1 |
|
---|
2 | /*
|
---|
3 | *@@sourcefile tree.c:
|
---|
4 | * contains helper functions for maintaining 'Red-Black' balanced
|
---|
5 | * binary trees.
|
---|
6 | *
|
---|
7 | * Usage: All C programs; not OS/2-specific.
|
---|
8 | *
|
---|
9 | * Function prefixes (new with V0.81):
|
---|
10 | * -- tree* tree helper functions
|
---|
11 | *
|
---|
12 | * <B>Introduction</B>
|
---|
13 | *
|
---|
14 | * While linked lists have "next" and "previous" pointers (which
|
---|
15 | * makes them one-dimensional), trees have a two-dimensional layout:
|
---|
16 | * each tree node has one "parent" and two "children" which are
|
---|
17 | * called "left" and "right". The "left" pointer will always lead
|
---|
18 | * to a tree node that is "less than" its parent node, while the
|
---|
19 | * "right" pointer will lead to a node that is "greater than"
|
---|
20 | * its parent. What is considered "less" or "greater" for sorting
|
---|
21 | * is determined by a comparison callback to be supplied by the
|
---|
22 | * tree functions' caller. The "leafs" of the tree will have
|
---|
23 | * null left and right pointers.
|
---|
24 | *
|
---|
25 | * For this, the functions here use the TREE structure. The most
|
---|
26 | * important member here is the "ulKey" field which is used for
|
---|
27 | * sorting (passed to the compare callbacks). Since the tree
|
---|
28 | * functions do no memory allocation, the caller can easily
|
---|
29 | * use an extended TREE structure with additional fields as
|
---|
30 | * long as the first member is the TREE structure. See below.
|
---|
31 | *
|
---|
32 | * Each tree must have a "root" item, from which all other tree
|
---|
33 | * nodes can eventually be reached by following the "left" and
|
---|
34 | * "right" pointers. The root node is the only node whose
|
---|
35 | * parent is null.
|
---|
36 | *
|
---|
37 | * <B>Trees vs. linked lists</B>
|
---|
38 | *
|
---|
39 | * Compared to linked lists (as implemented by linklist.c),
|
---|
40 | * trees allow for much faster searching, since they are
|
---|
41 | * always sorted.
|
---|
42 | *
|
---|
43 | * Take an array of numbers, and assume you'd need to find
|
---|
44 | * the array node with the specified number.
|
---|
45 | *
|
---|
46 | * With a (sorted) linked list, this would look like:
|
---|
47 | *
|
---|
48 | + 4 --> 7 --> 16 --> 20 --> 37 --> 38 --> 43
|
---|
49 | *
|
---|
50 | * Searching for "43" would need 6 iterations.
|
---|
51 | *
|
---|
52 | * With a binary tree, this would instead look like:
|
---|
53 | *
|
---|
54 | + 20
|
---|
55 | + / \
|
---|
56 | + 7 38
|
---|
57 | + / \ / \
|
---|
58 | + 4 16 37 43
|
---|
59 | + / \ / \ / \ / \
|
---|
60 | *
|
---|
61 | * Searching for "43" would need 2 iterations only.
|
---|
62 | *
|
---|
63 | * Assuming a linked list contains N items, then searching a
|
---|
64 | * linked list for an item will take an average of N/2 comparisons
|
---|
65 | * and even N comparisons if the item cannot be found (unless
|
---|
66 | * you keep the list sorted, but linklist.c doesn't do this).
|
---|
67 | *
|
---|
68 | * According to "Algorithms in C", a search in a balanced
|
---|
69 | * "red-black" binary tree takes about lg N comparisons on
|
---|
70 | * average, and insertions take less than one rotation on
|
---|
71 | * average.
|
---|
72 | *
|
---|
73 | * Differences compared to linklist.c:
|
---|
74 | *
|
---|
75 | * -- A tree is always sorted.
|
---|
76 | *
|
---|
77 | * -- Trees are considerably slower when inserting and removing
|
---|
78 | * nodes because the tree has to be rebalanced every time
|
---|
79 | * a node changes. By contrast, trees are much faster finding
|
---|
80 | * nodes because the tree is always sorted.
|
---|
81 | *
|
---|
82 | * -- As opposed to a LISTNODE, the TREE structure (which
|
---|
83 | * represents a tree node) does not contain a data pointer,
|
---|
84 | * as said above. The caller must do all memory management.
|
---|
85 | *
|
---|
86 | * <B>Background</B>
|
---|
87 | *
|
---|
88 | * Now, a "red-black balanced binary tree" means the following:
|
---|
89 | *
|
---|
90 | * -- We have "binary" trees. That is, there are only "left" and
|
---|
91 | * "right" pointers. (Other algorithms allow tree nodes to
|
---|
92 | * have more than two children, but binary trees are usually
|
---|
93 | * more efficient.)
|
---|
94 | *
|
---|
95 | * -- The tree is always "balanced". The tree gets reordered
|
---|
96 | * when items are added/removed to ensure that all paths
|
---|
97 | * through the tree are approximately the same length.
|
---|
98 | * This avoids the "worst case" scenario that some paths
|
---|
99 | * grow terribly long while others remain short ("degenerated"
|
---|
100 | * trees), which can make searching very inefficient:
|
---|
101 | *
|
---|
102 | + 4
|
---|
103 | + / \
|
---|
104 | + 7
|
---|
105 | + / \
|
---|
106 | + 16
|
---|
107 | + / \
|
---|
108 | + 20
|
---|
109 | + / \
|
---|
110 | + 37
|
---|
111 | + / \
|
---|
112 | + 43
|
---|
113 | + / \
|
---|
114 | *
|
---|
115 | * -- Fully balanced trees can be quite expensive because on
|
---|
116 | * every insertion or deletion, the tree nodes must be rotated.
|
---|
117 | * By contrast, "Red-black" binary balanced trees contain
|
---|
118 | * an additional bit in each node which marks the node as
|
---|
119 | * either red or black. This bit is used only for efficient
|
---|
120 | * rebalancing when inserting or deleting nodes.
