, 65544, 42, 9, 2724, 32, 66, 30, 84, 262153, 124, 508, 40, 10, 4, 1048586, 3320, 20, 188, 50, 52, 11, 78, 24
OFFSET
2,3
COMMENTS
Positions of zeros, which is sequence A005940(1+A001599(n)) sorted into ascending order: 2, 9, 125, 325, 351, 4199, ..., has A324201 as its subsequence.
FORMULA
a(n) = A106315(A156552(n)).
a(n) = (A156552(n)*A324105(n)) mod A323243(n).
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 19 2019
STATUS
approved
Unary-encoded compressed factorization of natural numbers.
+10
372
0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
OFFSET
1,3
COMMENTS
The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017
FORMULA
From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)
EXAMPLE
For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 = 75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
MATHEMATICA
Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
PROG
(Perl)
# Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
# However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
# Note that the correct answer for n=137 is A156552(137) = 4294967296.
$max = $ARGV[0];
$pow = 0;
foreach $i (2..$max) {
@a = split(/ /, `factor $i`);
shift @a;
$shift = 0;
$cur = 0;
while ($n = int shift @a) {
$prime{$n} = 1 << $pow++ if !defined($prime{$n});
$cur |= $prime{$n} << $shift++;
}
print "$cur, ";
}
print "\n";
(Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
(definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
(definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
;; Antti Karttunen, Jun 26 2014
(PARI) a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
(Python)
from sympy import primepi, factorint
def A156552(n): return sum((1<<primepi(p)-1)<<i for i, p in enumerate(factorint(n, multiple=True))) # Chai Wah Wu, Mar 10 2023
CROSSREFS
One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.
KEYWORD
easy,base,nonn
AUTHOR
Leonid Broukhis, Feb 09 2009
EXTENSIONS
More terms from Antti Karttunen, Jun 28 2014
STATUS
approved
Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.
(Formerly M4185 N1743)
+10
114
1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
OFFSET
1,2
COMMENTS
Note that the harmonic mean of the divisors of k = k*tau(k)/sigma(k).
Equivalently, k*tau(k)/sigma(k) is an integer, where tau(k) (A000005) is the number of divisors of k and sigma(k) is the sum of the divisors of k (A000203).
Equivalently, the average of the divisors of k divides k.
Note that the average of the divisors of k is not necessarily an integer, so the above wording should be clarified as follows: k divided by the average is an integer. See A007340. - Thomas Ordowski, Oct 26 2014
Ore showed that every perfect number (A000396) is harmonic. The converse does not hold: 140 is harmonic but not perfect. Ore conjectured that 1 is the only odd harmonic number.
Other examples of power mean numbers k such that some power mean of the divisors of k is an integer are the RMS numbers A140480. - Ctibor O. Zizka, Sep 20 2008
Conjecture: Every harmonic number is practical (A005153). I've verified this refinement of Ore's conjecture for all terms less than 10^14. - Jaycob Coleman, Oct 12 2013
Conjecture: All terms > 1 are Zumkeller numbers (A083207). Verified for all n <= 50. - Ivan N. Ianakiev, Nov 22 2017
Verified for n <= 937. - David A. Corneth, Jun 07 2020
Kanold (1957) proved that the asymptotic density of the harmonic numbers is 0. - Amiram Eldar, Jun 01 2020
Zachariou and Zachariou (1972) called these numbers "Ore numbers", after the Norwegian mathematician Øystein Ore (1899 - 1968), who was the first to study them. Ore (1948) and Garcia (1954) referred to them as "numbers with integral harmonic mean of divisors". The term "harmonic numbers" was used by Pomerance (1973). They are sometimes called "harmonic divisor numbers", or "Ore's harmonic numbers", to differentiate them from the partial sums of the harmonic series. - Amiram Eldar, Dec 04 2020
Conjecture: all terms > 1 have a Mersenne prime as a factor. - Ivan Borysiuk, Jan 28 2024
REFERENCES
G. L. Cohen and Deng Moujie, On a generalization of Ore's harmonic numbers, Nieuw Arch. Wisk. (4), 16 (1998) 161-172.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142-146.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..937 (terms n = 1..170 from T. D. Noe and Klaus Brockhaus)
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, The Biharmonic mean, arXiv:1601.03081 [math.NT], 2016.
Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
Graeme L. Cohen, Numbers whose positive divisors have small integral harmonic mean, Mathematics of Computation, Vol. 66, No. 218, (1997), pp. 883-891.
Graeme L. Cohen and Ronald M. Sorli, Harmonic seeds, Fibonacci Quart., Vol. 36, No. 5 (1998), pp. 386-390; errata, 39 (2001) 4.
Graeme L. Cohen and Ronald M. Sorli, Odd harmonic numbers exceed 10^24, Math. Comp., Vol. 79, No. 272 (2010), pp. 2451-2460.
Mariano Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly, Vol. 61, No. 2 (1954), pp. 89-96.
T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput., Vol. 73, No. 245 (2004), pp. 475-491.
Hans-Joachim Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., Vol. 133 (1957), pp. 371-374.
Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, Vol. 55, No. 10 (1948), pp. 615-619.
Oystein Ore, On the averages of the divisors of a number. (annotated scanned copy)
Carl Pomerance, On a Problem of Ore: Harmonic Numbers, unpublished manuscript, 1973; abstract *709-A5, Notices of the American Mathematical Society, Vol. 20, 1973, page A-648, entire volume.
Eric Weisstein's World of Mathematics, Harmonic Mean.
Eric Weisstein's World of Mathematics, Harmonic Divisor Number.
Wikipedia, Harmonic mean.
Andreas and Eleni Zachariou, Perfect, semi-perfect and Ore numbers, Bull. Soc. Math. Grèce (New Ser.), Vol. 13, No. 13A (1972), pp. 12-22; alternative link.
FORMULA
{ k : A106315(k) = 0 }. - R. J. Mathar, Jan 25 2017
EXAMPLE
k=140 has sigma_0(140)=12 divisors with sigma_1(140)=336. The average divisor is 336/12=28, an integer, and divides k: k=5*28, so 140 is in the sequence.
k=496 has sigma_0(496)=10, sigma_1(496)=992: the average divisor 99.2 is not an integer, but k/(sigma_1/sigma_0)=496/99.2=5 is an integer, so 496 is in the sequence.
MAPLE
q:= (p, k) -> p^k*(p-1)*(k+1)/(p^(k+1)-1):
filter:= proc(n) local t; mul(q(op(t)), t=ifactors(n)[2])::integer end proc:
select(filter, [$1..10^6]); # Robert Israel, Jan 14 2016
MATHEMATICA
Do[ If[ IntegerQ[ n*DivisorSigma[0, n]/ DivisorSigma[1, n]], Print[n]], {n, 1, 1550000}]
Select[Range[1600000], IntegerQ[HarmonicMean[Divisors[#]]]&] (* Harvey P. Dale, Oct 20 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, n=a(n-1); until(0==(sigma(n, 0)*n)%sigma(n, 1), n++); n) /* Michael Somos, Feb 06 2004 */
(Haskell)
import Data.Ratio (denominator)
import Data.List (genericLength)
a001599 n = a001599_list !! (n-1)
a001599_list = filter ((== 1) . denominator . hm) [1..] where
hm x = genericLength ds * recip (sum $ map (recip . fromIntegral) ds)
where ds = a027750_row x
-- Reinhard Zumkeller, Jun 04 2013, Jan 20 2012
(GAP) Concatenation([1], Filtered([2, 4..2000000], n->IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
(Python)
from sympy import divisor_sigma as sigma
def ok(n): return (n*sigma(n, 0))%sigma(n, 1) == 0
print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
(Python)
from itertools import count, islice
from functools import reduce
from math import prod
from sympy import factorint
def A001599_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue, 1)):
f = factorint(n)
s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
if not reduce(lambda x, y:x*y%s, (e+1 for e in f.values()), 1)*n%s:
yield n
A001599_list = list(islice(A001599_gen(), 20)) # Chai Wah Wu, Feb 14 2023
CROSSREFS
See A003601 for analogs referring to arithmetic mean and A000290 for geometric mean of divisors.
See A001600 and A090240 for the integer values obtained.
sigma_0(n) (or tau(n)) is the number of divisors of n (A000005).
sigma_1(n) (or sigma(n)) is the sum of the divisors of n (A000203).
Cf. A007340, A090945, A035527, A007691, A074247, A053783. Not a subset of A003601.
Cf. A027750.
