| 1 |
|
|---|
| 2 | /*
|
|---|
| 3 | *@@sourcefile tree.c:
|
|---|
| 4 | * contains helper functions for maintaining 'Red-Black' balanced
|
|---|
| 5 | * binary trees.
|
|---|
| 6 | *
|
|---|
| 7 | * Usage: All C programs; not OS/2-specific.
|
|---|
| 8 | *
|
|---|
| 9 | * Function prefixes (new with V0.81):
|
|---|
| 10 | * -- tree* tree helper functions
|
|---|
| 11 | *
|
|---|
| 12 | * <B>Introduction</B>
|
|---|
| 13 | *
|
|---|
| 14 | * While linked lists have "next" and "previous" pointers (which
|
|---|
| 15 | * makes them one-dimensional), trees have a two-dimensional layout:
|
|---|
| 16 | * each tree node has one "parent" and two "children" which are
|
|---|
| 17 | * called "left" and "right". The "left" pointer will always lead
|
|---|
| 18 | * to a tree node that is "less than" its parent node, while the
|
|---|
| 19 | * "right" pointer will lead to a node that is "greater than"
|
|---|
| 20 | * its parent. What is considered "less" or "greater" for sorting
|
|---|
| 21 | * is determined by a comparison callback to be supplied by the
|
|---|
| 22 | * tree functions' caller. The "leafs" of the tree will have
|
|---|
| 23 | * null left and right pointers.
|
|---|
| 24 | *
|
|---|
| 25 | * For this, the functions here use the TREE structure. The most
|
|---|
| 26 | * important member here is the "ulKey" field which is used for
|
|---|
| 27 | * sorting (passed to the compare callbacks). Since the tree
|
|---|
| 28 | * functions do no memory allocation, the caller can easily
|
|---|
| 29 | * use an extended TREE structure with additional fields as
|
|---|
| 30 | * long as the first member is the TREE structure. See below.
|
|---|
| 31 | *
|
|---|
| 32 | * Each tree must have a "root" item, from which all other tree
|
|---|
| 33 | * nodes can eventually be reached by following the "left" and
|
|---|
| 34 | * "right" pointers. The root node is the only node whose
|
|---|
| 35 | * parent is null.
|
|---|
| 36 | *
|
|---|
| 37 | * <B>Trees vs. linked lists</B>
|
|---|
| 38 | *
|
|---|
| 39 | * Compared to linked lists (as implemented by linklist.c),
|
|---|
| 40 | * trees allow for much faster searching, since they are
|
|---|
| 41 | * always sorted.
|
|---|
| 42 | *
|
|---|
| 43 | * Take an array of numbers, and assume you'd need to find
|
|---|
| 44 | * the array node with the specified number.
|
|---|
| 45 | *
|
|---|
| 46 | * With a (sorted) linked list, this would look like:
|
|---|
| 47 | *
|
|---|
| 48 | + 4 --> 7 --> 16 --> 20 --> 37 --> 38 --> 43
|
|---|
| 49 | *
|
|---|
| 50 | * Searching for "43" would need 6 iterations.
|
|---|
| 51 | *
|
|---|
| 52 | * With a binary tree, this would instead look like:
|
|---|
| 53 | *
|
|---|
| 54 | + 20
|
|---|
| 55 | + / \
|
|---|
| 56 | + 7 38
|
|---|
| 57 | + / \ / \
|
|---|
| 58 | + 4 16 37 43
|
|---|
| 59 | + / \ / \ / \ / \
|
|---|
| 60 | *
|
|---|
| 61 | * Searching for "43" would need 2 iterations only.
|
|---|
| 62 | *
|
|---|
| 63 | * Assuming a linked list contains N items, then searching a
|
|---|
| 64 | * linked list for an item will take an average of N/2 comparisons
|
|---|
| 65 | * and even N comparisons if the item cannot be found (unless
|
|---|
| 66 | * you keep the list sorted, but linklist.c doesn't do this).
|
|---|
| 67 | *
|
|---|
| 68 | * According to "Algorithms in C", a search in a balanced
|
|---|
| 69 | * "red-black" binary tree takes about lg N comparisons on
|
|---|
| 70 | * average, and insertions take less than one rotation on
|
|---|
| 71 | * average.
|
|---|
| 72 | *
|
|---|
| 73 | * Differences compared to linklist.c:
|
|---|
| 74 | *
|
|---|
| 75 | * -- A tree is always sorted.
|
|---|
| 76 | *
|
|---|
| 77 | * -- Trees are considerably slower when inserting and removing
|
|---|
| 78 | * nodes because the tree has to be rebalanced every time
|
|---|
| 79 | * a node changes. By contrast, trees are much faster finding
|
|---|
| 80 | * nodes because the tree is always sorted.
|
|---|
| 81 | *
|
|---|
| 82 | * -- As opposed to a LISTNODE, the TREE structure (which
|
|---|
| 83 | * represents a tree node) does not contain a data pointer,
|
|---|
| 84 | * as said above. The caller must do all memory management.
|
|---|
| 85 | *
|
|---|
| 86 | * <B>Background</B>
|
|---|
| 87 | *
|
|---|
| 88 | * Now, a "red-black balanced binary tree" means the following:
|
|---|
| 89 | *
|
|---|
| 90 | * -- We have "binary" trees. That is, there are only "left" and
|
|---|
| 91 | * "right" pointers. (Other algorithms allow tree nodes to
|
|---|
| 92 | * have more than two children, but binary trees are usually
|
|---|
| 93 | * more efficient.)
|
|---|
| 94 | *
|
|---|
| 95 | * -- The tree is always "balanced". The tree gets reordered
|
|---|
| 96 | * when items are added/removed to ensure that all paths
|
|---|
| 97 | * through the tree are approximately the same length.
|
|---|
| 98 | * This avoids the "worst case" scenario that some paths
|
|---|
| 99 | * grow terribly long while others remain short ("degenerated"
|
|---|
| 100 | * trees), which can make searching very inefficient:
|
|---|
| 101 | *
|
|---|
| 102 | + 4
|
|---|
| 103 | + / \
|
|---|
| 104 | + 7
|
|---|
| 105 | + / \
|
|---|
| 106 | + 16
|
|---|
| 107 | + / \
|
|---|
| 108 | + 20
|
|---|
| 109 | + / \
|
|---|
| 110 | + 37
|
|---|
| 111 | + / \
|
|---|
| 112 | + 43
|
|---|
| 113 | + / \
|
|---|
| 114 | *
|
|---|
| 115 | * -- Fully balanced trees can be quite expensive because on
|
|---|
| 116 | * every insertion or deletion, the tree nodes must be rotated.
|
|---|
| 117 | * By contrast, "Red-black" binary balanced trees contain
|
|---|
| 118 | * an additional bit in each node which marks the node as
|
|---|
| 119 | * either red or black. This bit is used only for efficient
|
|---|
| 120 | * rebalancing when inserting or deleting nodes.
|
|---|
| 121 | *
|
|---|
| 122 | * I don't fully understand why this works, but if you really
|
|---|
| 123 | * care, this is explained at
|
|---|
| 124 | * "http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html".