|
---|
121 | *
|
---|
122 | * I don't fully understand why this works, but if you really
|
---|
123 | * care, this is explained at
|
---|
124 | * "http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html".
|
---|
125 | *
|
---|
126 | * In other words, as opposed to regular binary trees, RB trees
|
---|
127 | * are not _fully_ balanced, but they are _mostly_ balanced. With
|
---|
128 | * respect to efficiency, RB trees are thus a good compromise:
|
---|
129 | *
|
---|
130 | * -- Completely unbalanced trees are efficient when inserting,
|
---|
131 | * but can have a terrible worst case when searching.
|
---|
132 | *
|
---|
133 | * -- RB trees are still acceptably efficient when inserting
|
---|
134 | * and quite efficient when searching.
|
---|
135 | * A RB tree with n internal nodes has a height of at most
|
---|
136 | * 2lg(n+1). Both average and worst-case search time is O(lg n).
|
---|
137 | *
|
---|
138 | * -- Fully balanced binary trees are inefficient when inserting
|
---|
139 | * but most efficient when searching.
|
---|
140 | *
|
---|
141 | * So as long as you are sure that trees are more efficient
|
---|
142 | * in your situation than a linked list in the first place, use
|
---|
143 | * these RB trees instead of linked lists.
|
---|
144 | *
|
---|
145 | * <B>Using binary trees</B>
|
---|
146 | *
|
---|
147 | * You can use any structure as elements in a tree, provided
|
---|
148 | * that the first member in the structure is a TREE structure
|
---|
149 | * (i.e. it has the left, right, parent, and color members).
|
---|
150 | * Each TREE node has a ulKey field which is used for
|
---|
151 | * comparing tree nodes and thus determines the location of
|
---|
152 | * the node in the tree.
|
---|
153 | *
|
---|
154 | * The tree functions don't care what follows in each TREE
|
---|
155 | * node since they do not manage any memory themselves.
|
---|
156 | * So the implementation here is slightly different from the
|
---|
157 | * linked lists in linklist.c, because the LISTNODE structs
|
---|
158 | * only have pointers to the data. By contrast, the TREE structs
|
---|
159 | * are expected to contain the data themselves.
|
---|
160 | *
|
---|
161 | * Initialize the root of the tree with treeInit(). Then
|
---|
162 | * add nodes to the tree with treeInsert() and remove nodes
|
---|
163 | * with treeDelete(). See below for a sample.
|
---|
164 | *
|
---|
165 | * You can test whether a tree is empty by comparing its
|
---|
166 | * root with LEAF.
|
---|
167 | *
|
---|
168 | * For most tree* functions, you must specify a comparison
|
---|
169 | * function which will always receive two "key" parameters
|
---|
170 | * to compare. This must be declared as
|
---|
171 | +
|
---|
172 | + int TREEENTRY fnCompare(ULONG ul1, ULONG ul2);
|
---|
173 | *
|
---|
174 | * This will receive two TREE.ulKey members (whose meaning
|
---|
175 | * is defined by your implementation) and must return
|
---|
176 | *
|
---|
177 | * -- something < 0: ul1 < ul2
|
---|
178 | * -- 0: ul1 == ul2
|
---|
179 | * -- something > 1: ul1 > ul2
|
---|
180 | *
|
---|
181 | * <B>Example</B>
|
---|
182 | *
|
---|
183 | * A good example where trees are efficient would be the
|
---|
184 | * case where you have "keyword=value" string pairs and
|
---|
185 | * you frequently need to search for "keyword" to find
|
---|
186 | * a "value". So "keyword" would be an ideal candidate for
|
---|
187 | * the TREE.key field.
|
---|
188 | *
|
---|
189 | * You'd then define your own tree nodes like this:
|
---|
190 | *
|
---|
191 | + typedef struct _MYTREENODE
|
---|
192 | + {
|
---|
193 | + TREE Tree; // regular tree node, which has
|
---|
194 | + // the ULONG "key" field; we'd
|
---|
195 | + // use this as a const char*
|
---|
196 | + // pointer to the keyword string
|
---|
197 | + // here come the additional fields
|
---|
198 | + // (whatever you need for your data)
|
---|
199 | + const char *pcszValue;
|
---|
200 | +
|
---|
201 | + } MYTREENODE, *PMYTREENODE;
|
---|
202 | *
|
---|
203 | * Initialize the tree root:
|
---|
204 | *
|
---|
205 | + TREE *root;
|
---|
206 | + treeInit(&root);
|
---|
207 | *
|
---|
208 | * To add a new "keyword=value" pair, do this:
|
---|
209 | *
|
---|
210 | + PMYTREENODE AddNode(TREE **root,
|
---|
211 | + const char *pcszKeyword,
|
---|
212 | + const char *pcszValue)
|
---|
213 | + {
|
---|
214 | + PMYTREENODE p = (PMYTREENODE)malloc(sizeof(MYTREENODE));
|
---|
215 | + p.Tree.ulKey = (ULONG)pcszKeyword;
|
---|
216 | + p.pcszValue = pcszValue;
|
---|
217 | + treeInsert(root, // tree's root
|
---|
218 | + p, // new tree node
|
---|
219 | + fnCompare); // comparison func
|
---|
220 | + return (p);
|
---|
221 | + }
|
---|
222 | *
|
---|
223 | * Your comparison func receives two ulKey values to compare,
|
---|
224 | * which in this case would be the typecast string pointers:
|
---|
225 | *
|
---|
226 | + int TREEENTRY fnCompare(ULONG ul1, ULONG ul2)
|
---|
227 | + {
|
---|
228 | + return (strcmp((const char*)ul1,
|
---|
229 | + (const char*)ul2));
|
---|
230 | + }
|
---|
231 | *
|
---|
232 | * You can then use treeFind to very quickly find a node
|
---|
233 | * with a specified ulKey member.
|
---|
234 | *
|
---|
235 | * This file was new with V0.9.5 (2000-09-29) [umoeller].
