source: contrib/API/lib/resample2.c@ 724

Last change on this file since 724 was 541, checked in by David Azarewicz, 15 years ago

Initial import

File size: 9.2 KB
Line 
1/*
2 * audio resampling
3 *
4 * This file is part of uniaud.dll.
5 *
6 * Copyright (c) 2010 Mensys BV
7 * Copyright (c) 2007 Vlad Stelmahovsky aka Vladest
8 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
9 *
10 * This library is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as
12 * published by the Free Software Foundation, either version 3 of
13 * the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License and the GNU General Public License along with this library.
22 * If not, see <http://www.gnu.org/licenses/>.
23 */
24#include <math.h>
25#include <stdint.h>
26#include <string.h>
27#include <malloc.h>
28#include "resample.h"
29
30#ifndef M_PI
31#define M_PI 3.14159265358979323846
32#endif
33
34#define PHASE_SHIFT 10
35#define PHASE_COUNT (1<<PHASE_SHIFT)
36#define PHASE_MASK (PHASE_COUNT-1)
37#define FILTER_SHIFT 15
38
39#if 0
40static inline long int lrintf(float x)
41{
42 int32_t i;
43 asm volatile(
44 "fistpl %0\n\t"
45 : "=m" (i) : "t" (x) : "st"
46 );
47 return i;
48}
49#endif
50static inline long int lrintf(float x) {
51 return x;
52}
53
54static inline int clip(int a, int amin, int amax)
55{
56 if (a < amin)
57 return amin;
58 else if (a > amax)
59 return amax;
60 else
61 return a;
62}
63
64#define ABS(a) ((a) >= 0 ? (a) : (-(a)))
65
66#define FFMAX(a,b) ((a) > (b) ? (a) : (b))
67#define FFMIN(a,b) ((a) > (b) ? (b) : (a))
68
69/**
70 * 0th order modified bessel function of the first kind.
71 */
72double bessel(double x){
73 double v=1;
74 double t=1;
75 int i;
76
77 for(i=1; i<50; i++){
78 t *= i;
79 v += pow(x*x/4, i)/(t*t);
80 }
81 return v;
82}
83
84/**
85 * builds a polyphase filterbank.
86 * @param factor resampling factor
87 * @param scale wanted sum of coefficients for each filter
88 * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
89 */
90void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){
91 int ph, i, v;
92 double x, y, w, tab[16 /*tap_count*/];
93 const int center= (tap_count-1)/2;
94
95 /* if upsampling, only need to interpolate, no filter */
96 if (factor > 1.0)
97 factor = 1.0;
98
99 for(ph=0;ph<phase_count;ph++) {
100 double norm = 0;
101 double e= 0;
102 for(i=0;i<tap_count;i++) {
103 x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
104 if (x == 0) y = 1.0;
105 else y = sin(x) / x;
106 switch(type){
107 case 0:{
108 const float d= -0.5; //first order derivative = -0.5
109 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
110 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
111 else y= d*(-4 + 8*x - 5*x*x + x*x*x);
112 break;}
113 case 1:
114 w = 2.0*x / (factor*tap_count) + M_PI;
115 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
116 break;
117 case 2:
118 w = 2.0*x / (factor*tap_count*M_PI);
119 y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
120 break;
121 }
122
123 tab[i] = y;
124 norm += y;
125 }
126
127 /* normalize so that an uniform color remains the same */
128 for(i=0;i<tap_count;i++) {
129 v = clip(lrintf(tab[i] * scale / norm + e), -32768, 32767);
130 filter[ph * tap_count + i] = v;
131 e += tab[i] * scale / norm - v;
132 }
133 }
134}
135
136/**
137 * initalizes a audio resampler.
138 * note, if either rate is not a integer then simply scale both rates up so they are
139 */
140AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
141 AVResampleContext *c= (AVResampleContext *) malloc(sizeof(AVResampleContext));
142 double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
143 int phase_count= 1<<phase_shift;
144
145 memset(c, 0, sizeof(AVResampleContext));
146
147 c->phase_shift= phase_shift;
148 c->phase_mask= phase_count-1;
149 c->linear= linear;
150
151 c->filter_length= ceil(filter_size/factor);
152 c->filter_bank= malloc(c->filter_length*(phase_count+1)*sizeof(FELEM));
153 if (c->filter_bank)
154 memset(c->filter_bank,0,c->filter_length*(phase_count+1)*sizeof(FELEM));
