1 | /* Complex math module */
|
---|
2 |
|
---|
3 | /* much code borrowed from mathmodule.c */
|
---|
4 |
|
---|
5 | #include "Python.h"
|
---|
6 | /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
|
---|
7 | float.h. We assume that FLT_RADIX is either 2 or 16. */
|
---|
8 | #include <float.h>
|
---|
9 |
|
---|
10 | #if (FLT_RADIX != 2 && FLT_RADIX != 16)
|
---|
11 | #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
|
---|
12 | #endif
|
---|
13 |
|
---|
14 | #ifndef M_LN2
|
---|
15 | #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
|
---|
16 | #endif
|
---|
17 |
|
---|
18 | #ifndef M_LN10
|
---|
19 | #define M_LN10 (2.302585092994045684) /* natural log of 10 */
|
---|
20 | #endif
|
---|
21 |
|
---|
22 | /*
|
---|
23 | CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
|
---|
24 | inverse trig and inverse hyperbolic trig functions. Its log is used in the
|
---|
25 | evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary
|
---|
26 | overflow.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #define CM_LARGE_DOUBLE (DBL_MAX/4.)
|
---|
30 | #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
|
---|
31 | #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
|
---|
32 | #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
|
---|
33 |
|
---|
34 | /*
|
---|
35 | CM_SCALE_UP is an odd integer chosen such that multiplication by
|
---|
36 | 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
|
---|
37 | CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
|
---|
38 | square roots accurately when the real and imaginary parts of the argument
|
---|
39 | are subnormal.
|
---|
40 | */
|
---|
41 |
|
---|
42 | #if FLT_RADIX==2
|
---|
43 | #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
|
---|
44 | #elif FLT_RADIX==16
|
---|
45 | #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
|
---|
46 | #endif
|
---|
47 | #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
|
---|
48 |
|
---|
49 | /* forward declarations */
|
---|
50 | static Py_complex c_asinh(Py_complex);
|
---|
51 | static Py_complex c_atanh(Py_complex);
|
---|
52 | static Py_complex c_cosh(Py_complex);
|
---|
53 | static Py_complex c_sinh(Py_complex);
|
---|
54 | static Py_complex c_sqrt(Py_complex);
|
---|
55 | static Py_complex c_tanh(Py_complex);
|
---|
56 | static PyObject * math_error(void);
|
---|
57 |
|
---|
58 | /* Code to deal with special values (infinities, NaNs, etc.). */
|
---|
59 |
|
---|
60 | /* special_type takes a double and returns an integer code indicating
|
---|
61 | the type of the double as follows:
|
---|
62 | */
|
---|
63 |
|
---|
64 | enum special_types {
|
---|
65 | ST_NINF, /* 0, negative infinity */
|
---|
66 | ST_NEG, /* 1, negative finite number (nonzero) */
|
---|
67 | ST_NZERO, /* 2, -0. */
|
---|
68 | ST_PZERO, /* 3, +0. */
|
---|
69 | ST_POS, /* 4, positive finite number (nonzero) */
|
---|
70 | ST_PINF, /* 5, positive infinity */
|
---|
71 | ST_NAN /* 6, Not a Number */
|
---|
72 | };
|
---|
73 |
|
---|
74 | static enum special_types
|
---|
75 | special_type(double d)
|
---|
76 | {
|
---|
77 | if (Py_IS_FINITE(d)) {
|
---|
78 | if (d != 0) {
|
---|
79 | if (copysign(1., d) == 1.)
|
---|
80 | return ST_POS;
|
---|
81 | else
|
---|
82 | return ST_NEG;
|
---|
83 | }
|
---|
84 | else {
|
---|
85 | if (copysign(1., d) == 1.)
|
---|
86 | return ST_PZERO;
|
---|
87 | else
|
---|
88 | return ST_NZERO;
|
---|
89 | }
|
---|
90 | }
|
---|
91 | if (Py_IS_NAN(d))
|
---|
92 | return ST_NAN;
|
---|
93 | if (copysign(1., d) == 1.)