|
---|
236 | * With V0.9.13, all the code has been replaced with the public
|
---|
237 | * domain code found at http://epaperpress.com/sortsearch/index.html
|
---|
238 | * ("A compact guide to searching and sorting") by Thomas Niemann.
|
---|
239 | * The old implementation from the Standard Function Library (SFL)
|
---|
240 | * turned out to be buggy for large trees (more than 100 nodes).
|
---|
241 | *
|
---|
242 | *@@added V0.9.5 (2000-09-29) [umoeller]
|
---|
243 | *@@header "helpers\tree.h"
|
---|
244 | */
|
---|
245 |
|
---|
246 | /*
|
---|
247 | * Original coding by Thomas Niemann, placed in the public domain
|
---|
248 | * (see http://epaperpress.com/sortsearch/index.html).
|
---|
249 | *
|
---|
250 | * This implementation Copyright (C) 2001 Ulrich Mller.
|
---|
251 | * This file is part of the "XWorkplace helpers" source package.
|
---|
252 | * This is free software; you can redistribute it and/or modify
|
---|
253 | * it under the terms of the GNU General Public License as published
|
---|
254 | * by the Free Software Foundation, in version 2 as it comes in the
|
---|
255 | * "COPYING" file of the XWorkplace main distribution.
|
---|
256 | * This program is distributed in the hope that it will be useful,
|
---|
257 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
258 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
259 | * GNU General Public License for more details.
|
---|
260 | */
|
---|
261 |
|
---|
262 | /*
|
---|
263 | *@@category: Helpers\C helpers\Red-black balanced binary trees
|
---|
264 | * See tree.c.
|
---|
265 | */
|
---|
266 |
|
---|
267 | #include "setup.h"
|
---|
268 | #include "helpers\tree.h"
|
---|
269 |
|
---|
270 | #define LEAF &sentinel // all leafs are sentinels
|
---|
271 | static TREE sentinel = { LEAF, LEAF, 0, BLACK};
|
---|
272 |
|
---|
273 | /*
|
---|
274 | A binary search tree is a red-black tree if:
|
---|
275 |
|
---|
276 | 1. Every node is either red or black.
|
---|
277 | 2. Every leaf (nil) is black.
|
---|
278 | 3. If a node is red, then both its children are black.
|
---|
279 | 4. Every simple path from a node to a descendant leaf contains the same
|
---|
280 | number of black nodes.
|
---|
281 | */
|
---|
282 |
|
---|
283 | /*
|
---|
284 | *@@ treeInit:
|
---|
285 | * initializes the root of a tree.
|
---|
286 | *
|
---|
287 | */
|
---|
288 |
|
---|
289 | void treeInit(TREE **root)
|
---|
290 | {
|
---|
291 | *root = LEAF;
|
---|
292 | }
|
---|
293 |
|
---|
294 | /*
|
---|
295 | *@@ treeCompareKeys:
|
---|
296 | * standard comparison func if the TREE.ulKey
|
---|
297 | * field really is a ULONG.
|
---|
298 | */
|
---|
299 |
|
---|
300 | int TREEENTRY treeCompareKeys(unsigned long ul1, unsigned long ul2)
|
---|
301 | {
|
---|
302 | if (ul1 < ul2)
|
---|
303 | return -1;
|
---|
304 | if (ul1 > ul2)
|
---|
305 | return +1;
|
---|
306 | return (0);
|
---|
307 | }
|
---|
308 |
|
---|
309 | /*
|
---|
310 | *@@ rotateLeft:
|
---|
311 | * private function during rebalancing.
|
---|
312 | */
|
---|
313 |
|
---|
314 | static void rotateLeft(TREE **root,
|
---|
315 | TREE *x)
|
---|
316 | {
|
---|
317 | /**************************
|
---|
318 | * rotate node x to left *
|
---|
319 | **************************/
|
---|
320 |
|
---|
321 | TREE *y = x->right;
|
---|
322 |
|
---|
323 | // establish x->right link
|
---|
324 | x->right = y->left;
|
---|
325 | if (y->left != LEAF)
|
---|
326 | y->left->parent = x;
|
---|
327 |
|
---|
328 | // establish y->parent link
|
---|
329 | if (y != LEAF)
|
---|
330 | y->parent = x->parent;
|
---|
331 | if (x->parent)
|
---|
332 | {
|
---|
333 | if (x == x->parent->left)
|
---|
334 | x->parent->left = y;
|
---|
335 | else
|
---|
336 | x->parent->right = y;
|
---|
337 | }
|
---|
338 | else
|
---|
339 | *root = y;
|
---|
340 |
|
---|
341 | // link x and y
|
---|
342 | y->left = x;
|
---|
343 | if (x != LEAF)
|
---|
344 | x->parent = y;
|
---|
345 | }
|
---|
346 |
|
---|
347 | /*
|
---|
348 | *@@ rotateRight:
|
---|
349 | * private function during rebalancing.
|
---|
350 | */
|
---|
351 |
|
---|
352 | static void rotateRight(TREE **root,
|
---|
353 | TREE *x)
|
---|
354 | {
|
---|
355 |
|
---|
356 | /****************************
|
---|
357 | * rotate node x to right *
|
---|
358 | ****************************/
|
---|
359 |
|
---|
360 | TREE *y = x->left;
|
---|
361 |
|
---|
362 | // establish x->left link
|
---|
363 | x->left = y->right;
|
---|
364 | if (y->right != LEAF)
|
---|
365 | y->right->parent = x;
|
---|
366 |
|
---|
367 | // establish y->parent link
|
---|
368 | if (y != LEAF)
|
---|
369 | y->parent = x->parent;
|
---|
370 | if (x->parent)
|
---|
371 | {
|
---|
372 | if (x == x->parent->right)
|
---|
373 | x->parent->right = y;
|
---|
374 | else
|
---|
375 | x->parent->left = y;
|
---|
376 | }
|
---|
377 | else
|
---|
378 | *root = y;
|
---|
379 |
|
---|
380 | // link x and y
|
---|
381 | y->right = x;
|
---|
382 | if (x != LEAF)
|
---|
383 | x->parent = y;
|
---|
384 | }
|
---|
385 |
|
---|
386 | /*
|
---|
387 | *@@ insertFixup:
|
---|
388 | * private function during rebalancing.
