login

Revision History for A338148

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-D orthoplex (or ridges of a regular n-D orthotope) using exactly k colors. Row 1 has 1 column; row n>1 has 2*n*(n-1) columns.
(history; published version)
#9 by N. J. A. Sloane at Wed Oct 14 10:50:29 EDT 2020
STATUS

proposed

approved

#8 by Michel Marcus at Wed Oct 14 02:05:33 EDT 2020
STATUS

editing

proposed

#7 by Michel Marcus at Wed Oct 14 02:05:30 EDT 2020
EXAMPLE

0

0 0 3 3

0 74 10482 303268 3440700 19842840 65867760 133580160 168399000 ...

...

STATUS

proposed

editing

#6 by Robert A. Russell at Tue Oct 13 08:14:31 EDT 2020
STATUS

editing

proposed

#5 by Robert A. Russell at Tue Oct 13 08:14:28 EDT 2020
FORMULA

For n>1, A337413(n,k) = Sum_{j=1..2*n*(n-1)} T(n,j) * binomial(k,j).

STATUS

proposed

editing

#4 by Robert A. Russell at Mon Oct 12 15:01:59 EDT 2020
STATUS

editing

proposed

#3 by Robert A. Russell at Mon Oct 12 15:01:34 EDT 2020
FORMULA

T(n,k) = A338146(n,k) - A338147(n,k) = (A338146(n,k) - A338149(n,k)) / 2 = A338146A338147(n,k) - A338149(n,k).

EXAMPLE

0

0 0 3 3

0 74 10482 303268 3440700 19842840 65867760 133580160 168399000 ...

#2 by Robert A. Russell at Mon Oct 12 14:46:40 EDT 2020
NAME

allocated for Robert ATriangle read by rows: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-D orthoplex (or ridges of a regular n-D orthotope) using exactly k colors. Row 1 has 1 column; row n>1 has 2*n*(n-1) columns. Russell

DATA

0, 0, 0, 3, 3, 0, 74, 10482, 303268, 3440700, 19842840, 65867760, 133580160, 168399000, 128898000, 54885600, 9979200, 0, 40927, 731157018, 729348051686, 151526009158620, 11418355290999750, 415756294427389020, 8643340000393019040

OFFSET

1,4

COMMENTS

Chiral colorings come in pairs, each the reflection of the other. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is an octahedron (cube) with 12 edges. For n>1, the number of edges (ridges) is 2*n*(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,3,...,3,3} and {3,3,...,3,4} respectively, with n-2 3's in each case. The figures are mutually dual.

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

LINKS

K. Balasubramanian, <a href="https://doi.org/10.33187/jmsm.471940">Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications</a>, J. Math. Sci. & Mod. 1 (2018), 158-180.

FORMULA

A337413(n,k) = Sum_{j=1..2*n} T(n,j) * binomial(k,j).

T(n,k) = A338146(n,k) - A338147(n,k) = (A338146(n,k) - A338149(n,k)) / 2 = A338146(n,k) - A338149(n,k).

T(2,k) = A338144(2,k) = A325018(2,k) = A325010(2,k); T(3,k) = A338144(3,k).

EXAMPLE

Triangle begins with T(1,1):

0

0 0 3 3

0 74 10482 303268 3440700 19842840 65867760 133580160 168399000 ...

For T(2,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. For T(2,4)=3, the chiral pairs are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.

MATHEMATICA

m=1; (* dimension of color element, here an edge *)

Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];

FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);

CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 1, -1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);

PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);

pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)

row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]

array[n_, k_] := row[n] /. b -> k

Join[{{0}}, Table[LinearSolve[Table[Binomial[i, j], {i, 2^(m+1)Binomial[n, m+1]}, {j, 2^(m+1)Binomial[n, m+1]}], Table[array[n, k], {k, 2^(m+1)Binomial[n, m+1]}]], {n, m+1, m+4}]] // Flatten

CROSSREFS

Cf. A338146 (oriented), A338147 (unoriented), A338149 (achiral), A337413 (k or fewer colors), A325010 (orthoplex vertices, orthotope facets).

Cf. A327089 (simplex), A338144 (orthotope edges, orthoplex ridges).

KEYWORD

allocated

nonn,tabf

AUTHOR

Robert A. Russell, Oct 12 2020

STATUS

approved

editing

#1 by Robert A. Russell at Mon Oct 12 14:24:01 EDT 2020
NAME

allocated for Robert A. Russell

KEYWORD

allocated

STATUS

approved