|
---|
94 | return ST_PINF;
|
---|
95 | else
|
---|
96 | return ST_NINF;
|
---|
97 | }
|
---|
98 |
|
---|
99 | #define SPECIAL_VALUE(z, table) \
|
---|
100 | if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
|
---|
101 | errno = 0; \
|
---|
102 | return table[special_type((z).real)] \
|
---|
103 | [special_type((z).imag)]; \
|
---|
104 | }
|
---|
105 |
|
---|
106 | #define P Py_MATH_PI
|
---|
107 | #define P14 0.25*Py_MATH_PI
|
---|
108 | #define P12 0.5*Py_MATH_PI
|
---|
109 | #define P34 0.75*Py_MATH_PI
|
---|
110 | #define INF Py_HUGE_VAL
|
---|
111 | #define N Py_NAN
|
---|
112 | #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
|
---|
113 |
|
---|
114 | /* First, the C functions that do the real work. Each of the c_*
|
---|
115 | functions computes and returns the C99 Annex G recommended result
|
---|
116 | and also sets errno as follows: errno = 0 if no floating-point
|
---|
117 | exception is associated with the result; errno = EDOM if C99 Annex
|
---|
118 | G recommends raising divide-by-zero or invalid for this result; and
|
---|
119 | errno = ERANGE where the overflow floating-point signal should be
|
---|
120 | raised.
|
---|
121 | */
|
---|
122 |
|
---|
123 | static Py_complex acos_special_values[7][7];
|
---|
124 |
|
---|
125 | static Py_complex
|
---|
126 | c_acos(Py_complex z)
|
---|
127 | {
|
---|
128 | Py_complex s1, s2, r;
|
---|
129 |
|
---|
130 | SPECIAL_VALUE(z, acos_special_values);
|
---|
131 |
|
---|
132 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
---|
133 | /* avoid unnecessary overflow for large arguments */
|
---|
134 | r.real = atan2(fabs(z.imag), z.real);
|
---|
135 | /* split into cases to make sure that the branch cut has the
|
---|
136 | correct continuity on systems with unsigned zeros */
|
---|
137 | if (z.real < 0.) {
|
---|
138 | r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
139 | M_LN2*2., z.imag);
|
---|
140 | } else {
|
---|
141 | r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
142 | M_LN2*2., -z.imag);
|
---|
143 | }
|
---|
144 | } else {
|
---|
145 | s1.real = 1.-z.real;
|
---|
146 | s1.imag = -z.imag;
|
---|
147 | s1 = c_sqrt(s1);
|
---|
148 | s2.real = 1.+z.real;
|
---|
149 | s2.imag = z.imag;
|
---|
150 | s2 = c_sqrt(s2);
|
---|
151 | r.real = 2.*atan2(s1.real, s2.real);
|
---|
152 | r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real);
|
---|
153 | }
|
---|
154 | errno = 0;
|
---|
155 | return r;
|
---|
156 | }
|
---|
157 |
|
---|
158 | PyDoc_STRVAR(c_acos_doc,
|
---|
159 | "acos(x)\n"
|
---|
160 | "\n"
|
---|
161 | "Return the arc cosine of x.");
|
---|
162 |
|
---|
163 |
|
---|
164 | static Py_complex acosh_special_values[7][7];
|
---|
165 |
|
---|
166 | static Py_complex
|
---|
167 | c_acosh(Py_complex z)
|
---|
168 | {
|
---|
169 | Py_complex s1, s2, r;
|
---|
170 |
|
---|
171 | SPECIAL_VALUE(z, acosh_special_values);
|
---|
172 |
|
---|
173 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
---|
174 | /* avoid unnecessary overflow for large arguments */
|
---|
175 | r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
|
---|
176 | r.imag = atan2(z.imag, z.real);
|
---|
177 | } else {
|
---|
178 | s1.real = z.real - 1.;
|
---|
179 | s1.imag = z.imag;
|
---|
180 | s1 = c_sqrt(s1);
|
---|
181 | s2.real = z.real + 1.;
|
---|
182 | s2.imag = z.imag;
|
---|
183 | s2 = c_sqrt(s2);
|
---|