|
---|
389 | */
|
---|
390 |
|
---|
391 | static void insertFixup(TREE **root,
|
---|
392 | TREE *x)
|
---|
393 | {
|
---|
394 | /*************************************
|
---|
395 | * maintain Red-Black tree balance *
|
---|
396 | * after inserting node x *
|
---|
397 | *************************************/
|
---|
398 |
|
---|
399 | // check Red-Black properties
|
---|
400 | while ( x != *root
|
---|
401 | && x->parent->color == RED
|
---|
402 | )
|
---|
403 | {
|
---|
404 | // we have a violation
|
---|
405 | if (x->parent == x->parent->parent->left)
|
---|
406 | {
|
---|
407 | TREE *y = x->parent->parent->right;
|
---|
408 | if (y->color == RED)
|
---|
409 | {
|
---|
410 | // uncle is RED
|
---|
411 | x->parent->color = BLACK;
|
---|
412 | y->color = BLACK;
|
---|
413 | x->parent->parent->color = RED;
|
---|
414 | x = x->parent->parent;
|
---|
415 | }
|
---|
416 | else
|
---|
417 | {
|
---|
418 | // uncle is BLACK
|
---|
419 | if (x == x->parent->right)
|
---|
420 | {
|
---|
421 | // make x a left child
|
---|
422 | x = x->parent;
|
---|
423 | rotateLeft(root,
|
---|
424 | x);
|
---|
425 | }
|
---|
426 |
|
---|
427 | // recolor and rotate
|
---|
428 | x->parent->color = BLACK;
|
---|
429 | x->parent->parent->color = RED;
|
---|
430 | rotateRight(root,
|
---|
431 | x->parent->parent);
|
---|
432 | }
|
---|
433 | }
|
---|
434 | else
|
---|
435 | {
|
---|
436 | // mirror image of above code
|
---|
437 | TREE *y = x->parent->parent->left;
|
---|
438 | if (y->color == RED)
|
---|
439 | {
|
---|
440 | // uncle is RED
|
---|
441 | x->parent->color = BLACK;
|
---|
442 | y->color = BLACK;
|
---|
443 | x->parent->parent->color = RED;
|
---|
444 | x = x->parent->parent;
|
---|
445 | }
|
---|
446 | else
|
---|
447 | {
|
---|
448 | // uncle is BLACK
|
---|
449 | if (x == x->parent->left)
|
---|
450 | {
|
---|
451 | x = x->parent;
|
---|
452 | rotateRight(root,
|
---|
453 | x);
|
---|
454 | }
|
---|
455 | x->parent->color = BLACK;
|
---|
456 | x->parent->parent->color = RED;
|
---|
457 | rotateLeft(root,
|
---|
458 | x->parent->parent);
|
---|
459 | }
|
---|
460 | }
|
---|
461 | }
|
---|
462 | (*root)->color = BLACK;
|
---|
463 | }
|
---|
464 |
|
---|
465 | /*
|
---|
466 | *@@ treeInsert:
|
---|
467 | * inserts a new tree node into the specified
|
---|
468 | * tree, using the specified comparison function
|
---|
469 | * for sorting.
|
---|
470 | *
|
---|
471 | * "x" specifies the new tree node which must
|
---|
472 | * have been allocated by the caller. x->ulKey
|
---|
473 | * must already contain the node's key (data).
|
---|
474 | * This function will then set the parent,
|
---|
475 | * left, right, and color members.
|
---|
476 | *
|
---|
477 | * Returns 0 if no error. Might return
|
---|
478 | * STATUS_DUPLICATE_KEY if a node with the
|
---|
479 | * same ulKey already exists.
|
---|
480 | */
|
---|
481 |
|
---|
482 | int treeInsert(TREE **root, // in: root of the tree
|
---|
483 | TREE *x, // in: new node to insert
|
---|
484 | FNTREE_COMPARE *pfnCompare) // in: comparison func
|
---|
485 | {
|
---|
486 | TREE *current,
|
---|
487 | *parent;
|
---|
488 |
|
---|
489 | unsigned long key = x->ulKey;
|
---|
490 |
|
---|
491 | // find future parent
|
---|
492 | current = *root;
|
---|
493 | parent = 0;
|
---|
494 |
|
---|
495 | while (current != LEAF)
|
---|
496 | {
|
---|
497 | int iResult;
|
---|
498 | if (0 == (iResult = pfnCompare(key, current->ulKey))) // if (compEQ(key, current->key))
|
---|
499 | return STATUS_DUPLICATE_KEY;
|
---|
500 | parent = current;
|
---|
501 | current = (iResult < 0) // compLT(key, current->key)
|
---|
502 | ? current->left
|
---|
503 | : current->right;
|
---|
504 | }
|
---|
505 |
|
---|
506 | // set up new node
|
---|
507 | /* if ((x = malloc (sizeof(*x))) == 0)
|
---|
508 | return STATUS_MEM_EXHAUSTED; */
|
---|
509 | x->parent = parent;
|
---|
510 | x->left = LEAF;
|
---|
511 | x->right = LEAF;
|
---|
512 | x->color = RED;
|
---|
513 | // x->key = key;
|
---|
514 | // x->rec = *rec;
|
---|
515 |
|
---|
516 | // insert node in tree
|
---|
517 | if (parent)
|
---|
518 | {
|
---|
519 | if (pfnCompare(key, parent->ulKey) < 0) // (compLT(key, parent->key))
|
---|
520 | parent->left = x;
|
---|
521 | else
|
---|
522 | parent->right = x;
|
---|
523 | }
|
---|
524 | else
|
---|
525 | *root = x;
|
---|
526 |
|
---|
527 | insertFixup(root,
|
---|
528 | x);
|
---|
529 | // lastFind = NULL;
|
---|
530 |
|
---|
531 | return STATUS_OK;
|
---|
532 | }
|
---|
533 |
|
---|
534 | /*
|
---|
535 | *@@ deleteFixup:
|
---|
536 | *
|
---|
537 | */
|
---|
538 |
|
---|
539 | static void deleteFixup(TREE **root,
|
---|
