| 1 | /* Complex math module */
|
|---|
| 2 |
|
|---|
| 3 | /* much code borrowed from mathmodule.c */
|
|---|
| 4 |
|
|---|
| 5 | #include "Python.h"
|
|---|
| 6 | /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
|
|---|
| 7 | float.h. We assume that FLT_RADIX is either 2 or 16. */
|
|---|
| 8 | #include <float.h>
|
|---|
| 9 |
|
|---|
| 10 | #if (FLT_RADIX != 2 && FLT_RADIX != 16)
|
|---|
| 11 | #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
|
|---|
| 12 | #endif
|
|---|
| 13 |
|
|---|
| 14 | #ifndef M_LN2
|
|---|
| 15 | #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
|
|---|
| 16 | #endif
|
|---|
| 17 |
|
|---|
| 18 | #ifndef M_LN10
|
|---|
| 19 | #define M_LN10 (2.302585092994045684) /* natural log of 10 */
|
|---|
| 20 | #endif
|
|---|
| 21 |
|
|---|
| 22 | /*
|
|---|
| 23 | CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
|
|---|
| 24 | inverse trig and inverse hyperbolic trig functions. Its log is used in the
|
|---|
| 25 | evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary
|
|---|
| 26 | overflow.
|
|---|
| 27 | */
|
|---|
| 28 |
|
|---|
| 29 | #define CM_LARGE_DOUBLE (DBL_MAX/4.)
|
|---|
| 30 | #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
|
|---|
| 31 | #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
|
|---|
| 32 | #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
|
|---|
| 33 |
|
|---|
| 34 | /*
|
|---|
| 35 | CM_SCALE_UP is an odd integer chosen such that multiplication by
|
|---|
| 36 | 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
|
|---|
| 37 | CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
|
|---|
| 38 | square roots accurately when the real and imaginary parts of the argument
|
|---|
| 39 | are subnormal.
|
|---|
| 40 | */
|
|---|
| 41 |
|
|---|
| 42 | #if FLT_RADIX==2
|
|---|
| 43 | #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
|
|---|
| 44 | #elif FLT_RADIX==16
|
|---|
| 45 | #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
|
|---|
| 46 | #endif
|
|---|
| 47 | #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
|
|---|
| 48 |
|
|---|
| 49 | /* forward declarations */
|
|---|
| 50 | static Py_complex c_asinh(Py_complex);
|
|---|
| 51 | static Py_complex c_atanh(Py_complex);
|
|---|
| 52 | static Py_complex c_cosh(Py_complex);
|
|---|
| 53 | static Py_complex c_sinh(Py_complex);
|
|---|
| 54 | static Py_complex c_sqrt(Py_complex);
|
|---|
| 55 | static Py_complex c_tanh(Py_complex);
|
|---|
| 56 | static PyObject * math_error(void);
|
|---|
| 57 |
|
|---|
| 58 | /* Code to deal with special values (infinities, NaNs, etc.). */
|
|---|
| 59 |
|
|---|
| 60 | /* special_type takes a double and returns an integer code indicating
|
|---|
| 61 | the type of the double as follows:
|
|---|
| 62 | */
|
|---|
| 63 |
|
|---|
| 64 | enum special_types {
|
|---|
| 65 | ST_NINF, /* 0, negative infinity */
|
|---|
| 66 | ST_NEG, /* 1, negative finite number (nonzero) */
|
|---|
| 67 | ST_NZERO, /* 2, -0. */
|
|---|
| 68 | ST_PZERO, /* 3, +0. */
|
|---|
| 69 | ST_POS, /* 4, positive finite number (nonzero) */
|
|---|
| 70 | ST_PINF, /* 5, positive infinity */
|
|---|
| 71 | ST_NAN /* 6, Not a Number */
|
|---|
| 72 | };
|
|---|
| 73 |
|
|---|
| 74 | static enum special_types
|
|---|
| 75 | special_type(double d)
|
|---|
| 76 | {
|
|---|
| 77 | if (Py_IS_FINITE(d)) {
|
|---|
| 78 | if (d != 0) {
|
|---|
| 79 | if (copysign(1., d) == 1.)
|
|---|
| 80 | return ST_POS;
|
|---|
| 81 | else
|
|---|
| 82 | return ST_NEG;
|
|---|
| 83 | }
|
|---|
| 84 | else {
|
|---|
| 85 | if (copysign(1., d) == 1.)
|
|---|
| 86 | return ST_PZERO;
|
|---|
| 87 | else
|
|---|
| 88 | return ST_NZERO;
|
|---|
| 89 | }
|
|---|
| 90 | }
|
|---|
| 91 | if (Py_IS_NAN(d))
|
|---|
| 92 | return ST_NAN;
|
|---|
| 93 | if (copysign(1., d) == 1.)
|
|---|
| 94 | return ST_PINF;
|
|---|
| 95 | else
|
|---|
| 96 | return ST_NINF;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | #define SPECIAL_VALUE(z, table) \
|
|---|
| 100 | if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
|
|---|
| 101 | errno = 0; \
|
|---|
| 102 | return table[special_type((z).real)] \
|
|---|
| 103 | [special_type((z).imag)]; \
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 | #define P Py_MATH_PI
|
|---|
| 107 | #define P14 0.25*Py_MATH_PI
|
|---|
| 108 | #define P12 0.5*Py_MATH_PI
|
|---|
| 109 | #define P34 0.75*Py_MATH_PI
|
|---|
| 110 | #define INF Py_HUGE_VAL
|
|---|
| 111 | #define N Py_NAN
|
|---|
| 112 | #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
|
|---|
| 113 |
|
|---|
| 114 | /* First, the C functions that do the real work. Each of the c_*
|
|---|
| 115 | functions computes and returns the C99 Annex G recommended result
|
|---|
| 116 | and also sets errno as follows: errno = 0 if no floating-point
|
|---|
| 117 | exception is associated with the result; errno = EDOM if C99 Annex
|
|---|
| 118 | G recommends raising divide-by-zero or invalid for this result; and
|
|---|
| 119 | errno = ERANGE where the overflow floating-point signal should be
|
|---|
| 120 | raised.