|
|---|
| 125 | *
|
|---|
| 126 | * In other words, as opposed to regular binary trees, RB trees
|
|---|
| 127 | * are not _fully_ balanced, but they are _mostly_ balanced. With
|
|---|
| 128 | * respect to efficiency, RB trees are thus a good compromise:
|
|---|
| 129 | *
|
|---|
| 130 | * -- Completely unbalanced trees are efficient when inserting,
|
|---|
| 131 | * but can have a terrible worst case when searching.
|
|---|
| 132 | *
|
|---|
| 133 | * -- RB trees are still acceptably efficient when inserting
|
|---|
| 134 | * and quite efficient when searching.
|
|---|
| 135 | * A RB tree with n internal nodes has a height of at most
|
|---|
| 136 | * 2lg(n+1). Both average and worst-case search time is O(lg n).
|
|---|
| 137 | *
|
|---|
| 138 | * -- Fully balanced binary trees are inefficient when inserting
|
|---|
| 139 | * but most efficient when searching.
|
|---|
| 140 | *
|
|---|
| 141 | * So as long as you are sure that trees are more efficient
|
|---|
| 142 | * in your situation than a linked list in the first place, use
|
|---|
| 143 | * these RB trees instead of linked lists.
|
|---|
| 144 | *
|
|---|
| 145 | * <B>Using binary trees</B>
|
|---|
| 146 | *
|
|---|
| 147 | * You can use any structure as elements in a tree, provided
|
|---|
| 148 | * that the first member in the structure is a TREE structure
|
|---|
| 149 | * (i.e. it has the left, right, parent, and color members).
|
|---|
| 150 | * Each TREE node has a ulKey field which is used for
|
|---|
| 151 | * comparing tree nodes and thus determines the location of
|
|---|
| 152 | * the node in the tree.
|
|---|
| 153 | *
|
|---|
| 154 | * The tree functions don't care what follows in each TREE
|
|---|
| 155 | * node since they do not manage any memory themselves.
|
|---|
| 156 | * So the implementation here is slightly different from the
|
|---|
| 157 | * linked lists in linklist.c, because the LISTNODE structs
|
|---|
| 158 | * only have pointers to the data. By contrast, the TREE structs
|
|---|
| 159 | * are expected to contain the data themselves.
|
|---|
| 160 | *
|
|---|
| 161 | * Initialize the root of the tree with treeInit(). Then
|
|---|
| 162 | * add nodes to the tree with treeInsert() and remove nodes
|
|---|
| 163 | * with treeDelete(). See below for a sample.
|
|---|
| 164 | *
|
|---|
| 165 | * You can test whether a tree is empty by comparing its
|
|---|
| 166 | * root with LEAF.
|
|---|
| 167 | *
|
|---|
| 168 | * For most tree* functions, you must specify a comparison
|
|---|
| 169 | * function which will always receive two "key" parameters
|
|---|
| 170 | * to compare. This must be declared as
|
|---|
| 171 | +
|
|---|
| 172 | + int TREEENTRY fnCompare(ULONG ul1, ULONG ul2);
|
|---|
| 173 | *
|
|---|
| 174 | * This will receive two TREE.ulKey members (whose meaning
|
|---|
| 175 | * is defined by your implementation) and must return
|
|---|
| 176 | *
|
|---|
| 177 | * -- something < 0: ul1 < ul2
|
|---|
| 178 | * -- 0: ul1 == ul2
|
|---|
| 179 | * -- something > 1: ul1 > ul2
|
|---|
| 180 | *
|
|---|
| 181 | * <B>Example</B>
|
|---|
| 182 | *
|
|---|
| 183 | * A good example where trees are efficient would be the
|
|---|
| 184 | * case where you have "keyword=value" string pairs and
|
|---|
| 185 | * you frequently need to search for "keyword" to find
|
|---|
| 186 | * a "value". So "keyword" would be an ideal candidate for
|
|---|
| 187 | * the TREE.key field.
|
|---|
| 188 | *
|
|---|
| 189 | * You'd then define your own tree nodes like this:
|
|---|
| 190 | *
|
|---|
| 191 | + typedef struct _MYTREENODE
|
|---|
| 192 | + {
|
|---|
| 193 | + TREE Tree; // regular tree node, which has
|
|---|
| 194 | + // the ULONG "key" field; we'd
|
|---|
| 195 | + // use this as a const char*
|
|---|
| 196 | + // pointer to the keyword string
|
|---|
| 197 | + // here come the additional fields
|
|---|
| 198 | + // (whatever you need for your data)
|
|---|
| 199 | + const char *pcszValue;
|
|---|
| 200 | +
|
|---|
| 201 | + } MYTREENODE, *PMYTREENODE;
|
|---|
| 202 | *
|
|---|
| 203 | * Initialize the tree root:
|
|---|
| 204 | *
|
|---|
| 205 | + TREE *root;
|
|---|
| 206 | + treeInit(&root);
|
|---|
| 207 | *
|
|---|
| 208 | * To add a new "keyword=value" pair, do this:
|
|---|
| 209 | *
|
|---|
| 210 | + PMYTREENODE AddNode(TREE **root,
|
|---|
| 211 | + const char *pcszKeyword,
|
|---|
| 212 | + const char *pcszValue)
|
|---|
| 213 | + {
|
|---|
| 214 | + PMYTREENODE p = (PMYTREENODE)malloc(sizeof(MYTREENODE));
|
|---|
| 215 | + p.Tree.ulKey = (ULONG)pcszKeyword;
|
|---|
| 216 | + p.pcszValue = pcszValue;
|
|---|
| 217 | + treeInsert(root, // tree's root
|
|---|
| 218 | + p, // new tree node
|
|---|
| 219 | + fnCompare); // comparison func
|
|---|
| 220 | + return (p);
|
|---|
| 221 | + }
|
|---|
| 222 | *
|
|---|
| 223 | * Your comparison func receives two ulKey values to compare,
|
|---|
| 224 | * which in this case would be the typecast string pointers:
|
|---|
| 225 | *
|
|---|
| 226 | + int TREEENTRY fnCompare(ULONG ul1, ULONG ul2)
|
|---|
| 227 | + {
|
|---|
| 228 | + return (strcmp((const char*)ul1,
|
|---|
| 229 | + (const char*)ul2));
|
|---|
| 230 | + }
|
|---|
| 231 | *
|
|---|
| 232 | * You can then use treeFind to very quickly find a node
|
|---|
| 233 | * with a specified ulKey member.
|
|---|
| 234 | *
|
|---|
| 235 | * This file was new with V0.9.5 (2000-09-29) [umoeller].
|
|---|
| 236 | * With V0.9.13, all the code has been replaced with the public
|
|---|
| 237 | * domain code found at http://epaperpress.com/sortsearch/index.html
|
|---|
| 238 | * ("A compact guide to searching and sorting") by Thomas Niemann.
|
|---|
| 239 | * The old implementation from the Standard Function Library (SFL)
|
|---|
| 240 | * turned out to be buggy for large trees (more than 100 nodes).