155 av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, 1);
156 memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
157 c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
158
159 c->src_incr= out_rate;
160 c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
161 c->index= -phase_count*((c->filter_length-1)/2);
162
163 return c;
164}
165
166void av_resample_close(AVResampleContext *c){
167 free(c->filter_bank);
168 free(c);
169}
170
171/**
172 * Compensates samplerate/timestamp drift. The compensation is done by changing
173 * the resampler parameters, so no audible clicks or similar distortions ocur
174 * @param compensation_distance distance in output samples over which the compensation should be performed
175 * @param sample_delta number of output samples which should be output less
176 *
177 * example: av_resample_compensate(c, 10, 500)
178 * here instead of 510 samples only 500 samples would be output
179 *
180 * note, due to rounding the actual compensation might be slightly different,
181 * especially if the compensation_distance is large and the in_rate used during init is small
182 */
183
184void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
185// sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
186 c->compensation_distance= compensation_distance;
187 c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
188}
189
190/**
191 * resamples.
192 * @param src an array of unconsumed samples
193 * @param consumed the number of samples of src which have been consumed are returned here
194 * @param src_size the number of unconsumed samples available
195 * @param dst_size the amount of space in samples available in dst
196 * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
197 * @return the number of samples written in dst or -1 if an error occured
198 */
199int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
200 int dst_index, i;
201 int index= c->index;
202 int frac= c->frac;
203 int dst_incr_frac= c->dst_incr % c->src_incr;
204 int dst_incr= c->dst_incr / c->src_incr;
205 int compensation_distance= c->compensation_distance;
206
207 for(dst_index=0; dst_index < dst_size; dst_index++){
208 FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
209 int sample_index= index >> c->phase_shift;
210 FELEM2 val=0;
211
212 if(sample_index < 0){
213 for(i=0; i<c->filter_length; i++)
214 val += src[ABS(sample_index + i) % src_size] * filter[i];
215 }else if(sample_index + c->filter_length > src_size){
216 break;
217 }else if(c->linear){
218 int64_t v=0;
219 int sub_phase= (frac<<8) / c->src_incr;
220 for(i=0; i<c->filter_length; i++){
221 int64_t coeff= filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase;
222 v += src[sample_index + i] * coeff;
223 }
224 val= v>>8;
225 }else{
226 for(i=0; i<c->filter_length; i++){
227 val += src[sample_index + i] * (FELEM2)filter[i];
228 }
229 }
230
231 val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
232 dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
233
234 frac += dst_incr_frac;
235 index += dst_incr;
236 if(frac >= c->src_incr){
237 frac -= c->src_incr;
238 index++;
239 }
240
241 if(dst_index + 1 == compensation_distance){
242 compensation_distance= 0;
243 dst_incr_frac= c->ideal_dst_incr % c->src_incr;
244 dst_incr= c->ideal_dst_incr / c->src_incr;
245 }
246 }
247 *consumed= FFMAX(index, 0) >> c->phase_shift;
248 if(index>=0) index &= c->phase_mask;
249
250 if(compensation_distance){
251 compensation_distance -= dst_index;
252 //assert(compensation_distance > 0);
253 }
254 if(update_ctx){
255 c->frac= frac;
256 c->index= index;
257 c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
258 c->compensation_distance= compensation_distance;
259 }
260#if 0
261 if(update_ctx && !c->compensation_distance){
262#undef rand
263 av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
264av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
265 }
266#endif
267
268 return dst_index;
269}
Note: See TracBrowser for help on using the repository browser.