|
|---|
| 121 | */
|
|---|
| 122 |
|
|---|
| 123 | static Py_complex acos_special_values[7][7];
|
|---|
| 124 |
|
|---|
| 125 | static Py_complex
|
|---|
| 126 | c_acos(Py_complex z)
|
|---|
| 127 | {
|
|---|
| 128 | Py_complex s1, s2, r;
|
|---|
| 129 |
|
|---|
| 130 | SPECIAL_VALUE(z, acos_special_values);
|
|---|
| 131 |
|
|---|
| 132 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
|---|
| 133 | /* avoid unnecessary overflow for large arguments */
|
|---|
| 134 | r.real = atan2(fabs(z.imag), z.real);
|
|---|
| 135 | /* split into cases to make sure that the branch cut has the
|
|---|
| 136 | correct continuity on systems with unsigned zeros */
|
|---|
| 137 | if (z.real < 0.) {
|
|---|
| 138 | r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|---|
| 139 | M_LN2*2., z.imag);
|
|---|
| 140 | } else {
|
|---|
| 141 | r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|---|
| 142 | M_LN2*2., -z.imag);
|
|---|
| 143 | }
|
|---|
| 144 | } else {
|
|---|
| 145 | s1.real = 1.-z.real;
|
|---|
| 146 | s1.imag = -z.imag;
|
|---|
| 147 | s1 = c_sqrt(s1);
|
|---|
| 148 | s2.real = 1.+z.real;
|
|---|
| 149 | s2.imag = z.imag;
|
|---|
| 150 | s2 = c_sqrt(s2);
|
|---|
| 151 | r.real = 2.*atan2(s1.real, s2.real);
|
|---|
| 152 | r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real);
|
|---|
| 153 | }
|
|---|
| 154 | errno = 0;
|
|---|
| 155 | return r;
|
|---|
| 156 | }
|
|---|
| 157 |
|
|---|
| 158 | PyDoc_STRVAR(c_acos_doc,
|
|---|
| 159 | "acos(x)\n"
|
|---|
| 160 | "\n"
|
|---|
| 161 | "Return the arc cosine of x.");
|
|---|
| 162 |
|
|---|
| 163 |
|
|---|
| 164 | static Py_complex acosh_special_values[7][7];
|
|---|
| 165 |
|
|---|
| 166 | static Py_complex
|
|---|
| 167 | c_acosh(Py_complex z)
|
|---|
| 168 | {
|
|---|
| 169 | Py_complex s1, s2, r;
|
|---|
| 170 |
|
|---|
| 171 | SPECIAL_VALUE(z, acosh_special_values);
|
|---|
| 172 |
|
|---|
| 173 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
|---|
| 174 | /* avoid unnecessary overflow for large arguments */
|
|---|
| 175 | r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
|
|---|
| 176 | r.imag = atan2(z.imag, z.real);
|
|---|
| 177 | } else {
|
|---|
| 178 | s1.real = z.real - 1.;
|
|---|
| 179 | s1.imag = z.imag;
|
|---|
| 180 | s1 = c_sqrt(s1);
|
|---|
| 181 | s2.real = z.real + 1.;
|
|---|
| 182 | s2.imag = z.imag;
|
|---|
| 183 | s2 = c_sqrt(s2);
|
|---|
| 184 | r.real = asinh(s1.real*s2.real + s1.imag*s2.imag);
|
|---|
| 185 | r.imag = 2.*atan2(s1.imag, s2.real);
|
|---|
| 186 | }
|
|---|
| 187 | errno = 0;
|
|---|
| 188 | return r;
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | PyDoc_STRVAR(c_acosh_doc,
|
|---|
| 192 | "acosh(x)\n"
|
|---|
| 193 | "\n"
|
|---|
| 194 | "Return the hyperbolic arccosine of x.");
|
|---|
| 195 |
|
|---|
| 196 |
|
|---|
| 197 | static Py_complex
|
|---|
| 198 | c_asin(Py_complex z)
|
|---|
| 199 | {
|
|---|
| 200 | /* asin(z) = -i asinh(iz) */
|
|---|
| 201 | Py_complex s, r;
|
|---|
| 202 | s.real = -z.imag;
|
|---|
| 203 | s.imag = z.real;
|
|---|
| 204 | s = c_asinh(s);
|
|---|
| 205 | r.real = s.imag;
|
|---|
| 206 | r.imag = -s.real;
|
|---|
| 207 | return r;
|
|---|
| 208 | }
|
|---|
| 209 |
|
|---|
| 210 | PyDoc_STRVAR(c_asin_doc,
|
|---|
| 211 | "asin(x)\n"
|
|---|
| 212 | "\n"
|
|---|
| 213 | "Return the arc sine of x.");
|
|---|
| 214 |
|
|---|
| 215 |
|
|---|
| 216 | static Py_complex asinh_special_values[7][7];
|
|---|
| 217 |
|
|---|
| 218 | static Py_complex
|
|---|
| 219 | c_asinh(Py_complex z)
|
|---|
| 220 | {
|
|---|
| 221 | Py_complex s1, s2, r;
|
|---|
| 222 |
|
|---|
| 223 | SPECIAL_VALUE(z, asinh_special_values);
|
|---|
| 224 |
|
|---|
| 225 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
|---|
| 226 | if (z.imag >= 0.) {
|
|---|
| 227 | r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|---|
| 228 | M_LN2*2., z.real);
|
|---|
| 229 | } else {
|
|---|
| 230 | r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|---|
| 231 | M_LN2*2., -z.real);
|
|---|
| 232 | }
|
|---|
| 233 | r.imag = atan2(z.imag, fabs(z.real));
|
|---|
| 234 | } else {
|
|---|
| 235 | s1.real = 1.+z.imag;
|
|---|
| 236 | s1.imag = -z.real;
|
|---|
| 237 | s1 = c_sqrt(s1);
|
|---|
| 238 | s2.real = 1.-z.imag;
|
|---|
| 239 | s2.imag = z.real;
|
|---|
| 240 | s2 = c_sqrt(s2);
|
|---|
| 241 | r.real = asinh(s1.real*s2.imag-s2.real*s1.imag);
|
|---|
| 242 | r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
|
|---|
| 243 | }
|
|---|
| 244 | errno = 0;
|
|---|
| 245 | return r;
|
|---|
| 246 | }
|
|---|
| 247 |
|
|---|
| 248 | PyDoc_STRVAR(c_asinh_doc,
|
|---|
| 249 | "asinh(x)\n"
|
|---|
| 250 | "\n"
|
|---|
| 251 | "Return the hyperbolic arc sine of x.");
|
|---|
| 252 |
|
|---|
| 253 |
|
|---|
| 254 | static Py_complex
|
|---|
| 255 | c_atan(Py_complex z)
|
|---|
| 256 | {
|
|---|
| 257 | /* atan(z) = -i atanh(iz) */
|
|---|
| 258 | Py_complex s, r;
|
|---|
| 259 | s.real = -z.imag;
|
|---|
| 260 | s.imag = z.real;
|
|---|
| 261 | s = c_atanh(s);
|
|---|
| 262 | r.real = s.imag;
|
|---|
| 263 | r.imag = -s.real;
|
|---|
| 264 | return r;
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
|
|---|
| 268 | C99 for atan2(0., 0.). */
|
|---|
| 269 | static double
|
|---|
| 270 | c_atan2(Py_complex z)
|
|---|
| 271 | {
|
|---|
| 272 | if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
|
|---|
| 273 | return Py_NAN;
|
|---|
| 274 | if (Py_IS_INFINITY(z.imag)) {
|
|---|
| 275 | if (Py_IS_INFINITY(z.real)) {
|
|---|
| 276 | if (copysign(1., z.real) == 1.)
|
|---|
| 277 | /* atan2(+-inf, +inf) == +-pi/4 */
|
|---|
| 278 | return copysign(0.25*Py_MATH_PI, z.imag);
|
|---|
| 279 | else
|
|---|
| 280 | /* atan2(+-inf, -inf) == +-pi*3/4 */
|
|---|
| 281 | return copysign(0.75*Py_MATH_PI, z.imag);
|
|---|
| 282 | }
|
|---|
| 283 | /* atan2(+-inf, x) == +-pi/2 for finite x */
|
|---|
| 284 | return copysign(0.5*Py_MATH_PI, z.imag);
|
|---|
| 285 | }
|
|---|
| 286 | if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
|
|---|
| 287 | if (copysign(1., z.real) == 1.)