|
|---|
| 241 | *
|
|---|
| 242 | *@@added V0.9.5 (2000-09-29) [umoeller]
|
|---|
| 243 | *@@header "helpers\tree.h"
|
|---|
| 244 | */
|
|---|
| 245 |
|
|---|
| 246 | /*
|
|---|
| 247 | * Original coding by Thomas Niemann, placed in the public domain
|
|---|
| 248 | * (see http://epaperpress.com/sortsearch/index.html).
|
|---|
| 249 | *
|
|---|
| 250 | * This implementation Copyright (C) 2001 Ulrich Mller.
|
|---|
| 251 | * This file is part of the "XWorkplace helpers" source package.
|
|---|
| 252 | * This is free software; you can redistribute it and/or modify
|
|---|
| 253 | * it under the terms of the GNU General Public License as published
|
|---|
| 254 | * by the Free Software Foundation, in version 2 as it comes in the
|
|---|
| 255 | * "COPYING" file of the XWorkplace main distribution.
|
|---|
| 256 | * This program is distributed in the hope that it will be useful,
|
|---|
| 257 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 258 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 259 | * GNU General Public License for more details.
|
|---|
| 260 | */
|
|---|
| 261 |
|
|---|
| 262 | /*
|
|---|
| 263 | *@@category: Helpers\C helpers\Red-black balanced binary trees
|
|---|
| 264 | * See tree.c.
|
|---|
| 265 | */
|
|---|
| 266 |
|
|---|
| 267 | #include "setup.h"
|
|---|
| 268 | #include "helpers\tree.h"
|
|---|
| 269 |
|
|---|
| 270 | #define LEAF &sentinel // all leafs are sentinels
|
|---|
| 271 | static TREE sentinel = { LEAF, LEAF, 0, BLACK};
|
|---|
| 272 |
|
|---|
| 273 | /*
|
|---|
| 274 | A binary search tree is a red-black tree if:
|
|---|
| 275 |
|
|---|
| 276 | 1. Every node is either red or black.
|
|---|
| 277 | 2. Every leaf (nil) is black.
|
|---|
| 278 | 3. If a node is red, then both its children are black.
|
|---|
| 279 | 4. Every simple path from a node to a descendant leaf contains the same
|
|---|
| 280 | number of black nodes.
|
|---|
| 281 | */
|
|---|
| 282 |
|
|---|
| 283 | /*
|
|---|
| 284 | *@@ treeInit:
|
|---|
| 285 | * initializes the root of a tree.
|
|---|
| 286 | *
|
|---|
| 287 | */
|
|---|
| 288 |
|
|---|
| 289 | void treeInit(TREE **root)
|
|---|
| 290 | {
|
|---|
| 291 | *root = LEAF;
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | /*
|
|---|
| 295 | *@@ treeCompareKeys:
|
|---|
| 296 | * standard comparison func if the TREE.ulKey
|
|---|
| 297 | * field really is a ULONG.
|
|---|
| 298 | */
|
|---|
| 299 |
|
|---|
| 300 | int TREEENTRY treeCompareKeys(unsigned long ul1, unsigned long ul2)
|
|---|
| 301 | {
|
|---|
| 302 | if (ul1 < ul2)
|
|---|
| 303 | return -1;
|
|---|
| 304 | if (ul1 > ul2)
|
|---|
| 305 | return +1;
|
|---|
| 306 | return (0);
|
|---|
| 307 | }
|
|---|
| 308 |
|
|---|
| 309 | /*
|
|---|
| 310 | *@@ rotateLeft:
|
|---|
| 311 | * private function during rebalancing.
|
|---|
| 312 | */
|
|---|
| 313 |
|
|---|
| 314 | static void rotateLeft(TREE **root,
|
|---|
| 315 | TREE *x)
|
|---|
| 316 | {
|
|---|
| 317 | /**************************
|
|---|
| 318 | * rotate node x to left *
|
|---|
| 319 | **************************/
|
|---|
| 320 |
|
|---|
| 321 | TREE *y = x->right;
|
|---|
| 322 |
|
|---|
| 323 | // establish x->right link
|
|---|
| 324 | x->right = y->left;
|
|---|
| 325 | if (y->left != LEAF)
|
|---|
| 326 | y->left->parent = x;
|
|---|
| 327 |
|
|---|
| 328 | // establish y->parent link
|
|---|
| 329 | if (y != LEAF)
|
|---|
| 330 | y->parent = x->parent;
|
|---|
| 331 | if (x->parent)
|
|---|
| 332 | {
|
|---|
| 333 | if (x == x->parent->left)
|
|---|
| 334 | x->parent->left = y;
|
|---|
| 335 | else
|
|---|
| 336 | x->parent->right = y;
|
|---|
| 337 | }
|
|---|
| 338 | else
|
|---|
| 339 | *root = y;
|
|---|
| 340 |
|
|---|
| 341 | // link x and y
|
|---|
| 342 | y->left = x;
|
|---|
| 343 | if (x != LEAF)
|
|---|
| 344 | x->parent = y;
|
|---|
| 345 | }
|
|---|
| 346 |
|
|---|
| 347 | /*
|
|---|
| 348 | *@@ rotateRight:
|
|---|
| 349 | * private function during rebalancing.
|
|---|
| 350 | */
|
|---|
| 351 |
|
|---|
| 352 | static void rotateRight(TREE **root,
|
|---|
| 353 | TREE *x)
|
|---|
| 354 | {
|
|---|
| 355 |
|
|---|
| 356 | /****************************
|
|---|
| 357 | * rotate node x to right *
|
|---|
| 358 | ****************************/
|
|---|
| 359 |
|
|---|
| 360 | TREE *y = x->left;
|
|---|
| 361 |
|
|---|
| 362 | // establish x->left link
|
|---|
| 363 | x->left = y->right;
|
|---|
| 364 | if (y->right != LEAF)
|
|---|
| 365 | y->right->parent = x;
|
|---|
| 366 |
|
|---|
| 367 | // establish y->parent link
|
|---|
| 368 | if (y != LEAF)
|
|---|
| 369 | y->parent = x->parent;
|
|---|
| 370 | if (x->parent)
|
|---|
| 371 | {
|
|---|
| 372 | if (x == x->parent->right)
|
|---|
| 373 | x->parent->right = y;
|
|---|
| 374 | else
|
|---|
| 375 | x->parent->left = y;
|
|---|
| 376 | }
|
|---|
| 377 | else
|
|---|
| 378 | *root = y;
|
|---|
| 379 |
|
|---|
| 380 | // link x and y
|
|---|
| 381 | y->right = x;
|
|---|
| 382 | if (x != LEAF)
|
|---|
| 383 | x->parent = y;
|
|---|
| 384 | }
|
|---|
| 385 |
|
|---|
| 386 | /*
|
|---|
| 387 | *@@ insertFixup:
|
|---|
| 388 | * private function during rebalancing.