540 | TREE *tree)
|
---|
541 | {
|
---|
542 | TREE *s;
|
---|
543 |
|
---|
544 | while ( tree != *root
|
---|
545 | && tree->color == BLACK
|
---|
546 | )
|
---|
547 | {
|
---|
548 | if (tree == tree->parent->left)
|
---|
549 | {
|
---|
550 | s = tree->parent->right;
|
---|
551 | if (s->color == RED)
|
---|
552 | {
|
---|
553 | s->color = BLACK;
|
---|
554 | tree->parent->color = RED;
|
---|
555 | rotateLeft(root, tree->parent);
|
---|
556 | s = tree->parent->right;
|
---|
557 | }
|
---|
558 | if ( (s->left->color == BLACK)
|
---|
559 | && (s->right->color == BLACK)
|
---|
560 | )
|
---|
561 | {
|
---|
562 | s->color = RED;
|
---|
563 | tree = tree->parent;
|
---|
564 | }
|
---|
565 | else
|
---|
566 | {
|
---|
567 | if (s->right->color == BLACK)
|
---|
568 | {
|
---|
569 | s->left->color = BLACK;
|
---|
570 | s->color = RED;
|
---|
571 | rotateRight(root, s);
|
---|
572 | s = tree->parent->right;
|
---|
573 | }
|
---|
574 | s->color = tree->parent->color;
|
---|
575 | tree->parent->color = BLACK;
|
---|
576 | s->right->color = BLACK;
|
---|
577 | rotateLeft(root, tree->parent);
|
---|
578 | tree = *root;
|
---|
579 | }
|
---|
580 | }
|
---|
581 | else
|
---|
582 | {
|
---|
583 | s = tree->parent->left;
|
---|
584 | if (s->color == RED)
|
---|
585 | {
|
---|
586 | s->color = BLACK;
|
---|
587 | tree->parent->color = RED;
|
---|
588 | rotateRight(root, tree->parent);
|
---|
589 | s = tree->parent->left;
|
---|
590 | }
|
---|
591 | if ( (s->right->color == BLACK)
|
---|
592 | && (s->left->color == BLACK)
|
---|
593 | )
|
---|
594 | {
|
---|
595 | s->color = RED;
|
---|
596 | tree = tree->parent;
|
---|
597 | }
|
---|
598 | else
|
---|
599 | {
|
---|
600 | if (s->left->color == BLACK)
|
---|
601 | {
|
---|
602 | s->right->color = BLACK;
|
---|
603 | s->color = RED;
|
---|
604 | rotateLeft(root, s);
|
---|
605 | s = tree->parent->left;
|
---|
606 | }
|
---|
607 | s->color = tree->parent->color;
|
---|
608 | tree->parent->color = BLACK;
|
---|
609 | s->left->color = BLACK;
|
---|
610 | rotateRight (root, tree->parent);
|
---|
611 | tree = *root;
|
---|
612 | }
|
---|
613 | }
|
---|
614 | }
|
---|
615 | tree->color = BLACK;
|
---|
616 |
|
---|
617 | /*************************************
|
---|
618 | * maintain Red-Black tree balance *
|
---|
619 | * after deleting node x *
|
---|
620 | *************************************/
|
---|
621 |
|
---|
622 | /* while ( x != *root
|
---|
623 | && x->color == BLACK
|
---|
624 | )
|
---|
625 | {
|
---|
626 | if (x == x->parent->left)
|
---|
627 | {
|
---|
628 | TREE *w = x->parent->right;
|
---|
629 | if (w->color == RED)
|
---|
630 | {
|
---|
631 | w->color = BLACK;
|
---|
632 | x->parent->color = RED;
|
---|
633 | rotateLeft(root,
|
---|
634 | x->parent);
|
---|
635 | w = x->parent->right;
|
---|
636 | }
|
---|
637 | if ( w->left->color == BLACK
|
---|
638 | && w->right->color == BLACK
|
---|
639 | )
|
---|
640 | {
|
---|
641 | w->color = RED;
|
---|
642 | x = x->parent;
|
---|
643 | }
|
---|
644 | else
|
---|
645 | {
|
---|
646 | if (w->right->color == BLACK)
|
---|
647 | {
|
---|
648 | w->left->color = BLACK;
|
---|
649 | w->color = RED;
|
---|
650 | rotateRight(root,
|
---|
651 | w);
|
---|
652 | w = x->parent->right;
|
---|
653 | }
|
---|
654 | w->color = x->parent->color;
|
---|
655 | x->parent->color = BLACK;
|
---|
656 | w->right->color = BLACK;
|
---|
657 | rotateLeft(root,
|
---|
658 | x->parent);
|
---|
659 | x = *root;
|
---|
660 | }
|
---|
661 | }
|
---|
662 | else
|
---|
663 | {
|
---|
664 | TREE *w = x->parent->left;
|
---|
665 | if (w->color == RED)
|
---|
666 | {
|
---|
667 | w->color = BLACK;
|
---|
668 | x->parent->color = RED;
|
---|
669 | rotateRight(root,
|
---|
670 | x->parent);
|
---|
671 | w = x->parent->left;
|
---|
672 | }
|
---|
673 | if ( w->right->color == BLACK
|
---|
674 | && w->left->color == BLACK
|
---|
675 | )
|
---|
676 | {
|
---|
677 | w->color = RED;
|
---|
678 | x = x->parent;
|
---|
679 | }
|
---|
680 | else
|
---|
681 | {
|
---|
682 | if (w->left->color == BLACK)
|
---|
683 | {
|
---|
684 | w->right->color = BLACK;
|
---|
685 | w->color = RED;
|
---|
686 | rotateLeft(root,
|
---|
687 | w);
|
---|
688 | w = x->parent->left;
|
---|
689 | }
|
---|
690 | w->color = x->parent->color;
|
---|
691 | x->parent->color = BLACK;
|
---|
692 | w->left->color = BLACK;
|
---|
693 | rotateRight(root,
|
---|
694 | x->parent);
|
---|
695 | x = *root;
|
---|
696 | }
|
---|
697 | }
|
---|
698 | }
|
---|
699 | x->color = BLACK; */
|
---|
700 | }
|
---|
701 |
|
---|
702 | /*
|
---|
703 | *@@ treeDelete:
|
---|
704 | * removes the specified node from the tree.