|
|---|
| 288 | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
|---|
| 289 | return copysign(0., z.imag);
|
|---|
| 290 | else
|
|---|
| 291 | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
|
|---|
| 292 | return copysign(Py_MATH_PI, z.imag);
|
|---|
| 293 | }
|
|---|
| 294 | return atan2(z.imag, z.real);
|
|---|
| 295 | }
|
|---|
| 296 |
|
|---|
| 297 | PyDoc_STRVAR(c_atan_doc,
|
|---|
| 298 | "atan(x)\n"
|
|---|
| 299 | "\n"
|
|---|
| 300 | "Return the arc tangent of x.");
|
|---|
| 301 |
|
|---|
| 302 |
|
|---|
| 303 | static Py_complex atanh_special_values[7][7];
|
|---|
| 304 |
|
|---|
| 305 | static Py_complex
|
|---|
| 306 | c_atanh(Py_complex z)
|
|---|
| 307 | {
|
|---|
| 308 | Py_complex r;
|
|---|
| 309 | double ay, h;
|
|---|
| 310 |
|
|---|
| 311 | SPECIAL_VALUE(z, atanh_special_values);
|
|---|
| 312 |
|
|---|
| 313 | /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
|
|---|
| 314 | if (z.real < 0.) {
|
|---|
| 315 | return c_neg(c_atanh(c_neg(z)));
|
|---|
| 316 | }
|
|---|
| 317 |
|
|---|
| 318 | ay = fabs(z.imag);
|
|---|
| 319 | if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
|
|---|
| 320 | /*
|
|---|
| 321 | if abs(z) is large then we use the approximation
|
|---|
| 322 | atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
|
|---|
| 323 | of z.imag)
|
|---|
| 324 | */
|
|---|
| 325 | h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
|
|---|
| 326 | r.real = z.real/4./h/h;
|
|---|
| 327 | /* the two negations in the next line cancel each other out
|
|---|
| 328 | except when working with unsigned zeros: they're there to
|
|---|
| 329 | ensure that the branch cut has the correct continuity on
|
|---|
| 330 | systems that don't support signed zeros */
|
|---|
| 331 | r.imag = -copysign(Py_MATH_PI/2., -z.imag);
|
|---|
| 332 | errno = 0;
|
|---|
| 333 | } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
|
|---|
| 334 | /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
|
|---|
| 335 | if (ay == 0.) {
|
|---|
| 336 | r.real = INF;
|
|---|
| 337 | r.imag = z.imag;
|
|---|
| 338 | errno = EDOM;
|
|---|
| 339 | } else {
|
|---|
| 340 | r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
|
|---|
| 341 | r.imag = copysign(atan2(2., -ay)/2, z.imag);
|
|---|
| 342 | errno = 0;
|
|---|
| 343 | }
|
|---|
| 344 | } else {
|
|---|
| 345 | r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
|
|---|
| 346 | r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
|
|---|
| 347 | errno = 0;
|
|---|
| 348 | }
|
|---|
| 349 | return r;
|
|---|
| 350 | }
|
|---|
| 351 |
|
|---|
| 352 | PyDoc_STRVAR(c_atanh_doc,
|
|---|
| 353 | "atanh(x)\n"
|
|---|
| 354 | "\n"
|
|---|
| 355 | "Return the hyperbolic arc tangent of x.");
|
|---|
| 356 |
|
|---|
| 357 |
|
|---|
| 358 | static Py_complex
|
|---|
| 359 | c_cos(Py_complex z)
|
|---|
| 360 | {
|
|---|
| 361 | /* cos(z) = cosh(iz) */
|
|---|
| 362 | Py_complex r;
|
|---|
| 363 | r.real = -z.imag;
|
|---|
| 364 | r.imag = z.real;
|
|---|
| 365 | r = c_cosh(r);
|
|---|
| 366 | return r;
|
|---|
| 367 | }
|
|---|
| 368 |
|
|---|
| 369 | PyDoc_STRVAR(c_cos_doc,
|
|---|
| 370 | "cos(x)\n"
|
|---|
| 371 | "\n"
|
|---|
| 372 | "Return the cosine of x.");
|
|---|
| 373 |
|
|---|
| 374 |
|
|---|
| 375 | /* cosh(infinity + i*y) needs to be dealt with specially */
|
|---|
| 376 | static Py_complex cosh_special_values[7][7];
|
|---|
| 377 |
|
|---|
| 378 | static Py_complex
|
|---|
| 379 | c_cosh(Py_complex z)
|
|---|
| 380 | {
|
|---|
| 381 | Py_complex r;
|
|---|
| 382 | double x_minus_one;
|
|---|
| 383 |
|
|---|
| 384 | /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
|
|---|
| 385 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|---|
| 386 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
|
|---|
| 387 | (z.imag != 0.)) {
|
|---|
| 388 | if (z.real > 0) {
|
|---|
| 389 | r.real = copysign(INF, cos(z.imag));
|
|---|
| 390 | r.imag = copysign(INF, sin(z.imag));
|
|---|
| 391 | }
|
|---|
| 392 | else {
|
|---|
| 393 | r.real = copysign(INF, cos(z.imag));
|
|---|
| 394 | r.imag = -copysign(INF, sin(z.imag));
|
|---|
| 395 | }
|
|---|
| 396 | }
|
|---|
| 397 | else {
|
|---|
| 398 | r = cosh_special_values[special_type(z.real)]
|
|---|
| 399 | [special_type(z.imag)];
|
|---|
| 400 | }
|
|---|
| 401 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
|---|
| 402 | a NaN */
|
|---|
| 403 | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
|---|
| 404 | errno = EDOM;
|
|---|
| 405 | else
|
|---|
| 406 | errno = 0;
|
|---|
| 407 | return r;
|
|---|
| 408 | }
|
|---|
| 409 |
|
|---|
| 410 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
|---|
| 411 | /* deal correctly with cases where cosh(z.real) overflows but
|
|---|
| 412 | cosh(z) does not. */
|
|---|
| 413 | x_minus_one = z.real - copysign(1., z.real);
|
|---|
| 414 | r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
|---|
| 415 | r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
|---|
| 416 | } else {
|
|---|
| 417 | r.real = cos(z.imag) * cosh(z.real);
|
|---|
| 418 | r.imag = sin(z.imag) * sinh(z.real);
|
|---|
| 419 | }
|
|---|
| 420 | /* detect overflow, and set errno accordingly */
|
|---|
| 421 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|---|
| 422 | errno = ERANGE;
|
|---|
| 423 | else
|
|---|
| 424 | errno = 0;
|
|---|
| 425 | return r;
|
|---|
| 426 | }
|
|---|
| 427 |
|
|---|
| 428 | PyDoc_STRVAR(c_cosh_doc,
|
|---|
| 429 | "cosh(x)\n"
|
|---|
| 430 | "\n"
|
|---|
| 431 | "Return the hyperbolic cosine of x.");
|
|---|
| 432 |
|
|---|
| 433 |
|
|---|
| 434 | /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
|
|---|
| 435 | finite y */
|
|---|
| 436 | static Py_complex exp_special_values[7][7];
|
|---|
| 437 |
|
|---|
| 438 | static Py_complex
|
|---|
| 439 | c_exp(Py_complex z)
|
|---|
| 440 | {
|
|---|
| 441 | Py_complex r;
|
|---|
| 442 | double l;
|
|---|
| 443 |
|
|---|
| 444 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|---|
| 445 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
|---|
| 446 | && (z.imag != 0.)) {
|
|---|
| 447 | if (z.real > 0) {