|
|---|
| 389 | */
|
|---|
| 390 |
|
|---|
| 391 | static void insertFixup(TREE **root,
|
|---|
| 392 | TREE *x)
|
|---|
| 393 | {
|
|---|
| 394 | /*************************************
|
|---|
| 395 | * maintain Red-Black tree balance *
|
|---|
| 396 | * after inserting node x *
|
|---|
| 397 | *************************************/
|
|---|
| 398 |
|
|---|
| 399 | // check Red-Black properties
|
|---|
| 400 | while ( x != *root
|
|---|
| 401 | && x->parent->color == RED
|
|---|
| 402 | )
|
|---|
| 403 | {
|
|---|
| 404 | // we have a violation
|
|---|
| 405 | if (x->parent == x->parent->parent->left)
|
|---|
| 406 | {
|
|---|
| 407 | TREE *y = x->parent->parent->right;
|
|---|
| 408 | if (y->color == RED)
|
|---|
| 409 | {
|
|---|
| 410 | // uncle is RED
|
|---|
| 411 | x->parent->color = BLACK;
|
|---|
| 412 | y->color = BLACK;
|
|---|
| 413 | x->parent->parent->color = RED;
|
|---|
| 414 | x = x->parent->parent;
|
|---|
| 415 | }
|
|---|
| 416 | else
|
|---|
| 417 | {
|
|---|
| 418 | // uncle is BLACK
|
|---|
| 419 | if (x == x->parent->right)
|
|---|
| 420 | {
|
|---|
| 421 | // make x a left child
|
|---|
| 422 | x = x->parent;
|
|---|
| 423 | rotateLeft(root,
|
|---|
| 424 | x);
|
|---|
| 425 | }
|
|---|
| 426 |
|
|---|
| 427 | // recolor and rotate
|
|---|
| 428 | x->parent->color = BLACK;
|
|---|
| 429 | x->parent->parent->color = RED;
|
|---|
| 430 | rotateRight(root,
|
|---|
| 431 | x->parent->parent);
|
|---|
| 432 | }
|
|---|
| 433 | }
|
|---|
| 434 | else
|
|---|
| 435 | {
|
|---|
| 436 | // mirror image of above code
|
|---|
| 437 | TREE *y = x->parent->parent->left;
|
|---|
| 438 | if (y->color == RED)
|
|---|
| 439 | {
|
|---|
| 440 | // uncle is RED
|
|---|
| 441 | x->parent->color = BLACK;
|
|---|
| 442 | y->color = BLACK;
|
|---|
| 443 | x->parent->parent->color = RED;
|
|---|
| 444 | x = x->parent->parent;
|
|---|
| 445 | }
|
|---|
| 446 | else
|
|---|
| 447 | {
|
|---|
| 448 | // uncle is BLACK
|
|---|
| 449 | if (x == x->parent->left)
|
|---|
| 450 | {
|
|---|
| 451 | x = x->parent;
|
|---|
| 452 | rotateRight(root,
|
|---|
| 453 | x);
|
|---|
| 454 | }
|
|---|
| 455 | x->parent->color = BLACK;
|
|---|
| 456 | x->parent->parent->color = RED;
|
|---|
| 457 | rotateLeft(root,
|
|---|
| 458 | x->parent->parent);
|
|---|
| 459 | }
|
|---|
| 460 | }
|
|---|
| 461 | }
|
|---|
| 462 | (*root)->color = BLACK;
|
|---|
| 463 | }
|
|---|
| 464 |
|
|---|
| 465 | /*
|
|---|
| 466 | *@@ treeInsert:
|
|---|
| 467 | * inserts a new tree node into the specified
|
|---|
| 468 | * tree, using the specified comparison function
|
|---|
| 469 | * for sorting.
|
|---|
| 470 | *
|
|---|
| 471 | * "x" specifies the new tree node which must
|
|---|
| 472 | * have been allocated by the caller. x->ulKey
|
|---|
| 473 | * must already contain the node's key (data).
|
|---|
| 474 | * This function will then set the parent,
|
|---|
| 475 | * left, right, and color members.
|
|---|
| 476 | *
|
|---|
| 477 | * Returns 0 if no error. Might return
|
|---|
| 478 | * STATUS_DUPLICATE_KEY if a node with the
|
|---|
| 479 | * same ulKey already exists.
|
|---|
| 480 | */
|
|---|
| 481 |
|
|---|
| 482 | int treeInsert(TREE **root, // in: root of the tree
|
|---|
| 483 | TREE *x, // in: new node to insert
|
|---|
| 484 | FNTREE_COMPARE *pfnCompare) // in: comparison func
|
|---|
| 485 | {
|
|---|
| 486 | TREE *current,
|
|---|
| 487 | *parent;
|
|---|
| 488 |
|
|---|
| 489 | unsigned long key = x->ulKey;
|
|---|
| 490 |
|
|---|
| 491 | // find future parent
|
|---|
| 492 | current = *root;
|
|---|
| 493 | parent = 0;
|
|---|
| 494 |
|
|---|
| 495 | while (current != LEAF)
|
|---|
| 496 | {
|
|---|
| 497 | int iResult;
|
|---|
| 498 | if (0 == (iResult = pfnCompare(key, current->ulKey))) // if (compEQ(key, current->key))
|
|---|
| 499 | return STATUS_DUPLICATE_KEY;
|
|---|
| 500 | parent = current;
|
|---|
| 501 | current = (iResult < 0) // compLT(key, current->key)
|
|---|
| 502 | ? current->left
|
|---|
| 503 | : current->right;
|
|---|
| 504 | }
|
|---|
| 505 |
|
|---|
| 506 | // set up new node
|
|---|
| 507 | /* if ((x = malloc (sizeof(*x))) == 0)
|
|---|
| 508 | return STATUS_MEM_EXHAUSTED; */
|
|---|
| 509 | x->parent = parent;
|
|---|
| 510 | x->left = LEAF;
|
|---|
| 511 | x->right = LEAF;
|
|---|
| 512 | x->color = RED;
|
|---|
| 513 | // x->key = key;
|
|---|
| 514 | // x->rec = *rec;
|
|---|
| 515 |
|
|---|
| 516 | // insert node in tree
|
|---|
| 517 | if (parent)
|
|---|
| 518 | {
|
|---|
| 519 | if (pfnCompare(key, parent->ulKey) < 0) // (compLT(key, parent->key))
|
|---|
| 520 | parent->left = x;
|
|---|
| 521 | else
|
|---|
| 522 | parent->right = x;
|
|---|
| 523 | }
|
|---|
| 524 | else
|
|---|
| 525 | *root = x;
|
|---|
| 526 |
|
|---|
| 527 | insertFixup(root,
|
|---|
| 528 | x);
|
|---|
| 529 | // lastFind = NULL;
|
|---|
| 530 |
|
|---|
| 531 | return STATUS_OK;
|
|---|
| 532 | }
|
|---|
| 533 |
|
|---|
| 534 | /*
|
|---|
| 535 | *@@ deleteFixup:
|
|---|
| 536 | *
|
|---|
| 537 | */
|
|---|
| 538 |
|
|---|
| 539 | static void deleteFixup(TREE **root,
|
|---|
| 540 | TREE *tree)
