1 | /*
|
---|
2 | * audio resampling
|
---|
3 | *
|
---|
4 | * This file is part of uniaud.dll.
|
---|
5 | *
|
---|
6 | * Copyright (c) 2010 Mensys BV
|
---|
7 | * Copyright (c) 2007 Vlad Stelmahovsky aka Vladest
|
---|
8 | * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
---|
9 | *
|
---|
10 | * This library is free software: you can redistribute it and/or modify
|
---|
11 | * it under the terms of the GNU Lesser General Public License as
|
---|
12 | * published by the Free Software Foundation, either version 3 of
|
---|
13 | * the License, or (at your option) any later version.
|
---|
14 | *
|
---|
15 | * This library is distributed in the hope that it will be useful,
|
---|
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
18 | * GNU Lesser General Public License for more details.
|
---|
19 | *
|
---|
20 | * You should have received a copy of the GNU Lesser General Public
|
---|
21 | * License and the GNU General Public License along with this library.
|
---|
22 | * If not, see <http://www.gnu.org/licenses/>.
|
---|
23 | */
|
---|
24 | #include <math.h>
|
---|
25 | #include <stdint.h>
|
---|
26 | #include <string.h>
|
---|
27 | #include <malloc.h>
|
---|
28 | #include "resample.h"
|
---|
29 |
|
---|
30 | #ifndef M_PI
|
---|
31 | #define M_PI 3.14159265358979323846
|
---|
32 | #endif
|
---|
33 |
|
---|
34 | #define PHASE_SHIFT 10
|
---|
35 | #define PHASE_COUNT (1<<PHASE_SHIFT)
|
---|
36 | #define PHASE_MASK (PHASE_COUNT-1)
|
---|
37 | #define FILTER_SHIFT 15
|
---|
38 |
|
---|
39 | #if 0
|
---|
40 | static inline long int lrintf(float x)
|
---|
41 | {
|
---|
42 | int32_t i;
|
---|
43 | asm volatile(
|
---|
44 | "fistpl %0\n\t"
|
---|
45 | : "=m" (i) : "t" (x) : "st"
|
---|
46 | );
|
---|
47 | return i;
|
---|
48 | }
|
---|
49 | #endif
|
---|
50 | static inline long int lrintf(float x) {
|
---|
51 | return x;
|
---|
52 | }
|
---|
53 |
|
---|
54 | static inline int clip(int a, int amin, int amax)
|
---|
55 | {
|
---|
56 | if (a < amin)
|
---|
57 | return amin;
|
---|
58 | else if (a > amax)
|
---|
59 | return amax;
|
---|
60 | else
|
---|
61 | return a;
|
---|
62 | }
|
---|
63 |
|
---|
64 | #define ABS(a) ((a) >= 0 ? (a) : (-(a)))
|
---|
65 |
|
---|
66 | #define FFMAX(a,b) ((a) > (b) ? (a) : (b))
|
---|
67 | #define FFMIN(a,b) ((a) > (b) ? (b) : (a))
|
---|
68 |
|
---|
69 | /**
|
---|
70 | * 0th order modified bessel function of the first kind.
|
---|
71 | */
|
---|
72 | double bessel(double x){
|
---|
73 | double v=1;
|
---|
74 | double t=1;
|
---|
75 | int i;
|
---|
76 |
|
---|
77 | for(i=1; i<50; i++){
|
---|
78 | t *= i;
|
---|
79 | v += pow(x*x/4, i)/(t*t);
|
---|
80 | }
|
---|
81 | return v;
|
---|
82 | }
|
---|
83 |
|
---|
84 | /**
|
---|
85 | * builds a polyphase filterbank.