|
|---|
| 448 | r.real = copysign(INF, cos(z.imag));
|
|---|
| 449 | r.imag = copysign(INF, sin(z.imag));
|
|---|
| 450 | }
|
|---|
| 451 | else {
|
|---|
| 452 | r.real = copysign(0., cos(z.imag));
|
|---|
| 453 | r.imag = copysign(0., sin(z.imag));
|
|---|
| 454 | }
|
|---|
| 455 | }
|
|---|
| 456 | else {
|
|---|
| 457 | r = exp_special_values[special_type(z.real)]
|
|---|
| 458 | [special_type(z.imag)];
|
|---|
| 459 | }
|
|---|
| 460 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
|---|
| 461 | a NaN and not -infinity */
|
|---|
| 462 | if (Py_IS_INFINITY(z.imag) &&
|
|---|
| 463 | (Py_IS_FINITE(z.real) ||
|
|---|
| 464 | (Py_IS_INFINITY(z.real) && z.real > 0)))
|
|---|
| 465 | errno = EDOM;
|
|---|
| 466 | else
|
|---|
| 467 | errno = 0;
|
|---|
| 468 | return r;
|
|---|
| 469 | }
|
|---|
| 470 |
|
|---|
| 471 | if (z.real > CM_LOG_LARGE_DOUBLE) {
|
|---|
| 472 | l = exp(z.real-1.);
|
|---|
| 473 | r.real = l*cos(z.imag)*Py_MATH_E;
|
|---|
| 474 | r.imag = l*sin(z.imag)*Py_MATH_E;
|
|---|
| 475 | } else {
|
|---|
| 476 | l = exp(z.real);
|
|---|
| 477 | r.real = l*cos(z.imag);
|
|---|
| 478 | r.imag = l*sin(z.imag);
|
|---|
| 479 | }
|
|---|
| 480 | /* detect overflow, and set errno accordingly */
|
|---|
| 481 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|---|
| 482 | errno = ERANGE;
|
|---|
| 483 | else
|
|---|
| 484 | errno = 0;
|
|---|
| 485 | return r;
|
|---|
| 486 | }
|
|---|
| 487 |
|
|---|
| 488 | PyDoc_STRVAR(c_exp_doc,
|
|---|
| 489 | "exp(x)\n"
|
|---|
| 490 | "\n"
|
|---|
| 491 | "Return the exponential value e**x.");
|
|---|
| 492 |
|
|---|
| 493 |
|
|---|
| 494 | static Py_complex log_special_values[7][7];
|
|---|
| 495 |
|
|---|
| 496 | static Py_complex
|
|---|
| 497 | c_log(Py_complex z)
|
|---|
| 498 | {
|
|---|
| 499 | /*
|
|---|
| 500 | The usual formula for the real part is log(hypot(z.real, z.imag)).
|
|---|
| 501 | There are four situations where this formula is potentially
|
|---|
| 502 | problematic:
|
|---|
| 503 |
|
|---|
| 504 | (1) the absolute value of z is subnormal. Then hypot is subnormal,
|
|---|
| 505 | so has fewer than the usual number of bits of accuracy, hence may
|
|---|
| 506 | have large relative error. This then gives a large absolute error
|
|---|
| 507 | in the log. This can be solved by rescaling z by a suitable power
|
|---|
| 508 | of 2.
|
|---|
| 509 |
|
|---|
| 510 | (2) the absolute value of z is greater than DBL_MAX (e.g. when both
|
|---|
| 511 | z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
|
|---|
| 512 | Again, rescaling solves this.
|
|---|
| 513 |
|
|---|
| 514 | (3) the absolute value of z is close to 1. In this case it's
|
|---|
| 515 | difficult to achieve good accuracy, at least in part because a
|
|---|
| 516 | change of 1ulp in the real or imaginary part of z can result in a
|
|---|
| 517 | change of billions of ulps in the correctly rounded answer.
|
|---|
| 518 |
|
|---|
| 519 | (4) z = 0. The simplest thing to do here is to call the
|
|---|
| 520 | floating-point log with an argument of 0, and let its behaviour
|
|---|
| 521 | (returning -infinity, signaling a floating-point exception, setting
|
|---|
| 522 | errno, or whatever) determine that of c_log. So the usual formula
|
|---|
| 523 | is fine here.
|
|---|
| 524 |
|
|---|
| 525 | */
|
|---|
| 526 |
|
|---|
| 527 | Py_complex r;
|
|---|
| 528 | double ax, ay, am, an, h;
|
|---|
| 529 |
|
|---|
| 530 | SPECIAL_VALUE(z, log_special_values);
|
|---|
| 531 |
|
|---|
| 532 | ax = fabs(z.real);
|
|---|
| 533 | ay = fabs(z.imag);
|
|---|
| 534 |
|
|---|
| 535 | if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
|
|---|
| 536 | r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
|
|---|
| 537 | } else if (ax < DBL_MIN && ay < DBL_MIN) {
|
|---|
| 538 | if (ax > 0. || ay > 0.) {
|
|---|
| 539 | /* catch cases where hypot(ax, ay) is subnormal */
|
|---|
| 540 | r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
|
|---|
| 541 | ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
|
|---|
| 542 | }
|
|---|
| 543 | else {
|
|---|
| 544 | /* log(+/-0. +/- 0i) */
|
|---|
| 545 | r.real = -INF;
|
|---|
| 546 | r.imag = atan2(z.imag, z.real);
|
|---|
| 547 | errno = EDOM;
|
|---|
| 548 | return r;
|
|---|
| 549 | }
|
|---|
| 550 | } else {
|
|---|
| 551 | h = hypot(ax, ay);
|
|---|
| 552 | if (0.71 <= h && h <= 1.73) {
|
|---|
| 553 | am = ax > ay ? ax : ay; /* max(ax, ay) */
|
|---|
| 554 | an = ax > ay ? ay : ax; /* min(ax, ay) */
|
|---|
| 555 | r.real = log1p((am-1)*(am+1)+an*an)/2.;
|
|---|
| 556 | } else {
|
|---|
| 557 | r.real = log(h);
|
|---|
| 558 | }
|
|---|
| 559 | }
|
|---|
| 560 | r.imag = atan2(z.imag, z.real);
|
|---|
| 561 | errno = 0;
|
|---|
| 562 | return r;
|
|---|
| 563 | }
|
|---|
| 564 |
|
|---|
| 565 |
|
|---|
| 566 | static Py_complex
|
|---|
| 567 | c_log10(Py_complex z)
|
|---|
| 568 | {
|
|---|
| 569 | Py_complex r;
|
|---|
| 570 | int errno_save;
|
|---|
| 571 |
|
|---|
| 572 | r = c_log(z);
|
|---|
| 573 | errno_save = errno; /* just in case the divisions affect errno */
|
|---|
| 574 | r.real = r.real / M_LN10;
|
|---|
| 575 | r.imag = r.imag / M_LN10;
|
|---|
| 576 | errno = errno_save;
|
|---|
| 577 | return r;
|
|---|
| 578 | }
|
|---|
| 579 |
|
|---|
| 580 | PyDoc_STRVAR(c_log10_doc,
|
|---|
| 581 | "log10(x)\n"
|
|---|
| 582 | "\n"
|
|---|
| 583 | "Return the base-10 logarithm of x.");
|
|---|
| 584 |
|
|---|
| 585 |
|
|---|
| 586 | static Py_complex
|
|---|
| 587 | c_sin(Py_complex z)
|
|---|
| 588 | {
|
|---|
| 589 | /* sin(z) = -i sin(iz) */
|
|---|
| 590 | Py_complex s, r;
|
|---|
| 591 | s.real = -z.imag;
|
|---|
| 592 | s.imag = z.real;
|
|---|
| 593 | s = c_sinh(s);
|
|---|
| 594 | r.real = s.imag;
|
|---|
| 595 | r.imag = -s.real;
|
|---|
| 596 | return r;
|
|---|
| 597 | }
|
|---|
| 598 |
|
|---|
| 599 | PyDoc_STRVAR(c_sin_doc,
|
|---|
| 600 | "sin(x)\n"
|
|---|
| 601 | "\n"
|
|---|
| 602 | "Return the sine of x.");
|
|---|
| 603 |
|
|---|
| 604 |
|
|---|
| 605 | /* sinh(infinity + i*y) needs to be dealt with specially */
|
|---|
