login
Search: a069482 -id:a069482
     Sort: relevance | references | number | modified | created      Format: long | short | data
Areas of Pythagorean triangles (A069482, A069484, A069486).
+20
4
30, 240, 840, 5544, 6864, 26520, 23256, 73416, 208104, 107880, 467976, 473304, 296184, 727560, 1494600, 2101344, 863760, 3138816, 2625864, 1492704, 5259504, 4248936, 7623384, 12845904, 7759224, 4244424
OFFSET
1,1
LINKS
César Aguilera, Two Prime Number Objects and The Velucchi Numbers, hal-02909691 [math.NT], 2020.
FORMULA
a(n) = A030078(n+1)*A000040(n) - A000040(n+1)*A030078(n).
a(n) = A000040(n+1)^3*A000040(n) - A000040(n+1)*A000040(n)^3.
a(n) = A000040(n)*A127917(n+1) - A127917(n)*A000040(n+1). - César Aguilera, Sep 18 2019
EXAMPLE
prime(2)^3 * prime(1) - prime(1)^3 * prime(2) = 3^3 * 2 - 2^3 * 3 = 54 - 24 = 30 that is the area of the Pythagorean triangle (5, 12, 13), so a(1) = 30. - Bernard Schott, Sep 23 2019
PROG
(Magma) [NthPrime(n+1)^3*NthPrime(n)-NthPrime(n+1)*(NthPrime(n)^3):n in [1..26]]; // Marius A. Burtea, Sep 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 29 2002
STATUS
approved
Square root of largest square dividing A069482(n).
+20
0
1, 4, 2, 6, 4, 2, 6, 2, 2, 2, 2, 2, 2, 6, 10, 4, 4, 16, 2, 12, 4, 18, 2, 4, 6, 2, 2, 12, 2, 4, 2, 2, 2, 24, 10, 2, 8, 2, 2, 8, 12, 2, 16, 2, 6, 2, 2, 30, 4, 2, 4, 8, 2, 2, 4, 2, 6, 2, 6, 2, 24, 20, 2, 4, 6, 36, 2, 6, 4, 6
OFFSET
1,2
COMMENTS
Analogous to A001223 with 2-norm.
a(n) is the square root of the square part of A069482(n).
FORMULA
Conjectures: (Start)
a(A068361(n)) = A001223(A068361(n)).
a(A068361(n)) = 2 for n>1.
These are the only a(n)=A001223(n).
(End)
a(n) = A000188(A069482(n)). - Michel Marcus, Apr 27 2016
EXAMPLE
sqrt(5)=1*sqrt(5), a(n)=1.
sqrt(16)=4*sqrt(1), a(n)=4.
sqrt(24)=2*sqrt(6), a(n)=2.
MATHEMATICA
Table[Sqrt[Prime[n+1]^2-Prime[n]^2], {n, 1, 100}]/.Sqrt[_]->1
PROG
(PARI) a(n) = my(d=prime(n+1)^2 - prime(n)^2); sqrtint(d/core(d)); \\ Michel Marcus, Apr 27 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Squares of primes.