|
---|
705 | * Does not free() the node though.
|
---|
706 | *
|
---|
707 | * Returns 0 if the node was deleted or
|
---|
708 | * STATUS_INVALID_NODE if not.
|
---|
709 | */
|
---|
710 |
|
---|
711 | int treeDelete(TREE **root, // in: root of the tree
|
---|
712 | TREE *tree) // in: tree node to delete
|
---|
713 | {
|
---|
714 | TREE *y,
|
---|
715 | *d;
|
---|
716 | nodeColor color;
|
---|
717 |
|
---|
718 | if ( (!tree)
|
---|
719 | || (tree == LEAF)
|
---|
720 | )
|
---|
721 | return STATUS_INVALID_NODE;
|
---|
722 |
|
---|
723 | if ( (tree->left == LEAF)
|
---|
724 | || (tree->right == LEAF)
|
---|
725 | )
|
---|
726 | // d has a TREE_NULL node as a child
|
---|
727 | d = tree;
|
---|
728 | else
|
---|
729 | {
|
---|
730 | // find tree successor with a TREE_NULL node as a child
|
---|
731 | d = tree->right;
|
---|
732 | while (d->left != LEAF)
|
---|
733 | d = d->left;
|
---|
734 | }
|
---|
735 |
|
---|
736 | // y is d's only child, if there is one, else TREE_NULL
|
---|
737 | if (d->left != LEAF)
|
---|
738 | y = d->left;
|
---|
739 | else
|
---|
740 | y = d->right;
|
---|
741 |
|
---|
742 | // remove d from the parent chain
|
---|
743 | if (y != LEAF)
|
---|
744 | y->parent = d->parent;
|
---|
745 | if (d->parent)
|
---|
746 | {
|
---|
747 | if (d == d->parent->left)
|
---|
748 | d->parent->left = y;
|
---|
749 | else
|
---|
750 | d->parent->right = y;
|
---|
751 | }
|
---|
752 | else
|
---|
753 | *root = y;
|
---|
754 |
|
---|
755 | color = d->color;
|
---|
756 |
|
---|
757 | if (d != tree)
|
---|
758 | {
|
---|
759 | // move the data from d to tree; we do this by
|
---|
760 | // linking d into the structure in the place of tree
|
---|
761 | d->left = tree->left;
|
---|
762 | d->right = tree->right;
|
---|
763 | d->parent = tree->parent;
|
---|
764 | d->color = tree->color;
|
---|
765 |
|
---|
766 | if (d->parent)
|
---|
767 | {
|
---|
768 | if (tree == d->parent->left)
|
---|
769 | d->parent->left = d;
|
---|
770 | else
|
---|
771 | d->parent->right = d;
|
---|
772 | }
|
---|
773 | else
|
---|
774 | *root = d;
|
---|
775 |
|
---|
776 | if (d->left != LEAF)
|
---|
777 | d->left->parent = d;
|
---|
778 |
|
---|
779 | if (d->right != LEAF)
|
---|
780 | d->right->parent = d;
|
---|
781 | }
|
---|
782 |
|
---|
783 | if ( (y != LEAF)
|
---|
784 | && (color == BLACK)
|
---|
785 | )
|
---|
786 | deleteFixup(root,
|
---|
787 | y);
|
---|
788 |
|
---|
789 | return (STATUS_OK);
|
---|
790 |
|
---|
791 | /* TREE *x,
|
---|
792 | *y; */
|
---|
793 | // *z;
|
---|
794 |
|
---|
795 | /*****************************
|
---|
796 | * delete node z from tree *
|
---|
797 | *****************************/
|
---|
798 |
|
---|
799 | // find node in tree
|
---|
800 | /* if (lastFind && compEQ(lastFind->key, key))
|
---|
801 | // if we just found node, use pointer
|
---|
802 | z = lastFind;
|
---|
803 | else {
|
---|
804 | z = *root;
|
---|
805 | while(z != LEAF)
|
---|
806 | {
|
---|
807 | int iResult = pfnCompare(key, z->key);
|
---|
808 | if (iResult == 0)
|
---|
809 | // if(compEQ(key, z->key))
|
---|
810 | break;
|
---|
811 | else
|
---|
812 | z = (iResult < 0) // compLT(key, z->key)
|
---|
813 | ? z->left
|
---|
814 | : z->right;
|
---|
815 | }
|
---|
816 | if (z == LEAF)
|
---|
817 | return STATUS_KEY_NOT_FOUND;
|
---|
818 | }
|
---|
819 |
|
---|
820 | if ( z->left == LEAF
|
---|
821 | || z->right == LEAF
|
---|
822 | )
|
---|
823 | {
|
---|
824 | // y has a LEAF node as a child
|
---|
825 | y = z;
|
---|
826 | }
|
---|
827 | else
|
---|
828 | {
|
---|
829 | // find tree successor with a LEAF node as a child
|
---|
830 | y = z->right;
|
---|
831 | while (y->left != LEAF)
|
---|
832 | y = y->left;
|
---|
833 | }
|
---|
834 |
|
---|
835 | // x is y's only child
|
---|
836 | if (y->left != LEAF)
|
---|
837 | x = y->left;
|
---|
838 | else
|
---|
839 | x = y->right;
|
---|
840 |
|
---|
841 | // remove y from the parent chain
|
---|
842 | x->parent = y->parent;
|
---|
843 | if (y->parent)
|
---|
844 | if (y == y->parent->left)
|
---|
845 | y->parent->left = x;
|
---|
846 | else
|
---|
847 | y->parent->right = x;
|
---|
848 | else
|
---|
849 | *root = x;
|
---|
850 |
|
---|
851 | // y is about to be deleted...