184 | r.real = asinh(s1.real*s2.real + s1.imag*s2.imag);
|
---|
185 | r.imag = 2.*atan2(s1.imag, s2.real);
|
---|
186 | }
|
---|
187 | errno = 0;
|
---|
188 | return r;
|
---|
189 | }
|
---|
190 |
|
---|
191 | PyDoc_STRVAR(c_acosh_doc,
|
---|
192 | "acosh(x)\n"
|
---|
193 | "\n"
|
---|
194 | "Return the hyperbolic arccosine of x.");
|
---|
195 |
|
---|
196 |
|
---|
197 | static Py_complex
|
---|
198 | c_asin(Py_complex z)
|
---|
199 | {
|
---|
200 | /* asin(z) = -i asinh(iz) */
|
---|
201 | Py_complex s, r;
|
---|
202 | s.real = -z.imag;
|
---|
203 | s.imag = z.real;
|
---|
204 | s = c_asinh(s);
|
---|
205 | r.real = s.imag;
|
---|
206 | r.imag = -s.real;
|
---|
207 | return r;
|
---|
208 | }
|
---|
209 |
|
---|
210 | PyDoc_STRVAR(c_asin_doc,
|
---|
211 | "asin(x)\n"
|
---|
212 | "\n"
|
---|
213 | "Return the arc sine of x.");
|
---|
214 |
|
---|
215 |
|
---|
216 | static Py_complex asinh_special_values[7][7];
|
---|
217 |
|
---|
218 | static Py_complex
|
---|
219 | c_asinh(Py_complex z)
|
---|
220 | {
|
---|
221 | Py_complex s1, s2, r;
|
---|
222 |
|
---|
223 | SPECIAL_VALUE(z, asinh_special_values);
|
---|
224 |
|
---|
225 | if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
---|
226 | if (z.imag >= 0.) {
|
---|
227 | r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
228 | M_LN2*2., z.real);
|
---|
229 | } else {
|
---|
230 | r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
---|
231 | M_LN2*2., -z.real);
|
---|
232 | }
|
---|
233 | r.imag = atan2(z.imag, fabs(z.real));
|
---|
234 | } else {
|
---|
235 | s1.real = 1.+z.imag;
|
---|
236 | s1.imag = -z.real;
|
---|
237 | s1 = c_sqrt(s1);
|
---|
238 | s2.real = 1.-z.imag;
|
---|
239 | s2.imag = z.real;
|
---|
240 | s2 = c_sqrt(s2);
|
---|
241 | r.real = asinh(s1.real*s2.imag-s2.real*s1.imag);
|
---|
242 | r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
|
---|
243 | }
|
---|
244 | errno = 0;
|
---|
245 | return r;
|
---|
246 | }
|
---|
247 |
|
---|
248 | PyDoc_STRVAR(c_asinh_doc,
|
---|
249 | "asinh(x)\n"
|
---|
250 | "\n"
|
---|
251 | "Return the hyperbolic arc sine of x.");
|
---|
252 |
|
---|
253 |
|
---|
254 | static Py_complex
|
---|
255 | c_atan(Py_complex z)
|
---|
256 | {
|
---|
257 | /* atan(z) = -i atanh(iz) */
|
---|
258 | Py_complex s, r;
|
---|
259 | s.real = -z.imag;
|
---|
260 | s.imag = z.real;
|
---|
261 | s = c_atanh(s);
|
---|
262 | r.real = s.imag;
|
---|
263 | r.imag = -s.real;
|
---|
264 | return r;
|
---|
265 | }
|
---|
266 |
|
---|
267 | /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
|
---|
268 | C99 for atan2(0., 0.). */
|
---|
269 | static double
|
---|
270 | c_atan2(Py_complex z)
|
---|
271 | {
|
---|
272 | if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
|
---|
273 | return Py_NAN;
|
---|
274 | if (Py_IS_INFINITY(z.imag)) {
|
---|
275 | if (Py_IS_INFINITY(z.real)) {
|
---|
276 | if (copysign(1., z.real) == 1.)
|
---|
277 | /* atan2(+-inf, +inf) == +-pi/4 */
|
---|
278 | return copysign(0.25*Py_MATH_PI, z.imag);
|
---|
279 | else
|
---|
280 | /* atan2(+-inf, -inf) == +-pi*3/4 */
|
---|
281 | return copysign(0.75*Py_MATH_PI, z.imag);
|
---|
282 | }
|
---|
283 | /* atan2(+-inf, x) == +-pi/2 for finite x */
|
---|
284 | return copysign(0.5*Py_MATH_PI, z.imag);
|
---|
285 | }
|
---|
286 | if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
|
---|
287 | if (copysign(1., z.real) == 1.)