+10
597
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
OFFSET
1,1
COMMENTS
Also 4, together with numbers n such that Sum_{d|n}(-1)^d = -A048272(n) = -3. - Benoit Cloitre, Apr 14 2002
Also, all solutions to the equation sigma(x) + phi(x) = 2x + 1. - Farideh Firoozbakht, Feb 02 2005
Unique numbers having 3 divisors (1, their square root, themselves). - Alexandre Wajnberg, Jan 15 2006
Smallest (or first) new number deleted at the n-th step in an Eratosthenes sieve. - Lekraj Beedassy, Aug 17 2006
Subsequence of semiprimes A001358. - Lekraj Beedassy, Sep 06 2006
Integers having only 1 factor other than 1 and the number itself. Every number in the sequence is a multiple of 1 factor other than 1 and the number itself. 4 : 2 is the only factor other than 1 and 4; 9 : 3 is the only factor other than 1 and 9; and so on. - Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 23 2007
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
There are 2 Abelian groups of order p^2 (C_p^2 and C_p x C_p) and no non-Abelian group. - Franz Vrabec, Sep 11 2008
Also numbers n such that phi(n) = n - sqrt(n). - Michel Lagneau, May 25 2012
For n > 1, n is the sum of numbers from A006254(n-1) to A168565(n-1). - Vicente Izquierdo Gomez, Dec 01 2012
A078898(a(n)) = 2. - Reinhard Zumkeller, Apr 06 2015
Let r(n) = (a(n) - 1)/(a(n) + 1); then Product_{n>=1} r(n) = (3/5) * (4/5) * (12/13) * (24/25) * (60/61) * ... = 2/5. - Dimitris Valianatos, Feb 26 2019
Numbers k such that A051709(k) = 1. - Jianing Song, Jun 27 2021
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 5000 terms from N. J. A. Sloane)
R. P. Boas and N. J. A. Sloane, Correspondence, 1974
Brady Haran and Matt Parker, Squaring Primes, Numberphile video (2018).
Eric Weisstein's World of Mathematics, Prime Power.
FORMULA
n such that A062799(n) = 2. - Benoit Cloitre, Apr 06 2002
A000005(a(n)^(k-1)) = A005408(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
a(n) = A000040(n)^(3-1)=A000040(n)^2, where 3 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 3 or A002033(a(n)) = 2. - Juri-Stepan Gerasimov, Oct 10 2009
A033273(a(n)) = 3. - Juri-Stepan Gerasimov, Dec 07 2009
For n > 2: (a(n) + 17) mod 12 = 6. - Reinhard Zumkeller, May 12 2010
A192134(A095874(a(n))) = A005722(n) + 1. - Reinhard Zumkeller, Jun 26 2011
For n > 2: a(n) = 1 (mod 24). - Zak Seidov, Dec 07 2011
A211110(a(n)) = 2. - Reinhard Zumkeller, Apr 02 2012
a(n) = A087112(n,n). - Reinhard Zumkeller, Nov 25 2012
a(n) = prime(n)^2. - Jon E. Schoenfield, Mar 29 2015
Product_{n>=1} a(n)/(a(n)-1) = Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=1} 1/a(n) = P(2) = 0.4522474200... (A085548). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(4) = 15/Pi^2 (A082020).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(2) = 6/Pi^2 (A059956). (End)
MAPLE
A001248:=n->ithprime(n)^2; seq(A001248(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013
MATHEMATICA
Prime[Range[30]]^2 (* Zak Seidov, Dec 07 2011 *)
Select[Range[40000], DivisorSigma[0, #] == 3 &] (* Carlos Eduardo Olivieri, Jun 01 2015 *)
PROG
(PARI) forprime(p=2, 1e3, print1(p^2", ")) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) A001248(n)=prime(n)^2 \\ M. F. Hasler, Sep 16 2012
(Haskell)
a001248 n = a001248_list !! (n-1)
a001248_list = map (^ 2) a000040_list -- Reinhard Zumkeller, Sep 23 2011
(Magma) [p^2: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 27 2014
(SageMath) [n^2 for n in prime_range(1, 301)] # G. C. Greubel, May 02 2024
(Python)
from sympy import prime
def A001248(n): return prime(n)**2 # Chai Wah Wu, Aug 09 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = prime(n+1)^2 + prime(n)^2.
+10
23
13, 34, 74, 170, 290, 458, 650, 890, 1370, 1802, 2330, 3050, 3530, 4058, 5018, 6290, 7202, 8210, 9530, 10370, 11570, 13130, 14810, 17330, 19610, 20810, 22058, 23330, 24650, 28898, 33290, 35930, 38090, 41522, 45002
OFFSET
1,1
COMMENTS
Together with A069482(n) and A069486(n) a Pythagorean triangle is formed with area = A069487(n).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Janyarak Tongsomporn, Saeree Wananiyaku, and Jörn Steuding, Sums of consecutive prime squares, Integers (2022) Vol. 22, #A9.