|
---|
852 |
|
---|
853 | if (y != z)
|
---|
854 | {
|
---|
855 | // now, the original code simply copied the data
|
---|
856 | // from y to z... we can't safely do that since
|
---|
857 | // we don't know about the real data in the
|
---|
858 | // caller's TREE structure
|
---|
859 | z->ulKey = y->ulKey;
|
---|
860 | // z->rec = y->rec; // hope this works...
|
---|
861 | // the original implementation used rec
|
---|
862 | // for the node's data
|
---|
863 |
|
---|
864 | if (cbStruct > sizeof(TREE))
|
---|
865 | {
|
---|
866 | memcpy(((char*)&z) + sizeof(TREE),
|
---|
867 | ((char*)&y) + sizeof(TREE),
|
---|
868 | cbStruct - sizeof(TREE));
|
---|
869 | }
|
---|
870 | }
|
---|
871 |
|
---|
872 | if (y->color == BLACK)
|
---|
873 | deleteFixup(root,
|
---|
874 | x);
|
---|
875 |
|
---|
876 | // free(y);
|
---|
877 | // lastFind = NULL;
|
---|
878 |
|
---|
879 | return STATUS_OK; */
|
---|
880 | }
|
---|
881 |
|
---|
882 | /*
|
---|
883 | *@@ treeFind:
|
---|
884 | * finds the tree node with the specified key.
|
---|
885 | */
|
---|
886 |
|
---|
887 | TREE* treeFind(TREE *root, // in: root of the tree
|
---|
888 | unsigned long key, // in: key to find
|
---|
889 | FNTREE_COMPARE *pfnCompare) // in: comparison func
|
---|
890 | {
|
---|
891 | /*******************************
|
---|
892 | * find node containing data *
|
---|
893 | *******************************/
|
---|
894 |
|
---|
895 | TREE *current = root;
|
---|
896 | while (current != LEAF)
|
---|
897 | {
|
---|
898 | int iResult;
|
---|
899 | if (0 == (iResult = pfnCompare(key, current->ulKey)))
|
---|
900 | return (current);
|
---|
901 | else
|
---|
902 | {
|
---|
903 | current = (iResult < 0) // compLT (key, current->key)
|
---|
904 | ? current->left
|
---|
905 | : current->right;
|
---|
906 | }
|
---|
907 | }
|
---|
908 |
|
---|
909 | return 0;
|
---|
910 | }
|
---|
911 |
|
---|
912 | /*
|
---|
913 | *@@ treeFirst:
|
---|
914 | * finds and returns the first node in a (sub-)tree.
|
---|
915 | *
|
---|
916 | * See treeNext for a sample usage for traversing a tree.
|
---|
917 | */
|
---|
918 |
|
---|
919 | TREE* treeFirst(TREE *r)
|
---|
920 | {
|
---|
921 | TREE *p;
|
---|
922 |
|
---|
923 | if ( (!r)
|
---|
924 | || (r == LEAF)
|
---|
925 | )
|
---|
926 | return NULL;
|
---|
927 |
|
---|
928 | p = r;
|
---|
929 | while (p->left != LEAF)
|
---|
930 | p = p->left;
|
---|
931 |
|
---|
932 | return p;
|
---|
933 | }
|
---|
934 |
|
---|
935 | /*
|
---|
936 | *@@ treeLast:
|
---|
937 | * finds and returns the last node in a (sub-)tree.
|
---|
938 | */
|
---|
939 |
|
---|
940 | TREE* treeLast(TREE *r)
|
---|
941 | {
|
---|
942 | TREE *p;
|
---|
943 |
|
---|
944 | if ( (!r)
|
---|
945 | || (r == LEAF))
|
---|
946 | return NULL;
|
---|
947 |
|
---|
948 | p = r;
|
---|
949 | while (p->right != LEAF)
|
---|
950 | p = p->right;
|
---|
951 |
|
---|
952 | return p;
|
---|
953 | }
|
---|
954 |
|
---|
955 | /*
|
---|
956 | *@@ treeNext:
|
---|
957 | * finds and returns the next node in a tree.
|
---|
958 | *
|
---|
959 | * Example for traversing a whole tree:
|
---|
960 | *
|
---|
961 | + TREE *TreeRoot;
|
---|
962 | + ...
|
---|
963 | + TREE* pNode = treeFirst(TreeRoot);
|
---|
964 | + while (pNode)
|
---|
965 | + {
|
---|
966 | + ...
|
---|
967 | + pNode = treeNext(pNode);
|
---|
968 | + }
|
---|
969 | *
|
---|
970 | * This runs through the tree items in sorted order.
|
---|
971 | */
|
---|
972 |
|
---|
973 | TREE* treeNext(TREE *r)
|
---|
974 | {
|
---|
975 | TREE *p,
|
---|
976 | *child;
|
---|
977 |
|
---|
978 | if ( (!r)
|
---|
979 | || (r == LEAF)
|
---|
980 | )
|
---|
981 | return NULL;
|
---|
982 |
|
---|
983 | p = r;
|
---|
984 | if (p->right != LEAF)
|
---|
985 | return treeFirst (p->right);
|
---|
986 | else
|
---|
987 | {
|
---|
988 | p = r;
|
---|
989 | child = LEAF;
|
---|
990 | while ( (p->parent)
|
---|
991 | && (p->right == child)
|
---|
992 | )
|
---|
993 | {
|
---|
994 | child = p;
|
---|
995 | p = p->parent;
|
---|
996 | }
|
---|
997 | if (p->right != child)
|
---|
998 | return p;
|
---|
999 | else
|
---|
1000 | return NULL;
|
---|
1001 | }
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | /*
|
---|
1005 | *@@ treePrev:
|
---|
1006 | * finds and returns the previous node in a tree.