| 606 | static Py_complex sinh_special_values[7][7];
|
|---|
| 607 |
|
|---|
| 608 | static Py_complex
|
|---|
| 609 | c_sinh(Py_complex z)
|
|---|
| 610 | {
|
|---|
| 611 | Py_complex r;
|
|---|
| 612 | double x_minus_one;
|
|---|
| 613 |
|
|---|
| 614 | /* special treatment for sinh(+/-inf + iy) if y is finite and
|
|---|
| 615 | nonzero */
|
|---|
| 616 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|---|
| 617 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
|---|
| 618 | && (z.imag != 0.)) {
|
|---|
| 619 | if (z.real > 0) {
|
|---|
| 620 | r.real = copysign(INF, cos(z.imag));
|
|---|
| 621 | r.imag = copysign(INF, sin(z.imag));
|
|---|
| 622 | }
|
|---|
| 623 | else {
|
|---|
| 624 | r.real = -copysign(INF, cos(z.imag));
|
|---|
| 625 | r.imag = copysign(INF, sin(z.imag));
|
|---|
| 626 | }
|
|---|
| 627 | }
|
|---|
| 628 | else {
|
|---|
| 629 | r = sinh_special_values[special_type(z.real)]
|
|---|
| 630 | [special_type(z.imag)];
|
|---|
| 631 | }
|
|---|
| 632 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
|---|
| 633 | a NaN */
|
|---|
| 634 | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
|---|
| 635 | errno = EDOM;
|
|---|
| 636 | else
|
|---|
| 637 | errno = 0;
|
|---|
| 638 | return r;
|
|---|
| 639 | }
|
|---|
| 640 |
|
|---|
| 641 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
|---|
| 642 | x_minus_one = z.real - copysign(1., z.real);
|
|---|
| 643 | r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
|---|
| 644 | r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
|---|
| 645 | } else {
|
|---|
| 646 | r.real = cos(z.imag) * sinh(z.real);
|
|---|
| 647 | r.imag = sin(z.imag) * cosh(z.real);
|
|---|
| 648 | }
|
|---|
| 649 | /* detect overflow, and set errno accordingly */
|
|---|
| 650 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|---|
| 651 | errno = ERANGE;
|
|---|
| 652 | else
|
|---|
| 653 | errno = 0;
|
|---|
| 654 | return r;
|
|---|
| 655 | }
|
|---|
| 656 |
|
|---|
| 657 | PyDoc_STRVAR(c_sinh_doc,
|
|---|
| 658 | "sinh(x)\n"
|
|---|
| 659 | "\n"
|
|---|
| 660 | "Return the hyperbolic sine of x.");
|
|---|
| 661 |
|
|---|
| 662 |
|
|---|
| 663 | static Py_complex sqrt_special_values[7][7];
|
|---|
| 664 |
|
|---|
| 665 | static Py_complex
|
|---|
| 666 | c_sqrt(Py_complex z)
|
|---|
| 667 | {
|
|---|
| 668 | /*
|
|---|
| 669 | Method: use symmetries to reduce to the case when x = z.real and y
|
|---|
| 670 | = z.imag are nonnegative. Then the real part of the result is
|
|---|
| 671 | given by
|
|---|
| 672 |
|
|---|
| 673 | s = sqrt((x + hypot(x, y))/2)
|
|---|
| 674 |
|
|---|
| 675 | and the imaginary part is
|
|---|
| 676 |
|
|---|
| 677 | d = (y/2)/s
|
|---|
| 678 |
|
|---|
| 679 | If either x or y is very large then there's a risk of overflow in
|
|---|
| 680 | computation of the expression x + hypot(x, y). We can avoid this
|
|---|
| 681 | by rewriting the formula for s as:
|
|---|
| 682 |
|
|---|
| 683 | s = 2*sqrt(x/8 + hypot(x/8, y/8))
|
|---|
| 684 |
|
|---|
| 685 | This costs us two extra multiplications/divisions, but avoids the
|
|---|
| 686 | overhead of checking for x and y large.
|
|---|
| 687 |
|
|---|
| 688 | If both x and y are subnormal then hypot(x, y) may also be
|
|---|
| 689 | subnormal, so will lack full precision. We solve this by rescaling
|
|---|
| 690 | x and y by a sufficiently large power of 2 to ensure that x and y
|
|---|
| 691 | are normal.
|
|---|
| 692 | */
|
|---|
| 693 |
|
|---|
| 694 |
|
|---|
| 695 | Py_complex r;
|
|---|
| 696 | double s,d;
|
|---|
| 697 | double ax, ay;
|
|---|
| 698 |
|
|---|
| 699 | SPECIAL_VALUE(z, sqrt_special_values);
|
|---|
| 700 |
|
|---|
| 701 | if (z.real == 0. && z.imag == 0.) {
|
|---|
| 702 | r.real = 0.;
|
|---|
| 703 | r.imag = z.imag;
|
|---|
| 704 | return r;
|
|---|
| 705 | }
|
|---|
| 706 |
|
|---|
| 707 | ax = fabs(z.real);
|
|---|
| 708 | ay = fabs(z.imag);
|
|---|
| 709 |
|
|---|
| 710 | if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
|
|---|
| 711 | /* here we catch cases where hypot(ax, ay) is subnormal */
|
|---|
| 712 | ax = ldexp(ax, CM_SCALE_UP);
|
|---|
| 713 | s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
|
|---|
| 714 | CM_SCALE_DOWN);
|
|---|
| 715 | } else {
|
|---|
| 716 | ax /= 8.;
|
|---|
| 717 | s = 2.*sqrt(ax + hypot(ax, ay/8.));
|
|---|
| 718 | }
|
|---|
| 719 | d = ay/(2.*s);
|
|---|
| 720 |
|
|---|
| 721 | if (z.real >= 0.) {
|
|---|
| 722 | r.real = s;
|
|---|
| 723 | r.imag = copysign(d, z.imag);
|
|---|
| 724 | } else {
|
|---|
| 725 | r.real = d;
|
|---|
| 726 | r.imag = copysign(s, z.imag);
|
|---|
| 727 | }
|
|---|
| 728 | errno = 0;
|
|---|
| 729 | return r;
|
|---|
| 730 | }
|
|---|
| 731 |
|
|---|
| 732 | PyDoc_STRVAR(c_sqrt_doc,
|
|---|
| 733 | "sqrt(x)\n"
|
|---|
| 734 | "\n"
|
|---|
| 735 | "Return the square root of x.");
|
|---|
| 736 |
|
|---|
| 737 |
|
|---|
| 738 | static Py_complex
|
|---|
| 739 | c_tan(Py_complex z)
|
|---|
| 740 | {
|
|---|
| 741 | /* tan(z) = -i tanh(iz) */
|
|---|
| 742 | Py_complex s, r;
|
|---|
| 743 | s.real = -z.imag;
|
|---|
| 744 | s.imag = z.real;
|
|---|
| 745 | s = c_tanh(s);
|
|---|
| 746 | r.real = s.imag;
|
|---|
| 747 | r.imag = -s.real;
|
|---|
| 748 | return r;
|
|---|
| 749 | }
|
|---|
| 750 |
|
|---|
| 751 | PyDoc_STRVAR(c_tan_doc,
|
|---|
| 752 | "tan(x)\n"
|
|---|
| 753 | "\n"
|
|---|
| 754 | "Return the tangent of x.");
|
|---|
| 755 |
|
|---|
| 756 |
|
|---|
| 757 | /* tanh(infinity + i*y) needs to be dealt with specially */
|
|---|
| 758 | static Py_complex tanh_special_values[7][7];
|
|---|
| 759 |
|
|---|
| 760 | static Py_complex
|
|---|
| 761 | c_tanh(Py_complex z)
|
|---|
| 762 | {
|
|---|
| 763 | /* Formula:
|
|---|
| 764 |
|
|---|
| 765 | tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
|
|---|
| 766 | (1+tan(y)^2 tanh(x)^2)
|
|---|
| 767 |
|
|---|
| 768 | To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
|
|---|
| 769 | as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
|
|---|
| 770 | by 4 exp(-2*x) instead, to avoid possible overflow in the
|
|---|
| 771 | computation of cosh(x).