FORMULA
a(n) = A001248(n+1) + A001248(n) = A000040(n+1)^2 + A000040(n)^2.
a(n) = A048851(n+1).
a(n) = 2 * A075892(n) for n > 1.
MAPLE
seq(ithprime(n)^2+ithprime(n+1)^2, n = 1 .. 100); # Stefano Spezia, Dec 21 2018
MATHEMATICA
Table[Prime[n]^2+Prime[n+1]^2, {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2010 *)
Total[#^2]&/@Partition[Prime[Range[50]], 2, 1] (* Harvey P. Dale, May 26 2012 *)
PROG
(PARI) v=primes(101); vector(#v-1, i, v[i]^2+v[i+1]^2) \\ Charles R Greathouse IV, Aug 21 2011
(Python)
from sympy import prime
for n in range(1, 101): print(n, prime(n)**2+prime(n+1)**2) # Stefano Spezia, Dec 21 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Mar 29 2002
STATUS
approved
Number of primes not exceeding square root of n: primepi(sqrt(n)).
+10
10
0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
1,9
COMMENTS
Number of primes among factors of LCM(1,...,n) whose exponent is > 1, i.e., number of non-unitary prime factors of LCM(1,...,n).
Number of positive integers <= n with exactly 3 divisors.
Number of squared primes not exceeding n. - Wesley Ivan Hurt, May 24 2013
Maximum number of composite numbers not exceeding n that are all coprime to each other. - Yifan Xie, Jul 07 2024
FORMULA
a(n) = A056170(A003418(n)) = A000720(A000196(n)).
For k = 1, 2, ..., repeat k A069482(k) (that is, prime(k+1)^2 - prime(k)^2) times, and add 0 three times at the beginning (or begin the preceding by k = 0, with prime(0) set to 1). - Jean-Christophe Hervé, Oct 30 2013
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(prime(k)^2). - Ilya Gutkovskiy, Sep 14 2019
a(n) ~ 2*n^(1/2)/log(n), by the prime number theorem. - Harry Richman, Jan 19 2022
EXAMPLE
If n=169,...,288 = p()^2,...,p(7)^2-1, then only the first 6 primes have exponents larger than 1, resulting in powers: 128, 81, 125, 49, 121, 169. So a(n)=6 for as much as 288-169+1 = 120 values of n.
MATHEMATICA
Table[PrimePi[Sqrt[n]], {n, 100}] (* T. D. Noe, Mar 13 2013 *)
PROG
(PARI) a(n) = primepi(sqrt(n)); \\ Michel Marcus, Apr 11 2016
(Python)
from math import isqrt
from sympy import primepi
def a(n): return primepi(isqrt(n))
print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jan 19 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Aug 28 2000
STATUS
approved
Integers that occur more than once as the difference of the squares of two consecutive primes.
+10
7
72, 120, 168, 312, 408, 552, 600, 768, 792, 912, 1032, 1848, 2472, 3048, 3192, 3288, 3528, 3720, 4008, 4920, 5160, 5208, 5808, 5928, 6072, 6480, 6792, 6840, 6888, 7080, 7152, 7248, 7512, 7728, 7800, 8520, 8760, 9072, 11400, 11880, 11928, 12792, 13200, 13320
OFFSET
1,1
COMMENTS
1848 is the first integer that occurs exactly three times. The next few are 6888, 14280, 16008, 19152. 4920 is the first integer that occurs exactly four times. See A069482 for more details. - Richard R. Forberg, Feb 06 2015
EXAMPLE
120 = 31^2 - 29^2 = 17^2 - 13^2.