|
---|
288 | /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
---|
289 | return copysign(0., z.imag);
|
---|
290 | else
|
---|
291 | /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
|
---|
292 | return copysign(Py_MATH_PI, z.imag);
|
---|
293 | }
|
---|
294 | return atan2(z.imag, z.real);
|
---|
295 | }
|
---|
296 |
|
---|
297 | PyDoc_STRVAR(c_atan_doc,
|
---|
298 | "atan(x)\n"
|
---|
299 | "\n"
|
---|
300 | "Return the arc tangent of x.");
|
---|
301 |
|
---|
302 |
|
---|
303 | static Py_complex atanh_special_values[7][7];
|
---|
304 |
|
---|
305 | static Py_complex
|
---|
306 | c_atanh(Py_complex z)
|
---|
307 | {
|
---|
308 | Py_complex r;
|
---|
309 | double ay, h;
|
---|
310 |
|
---|
311 | SPECIAL_VALUE(z, atanh_special_values);
|
---|
312 |
|
---|
313 | /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
|
---|
314 | if (z.real < 0.) {
|
---|
315 | return c_neg(c_atanh(c_neg(z)));
|
---|
316 | }
|
---|
317 |
|
---|
318 | ay = fabs(z.imag);
|
---|
319 | if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
|
---|
320 | /*
|
---|
321 | if abs(z) is large then we use the approximation
|
---|
322 | atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
|
---|
323 | of z.imag)
|
---|
324 | */
|
---|
325 | h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
|
---|
326 | r.real = z.real/4./h/h;
|
---|
327 | /* the two negations in the next line cancel each other out
|
---|
328 | except when working with unsigned zeros: they're there to
|
---|
329 | ensure that the branch cut has the correct continuity on
|
---|
330 | systems that don't support signed zeros */
|
---|
331 | r.imag = -copysign(Py_MATH_PI/2., -z.imag);
|
---|
332 | errno = 0;
|
---|
333 | } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
|
---|
334 | /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
|
---|
335 | if (ay == 0.) {
|
---|
336 | r.real = INF;
|
---|
337 | r.imag = z.imag;
|
---|
338 | errno = EDOM;
|
---|
339 | } else {
|
---|
340 | r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
|
---|
341 | r.imag = copysign(atan2(2., -ay)/2, z.imag);
|
---|
342 | errno = 0;
|
---|
343 | }
|
---|
344 | } else {
|
---|
345 | r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
|
---|
346 | r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
|
---|
347 | errno = 0;
|
---|
348 | }
|
---|
349 | return r;
|
---|
350 | }
|
---|
351 |
|
---|
352 | PyDoc_STRVAR(c_atanh_doc,
|
---|
353 | "atanh(x)\n"
|
---|
354 | "\n"
|
---|
355 | "Return the hyperbolic arc tangent of x.");
|
---|
356 |
|
---|
357 |
|
---|
358 | static Py_complex
|
---|
359 | c_cos(Py_complex z)
|
---|
360 | {
|
---|
361 | /* cos(z) = cosh(iz) */
|
---|
362 | Py_complex r;
|
---|
363 | r.real = -z.imag;
|
---|
364 | r.imag = z.real;
|
---|
365 | r = c_cosh(r);
|
---|
366 | return r;
|
---|
367 | }
|
---|
368 |
|
---|
369 | PyDoc_STRVAR(c_cos_doc,
|
---|
370 | "cos(x)\n"
|
---|
371 | "\n"
|
---|
372 | "Return the cosine of x.");
|
---|
373 |
|
---|
374 |
|
---|
375 | /* cosh(infinity + i*y) needs to be dealt with specially */
|
---|
376 | static Py_complex cosh_special_values[7][7];
|
---|
377 |
|
---|
378 | static Py_complex
|
---|
379 | c_cosh(Py_complex z)
|
---|
380 | {
|
---|
381 | Py_complex r;
|
---|
382 | double x_minus_one;
|
---|
383 |
|
---|
384 | /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
|
---|
385 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
386 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
|
---|
387 | (z.imag != 0.)) {
|
---|
388 | if (z.real > 0) {
|
---|
389 | r.real = copysign(INF, cos(z.imag));
|
---|
390 | r.imag = copysign(INF, sin(z.imag));
|
---|
391 | }
|
---|
392 | else {
|
---|
393 | r.real = copysign(INF, cos(z.imag));
|
---|
394 | r.imag = -copysign(INF, sin(z.imag));
|
---|
395 | }
|
---|
396 | }
|
---|
397 | else {
|
---|
398 | r = cosh_special_values[special_type(z.real)]
|
---|
399 | [special_type(z.imag)];
|
---|
400 | }
|
---|
401 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
---|
402 | a NaN */
|
---|
403 | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
---|
404 | errno = EDOM;
|
---|
405 | else
|
---|
406 | errno = 0;
|
---|
407 | return r;
|
---|
408 | }
|
---|
409 |
|
---|
410 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
---|
411 | /* deal correctly with cases where cosh(z.real) overflows but