|
|---|
| 772 |
|
|---|
| 773 | */
|
|---|
| 774 |
|
|---|
| 775 | Py_complex r;
|
|---|
| 776 | double tx, ty, cx, txty, denom;
|
|---|
| 777 |
|
|---|
| 778 | /* special treatment for tanh(+/-inf + iy) if y is finite and
|
|---|
| 779 | nonzero */
|
|---|
| 780 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|---|
| 781 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
|---|
| 782 | && (z.imag != 0.)) {
|
|---|
| 783 | if (z.real > 0) {
|
|---|
| 784 | r.real = 1.0;
|
|---|
| 785 | r.imag = copysign(0.,
|
|---|
| 786 | 2.*sin(z.imag)*cos(z.imag));
|
|---|
| 787 | }
|
|---|
| 788 | else {
|
|---|
| 789 | r.real = -1.0;
|
|---|
| 790 | r.imag = copysign(0.,
|
|---|
| 791 | 2.*sin(z.imag)*cos(z.imag));
|
|---|
| 792 | }
|
|---|
| 793 | }
|
|---|
| 794 | else {
|
|---|
| 795 | r = tanh_special_values[special_type(z.real)]
|
|---|
| 796 | [special_type(z.imag)];
|
|---|
| 797 | }
|
|---|
| 798 | /* need to set errno = EDOM if z.imag is +/-infinity and
|
|---|
| 799 | z.real is finite */
|
|---|
| 800 | if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
|
|---|
| 801 | errno = EDOM;
|
|---|
| 802 | else
|
|---|
| 803 | errno = 0;
|
|---|
| 804 | return r;
|
|---|
| 805 | }
|
|---|
| 806 |
|
|---|
| 807 | /* danger of overflow in 2.*z.imag !*/
|
|---|
| 808 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
|---|
| 809 | r.real = copysign(1., z.real);
|
|---|
| 810 | r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
|
|---|
| 811 | } else {
|
|---|
| 812 | tx = tanh(z.real);
|
|---|
| 813 | ty = tan(z.imag);
|
|---|
| 814 | cx = 1./cosh(z.real);
|
|---|
| 815 | txty = tx*ty;
|
|---|
| 816 | denom = 1. + txty*txty;
|
|---|
| 817 | r.real = tx*(1.+ty*ty)/denom;
|
|---|
| 818 | r.imag = ((ty/denom)*cx)*cx;
|
|---|
| 819 | }
|
|---|
| 820 | errno = 0;
|
|---|
| 821 | return r;
|
|---|
| 822 | }
|
|---|
| 823 |
|
|---|
| 824 | PyDoc_STRVAR(c_tanh_doc,
|
|---|
| 825 | "tanh(x)\n"
|
|---|
| 826 | "\n"
|
|---|
| 827 | "Return the hyperbolic tangent of x.");
|
|---|
| 828 |
|
|---|
| 829 |
|
|---|
| 830 | static PyObject *
|
|---|
| 831 | cmath_log(PyObject *self, PyObject *args)
|
|---|
| 832 | {
|
|---|
| 833 | Py_complex x;
|
|---|
| 834 | Py_complex y;
|
|---|
| 835 |
|
|---|
| 836 | if (!PyArg_ParseTuple(args, "D|D", &x, &y))
|
|---|
| 837 | return NULL;
|
|---|
| 838 |
|
|---|
| 839 | errno = 0;
|
|---|
| 840 | PyFPE_START_PROTECT("complex function", return 0)
|
|---|
| 841 | x = c_log(x);
|
|---|
| 842 | if (PyTuple_GET_SIZE(args) == 2) {
|
|---|
| 843 | y = c_log(y);
|
|---|
| 844 | x = c_quot(x, y);
|
|---|
| 845 | }
|
|---|
| 846 | PyFPE_END_PROTECT(x)
|
|---|
| 847 | if (errno != 0)
|
|---|
| 848 | return math_error();
|
|---|
| 849 | return PyComplex_FromCComplex(x);
|
|---|
| 850 | }
|
|---|
| 851 |
|
|---|
| 852 | PyDoc_STRVAR(cmath_log_doc,
|
|---|
| 853 | "log(x[, base]) -> the logarithm of x to the given base.\n\
|
|---|
| 854 | If the base not specified, returns the natural logarithm (base e) of x.");
|
|---|
| 855 |
|
|---|
| 856 |
|
|---|
| 857 | /* And now the glue to make them available from Python: */
|
|---|
| 858 |
|
|---|
| 859 | static PyObject *
|
|---|
| 860 | math_error(void)
|
|---|
| 861 | {
|
|---|
| 862 | if (errno == EDOM)
|
|---|
| 863 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
|---|
| 864 | else if (errno == ERANGE)
|
|---|
| 865 | PyErr_SetString(PyExc_OverflowError, "math range error");
|
|---|
| 866 | else /* Unexpected math error */
|
|---|
| 867 | PyErr_SetFromErrno(PyExc_ValueError);
|
|---|
| 868 | return NULL;
|
|---|
| 869 | }
|
|---|
| 870 |
|
|---|
| 871 | static PyObject *
|
|---|
| 872 | math_1(PyObject *args, Py_complex (*func)(Py_complex))
|
|---|
| 873 | {
|
|---|
| 874 | Py_complex x,r ;
|
|---|
| 875 | if (!PyArg_ParseTuple(args, "D", &x))
|
|---|
| 876 | return NULL;
|
|---|
| 877 | errno = 0;
|
|---|
| 878 | PyFPE_START_PROTECT("complex function", return 0);
|
|---|
| 879 | r = (*func)(x);
|
|---|
| 880 | PyFPE_END_PROTECT(r);
|
|---|
| 881 | if (errno == EDOM) {
|
|---|
| 882 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
|---|
| 883 | return NULL;
|
|---|
| 884 | }
|
|---|
| 885 | else if (errno == ERANGE) {
|
|---|
| 886 | PyErr_SetString(PyExc_OverflowError, "math range error");
|
|---|
| 887 | return NULL;
|
|---|
| 888 | }
|
|---|
| 889 | else {
|
|---|
| 890 | return PyComplex_FromCComplex(r);
|
|---|
| 891 | }
|
|---|
| 892 | }
|
|---|
| 893 |
|
|---|
| 894 | #define FUNC1(stubname, func) \
|
|---|
| 895 | static PyObject * stubname(PyObject *self, PyObject *args) { \
|
|---|
| 896 | return math_1(args, func); \
|
|---|
| 897 | }
|
|---|
| 898 |
|
|---|
| 899 | FUNC1(cmath_acos, c_acos)
|
|---|
| 900 | FUNC1(cmath_acosh, c_acosh)
|
|---|
| 901 | FUNC1(cmath_asin, c_asin)
|
|---|
| 902 | FUNC1(cmath_asinh, c_asinh)
|
|---|
| 903 | FUNC1(cmath_atan, c_atan)
|
|---|
| 904 | FUNC1(cmath_atanh, c_atanh)
|
|---|
| 905 | FUNC1(cmath_cos, c_cos)
|
|---|
| 906 | FUNC1(cmath_cosh, c_cosh)
|
|---|
| 907 | FUNC1(cmath_exp, c_exp)
|
|---|
| 908 | FUNC1(cmath_log10, c_log10)
|
|---|
| 909 | FUNC1(cmath_sin, c_sin)
|
|---|
| 910 | FUNC1(cmath_sinh, c_sinh)
|
|---|
| 911 | FUNC1(cmath_sqrt, c_sqrt)
|
|---|
| 912 | FUNC1(cmath_tan, c_tan)
|
|---|
| 913 | FUNC1(cmath_tanh, c_tanh)
|
|---|
| 914 |
|
|---|
| 915 | static PyObject *
|
|---|
| 916 | cmath_phase(PyObject *self, PyObject *args)
|
|---|
| 917 | {
|
|---|
| 918 | Py_complex z;
|
|---|
| 919 | double phi;
|
|---|
| 920 | if (!PyArg_ParseTuple(args, "D:phase", &z))
|
|---|
| 921 | return NULL;
|
|---|
| 922 | errno = 0;
|
|---|
| 923 | PyFPE_START_PROTECT("arg function", return 0)
|
|---|
| 924 | phi = c_atan2(z);
|
|---|
| 925 | PyFPE_END_PROTECT(phi)
|
|---|
| 926 | if (errno != 0)
|
|---|
| 927 | return math_error();
|
|---|
| 928 | else
|
|---|
| 929 | return PyFloat_FromDouble(phi);
|
|---|
| 930 | }
|
|---|
| 931 |
|
|---|
| 932 | PyDoc_STRVAR(cmath_phase_doc,
|
|---|
| 933 | "phase(z) -> float\n\n\
|
|---|
| 934 | Return argument, also known as the phase angle, of a complex.");
|
|---|
| 935 |
|
|---|
| 936 | static PyObject *
|
|---|
| 937 | cmath_polar(PyObject *self, PyObject *args)
|
|---|
| 938 | {
|
|---|
| 939 | Py_complex z;
|
|---|
| 940 | double r, phi;
|
|---|
| 941 | if (!PyArg_ParseTuple(args, "D:polar", &z))
|
|---|
| 942 | return NULL;
|
|---|
| 943 | PyFPE_START_PROTECT("polar function", return 0)
|
|---|
| 944 | phi = c_atan2(z); /* should not cause any exception */
|
|---|
| 945 | r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
|
|---|
| 946 | PyFPE_END_PROTECT(r)