|
|---|
| 541 | {
|
|---|
| 542 | TREE *s;
|
|---|
| 543 |
|
|---|
| 544 | while ( tree != *root
|
|---|
| 545 | && tree->color == BLACK
|
|---|
| 546 | )
|
|---|
| 547 | {
|
|---|
| 548 | if (tree == tree->parent->left)
|
|---|
| 549 | {
|
|---|
| 550 | s = tree->parent->right;
|
|---|
| 551 | if (s->color == RED)
|
|---|
| 552 | {
|
|---|
| 553 | s->color = BLACK;
|
|---|
| 554 | tree->parent->color = RED;
|
|---|
| 555 | rotateLeft(root, tree->parent);
|
|---|
| 556 | s = tree->parent->right;
|
|---|
| 557 | }
|
|---|
| 558 | if ( (s->left->color == BLACK)
|
|---|
| 559 | && (s->right->color == BLACK)
|
|---|
| 560 | )
|
|---|
| 561 | {
|
|---|
| 562 | s->color = RED;
|
|---|
| 563 | tree = tree->parent;
|
|---|
| 564 | }
|
|---|
| 565 | else
|
|---|
| 566 | {
|
|---|
| 567 | if (s->right->color == BLACK)
|
|---|
| 568 | {
|
|---|
| 569 | s->left->color = BLACK;
|
|---|
| 570 | s->color = RED;
|
|---|
| 571 | rotateRight(root, s);
|
|---|
| 572 | s = tree->parent->right;
|
|---|
| 573 | }
|
|---|
| 574 | s->color = tree->parent->color;
|
|---|
| 575 | tree->parent->color = BLACK;
|
|---|
| 576 | s->right->color = BLACK;
|
|---|
| 577 | rotateLeft(root, tree->parent);
|
|---|
| 578 | tree = *root;
|
|---|
| 579 | }
|
|---|
| 580 | }
|
|---|
| 581 | else
|
|---|
| 582 | {
|
|---|
| 583 | s = tree->parent->left;
|
|---|
| 584 | if (s->color == RED)
|
|---|
| 585 | {
|
|---|
| 586 | s->color = BLACK;
|
|---|
| 587 | tree->parent->color = RED;
|
|---|
| 588 | rotateRight(root, tree->parent);
|
|---|
| 589 | s = tree->parent->left;
|
|---|
| 590 | }
|
|---|
| 591 | if ( (s->right->color == BLACK)
|
|---|
| 592 | && (s->left->color == BLACK)
|
|---|
| 593 | )
|
|---|
| 594 | {
|
|---|
| 595 | s->color = RED;
|
|---|
| 596 | tree = tree->parent;
|
|---|
| 597 | }
|
|---|
| 598 | else
|
|---|
| 599 | {
|
|---|
| 600 | if (s->left->color == BLACK)
|
|---|
| 601 | {
|
|---|
| 602 | s->right->color = BLACK;
|
|---|
| 603 | s->color = RED;
|
|---|
| 604 | rotateLeft(root, s);
|
|---|
| 605 | s = tree->parent->left;
|
|---|
| 606 | }
|
|---|
| 607 | s->color = tree->parent->color;
|
|---|
| 608 | tree->parent->color = BLACK;
|
|---|
| 609 | s->left->color = BLACK;
|
|---|
| 610 | rotateRight (root, tree->parent);
|
|---|
| 611 | tree = *root;
|
|---|
| 612 | }
|
|---|
| 613 | }
|
|---|
| 614 | }
|
|---|
| 615 | tree->color = BLACK;
|
|---|
| 616 |
|
|---|
| 617 | /*************************************
|
|---|
| 618 | * maintain Red-Black tree balance *
|
|---|
| 619 | * after deleting node x *
|
|---|
| 620 | *************************************/
|
|---|
| 621 |
|
|---|
| 622 | /* while ( x != *root
|
|---|
| 623 | && x->color == BLACK
|
|---|
| 624 | )
|
|---|
| 625 | {
|
|---|
| 626 | if (x == x->parent->left)
|
|---|
| 627 | {
|
|---|
| 628 | TREE *w = x->parent->right;
|
|---|
| 629 | if (w->color == RED)
|
|---|
| 630 | {
|
|---|
| 631 | w->color = BLACK;
|
|---|
| 632 | x->parent->color = RED;
|
|---|
| 633 | rotateLeft(root,
|
|---|
| 634 | x->parent);
|
|---|
| 635 | w = x->parent->right;
|
|---|
| 636 | }
|
|---|
| 637 | if ( w->left->color == BLACK
|
|---|
| 638 | && w->right->color == BLACK
|
|---|
| 639 | )
|
|---|
| 640 | {
|
|---|
| 641 | w->color = RED;
|
|---|
| 642 | x = x->parent;
|
|---|
| 643 | }
|
|---|
| 644 | else
|
|---|
| 645 | {
|
|---|
| 646 | if (w->right->color == BLACK)
|
|---|
| 647 | {
|
|---|
| 648 | w->left->color = BLACK;
|
|---|
| 649 | w->color = RED;
|
|---|
| 650 | rotateRight(root,
|
|---|
| 651 | w);
|
|---|
| 652 | w = x->parent->right;
|
|---|
| 653 | }
|
|---|
| 654 | w->color = x->parent->color;
|
|---|
| 655 | x->parent->color = BLACK;
|
|---|
| 656 | w->right->color = BLACK;
|
|---|
| 657 | rotateLeft(root,
|
|---|
| 658 | x->parent);
|
|---|
| 659 | x = *root;
|
|---|
| 660 | }
|
|---|
| 661 | }
|
|---|
| 662 | else
|
|---|
| 663 | {
|
|---|
| 664 | TREE *w = x->parent->left;
|
|---|
| 665 | if (w->color == RED)
|
|---|
| 666 | {
|
|---|
| 667 | w->color = BLACK;
|
|---|
| 668 | x->parent->color = RED;
|
|---|
| 669 | rotateRight(root,
|
|---|
| 670 | x->parent);
|
|---|
| 671 | w = x->parent->left;
|
|---|
| 672 | }
|
|---|
| 673 | if ( w->right->color == BLACK
|
|---|
| 674 | && w->left->color == BLACK
|
|---|
| 675 | )
|
|---|
| 676 | {
|
|---|
| 677 | w->color = RED;
|
|---|
| 678 | x = x->parent;
|
|---|
| 679 | }
|
|---|
| 680 | else
|
|---|
| 681 | {
|
|---|
| 682 | if (w->left->color == BLACK)
|
|---|
| 683 | {
|
|---|
| 684 | w->right->color = BLACK;
|
|---|
| 685 | w->color = RED;
|
|---|
| 686 | rotateLeft(root,
|
|---|
| 687 | w);
|
|---|
| 688 | w = x->parent->left;
|
|---|
| 689 | }
|
|---|
| 690 | w->color = x->parent->color;
|
|---|
| 691 | x->parent->color = BLACK;
|
|---|
| 692 | w->left->color = BLACK;
|
|---|
| 693 | rotateRight(root,
|
|---|
| 694 | x->parent);
|
|---|
| 695 | x = *root;
|
|---|
| 696 | }
|
|---|
| 697 | }
|
|---|
| 698 | }
|
|---|
| 699 | x->color = BLACK; */
|
|---|
| 700 | }
|
|---|
| 701 |
|
|---|
| 702 | /*
|
|---|
| 703 | *@@ treeDelete:
|
|---|
| 704 | * removes the specified node from the tree.