KEYWORD
nonn,nice
EXTENSIONS
More terms from Klaus Brockhaus, Sep 18 2001
STATUS
approved
a(n) = n*d(n), where d(n) = number of divisors of n (A000005).
+10
109
1, 4, 6, 12, 10, 24, 14, 32, 27, 40, 22, 72, 26, 56, 60, 80, 34, 108, 38, 120, 84, 88, 46, 192, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 324, 74, 152, 156, 320, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, 204, 312, 106, 432, 220, 448, 228, 232, 118
OFFSET
1,2
COMMENTS
Dirichlet convolution of sigma(n) (A000203) with phi(n) (A000010). - Michael Somos, Jun 08 2000
Dirichlet convolution of f(n)=n with itself. See the Apostol reference for Dirichlet convolutions. - Wolfdieter Lang, Sep 09 2008
Sum of all parts of all partitions of n into equal parts. - Omar E. Pol, Jan 18 2013
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 29 ff.
LINKS
J. Bourgain, S. V. Konyagin and I. E. Shparlinski, Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithms, Int. Math. Res. Notices, 2008 (2008), Art. ID rnn 090, 1-29.
Jean Bourgain, Sergei Konyagin and Igor Shparlinski. Distribution on elements of cosets of small subgroups and applications, arXiv:1103.0567 [math.NT], Mar 2 2011.
Mikhail R. Gabdullin and Vitalii V. Iudelevich, Numbers of the form kf(k), arXiv:2201.09287 [math.NT] (2022).
Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147. [Broken link?]
Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147.
FORMULA
Dirichlet g.f.: zeta(s-1)^2.
G.f.: Sum_{n>=1} n*x^n/(1-x^n)^2. - Vladeta Jovovic, Dec 30 2001
Sum_{k=1..n} sigma(gcd(n, k)). Multiplicative with a(p^e) = (e+1)*p^e. - Vladeta Jovovic, Oct 30 2001
Equals A127648 * A127093 * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
Equals row sums of triangle A127528. - Gary W. Adamson, May 21 2007
a(n) = n*A000005(n) = A066186(n) - n*(A000041(n) - A000005(n)) = A066186(n) - n*A144300(n). - Omar E. Pol, Jan 18 2013
a(n) = A000203(n) * A240471(n) + A106315(n). - Reinhard Zumkeller, Apr 06 2014
L.g.f.: Sum_{k>=1} x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
a(n) = Sum_{d|n} A018804(d). - Amiram Eldar, Jun 23 2020
a(n) = Sum_{d|n} phi(d)*sigma(n/d). - Ridouane Oudra, Jan 21 2021
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 + 2*n*q^n - n^2*q^(2*n))/(1 - q^n)^2. - Peter Bala, Jan 22 2021
a(n) = Sum_{k=1..n} sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/sqrt(log x). That is, there are 0 < A < B such that Ax/sqrt(log x) < f(x) < Bx/sqrt(log x). - Charles R Greathouse IV, Mar 15 2022
Sum_{k=1..n} a(k) ~ n^2*log(n)/2 + (gamma - 1/4)*n^2, where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 25 2022
Mobius transform of A060640. - R. J. Mathar, Feb 07 2023
EXAMPLE
For n = 6 the partitions of 6 into equal parts are [6], [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The sum of all parts is 6 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 24 equalling 6 times the number of divisors of 6, so a(6) = 24. - Omar E. Pol, May 08 2021
MAPLE
with(numtheory): A038040 := n->tau(n)*n;
MATHEMATICA
a[n_] := DivisorSigma[0, n]*n; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-p*X)^2)[n])
(PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, k*x^k/(x^k-1)^2, x*O(x^n)), n)) /* Michael Somos, Jan 29 2005 */
(PARI) a(n) = n*numdiv(n); \\ Michel Marcus, Oct 24 2020
(MuPAD) n*numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
(Haskell)
a038040 n = a000005 n * n -- Reinhard Zumkeller, Jan 21 2014
(Python)
from sympy import divisor_count as d
def a(n): return n*d(n)
print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Mar 15 2022
CROSSREFS
Cf. A038044, A143127 (partial sums), A328722 (Dirichlet inverse).
Column 1 of A329323.
KEYWORD
nonn,easy,mult
STATUS
approved
a(n) = gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).