|
|---|
| 947 | if (errno != 0)
|
|---|
| 948 | return math_error();
|
|---|
| 949 | else
|
|---|
| 950 | return Py_BuildValue("dd", r, phi);
|
|---|
| 951 | }
|
|---|
| 952 |
|
|---|
| 953 | PyDoc_STRVAR(cmath_polar_doc,
|
|---|
| 954 | "polar(z) -> r: float, phi: float\n\n\
|
|---|
| 955 | Convert a complex from rectangular coordinates to polar coordinates. r is\n\
|
|---|
| 956 | the distance from 0 and phi the phase angle.");
|
|---|
| 957 |
|
|---|
| 958 | /*
|
|---|
| 959 | rect() isn't covered by the C99 standard, but it's not too hard to
|
|---|
| 960 | figure out 'spirit of C99' rules for special value handing:
|
|---|
| 961 |
|
|---|
| 962 | rect(x, t) should behave like exp(log(x) + it) for positive-signed x
|
|---|
| 963 | rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
|
|---|
| 964 | rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
|
|---|
| 965 | gives nan +- i0 with the sign of the imaginary part unspecified.
|
|---|
| 966 |
|
|---|
| 967 | */
|
|---|
| 968 |
|
|---|
| 969 | static Py_complex rect_special_values[7][7];
|
|---|
| 970 |
|
|---|
| 971 | static PyObject *
|
|---|
| 972 | cmath_rect(PyObject *self, PyObject *args)
|
|---|
| 973 | {
|
|---|
| 974 | Py_complex z;
|
|---|
| 975 | double r, phi;
|
|---|
| 976 | if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
|
|---|
| 977 | return NULL;
|
|---|
| 978 | errno = 0;
|
|---|
| 979 | PyFPE_START_PROTECT("rect function", return 0)
|
|---|
| 980 |
|
|---|
| 981 | /* deal with special values */
|
|---|
| 982 | if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
|
|---|
| 983 | /* if r is +/-infinity and phi is finite but nonzero then
|
|---|
| 984 | result is (+-INF +-INF i), but we need to compute cos(phi)
|
|---|
| 985 | and sin(phi) to figure out the signs. */
|
|---|
| 986 | if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
|
|---|
| 987 | && (phi != 0.))) {
|
|---|
| 988 | if (r > 0) {
|
|---|
| 989 | z.real = copysign(INF, cos(phi));
|
|---|
| 990 | z.imag = copysign(INF, sin(phi));
|
|---|
| 991 | }
|
|---|
| 992 | else {
|
|---|
| 993 | z.real = -copysign(INF, cos(phi));
|
|---|
| 994 | z.imag = -copysign(INF, sin(phi));
|
|---|
| 995 | }
|
|---|
| 996 | }
|
|---|
| 997 | else {
|
|---|
| 998 | z = rect_special_values[special_type(r)]
|
|---|
| 999 | [special_type(phi)];
|
|---|
| 1000 | }
|
|---|
| 1001 | /* need to set errno = EDOM if r is a nonzero number and phi
|
|---|
| 1002 | is infinite */
|
|---|
| 1003 | if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
|
|---|
| 1004 | errno = EDOM;
|
|---|
| 1005 | else
|
|---|
| 1006 | errno = 0;
|
|---|
| 1007 | }
|
|---|
| 1008 | else {
|
|---|
| 1009 | z.real = r * cos(phi);
|
|---|
| 1010 | z.imag = r * sin(phi);
|
|---|
| 1011 | errno = 0;
|
|---|
| 1012 | }
|
|---|
| 1013 |
|
|---|
| 1014 | PyFPE_END_PROTECT(z)
|
|---|
| 1015 | if (errno != 0)
|
|---|
| 1016 | return math_error();
|
|---|
| 1017 | else
|
|---|
| 1018 | return PyComplex_FromCComplex(z);
|
|---|
| 1019 | }
|
|---|
| 1020 |
|
|---|
| 1021 | PyDoc_STRVAR(cmath_rect_doc,
|
|---|
| 1022 | "rect(r, phi) -> z: complex\n\n\
|
|---|
| 1023 | Convert from polar coordinates to rectangular coordinates.");
|
|---|
| 1024 |
|
|---|
| 1025 | static PyObject *
|
|---|
| 1026 | cmath_isnan(PyObject *self, PyObject *args)
|
|---|
| 1027 | {
|
|---|
| 1028 | Py_complex z;
|
|---|
| 1029 | if (!PyArg_ParseTuple(args, "D:isnan", &z))
|
|---|
| 1030 | return NULL;
|
|---|
| 1031 | return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
|
|---|
| 1032 | }
|
|---|
| 1033 |
|
|---|
| 1034 | PyDoc_STRVAR(cmath_isnan_doc,
|
|---|
| 1035 | "isnan(z) -> bool\n\
|
|---|
| 1036 | Checks if the real or imaginary part of z not a number (NaN)");
|
|---|
| 1037 |
|
|---|
| 1038 | static PyObject *
|
|---|
| 1039 | cmath_isinf(PyObject *self, PyObject *args)
|
|---|
| 1040 | {
|
|---|
| 1041 | Py_complex z;
|
|---|
| 1042 | if (!PyArg_ParseTuple(args, "D:isnan", &z))
|
|---|
| 1043 | return NULL;
|
|---|
| 1044 | return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
|
|---|
| 1045 | Py_IS_INFINITY(z.imag));
|
|---|
| 1046 | }
|
|---|
| 1047 |
|
|---|
| 1048 | PyDoc_STRVAR(cmath_isinf_doc,
|
|---|
| 1049 | "isinf(z) -> bool\n\
|
|---|
| 1050 | Checks if the real or imaginary part of z is infinite.");
|
|---|
| 1051 |
|
|---|
| 1052 |
|
|---|
| 1053 | PyDoc_STRVAR(module_doc,
|
|---|
| 1054 | "This module is always available. It provides access to mathematical\n"
|
|---|
| 1055 | "functions for complex numbers.");
|
|---|
| 1056 |
|
|---|
| 1057 | static PyMethodDef cmath_methods[] = {
|
|---|
| 1058 | {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
|
|---|
| 1059 | {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
|
|---|
| 1060 | {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
|
|---|
| 1061 | {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
|
|---|
| 1062 | {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
|
|---|
| 1063 | {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
|
|---|
| 1064 | {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
|
|---|
| 1065 | {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
|
|---|
| 1066 | {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
|
|---|
| 1067 | {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
|
|---|
| 1068 | {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
|
|---|
| 1069 | {"log", cmath_log, METH_VARARGS, cmath_log_doc},
|
|---|
| 1070 | {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
|
|---|
| 1071 | {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
|
|---|
| 1072 | {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
|
|---|
| 1073 | {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
|
|---|
| 1074 | {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
|
|---|
| 1075 | {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
|
|---|
| 1076 | {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
|
|---|
| 1077 | {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
|
|---|
| 1078 | {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
|
|---|
| 1079 | {NULL, NULL} /* sentinel */
|
|---|
| 1080 | };
|
|---|
| 1081 |
|
|---|
| 1082 | PyMODINIT_FUNC
|
|---|
| 1083 | initcmath(void)
|
|---|
| 1084 | {
|
|---|
| 1085 | PyObject *m;
|
|---|
| 1086 |
|
|---|
| 1087 | m = Py_InitModule3("cmath", cmath_methods, module_doc);
|
|---|
| 1088 | if (m == NULL)
|
|---|
| 1089 | return;
|
|---|
| 1090 |
|
|---|
| 1091 | PyModule_AddObject(m, "pi",
|
|---|
| 1092 | PyFloat_FromDouble(Py_MATH_PI));
|
|---|