|
---|
412 | cosh(z) does not. */
|
---|
413 | x_minus_one = z.real - copysign(1., z.real);
|
---|
414 | r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
---|
415 | r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
---|
416 | } else {
|
---|
417 | r.real = cos(z.imag) * cosh(z.real);
|
---|
418 | r.imag = sin(z.imag) * sinh(z.real);
|
---|
419 | }
|
---|
420 | /* detect overflow, and set errno accordingly */
|
---|
421 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
---|
422 | errno = ERANGE;
|
---|
423 | else
|
---|
424 | errno = 0;
|
---|
425 | return r;
|
---|
426 | }
|
---|
427 |
|
---|
428 | PyDoc_STRVAR(c_cosh_doc,
|
---|
429 | "cosh(x)\n"
|
---|
430 | "\n"
|
---|
431 | "Return the hyperbolic cosine of x.");
|
---|
432 |
|
---|
433 |
|
---|
434 | /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
|
---|
435 | finite y */
|
---|
436 | static Py_complex exp_special_values[7][7];
|
---|
437 |
|
---|
438 | static Py_complex
|
---|
439 | c_exp(Py_complex z)
|
---|
440 | {
|
---|
441 | Py_complex r;
|
---|
442 | double l;
|
---|
443 |
|
---|
444 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
445 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
---|
446 | && (z.imag != 0.)) {
|
---|
447 | if (z.real > 0) {
|
---|
448 | r.real = copysign(INF, cos(z.imag));
|
---|
449 | r.imag = copysign(INF, sin(z.imag));
|
---|
450 | }
|
---|
451 | else {
|
---|
452 | r.real = copysign(0., cos(z.imag));
|
---|
453 | r.imag = copysign(0., sin(z.imag));
|
---|
454 | }
|
---|
455 | }
|
---|
456 | else {
|
---|
457 | r = exp_special_values[special_type(z.real)]
|
---|
458 | [special_type(z.imag)];
|
---|
459 | }
|
---|
460 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
---|
461 | a NaN and not -infinity */
|
---|
462 | if (Py_IS_INFINITY(z.imag) &&
|
---|
463 | (Py_IS_FINITE(z.real) ||
|
---|
464 | (Py_IS_INFINITY(z.real) && z.real > 0)))
|
---|
465 | errno = EDOM;
|
---|
466 | else
|
---|
467 | errno = 0;
|
---|
468 | return r;
|
---|
469 | }
|
---|
470 |
|
---|
471 | if (z.real > CM_LOG_LARGE_DOUBLE) {
|
---|
472 | l = exp(z.real-1.);
|
---|
473 | r.real = l*cos(z.imag)*Py_MATH_E;
|
---|
474 | r.imag = l*sin(z.imag)*Py_MATH_E;
|
---|
475 | } else {
|
---|
476 | l = exp(z.real);
|
---|
477 | r.real = l*cos(z.imag);
|
---|
478 | r.imag = l*sin(z.imag);
|
---|
479 | }
|
---|
480 | /* detect overflow, and set errno accordingly */
|
---|
481 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
---|
482 | errno = ERANGE;
|
---|
483 | else
|
---|
484 | errno = 0;
|
---|
485 | return r;
|
---|
486 | }
|
---|
487 |
|
---|
488 | PyDoc_STRVAR(c_exp_doc,
|
---|
489 | "exp(x)\n"
|
---|
490 | "\n"
|
---|
491 | "Return the exponential value e**x.");
|
---|
492 |
|
---|
493 |
|
---|
494 | static Py_complex log_special_values[7][7];
|
---|
495 |
|
---|
496 | static Py_complex
|
---|
497 | c_log(Py_complex z)
|
---|
498 | {
|
---|
499 | /*
|
---|
500 | The usual formula for the real part is log(hypot(z.real, z.imag)).
|
---|
501 | There are four situations where this formula is potentially
|
---|
502 | problematic:
|
---|
503 |
|
---|
504 | (1) the absolute value of z is subnormal. Then hypot is subnormal,
|
---|
505 | so has fewer than the usual number of bits of accuracy, hence may
|
---|
506 | have large relative error. This then gives a large absolute error
|
---|
507 | in the log. This can be solved by rescaling z by a suitable power
|
---|
508 | of 2.
|
---|
509 |
|
---|
510 | (2) the absolute value of z is greater than DBL_MAX (e.g. when both
|
---|
511 | z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
|
---|
512 | Again, rescaling solves this.
|
---|
513 |
|
---|
514 | (3) the absolute value of z is close to 1. In this case it's
|
---|
515 | difficult to achieve good accuracy, at least in part because a
|
---|
516 | change of 1ulp in the real or imaginary part of z can result in a
|
---|
517 | change of billions of ulps in the correctly rounded answer.
|
---|
518 |
|
---|
519 | (4) z = 0. The simplest thing to do here is to call the
|
---|
520 | floating-point log with an argument of 0, and let its behaviour
|
---|
521 | (returning -infinity, signaling a floating-point exception, setting
|
---|
522 | errno, or whatever) determine that of c_log. So the usual formula
|
---|
523 | is fine here.