|
|---|
| 705 | * Does not free() the node though.
|
|---|
| 706 | *
|
|---|
| 707 | * Returns 0 if the node was deleted or
|
|---|
| 708 | * STATUS_INVALID_NODE if not.
|
|---|
| 709 | */
|
|---|
| 710 |
|
|---|
| 711 | int treeDelete(TREE **root, // in: root of the tree
|
|---|
| 712 | TREE *tree) // in: tree node to delete
|
|---|
| 713 | {
|
|---|
| 714 | TREE *y,
|
|---|
| 715 | *d;
|
|---|
| 716 | nodeColor color;
|
|---|
| 717 |
|
|---|
| 718 | if ( (!tree)
|
|---|
| 719 | || (tree == LEAF)
|
|---|
| 720 | )
|
|---|
| 721 | return STATUS_INVALID_NODE;
|
|---|
| 722 |
|
|---|
| 723 | if ( (tree->left == LEAF)
|
|---|
| 724 | || (tree->right == LEAF)
|
|---|
| 725 | )
|
|---|
| 726 | // d has a TREE_NULL node as a child
|
|---|
| 727 | d = tree;
|
|---|
| 728 | else
|
|---|
| 729 | {
|
|---|
| 730 | // find tree successor with a TREE_NULL node as a child
|
|---|
| 731 | d = tree->right;
|
|---|
| 732 | while (d->left != LEAF)
|
|---|
| 733 | d = d->left;
|
|---|
| 734 | }
|
|---|
| 735 |
|
|---|
| 736 | // y is d's only child, if there is one, else TREE_NULL
|
|---|
| 737 | if (d->left != LEAF)
|
|---|
| 738 | y = d->left;
|
|---|
| 739 | else
|
|---|
| 740 | y = d->right;
|
|---|
| 741 |
|
|---|
| 742 | // remove d from the parent chain
|
|---|
| 743 | if (y != LEAF)
|
|---|
| 744 | y->parent = d->parent;
|
|---|
| 745 | if (d->parent)
|
|---|
| 746 | {
|
|---|
| 747 | if (d == d->parent->left)
|
|---|
| 748 | d->parent->left = y;
|
|---|
| 749 | else
|
|---|
| 750 | d->parent->right = y;
|
|---|
| 751 | }
|
|---|
| 752 | else
|
|---|
| 753 | *root = y;
|
|---|
| 754 |
|
|---|
| 755 | color = d->color;
|
|---|
| 756 |
|
|---|
| 757 | if (d != tree)
|
|---|
| 758 | {
|
|---|
| 759 | // move the data from d to tree; we do this by
|
|---|
| 760 | // linking d into the structure in the place of tree
|
|---|
| 761 | d->left = tree->left;
|
|---|
| 762 | d->right = tree->right;
|
|---|
| 763 | d->parent = tree->parent;
|
|---|
| 764 | d->color = tree->color;
|
|---|
| 765 |
|
|---|
| 766 | if (d->parent)
|
|---|
| 767 | {
|
|---|
| 768 | if (tree == d->parent->left)
|
|---|
| 769 | d->parent->left = d;
|
|---|
| 770 | else
|
|---|
| 771 | d->parent->right = d;
|
|---|
| 772 | }
|
|---|
| 773 | else
|
|---|
| 774 | *root = d;
|
|---|
| 775 |
|
|---|
| 776 | if (d->left != LEAF)
|
|---|
| 777 | d->left->parent = d;
|
|---|
| 778 |
|
|---|
| 779 | if (d->right != LEAF)
|
|---|
| 780 | d->right->parent = d;
|
|---|
| 781 | }
|
|---|
| 782 |
|
|---|
| 783 | if ( (y != LEAF)
|
|---|
| 784 | && (color == BLACK)
|
|---|
| 785 | )
|
|---|
| 786 | deleteFixup(root,
|
|---|
| 787 | y);
|
|---|
| 788 |
|
|---|
| 789 | return (STATUS_OK);
|
|---|
| 790 |
|
|---|
| 791 | /* TREE *x,
|
|---|
| 792 | *y; */
|
|---|
| 793 | // *z;
|
|---|
| 794 |
|
|---|
| 795 | /*****************************
|
|---|
| 796 | * delete node z from tree *
|
|---|
| 797 | *****************************/
|
|---|
| 798 |
|
|---|
| 799 | // find node in tree
|
|---|
| 800 | /* if (lastFind && compEQ(lastFind->key, key))
|
|---|
| 801 | // if we just found node, use pointer
|
|---|
| 802 | z = lastFind;
|
|---|
| 803 | else {
|
|---|
| 804 | z = *root;
|
|---|
| 805 | while(z != LEAF)
|
|---|
| 806 | {
|
|---|
| 807 | int iResult = pfnCompare(key, z->key);
|
|---|
| 808 | if (iResult == 0)
|
|---|
| 809 | // if(compEQ(key, z->key))
|
|---|
| 810 | break;
|
|---|
| 811 | else
|
|---|
| 812 | z = (iResult < 0) // compLT(key, z->key)
|
|---|
| 813 | ? z->left
|
|---|
| 814 | : z->right;
|
|---|
| 815 | }
|
|---|
| 816 | if (z == LEAF)
|
|---|
| 817 | return STATUS_KEY_NOT_FOUND;
|
|---|
| 818 | }
|
|---|
| 819 |
|
|---|
| 820 | if ( z->left == LEAF
|
|---|
| 821 | || z->right == LEAF
|
|---|
| 822 | )
|
|---|
| 823 | {
|
|---|
| 824 | // y has a LEAF node as a child
|
|---|
| 825 | y = z;
|
|---|
| 826 | }
|
|---|
| 827 | else
|
|---|
| 828 | {
|
|---|
| 829 | // find tree successor with a LEAF node as a child
|
|---|
| 830 | y = z->right;
|
|---|
| 831 | while (y->left != LEAF)
|
|---|
| 832 | y = y->left;
|
|---|
| 833 | }
|
|---|
| 834 |
|
|---|
| 835 | // x is y's only child
|
|---|
| 836 | if (y->left != LEAF)
|
|---|
| 837 | x = y->left;
|
|---|
| 838 | else
|
|---|
| 839 | x = y->right;
|
|---|
| 840 |
|
|---|
| 841 | // remove y from the parent chain
|
|---|
| 842 | x->parent = y->parent;
|
|---|
| 843 | if (y->parent)
|
|---|
| 844 | if (y == y->parent->left)
|
|---|
| 845 | y->parent->left = x;
|
|---|
| 846 | else
|
|---|
| 847 | y->parent->right = x;
|
|---|
| 848 | else
|
|---|
| 849 | *root = x;
|
|---|
| 850 |
|
|---|
| 851 | // y is about to be deleted...