|
---|
86 | * @param factor resampling factor
|
---|
87 | * @param scale wanted sum of coefficients for each filter
|
---|
88 | * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
|
---|
89 | */
|
---|
90 | void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){
|
---|
91 | int ph, i, v;
|
---|
92 | double x, y, w, tab[16 /*tap_count*/];
|
---|
93 | const int center= (tap_count-1)/2;
|
---|
94 |
|
---|
95 | /* if upsampling, only need to interpolate, no filter */
|
---|
96 | if (factor > 1.0)
|
---|
97 | factor = 1.0;
|
---|
98 |
|
---|
99 | for(ph=0;ph<phase_count;ph++) {
|
---|
100 | double norm = 0;
|
---|
101 | double e= 0;
|
---|
102 | for(i=0;i<tap_count;i++) {
|
---|
103 | x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
|
---|
104 | if (x == 0) y = 1.0;
|
---|
105 | else y = sin(x) / x;
|
---|
106 | switch(type){
|
---|
107 | case 0:{
|
---|
108 | const float d= -0.5; //first order derivative = -0.5
|
---|
109 | x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
|
---|
110 | if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
|
---|
111 | else y= d*(-4 + 8*x - 5*x*x + x*x*x);
|
---|
112 | break;}
|
---|
113 | case 1:
|
---|
114 | w = 2.0*x / (factor*tap_count) + M_PI;
|
---|
115 | y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
|
---|
116 | break;
|
---|
117 | case 2:
|
---|
118 | w = 2.0*x / (factor*tap_count*M_PI);
|
---|
119 | y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
|
---|
120 | break;
|
---|
121 | }
|
---|
122 |
|
---|
123 | tab[i] = y;
|
---|
124 | norm += y;
|
---|
125 | }
|
---|
126 |
|
---|
127 | /* normalize so that an uniform color remains the same */
|
---|
128 | for(i=0;i<tap_count;i++) {
|
---|
129 | v = clip(lrintf(tab[i] * scale / norm + e), -32768, 32767);
|
---|
130 | filter[ph * tap_count + i] = v;
|
---|
131 | e += tab[i] * scale / norm - v;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | /**
|
---|
137 | * initalizes a audio resampler.
|
---|
138 | * note, if either rate is not a integer then simply scale both rates up so they are
|
---|
139 | */
|
---|
140 | AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
|
---|
141 | AVResampleContext *c= (AVResampleContext *) malloc(sizeof(AVResampleContext));
|
---|
142 | double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
|
---|
143 | int phase_count= 1<<phase_shift;
|
---|
144 |
|
---|
145 | memset(c, 0, sizeof(AVResampleContext));
|
---|
146 |
|
---|
147 | c->phase_shift= phase_shift;
|
---|
148 | c->phase_mask= phase_count-1;
|
---|
149 | c->linear= linear;
|
---|
150 |
|
---|
151 | c->filter_length= ceil(filter_size/factor);
|
---|
152 | c->filter_bank= malloc(c->filter_length*(phase_count+1)*sizeof(FELEM));
|
---|
153 | if (c->filter_bank)
|
---|
154 | memset(c->filter_bank,0,c->filter_length*(phase_count+1)*sizeof(FELEM));
|
---|
155 | av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, 1);
|
---|
156 | memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
|
---|
157 | c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
|
---|
158 |
|
---|
159 | c->src_incr= out_rate;
|
---|
160 | c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
|
---|
161 | c->index= -phase_count*((c->filter_length-1)/2);
|
---|
162 |
|
---|
163 | return c;
|
---|
164 | }
|
---|
165 |
|
---|
166 | void av_resample_close(AVResampleContext *c){
|
---|
167 | free(c->filter_bank);
|
---|
168 | free(c);
|
---|
169 | }
|
---|
170 |
|
---|
171 | /**
|
---|
172 | * Compensates samplerate/timestamp drift. The compensation is done by changing
|
---|
173 | * the resampler parameters, so no audible clicks or similar distortions ocur
|
---|
174 | * @param compensation_distance distance in output samples over which the compensation should be performed
|
---|
175 | * @param sample_delta number of output samples which should be output less
|
---|
176 | *
|
---|
177 | * example: av_resample_compensate(c, 10, 500)
|
---|
178 | * here instead of 510 samples only 500 samples would be output
|
---|
179 | *
|
---|
180 | * note, due to rounding the actual compensation might be slightly different,
|
---|
181 | * especially if the compensation_distance is large and the in_rate used during init is small
|
---|
182 | */
|
---|
183 |
|
---|
184 | void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
|
---|
185 | // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
|
---|
186 | c->compensation_distance= compensation_distance;
|
---|
187 | c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
|
---|
188 | }
|
---|
189 |
|
---|
190 | /**
|
---|
191 | * resamples.