| 1093 | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
|
|---|
| 1094 |
|
|---|
| 1095 | /* initialize special value tables */
|
|---|
| 1096 |
|
|---|
| 1097 | #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
|
|---|
| 1098 | #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
|
|---|
| 1099 |
|
|---|
| 1100 | INIT_SPECIAL_VALUES(acos_special_values, {
|
|---|
| 1101 | C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
|
|---|
| 1102 | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
|---|
| 1103 | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
|---|
| 1104 | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
|---|
| 1105 | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
|---|
| 1106 | C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
|
|---|
| 1107 | C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
|
|---|
| 1108 | })
|
|---|
| 1109 |
|
|---|
| 1110 | INIT_SPECIAL_VALUES(acosh_special_values, {
|
|---|
| 1111 | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
|---|
| 1112 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1113 | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1114 | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1115 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1116 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
|---|
| 1117 | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
|---|
| 1118 | })
|
|---|
| 1119 |
|
|---|
| 1120 | INIT_SPECIAL_VALUES(asinh_special_values, {
|
|---|
| 1121 | C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
|
|---|
| 1122 | C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
|
|---|
| 1123 | C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
|
|---|
| 1124 | C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1125 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1126 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
|---|
| 1127 | C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
|
|---|
| 1128 | })
|
|---|
| 1129 |
|
|---|
| 1130 | INIT_SPECIAL_VALUES(atanh_special_values, {
|
|---|
| 1131 | C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
|
|---|
| 1132 | C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
|
|---|
| 1133 | C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
|
|---|
| 1134 | C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
|
|---|
| 1135 | C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
|
|---|
| 1136 | C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
|
|---|
| 1137 | C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
|
|---|
| 1138 | })
|
|---|
| 1139 |
|
|---|
| 1140 | INIT_SPECIAL_VALUES(cosh_special_values, {
|
|---|
| 1141 | C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
|---|
| 1142 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1143 | C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
|
|---|
| 1144 | C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
|
|---|
| 1145 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1146 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|---|
| 1147 | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|---|
| 1148 | })
|
|---|
| 1149 |
|
|---|
| 1150 | INIT_SPECIAL_VALUES(exp_special_values, {
|
|---|
| 1151 | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
|---|
| 1152 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1153 | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
|---|
| 1154 | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
|---|
| 1155 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1156 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|---|
| 1157 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|---|
| 1158 | })
|
|---|
| 1159 |
|
|---|
| 1160 | INIT_SPECIAL_VALUES(log_special_values, {
|
|---|
| 1161 | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
|---|
| 1162 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1163 | C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1164 | C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1165 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|---|
| 1166 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
|---|
| 1167 | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
|---|
| 1168 | })
|
|---|
| 1169 |
|
|---|
| 1170 | INIT_SPECIAL_VALUES(sinh_special_values, {
|
|---|
| 1171 | C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|---|
| 1172 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1173 | C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
|
|---|
| 1174 | C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
|
|---|
| 1175 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1176 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|---|
| 1177 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|---|
| 1178 | })
|
|---|
| 1179 |
|
|---|
| 1180 | INIT_SPECIAL_VALUES(sqrt_special_values, {
|
|---|
| 1181 | C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
|
|---|
| 1182 | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
|---|
| 1183 | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
|---|
| 1184 | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
|---|
| 1185 | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
|---|
| 1186 | C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
|
|---|
| 1187 | C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
|
|---|
| 1188 | })
|
|---|
| 1189 |
|
|---|
| 1190 | INIT_SPECIAL_VALUES(tanh_special_values, {
|
|---|
| 1191 | C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
|
|---|
| 1192 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1193 | C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
|
|---|
| 1194 | C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
|
|---|
| 1195 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1196 | C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
|
|---|
| 1197 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|---|
| 1198 | })
|
|---|
| 1199 |
|
|---|
| 1200 | INIT_SPECIAL_VALUES(rect_special_values, {
|
|---|
| 1201 | C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
|---|
| 1202 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1203 | C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
|
|---|
| 1204 | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
|---|
| 1205 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|---|
| 1206 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|---|
| 1207 | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|---|
| 1208 | })
|
|---|
| 1209 | }
|
|---|