|
|---|
| 852 |
|
|---|
| 853 | if (y != z)
|
|---|
| 854 | {
|
|---|
| 855 | // now, the original code simply copied the data
|
|---|
| 856 | // from y to z... we can't safely do that since
|
|---|
| 857 | // we don't know about the real data in the
|
|---|
| 858 | // caller's TREE structure
|
|---|
| 859 | z->ulKey = y->ulKey;
|
|---|
| 860 | // z->rec = y->rec; // hope this works...
|
|---|
| 861 | // the original implementation used rec
|
|---|
| 862 | // for the node's data
|
|---|
| 863 |
|
|---|
| 864 | if (cbStruct > sizeof(TREE))
|
|---|
| 865 | {
|
|---|
| 866 | memcpy(((char*)&z) + sizeof(TREE),
|
|---|
| 867 | ((char*)&y) + sizeof(TREE),
|
|---|
| 868 | cbStruct - sizeof(TREE));
|
|---|
| 869 | }
|
|---|
| 870 | }
|
|---|
| 871 |
|
|---|
| 872 | if (y->color == BLACK)
|
|---|
| 873 | deleteFixup(root,
|
|---|
| 874 | x);
|
|---|
| 875 |
|
|---|
| 876 | // free(y);
|
|---|
| 877 | // lastFind = NULL;
|
|---|
| 878 |
|
|---|
| 879 | return STATUS_OK; */
|
|---|
| 880 | }
|
|---|
| 881 |
|
|---|
| 882 | /*
|
|---|
| 883 | *@@ treeFind:
|
|---|
| 884 | * finds the tree node with the specified key.
|
|---|
| 885 | * Returns NULL if none exists.
|
|---|
| 886 | */
|
|---|
| 887 |
|
|---|
| 888 | TREE* treeFind(TREE *root, // in: root of the tree
|
|---|
| 889 | unsigned long key, // in: key to find
|
|---|
| 890 | FNTREE_COMPARE *pfnCompare) // in: comparison func
|
|---|
| 891 | {
|
|---|
| 892 | /*******************************
|
|---|
| 893 | * find node containing data *
|
|---|
| 894 | *******************************/
|
|---|
| 895 |
|
|---|
| 896 | TREE *current = root;
|
|---|
| 897 | while (current != LEAF)
|
|---|
| 898 | {
|
|---|
| 899 | int iResult;
|
|---|
| 900 | if (0 == (iResult = pfnCompare(key, current->ulKey)))
|
|---|
| 901 | return (current);
|
|---|
| 902 | else
|
|---|
| 903 | {
|
|---|
| 904 | current = (iResult < 0) // compLT (key, current->key)
|
|---|
| 905 | ? current->left
|
|---|
| 906 | : current->right;
|
|---|
| 907 | }
|
|---|
| 908 | }
|
|---|
| 909 |
|
|---|
| 910 | return 0;
|
|---|
| 911 | }
|
|---|
| 912 |
|
|---|
| 913 | /*
|
|---|
| 914 | *@@ treeFirst:
|
|---|
| 915 | * finds and returns the first node in a (sub-)tree.
|
|---|
| 916 | *
|
|---|
| 917 | * See treeNext for a sample usage for traversing a tree.
|
|---|
| 918 | */
|
|---|
| 919 |
|
|---|
| 920 | TREE* treeFirst(TREE *r)
|
|---|
| 921 | {
|
|---|
| 922 | TREE *p;
|
|---|
| 923 |
|
|---|
| 924 | if ( (!r)
|
|---|
| 925 | || (r == LEAF)
|
|---|
| 926 | )
|
|---|
| 927 | return NULL;
|
|---|
| 928 |
|
|---|
| 929 | p = r;
|
|---|
| 930 | while (p->left != LEAF)
|
|---|
| 931 | p = p->left;
|
|---|
| 932 |
|
|---|
| 933 | return p;
|
|---|
| 934 | }
|
|---|
| 935 |
|
|---|
| 936 | /*
|
|---|
| 937 | *@@ treeLast:
|
|---|
| 938 | * finds and returns the last node in a (sub-)tree.
|
|---|
| 939 | */
|
|---|
| 940 |
|
|---|
| 941 | TREE* treeLast(TREE *r)
|
|---|
| 942 | {
|
|---|
| 943 | TREE *p;
|
|---|
| 944 |
|
|---|
| 945 | if ( (!r)
|
|---|
| 946 | || (r == LEAF))
|
|---|
| 947 | return NULL;
|
|---|
| 948 |
|
|---|
| 949 | p = r;
|
|---|
| 950 | while (p->right != LEAF)
|
|---|
| 951 | p = p->right;
|
|---|
| 952 |
|
|---|
| 953 | return p;
|
|---|
| 954 | }
|
|---|
| 955 |
|
|---|
| 956 | /*
|
|---|
| 957 | *@@ treeNext:
|
|---|
| 958 | * finds and returns the next node in a tree.
|
|---|
| 959 | *
|
|---|
| 960 | * Example for traversing a whole tree:
|
|---|
| 961 | *
|
|---|
| 962 | + TREE *TreeRoot;
|
|---|
| 963 | + ...
|
|---|
| 964 | + TREE* pNode = treeFirst(TreeRoot);
|
|---|
| 965 | + while (pNode)
|
|---|
| 966 | + {
|
|---|
| 967 | + ...
|
|---|
| 968 | + pNode = treeNext(pNode);
|
|---|
| 969 | + }
|
|---|
| 970 | *
|
|---|
| 971 | * This runs through the tree items in sorted order.
|
|---|
| 972 | */
|
|---|
| 973 |
|
|---|
| 974 | TREE* treeNext(TREE *r)
|
|---|
| 975 | {
|
|---|
| 976 | TREE *p,
|
|---|
| 977 | *child;
|
|---|
| 978 |
|
|---|
| 979 | if ( (!r)
|
|---|
| 980 | || (r == LEAF)
|
|---|
| 981 | )
|
|---|
| 982 | return NULL;
|
|---|
| 983 |
|
|---|
| 984 | p = r;
|
|---|
| 985 | if (p->right != LEAF)
|
|---|
| 986 | return treeFirst (p->right);
|
|---|
| 987 | else
|
|---|
| 988 | {
|
|---|
| 989 | p = r;
|
|---|
| 990 | child = LEAF;
|
|---|
| 991 | while ( (p->parent)
|
|---|
| 992 | && (p->right == child)
|
|---|
| 993 | )
|
|---|
| 994 | {
|
|---|
| 995 | child = p;
|
|---|
| 996 | p = p->parent;
|
|---|
| 997 | }
|
|---|
| 998 | if (p->right != child)
|
|---|
| 999 | return p;
|
|---|
| 1000 | else
|
|---|
| 1001 | return NULL;
|
|---|
| 1002 | }
|
|---|
| 1003 | }
|
|---|
| 1004 |
|
|---|
| 1005 | /*
|
|---|
| 1006 | *@@ treePrev:
|
|---|
| 1007 | * finds and returns the previous node in a tree.