|
---|
524 |
|
---|
525 | */
|
---|
526 |
|
---|
527 | Py_complex r;
|
---|
528 | double ax, ay, am, an, h;
|
---|
529 |
|
---|
530 | SPECIAL_VALUE(z, log_special_values);
|
---|
531 |
|
---|
532 | ax = fabs(z.real);
|
---|
533 | ay = fabs(z.imag);
|
---|
534 |
|
---|
535 | if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
|
---|
536 | r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
|
---|
537 | } else if (ax < DBL_MIN && ay < DBL_MIN) {
|
---|
538 | if (ax > 0. || ay > 0.) {
|
---|
539 | /* catch cases where hypot(ax, ay) is subnormal */
|
---|
540 | r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
|
---|
541 | ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
|
---|
542 | }
|
---|
543 | else {
|
---|
544 | /* log(+/-0. +/- 0i) */
|
---|
545 | r.real = -INF;
|
---|
546 | r.imag = atan2(z.imag, z.real);
|
---|
547 | errno = EDOM;
|
---|
548 | return r;
|
---|
549 | }
|
---|
550 | } else {
|
---|
551 | h = hypot(ax, ay);
|
---|
552 | if (0.71 <= h && h <= 1.73) {
|
---|
553 | am = ax > ay ? ax : ay; /* max(ax, ay) */
|
---|
554 | an = ax > ay ? ay : ax; /* min(ax, ay) */
|
---|
555 | r.real = log1p((am-1)*(am+1)+an*an)/2.;
|
---|
556 | } else {
|
---|
557 | r.real = log(h);
|
---|
558 | }
|
---|
559 | }
|
---|
560 | r.imag = atan2(z.imag, z.real);
|
---|
561 | errno = 0;
|
---|
562 | return r;
|
---|
563 | }
|
---|
564 |
|
---|
565 |
|
---|
566 | static Py_complex
|
---|
567 | c_log10(Py_complex z)
|
---|
568 | {
|
---|
569 | Py_complex r;
|
---|
570 | int errno_save;
|
---|
571 |
|
---|
572 | r = c_log(z);
|
---|
573 | errno_save = errno; /* just in case the divisions affect errno */
|
---|
574 | r.real = r.real / M_LN10;
|
---|
575 | r.imag = r.imag / M_LN10;
|
---|
576 | errno = errno_save;
|
---|
577 | return r;
|
---|
578 | }
|
---|
579 |
|
---|
580 | PyDoc_STRVAR(c_log10_doc,
|
---|
581 | "log10(x)\n"
|
---|
582 | "\n"
|
---|
583 | "Return the base-10 logarithm of x.");
|
---|
584 |
|
---|
585 |
|
---|
586 | static Py_complex
|
---|
587 | c_sin(Py_complex z)
|
---|
588 | {
|
---|
589 | /* sin(z) = -i sin(iz) */
|
---|
590 | Py_complex s, r;
|
---|
591 | s.real = -z.imag;
|
---|
592 | s.imag = z.real;
|
---|
593 | s = c_sinh(s);
|
---|
594 | r.real = s.imag;
|
---|
595 | r.imag = -s.real;
|
---|
596 | return r;
|
---|
597 | }
|
---|
598 |
|
---|
599 | PyDoc_STRVAR(c_sin_doc,
|
---|
600 | "sin(x)\n"
|
---|
601 | "\n"
|
---|
602 | "Return the sine of x.");
|
---|
603 |
|
---|
604 |
|
---|
605 | /* sinh(infinity + i*y) needs to be dealt with specially */
|
---|
606 | static Py_complex sinh_special_values[7][7];
|
---|
607 |
|
---|
608 | static Py_complex
|
---|
609 | c_sinh(Py_complex z)
|
---|
610 | {
|
---|
611 | Py_complex r;
|
---|
612 | double x_minus_one;
|
---|
613 |
|
---|
614 | /* special treatment for sinh(+/-inf + iy) if y is finite and
|
---|
615 | nonzero */
|
---|
616 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
617 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
---|
618 | && (z.imag != 0.)) {
|
---|
619 | if (z.real > 0) {
|
---|
620 | r.real = copysign(INF, cos(z.imag));
|
---|
621 | r.imag = copysign(INF, sin(z.imag));
|
---|
622 | }
|
---|
623 | else {
|
---|
624 | r.real = -copysign(INF, cos(z.imag));
|
---|
625 | r.imag = copysign(INF, sin(z.imag));
|
---|
626 | }
|
---|
627 | }
|
---|
628 | else {
|
---|
629 | r = sinh_special_values[special_type(z.real)]
|
---|
630 | [special_type(z.imag)];
|
---|
631 | }
|
---|
632 | /* need to set errno = EDOM if y is +/- infinity and x is not
|
---|
633 | a NaN */
|
---|
634 | if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
---|
635 | errno = EDOM;
|
---|
636 | else
|
---|
637 | errno = 0;
|
---|
638 | return r;
|
---|
639 | }
|
---|
640 |
|
---|
641 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
---|
642 | x_minus_one = z.real - copysign(1., z.real);
|
---|
643 | r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
---|
644 | r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
---|
645 | } else {
|
---|
646 | r.real = cos(z.imag) * sinh(z.real);
|
---|