MATHEMATICA
Sort@ DeleteDuplicates@ Flatten@ Select[Gather[NextPrime[#]^2 - #^2 & /@ Prime@ Range@ 1200], Length@ # > 1 &] (* Michael De Vlieger, Mar 18 2015 *)
Select[Tally[Differences[Prime[Range[1000]]^2]], #[[2]]>1&][[;; , 1]]//Sort (* Harvey P. Dale, Nov 16 2023 *)
PROG
(PARI) pv(v)=vecsort(vecextract(v, concat("1..", vc-1))) op=2; v=vector(5000); vc=1; forprime (p=3, 5000, v[vc]=p^2-op^2; vc++; op=p) v=pv(v) for (i=2, length(v), if (v[i]==v[i-1], print1(v[i]", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Dec 15 2002
EXTENSIONS
Duplicate terms removed, as suggested by Richard R. Forberg, by Jon E. Schoenfield, Mar 15 2015
STATUS
approved
a(n) = 2*prime(n)*prime(n+1).
+10
4
12, 30, 70, 154, 286, 442, 646, 874, 1334, 1798, 2294, 3034, 3526, 4042, 4982, 6254, 7198, 8174, 9514, 10366, 11534, 13114, 14774, 17266, 19594, 20806, 22042, 23326, 24634, 28702, 33274, 35894, 38086, 41422, 44998
OFFSET
1,1
COMMENTS
a(n) = 2*A006094(n);
together with A069482(n) and A069484(n) a Pythagorean triangle is formed with area = A069487(n).
MATHEMATICA
2Times@@#&/@Partition[Prime[Range[40]], 2, 1] (* Harvey P. Dale, Dec 17 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 29 2002
STATUS
approved
Square array A(row,col) = A083221(row+1,col) - A083221(row,col): the first differences of each column of array constructed from the sieve of Eratosthenes.
+10
4
1, 5, 2, 9, 16, 2, 13, 20, 24, 4, 17, 34, 42, 72, 2, 21, 38, 36, 66, 48, 4, 25, 52, 54, 96, 78, 120, 2, 29, 56, 48, 90, 60, 102, 72, 4, 33, 70, 66, 120, 90, 144, 114, 168, 6, 37, 74, 88, 158, 124, 194, 160, 230, 312, 2, 41, 88, 92, 138, 84, 150, 96, 162, 232, 120, 6, 45, 92, 114, 190, 140, 226, 176, 262, 360, 248, 408, 4
OFFSET
1,2
COMMENTS
The array is read by downwards antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
FORMULA
A(row,col) = A083221(row+1,col) - A083221(row,col).
EXAMPLE
The top left corner of the array:
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61
2, 16, 20, 34, 38, 52, 56, 70, 74, 88, 92, 106, 110, 124, 128, 142
2, 24, 42, 36, 54, 48, 66, 88, 92, 114, 132, 126, 144, 138, 156, 178
4, 72, 66, 96, 90, 120, 158, 138, 190, 192, 186, 216, 254, 306, 300, 324
2, 48, 78, 60, 90, 124, 84, 140, 126, 108, 138, 172, 184, 144, 200, 186
4, 120, 102, 144, 194, 150, 226, 216, 198, 240, 290, 314, 270, 346, 336, 318
2, 72, 114, 160, 96, 176, 150, 120, 162, 208, 220, 156, 236, 210, 180, 260
4, 168, 230, 162, 262, 240, 210, 264, 326, 350, 282, 382, 360, 330, 430, 408
6, 312, 232, 360, 338, 304, 374, 456, 492, 412, 540, 518, 484, 612, 590, 672
2, 120, 248, 198, 144, 210, 280, 292, 180, 308, 258, 204, 332, 282, 352, 426
6, 408, 370, 320, 406, 504, 540, 428, 588, 550, 500, 660, 622, 720, 830, 730
4, 312, 246, 336, 434, 458, 318, 490, 432, 366, 538, 480, 578, 684, 552, 486
2, 168, 258, 352, 364, 204, 380, 306, 228, 404, 330, 424, 522, 366, 288, 378
4, 360, 470, 494, 330, 526, 456, 378, 574, 504, 614, 732, 576, 498, 600, 522
6, 600, 636, 460, 684, 614, 532, 756, 686, 816, 958, 794, 712, 830, 748, 866
...
