login
A238279
Triangle read by rows: T(n,k) is the number of compositions of n into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=A004523(n-1).
249
1, 1, 2, 2, 2, 3, 4, 1, 2, 10, 4, 4, 12, 14, 2, 2, 22, 29, 10, 1, 4, 26, 56, 36, 6, 3, 34, 100, 86, 31, 2, 4, 44, 148, 200, 99, 16, 1, 2, 54, 230, 374, 278, 78, 8, 6, 58, 322, 680, 654, 274, 52, 2, 2, 74, 446, 1122, 1390, 814, 225, 22, 1, 4, 88, 573, 1796, 2714, 2058, 813, 136, 10, 4, 88, 778, 2694, 4927
OFFSET
0,3
COMMENTS
Same as A238130, with zeros omitted.
Last elements in rows are 1, 1, 2, 2, 1, 4, 2, 1, 6, 2, 1, 8, ... with g.f. -(x^6+x^4-2*x^2-x-1)/(x^6-2*x^3+1).
For n > 0, also the number of compositions of n with k + 1 runs. - Gus Wiseman, Apr 10 2020
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..180, flattened
FORMULA
G.f.: A(x,y) = ( 1 + Sum_{i>0} ((x^i)*(1 - y)/(1 + y*x^i - x^i)) )/( 1 - Sum_{i>0} ((y*x^i)/(1 + y*x^i - x^i)) ). - John Tyler Rascoe, Jul 10 2024
EXAMPLE
Triangle starts:
00: 1;
01: 1;
02: 2;
03: 2, 2;
04: 3, 4, 1;
05: 2, 10, 4;
06: 4, 12, 14, 2;
07: 2, 22, 29, 10, 1;
08: 4, 26, 56, 36, 6;
09: 3, 34, 100, 86, 31, 2;
10: 4, 44, 148, 200, 99, 16, 1;
11: 2, 54, 230, 374, 278, 78, 8;
12: 6, 58, 322, 680, 654, 274, 52, 2;
13: 2, 74, 446, 1122, 1390, 814, 225, 22, 1;
14: 4, 88, 573, 1796, 2714, 2058, 813, 136, 10;
15: 4, 88, 778, 2694, 4927, 4752, 2444, 618, 77, 2;
16: 5, 110, 953, 3954, 8531, 9930, 6563, 2278, 415, 28, 1;
...
Row n=5 is 2, 10, 4 because in the 16 compositions of 5
##: [composition] no. of changes
01: [ 1 1 1 1 1 ] 0
02: [ 1 1 1 2 ] 1
03: [ 1 1 2 1 ] 2
04: [ 1 1 3 ] 1
05: [ 1 2 1 1 ] 2
06: [ 1 2 2 ] 1
07: [ 1 3 1 ] 2
08: [ 1 4 ] 1
09: [ 2 1 1 1 ] 1
10: [ 2 1 2 ] 2
11: [ 2 2 1 ] 1
12: [ 2 3 ] 1
13: [ 3 1 1 ] 1
14: [ 3 2 ] 1
15: [ 4 1 ] 1
16: [ 5 ] 0
there are 2 with no changes, 10 with one change, and 4 with two changes.
MAPLE
b:= proc(n, v) option remember; `if`(n=0, 1, expand(
add(b(n-i, i)*`if`(v=0 or v=i, 1, x), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..14);
MATHEMATICA
b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n-i, i]*If[v == 0 || v == i, 1, x], {i, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *)
Table[If[n==0, 1, Length[Select[Join@@Permutations/@IntegerPartitions[n], Length[Split[#]]==k+1&]]], {n, 0, 12}, {k, 0, If[n==0, 0, Floor[2*(n-1)/3]]}] (* Gus Wiseman, Apr 10 2020 *)
PROG
(PARI)
T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h=(1+ sum(i=1, N, (x^i-y*x^i)/(1+y*x^i-x^i)))/(1-sum(i=1, N, y*x^i/(1+y*x^i-x^i)))); for(n=0, N-1, print(Vecrev(polcoeff(h, n))))}
T_xy(16) \\ John Tyler Rascoe, Jul 10 2024
CROSSREFS
Columns k=0-10 give: A000005 (for n>0), 2*A002133, A244714, A244715, A244716, A244717, A244718, A244719, A244720, A244721, A244722.
Row lengths are A004523.
Row sums are A011782.
The version counting adjacent equal parts is A106356.
The version for ascents/descents is A238343.
The version for weak ascents/descents is A333213.
The k-th composition in standard-order has A124762(k) adjacent equal parts, A124767(k) maximal runs, A333382(k) adjacent unequal parts, and A333381(k) maximal anti-runs.
Sequence in context: A338629 A057646 A238892 * A282933 A328576 A052275
KEYWORD
nonn,tabf
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 22 2014
STATUS
approved