|
---|
192 | * @param src an array of unconsumed samples
|
---|
193 | * @param consumed the number of samples of src which have been consumed are returned here
|
---|
194 | * @param src_size the number of unconsumed samples available
|
---|
195 | * @param dst_size the amount of space in samples available in dst
|
---|
196 | * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
|
---|
197 | * @return the number of samples written in dst or -1 if an error occured
|
---|
198 | */
|
---|
199 | int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
|
---|
200 | int dst_index, i;
|
---|
201 | int index= c->index;
|
---|
202 | int frac= c->frac;
|
---|
203 | int dst_incr_frac= c->dst_incr % c->src_incr;
|
---|
204 | int dst_incr= c->dst_incr / c->src_incr;
|
---|
205 | int compensation_distance= c->compensation_distance;
|
---|
206 |
|
---|
207 | for(dst_index=0; dst_index < dst_size; dst_index++){
|
---|
208 | FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
|
---|
209 | int sample_index= index >> c->phase_shift;
|
---|
210 | FELEM2 val=0;
|
---|
211 |
|
---|
212 | if(sample_index < 0){
|
---|
213 | for(i=0; i<c->filter_length; i++)
|
---|
214 | val += src[ABS(sample_index + i) % src_size] * filter[i];
|
---|
215 | }else if(sample_index + c->filter_length > src_size){
|
---|
216 | break;
|
---|
217 | }else if(c->linear){
|
---|
218 | int64_t v=0;
|
---|
219 | int sub_phase= (frac<<8) / c->src_incr;
|
---|
220 | for(i=0; i<c->filter_length; i++){
|
---|
221 | int64_t coeff= filter[i]*(256 - sub_phase) + filter[i + c->filter_length]*sub_phase;
|
---|
222 | v += src[sample_index + i] * coeff;
|
---|
223 | }
|
---|
224 | val= v>>8;
|
---|
225 | }else{
|
---|
226 | for(i=0; i<c->filter_length; i++){
|
---|
227 | val += src[sample_index + i] * (FELEM2)filter[i];
|
---|
228 | }
|
---|
229 | }
|
---|
230 |
|
---|
231 | val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
|
---|
232 | dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
|
---|
233 |
|
---|
234 | frac += dst_incr_frac;
|
---|
235 | index += dst_incr;
|
---|
236 | if(frac >= c->src_incr){
|
---|
237 | frac -= c->src_incr;
|
---|
238 | index++;
|
---|
239 | }
|
---|
240 |
|
---|
241 | if(dst_index + 1 == compensation_distance){
|
---|
242 | compensation_distance= 0;
|
---|
243 | dst_incr_frac= c->ideal_dst_incr % c->src_incr;
|
---|
244 | dst_incr= c->ideal_dst_incr / c->src_incr;
|
---|
245 | }
|
---|
246 | }
|
---|
247 | *consumed= FFMAX(index, 0) >> c->phase_shift;
|
---|
248 | if(index>=0) index &= c->phase_mask;
|
---|
249 |
|
---|
250 | if(compensation_distance){
|
---|
251 | compensation_distance -= dst_index;
|
---|
252 | //assert(compensation_distance > 0);
|
---|
253 | }
|
---|
254 | if(update_ctx){
|
---|
255 | c->frac= frac;
|
---|
256 | c->index= index;
|
---|
257 | c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
|
---|
258 | c->compensation_distance= compensation_distance;
|
---|
259 | }
|
---|
260 | #if 0
|
---|
261 | if(update_ctx && !c->compensation_distance){
|
---|
262 | #undef rand
|
---|
263 | av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
|
---|
264 | av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
|
---|
265 | }
|
---|
266 | #endif
|
---|
267 |
|
---|
268 | return dst_index;
|
---|
269 | }
|
---|