PROG
(Scheme)
(define (A257513 n) (A257513bi (A002260 n) (A004736 n)))
(define (A257513bi row col) (- (A083221bi (+ 1 row) col) (A083221bi row col))) ;; A083221bi given in A083221.
CROSSREFS
Transpose: A257514.
Row 1: A016813.
Column 1: A001223, Column 2: A069482, Column 3: A109805, Column 4: A226502 (apart from the first term).
KEYWORD
nonn,tabl,look
AUTHOR
Antti Karttunen, May 01 2015
STATUS
approved
Largest non-unitary prime factor of LCM(1,...,n); that is, the largest prime which occurs to power > 1 in prime factorization of LCM(1,..,n).
+10
3
1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
1,4
COMMENTS
For n>0, prime(n) appears {(prime(n+1))^2 - (prime(n))^2} times [from n=(prime(n))^2 to n=(prime(n+1))^2 - 1], that is, A000040(n) appears A069482(n) times (from n=A001248(n) to n=A084920(n+1)). - Lekraj Beedassy, Mar 31 2005
a(n) is the largest prime factor of A045948(n). [Matthew Vandermast, Oct 29 2008]
Alternative definition: a(n) = largest prime <= sqrt(n) (considering 1 as prime for this occasion, see A008578 for the 19th century definition of primes). - Jean-Christophe Hervé, Oct 29 2013
LINKS
Jean-Christophe Hervé, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = prime(w) if prime(w)^2 <= n < prime(w+1)^2.
To get the sequence, repeat 1 three times, and then for any k >= 1, repeat A000040(k) A069482(k) times; or equivalently, for any k >= 1, repeat A008578(k) a number of times equal to A008578(k+1)^2 - A008578(k)^2. - Jean-Christophe Hervé, Oct 29 2013
EXAMPLE
The j-th prime appears at the position of its square, at n = prime(j)^2.
MATHEMATICA
Table[f = Transpose[FactorInteger[LCM @@ Range[n]]]; pos = Position[f[[2]], _?(# > 1 &)]; If[pos == {}, 1, f[[1, pos[[-1]]]][[1]]], {n, 100}] (* T. D. Noe, Oct 30 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Aug 28 2000
EXTENSIONS
Corrected offset by Jean-Christophe Hervé, Oct 29 2013
STATUS
approved
Largest prime factor of prime(n+1)^2 - prime(n)^2.
+10
3
5, 2, 3, 3, 3, 5, 3, 7, 13, 5, 17, 13, 7, 5, 5, 7, 5, 3, 23, 3, 19, 3, 43, 31, 11, 17, 7, 3, 37, 7, 43, 67, 23, 5, 5, 11, 5, 11, 17, 11, 5, 31, 3, 13, 11, 41, 31, 5, 19, 11, 59, 5, 41, 127, 13, 19, 5, 137, 31, 47, 5, 7, 103, 13, 7, 7, 167, 19, 29, 13, 89, 11, 37, 47, 127, 193, 131, 19
OFFSET
1,1
LINKS
FORMULA
a(n) = A006530(A069482(n)).
EXAMPLE
A069482(12) = A000040(13)^2 - A000040(12)^2 = 41^2 - 37^2 = 1681 - 1369 = 312 = 2*2*2*3*13, therefore a(12) = 13.
MATHEMATICA
FactorInteger[#[[2]]-#[[1]]][[-1, 1]]&/@Partition[Prime[Range[80]]^2, 2, 1] (* Harvey P. Dale, Jan 17 2016 *)
PROG
(PARI) a(n) = my(f=factor(prime(n+1)^2 - prime(n)^2)); f[#f~, 1]; \\ Michel Marcus, Nov 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 29 2002, Aug 05 2007
STATUS
approved

Search completed in 0.016 seconds