+10
10
1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 8, 12, 1, 2, 3, 2, 6, 4, 4, 2, 12, 1, 2, 4, 56, 2, 24, 2, 3, 12, 2, 4, 1, 2, 4, 4, 10, 2, 48, 2, 12, 6, 8, 2, 4, 3, 3, 12, 2, 2, 24, 4, 8, 4, 2, 2, 24, 2, 8, 2, 1, 4, 48, 2, 6, 12, 16, 2, 3, 2, 2, 2, 4, 4, 24, 2, 2, 1, 2, 2, 112, 4, 4, 12, 4, 2, 18, 28, 24, 4, 8, 20, 36, 2, 3, 6, 1, 2, 24, 2, 2, 24
OFFSET
1,3
COMMENTS
Records 1, 2, 12, 56, 112, 120, 336, 720, 992, 2016, 4368, 8640, 14880, 16256, 26208, 59520, 78624, 120960, 131040, 191520, 227584, 297600, ... occur at positions: 1, 3, 6, 28, 84, 120, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 27846, 30240, 32760, 55860, 105664, 117800, ... . Note that A001599 is not a subsequence of the latter, as at least 18620 (present in A001599) is missing.
FORMULA
a(n) = gcd(A000203(n), A038040(n)).
a(n) = A324058(A156552(n)).
MATHEMATICA
Table[GCD[n DivisorSigma[0, n], DivisorSigma[1, n]], {n, 120}] (* Harvey P. Dale, Feb 17 2023 *)
PROG
(PARI) A324121(n) = gcd(sigma(n), n*numdiv(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 2019
STATUS
approved
Remainder of the harmonic residue of n when divided by n.
+10
8
0, 1, 2, 1, 4, 0, 6, 2, 1, 4, 10, 4, 12, 8, 12, 2, 16, 12, 18, 16, 20, 16, 22, 12, 13, 20, 1, 0, 28, 24, 30, 3, 3, 28, 9, 15, 36, 32, 5, 10, 40, 6, 42, 12, 36, 40, 46, 12, 33, 21, 9, 18, 52, 18, 4, 32, 11, 52, 58, 48, 60, 56, 3, 3, 8, 30, 66, 30, 15, 58, 70, 12, 72, 68, 3, 36, 20, 42
OFFSET
1,3
MAPLE
A106316 := proc(n)
modp(A106315(n), n) ;
end proc:
seq(A106316(n), n=1..100) ; # R. J. Mathar, Jan 25 2017
MATHEMATICA
RemainderOfHarmonicResidue[n_]=Mod[Mod[n*DivisorSigma[0, n], DivisorSigma[1, n]], n]
CROSSREFS
KEYWORD
nonn
AUTHOR
George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005
STATUS
approved
Integer part of (n * A000005(n) / A000203(n)).
+10
5
1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 3, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 3, 3, 3, 2, 2, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 3, 3, 1, 4, 3, 2, 1, 4, 3, 2
OFFSET
1,6
LINKS
FORMULA
a(n) = (A038040(n) - A106315(n)) / A000203(n);
a(A046022(n)) = 1.
PROG
(Haskell) a240471 n = n * a000005 n `div` a000203 n
(PARI) a(n) = n*numdiv(n)\sigma(n); \\ Michel Marcus, Dec 02 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 06 2014
STATUS
approved
a(n) = A000010(n) - A106316(n).
+10
5
1, 0, 0, 1, 0, 2, 0, 2, 5, 0, 0, 0, 0, -2, -4, 6, 0, -6, 0, -8, -8, -6, 0, -4, 7, -8, 17, 12, 0, -16, 0, 13, 17, -12, 15, -3, 0, -14, 19, 6, 0, 6, 0, 8, -12, -18, 0, 4, 9, -1, 23, 6, 0, 0, 36, -8, 25, -24, 0, -32, 0, -26, 33, 29, 40, -10, 0, 2, 29, -34, 0, 12, 0, -32, 37, 0, 40, -18, 0, -24, 12, -36, 0, -4, 48, -38, 35, -36, 0, -30, 44, -4, 37, -42, 52, -16, 0
OFFSET
1,6
LINKS
FORMULA
a(n) = A000010(n) - A106316(n).
PROG
(PARI)
A106315(n) = (n*numdiv(n) % sigma(n));
A106316(n) = (A106315(n) % n);
A324045(n) = (eulerphi(n) - A106316(n));
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 13 2019
STATUS
approved

Search completed in 0.013 seconds