647 | r.imag = sin(z.imag) * cosh(z.real);
|
---|
648 | }
|
---|
649 | /* detect overflow, and set errno accordingly */
|
---|
650 | if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
---|
651 | errno = ERANGE;
|
---|
652 | else
|
---|
653 | errno = 0;
|
---|
654 | return r;
|
---|
655 | }
|
---|
656 |
|
---|
657 | PyDoc_STRVAR(c_sinh_doc,
|
---|
658 | "sinh(x)\n"
|
---|
659 | "\n"
|
---|
660 | "Return the hyperbolic sine of x.");
|
---|
661 |
|
---|
662 |
|
---|
663 | static Py_complex sqrt_special_values[7][7];
|
---|
664 |
|
---|
665 | static Py_complex
|
---|
666 | c_sqrt(Py_complex z)
|
---|
667 | {
|
---|
668 | /*
|
---|
669 | Method: use symmetries to reduce to the case when x = z.real and y
|
---|
670 | = z.imag are nonnegative. Then the real part of the result is
|
---|
671 | given by
|
---|
672 |
|
---|
673 | s = sqrt((x + hypot(x, y))/2)
|
---|
674 |
|
---|
675 | and the imaginary part is
|
---|
676 |
|
---|
677 | d = (y/2)/s
|
---|
678 |
|
---|
679 | If either x or y is very large then there's a risk of overflow in
|
---|
680 | computation of the expression x + hypot(x, y). We can avoid this
|
---|
681 | by rewriting the formula for s as:
|
---|
682 |
|
---|
683 | s = 2*sqrt(x/8 + hypot(x/8, y/8))
|
---|
684 |
|
---|
685 | This costs us two extra multiplications/divisions, but avoids the
|
---|
686 | overhead of checking for x and y large.
|
---|
687 |
|
---|
688 | If both x and y are subnormal then hypot(x, y) may also be
|
---|
689 | subnormal, so will lack full precision. We solve this by rescaling
|
---|
690 | x and y by a sufficiently large power of 2 to ensure that x and y
|
---|
691 | are normal.
|
---|
692 | */
|
---|
693 |
|
---|
694 |
|
---|
695 | Py_complex r;
|
---|
696 | double s,d;
|
---|
697 | double ax, ay;
|
---|
698 |
|
---|
699 | SPECIAL_VALUE(z, sqrt_special_values);
|
---|
700 |
|
---|
701 | if (z.real == 0. && z.imag == 0.) {
|
---|
702 | r.real = 0.;
|
---|
703 | r.imag = z.imag;
|
---|
704 | return r;
|
---|
705 | }
|
---|
706 |
|
---|
707 | ax = fabs(z.real);
|
---|
708 | ay = fabs(z.imag);
|
---|
709 |
|
---|
710 | if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
|
---|
711 | /* here we catch cases where hypot(ax, ay) is subnormal */
|
---|
712 | ax = ldexp(ax, CM_SCALE_UP);
|
---|
713 | s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
|
---|
714 | CM_SCALE_DOWN);
|
---|
715 | } else {
|
---|
716 | ax /= 8.;
|
---|
717 | s = 2.*sqrt(ax + hypot(ax, ay/8.));
|
---|
718 | }
|
---|
719 | d = ay/(2.*s);
|
---|
720 |
|
---|
721 | if (z.real >= 0.) {
|
---|
722 | r.real = s;
|
---|
723 | r.imag = copysign(d, z.imag);
|
---|
724 | } else {
|
---|
725 | r.real = d;
|
---|
726 | r.imag = copysign(s, z.imag);
|
---|
727 | }
|
---|
728 | errno = 0;
|
---|
729 | return r;
|
---|
730 | }
|
---|
731 |
|
---|
732 | PyDoc_STRVAR(c_sqrt_doc,
|
---|
733 | "sqrt(x)\n"
|
---|
734 | "\n"
|
---|
735 | "Return the square root of x.");
|
---|
736 |
|
---|
737 |
|
---|
738 | static Py_complex
|
---|
739 | c_tan(Py_complex z)
|
---|
740 | {
|
---|
741 | /* tan(z) = -i tanh(iz) */
|
---|
742 | Py_complex s, r;
|
---|
743 | s.real = -z.imag;
|
---|
744 | s.imag = z.real;
|
---|
745 | s = c_tanh(s);
|
---|
746 | r.real = s.imag;
|
---|
747 | r.imag = -s.real;
|
---|
748 | return r;
|
---|
749 | }
|
---|
750 |
|
---|
751 | PyDoc_STRVAR(c_tan_doc,
|
---|
752 | "tan(x)\n"
|
---|
753 | "\n"
|
---|
754 | "Return the tangent of x.");
|
---|
755 |
|
---|
756 |
|
---|
757 | /* tanh(infinity + i*y) needs to be dealt with specially */
|
---|
758 | static Py_complex tanh_special_values[7][7];
|
---|
759 |
|
---|
760 | static Py_complex
|
---|
761 | c_tanh(Py_complex z)
|
---|
762 | {
|
---|
763 | /* Formula:
|
---|
764 |
|
---|
765 | tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
|
---|
766 | (1+tan(y)^2 tanh(x)^2)
|
---|
767 |
|
---|
768 | To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
|
---|
769 | as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
|
---|
770 | by 4 exp(-2*x) instead, to avoid possible overflow in the
|
---|
771 | computation of cosh(x).