|
|---|
| 1008 | */
|
|---|
| 1009 |
|
|---|
| 1010 | TREE* treePrev(TREE *r)
|
|---|
| 1011 | {
|
|---|
| 1012 | TREE *p,
|
|---|
| 1013 | *child;
|
|---|
| 1014 |
|
|---|
| 1015 | if ( (!r)
|
|---|
| 1016 | || (r == LEAF))
|
|---|
| 1017 | return NULL;
|
|---|
| 1018 |
|
|---|
| 1019 | p = r;
|
|---|
| 1020 | if (p->left != LEAF)
|
|---|
| 1021 | return treeLast (p->left);
|
|---|
| 1022 | else
|
|---|
| 1023 | {
|
|---|
| 1024 | p = r;
|
|---|
| 1025 | child = LEAF;
|
|---|
| 1026 | while ((p->parent)
|
|---|
| 1027 | && (p->left == child))
|
|---|
| 1028 | {
|
|---|
| 1029 | child = p;
|
|---|
| 1030 | p = p->parent;
|
|---|
| 1031 | }
|
|---|
| 1032 | if (p->left != child)
|
|---|
| 1033 | return p;
|
|---|
| 1034 | else
|
|---|
| 1035 | return NULL;
|
|---|
| 1036 | }
|
|---|
| 1037 | }
|
|---|
| 1038 |
|
|---|
| 1039 | /*
|
|---|
| 1040 | *@@ treeBuildArray:
|
|---|
| 1041 | * builds an array of TREE* pointers containing
|
|---|
| 1042 | * all tree items in sorted order.
|
|---|
| 1043 | *
|
|---|
| 1044 | * This returns a TREE** pointer to the array.
|
|---|
| 1045 | * Each item in the array is a TREE* pointer to
|
|---|
| 1046 | * the respective tree item.
|
|---|
| 1047 | *
|
|---|
| 1048 | * The array has been allocated using malloc()
|
|---|
| 1049 | * and must be free()'d by the caller.
|
|---|
| 1050 | *
|
|---|
| 1051 | * NOTE: This will only work if you maintain a
|
|---|
| 1052 | * tree node count yourself, which you must pass
|
|---|
| 1053 | * in *pulCount on input.
|
|---|
| 1054 | *
|
|---|
| 1055 | * This is most useful if you want to delete an
|
|---|
| 1056 | * entire tree without having to traverse it
|
|---|
| 1057 | * and rebalance the tree on every delete.
|
|---|
| 1058 | *
|
|---|
| 1059 | * Example usage for deletion:
|
|---|
| 1060 | *
|
|---|
| 1061 | + TREE *G_TreeRoot;
|
|---|
| 1062 | + treeInit(&G_TreeRoot);
|
|---|
| 1063 | +
|
|---|
| 1064 | + // add stuff to the tree
|
|---|
| 1065 | + TREE *pNewNode = malloc(...);
|
|---|
| 1066 | + treeInsert(&G_TreeRoot, pNewNode, fnCompare)
|
|---|
| 1067 | +
|
|---|
| 1068 | + // now delete all nodes
|
|---|
| 1069 | + ULONG cItems = ... // insert item count here
|
|---|
| 1070 | + TREE** papNodes = treeBuildArray(G_TreeRoot,
|
|---|
| 1071 | + &cItems);
|
|---|
| 1072 | + if (papNodes)
|
|---|
| 1073 | + {
|
|---|
| 1074 | + ULONG ul;
|
|---|
| 1075 | + for (ul = 0; ul < cItems; ul++)
|
|---|
| 1076 | + {
|
|---|
| 1077 | + TREE *pNodeThis = papNodes[ul];
|
|---|
| 1078 | + free(pNodeThis);
|
|---|
| 1079 | + }
|
|---|
| 1080 | +
|
|---|
| 1081 | + free(papNodes);
|
|---|
| 1082 | + }
|
|---|
| 1083 | +
|
|---|
| 1084 | *
|
|---|
| 1085 | *@@added V0.9.9 (2001-04-05) [umoeller]
|
|---|
| 1086 | */
|
|---|
| 1087 |
|
|---|
| 1088 | TREE** treeBuildArray(TREE* pRoot,
|
|---|
| 1089 | unsigned long *pulCount) // in: item count, out: array item count
|
|---|
| 1090 | {
|
|---|
| 1091 | TREE **papNodes = NULL,
|
|---|
| 1092 | **papThis = NULL;
|
|---|
| 1093 | unsigned long cb = (sizeof(TREE*) * (*pulCount)),
|
|---|
| 1094 | cNodes = 0;
|
|---|
| 1095 |
|
|---|
| 1096 | if (cb)
|
|---|
| 1097 | {
|
|---|
| 1098 | papNodes = (TREE**)malloc(cb);
|
|---|
| 1099 | papThis = papNodes;
|
|---|
| 1100 |
|
|---|
| 1101 | if (papNodes)
|
|---|
| 1102 | {
|
|---|
| 1103 | TREE *pNode = (TREE*)treeFirst(pRoot);
|
|---|
| 1104 |
|
|---|
| 1105 | memset(papNodes, 0, cb);
|
|---|
| 1106 |
|
|---|
| 1107 | // copy nodes to array
|
|---|
| 1108 | while ( pNode
|
|---|
| 1109 | && cNodes < (*pulCount) // just to make sure
|
|---|
| 1110 | )
|
|---|
| 1111 | {
|
|---|
| 1112 | *papThis = pNode;
|
|---|
| 1113 | cNodes++;
|
|---|
| 1114 | papThis++;
|
|---|
| 1115 |
|
|---|
| 1116 | pNode = (TREE*)treeNext(pNode);
|
|---|
| 1117 | }
|
|---|
| 1118 |
|
|---|
| 1119 | // output count
|
|---|
| 1120 | *pulCount = cNodes;
|
|---|
| 1121 | }
|
|---|
| 1122 | }
|
|---|
| 1123 |
|
|---|
| 1124 | return (papNodes);
|
|---|
| 1125 | }
|
|---|
| 1126 |
|
|---|
| 1127 | /* void main(int argc, char **argv) {
|
|---|
| 1128 | int maxnum, ct;
|
|---|
| 1129 | recType rec;
|
|---|
| 1130 | keyType key;
|
|---|
| 1131 | statusEnum status;
|
|---|
| 1132 |
|
|---|
| 1133 | maxnum = atoi(argv[1]);
|
|---|
| 1134 |
|
|---|
| 1135 | printf("maxnum = %d\n", maxnum);
|
|---|
| 1136 | for (ct = maxnum; ct; ct--) {
|
|---|
| 1137 | key = rand() % 9 + 1;
|
|---|
| 1138 | if ((status = find(key, &rec)) == STATUS_OK) {
|
|---|
| 1139 | status = delete(key);
|
|---|
| 1140 | if (status) printf("fail: status = %d\n", status);
|
|---|
| 1141 | } else {
|
|---|
| 1142 | status = insert(key, &rec);
|
|---|
| 1143 | if (status) printf("fail: status = %d\n", status);
|
|---|
| 1144 | }
|
|---|
| 1145 | }
|
|---|
| 1146 | } */
|
|---|