|
---|
1007 | */
|
---|
1008 |
|
---|
1009 | TREE* treePrev(TREE *r)
|
---|
1010 | {
|
---|
1011 | TREE *p,
|
---|
1012 | *child;
|
---|
1013 |
|
---|
1014 | if ( (!r)
|
---|
1015 | || (r == LEAF))
|
---|
1016 | return NULL;
|
---|
1017 |
|
---|
1018 | p = r;
|
---|
1019 | if (p->left != LEAF)
|
---|
1020 | return treeLast (p->left);
|
---|
1021 | else
|
---|
1022 | {
|
---|
1023 | p = r;
|
---|
1024 | child = LEAF;
|
---|
1025 | while ((p->parent)
|
---|
1026 | && (p->left == child))
|
---|
1027 | {
|
---|
1028 | child = p;
|
---|
1029 | p = p->parent;
|
---|
1030 | }
|
---|
1031 | if (p->left != child)
|
---|
1032 | return p;
|
---|
1033 | else
|
---|
1034 | return NULL;
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | /*
|
---|
1039 | *@@ treeBuildArray:
|
---|
1040 | * builds an array of TREE* pointers containing
|
---|
1041 | * all tree items in sorted order.
|
---|
1042 | *
|
---|
1043 | * This returns a TREE** pointer to the array.
|
---|
1044 | * Each item in the array is a TREE* pointer to
|
---|
1045 | * the respective tree item.
|
---|
1046 | *
|
---|
1047 | * The array has been allocated using malloc()
|
---|
1048 | * and must be free()'d by the caller.
|
---|
1049 | *
|
---|
1050 | * NOTE: This will only work if you maintain a
|
---|
1051 | * tree node count yourself, which you must pass
|
---|
1052 | * in *pulCount on input.
|
---|
1053 | *
|
---|
1054 | * This is most useful if you want to delete an
|
---|
1055 | * entire tree without having to traverse it
|
---|
1056 | * and rebalance the tree on every delete.
|
---|
1057 | *
|
---|
1058 | * Example usage for deletion:
|
---|
1059 | *
|
---|
1060 | + TREE *G_TreeRoot;
|
---|
1061 | + treeInit(&G_TreeRoot);
|
---|
1062 | +
|
---|
1063 | + // add stuff to the tree
|
---|
1064 | + TREE *pNewNode = malloc(...);
|
---|
1065 | + treeInsert(&G_TreeRoot, pNewNode, fnCompare)
|
---|
1066 | +
|
---|
1067 | + // now delete all nodes
|
---|
1068 | + ULONG cItems = ... // insert item count here
|
---|
1069 | + TREE** papNodes = treeBuildArray(G_TreeRoot,
|
---|
1070 | + &cItems);
|
---|
1071 | + if (papNodes)
|
---|
1072 | + {
|
---|
1073 | + ULONG ul;
|
---|
1074 | + for (ul = 0; ul < cItems; ul++)
|
---|
1075 | + {
|
---|
1076 | + TREE *pNodeThis = papNodes[ul];
|
---|
1077 | + free(pNodeThis);
|
---|
1078 | + }
|
---|
1079 | +
|
---|
1080 | + free(papNodes);
|
---|
1081 | + }
|
---|
1082 | +
|
---|
1083 | *
|
---|
1084 | *@@added V0.9.9 (2001-04-05) [umoeller]
|
---|
1085 | */
|
---|
1086 |
|
---|
1087 | TREE** treeBuildArray(TREE* pRoot,
|
---|
1088 | unsigned long *pulCount) // in: item count, out: array item count
|
---|
1089 | {
|
---|
1090 | TREE **papNodes = NULL,
|
---|
1091 | **papThis = NULL;
|
---|
1092 | unsigned long cb = (sizeof(TREE*) * (*pulCount)),
|
---|
1093 | cNodes = 0;
|
---|
1094 |
|
---|
1095 | if (cb)
|
---|
1096 | {
|
---|
1097 | papNodes = (TREE**)malloc(cb);
|
---|
1098 | papThis = papNodes;
|
---|
1099 |
|
---|
1100 | if (papNodes)
|
---|
1101 | {
|
---|
1102 | TREE *pNode = (TREE*)treeFirst(pRoot);
|
---|
1103 |
|
---|
1104 | memset(papNodes, 0, cb);
|
---|
1105 |
|
---|
1106 | // copy nodes to array
|
---|
1107 | while ( pNode
|
---|
1108 | && cNodes < (*pulCount) // just to make sure
|
---|
1109 | )
|
---|
1110 | {
|
---|
1111 | *papThis = pNode;
|
---|
1112 | cNodes++;
|
---|
1113 | papThis++;
|
---|
1114 |
|
---|
1115 | pNode = (TREE*)treeNext(pNode);
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | // output count
|
---|
1119 | *pulCount = cNodes;
|
---|
1120 | }
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | return (papNodes);
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 | /* void main(int argc, char **argv) {
|
---|
1127 | int maxnum, ct;
|
---|
1128 | recType rec;
|
---|
1129 | keyType key;
|
---|
1130 | statusEnum status;
|
---|
1131 |
|
---|
1132 | maxnum = atoi(argv[1]);
|
---|
1133 |
|
---|
1134 | printf("maxnum = %d\n", maxnum);
|
---|
1135 | for (ct = maxnum; ct; ct--) {
|
---|
1136 | key = rand() % 9 + 1;
|
---|
1137 | if ((status = find(key, &rec)) == STATUS_OK) {
|
---|
1138 | status = delete(key);
|
---|
1139 | if (status) printf("fail: status = %d\n", status);
|
---|
1140 | } else {
|
---|
1141 | status = insert(key, &rec);
|
---|
1142 | if (status) printf("fail: status = %d\n", status);
|
---|
1143 | }
|
---|
1144 | }
|
---|
1145 | } */
|
---|