|
---|
772 |
|
---|
773 | */
|
---|
774 |
|
---|
775 | Py_complex r;
|
---|
776 | double tx, ty, cx, txty, denom;
|
---|
777 |
|
---|
778 | /* special treatment for tanh(+/-inf + iy) if y is finite and
|
---|
779 | nonzero */
|
---|
780 | if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
---|
781 | if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
---|
782 | && (z.imag != 0.)) {
|
---|
783 | if (z.real > 0) {
|
---|
784 | r.real = 1.0;
|
---|
785 | r.imag = copysign(0.,
|
---|
786 | 2.*sin(z.imag)*cos(z.imag));
|
---|
787 | }
|
---|
788 | else {
|
---|
789 | r.real = -1.0;
|
---|
790 | r.imag = copysign(0.,
|
---|
791 | 2.*sin(z.imag)*cos(z.imag));
|
---|
792 | }
|
---|
793 | }
|
---|
794 | else {
|
---|
795 | r = tanh_special_values[special_type(z.real)]
|
---|
796 | [special_type(z.imag)];
|
---|
797 | }
|
---|
798 | /* need to set errno = EDOM if z.imag is +/-infinity and
|
---|
799 | z.real is finite */
|
---|
800 | if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
|
---|
801 | errno = EDOM;
|
---|
802 | else
|
---|
803 | errno = 0;
|
---|
804 | return r;
|
---|
805 | }
|
---|
806 |
|
---|
807 | /* danger of overflow in 2.*z.imag !*/
|
---|
808 | if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
---|
809 | r.real = copysign(1., z.real);
|
---|
810 | r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
|
---|
811 | } else {
|
---|
812 | tx = tanh(z.real);
|
---|
813 | ty = tan(z.imag);
|
---|
814 | cx = 1./cosh(z.real);
|
---|
815 | txty = tx*ty;
|
---|
816 | denom = 1. + txty*txty;
|
---|
817 | r.real = tx*(1.+ty*ty)/denom;
|
---|
818 | r.imag = ((ty/denom)*cx)*cx;
|
---|
819 | }
|
---|
820 | errno = 0;
|
---|
821 | return r;
|
---|
822 | }
|
---|
823 |
|
---|
824 | PyDoc_STRVAR(c_tanh_doc,
|
---|
825 | "tanh(x)\n"
|
---|
826 | "\n"
|
---|
827 | "Return the hyperbolic tangent of x.");
|
---|
828 |
|
---|
829 |
|
---|
830 | static PyObject *
|
---|
831 | cmath_log(PyObject *self, PyObject *args)
|
---|
832 | {
|
---|
833 | Py_complex x;
|
---|
834 | Py_complex y;
|
---|
835 |
|
---|
836 | if (!PyArg_ParseTuple(args, "D|D", &x, &y))
|
---|
837 | return NULL;
|
---|
838 |
|
---|
839 | errno = 0;
|
---|
840 | PyFPE_START_PROTECT("complex function", return 0)
|
---|
841 | x = c_log(x);
|
---|
842 | if (PyTuple_GET_SIZE(args) == 2) {
|
---|
843 | y = c_log(y);
|
---|
844 | x = c_quot(x, y);
|
---|
845 | }
|
---|
846 | PyFPE_END_PROTECT(x)
|
---|
847 | if (errno != 0)
|
---|
848 | return math_error();
|
---|
849 | return PyComplex_FromCComplex(x);
|
---|
850 | }
|
---|
851 |
|
---|
852 | PyDoc_STRVAR(cmath_log_doc,
|
---|
853 | "log(x[, base]) -> the logarithm of x to the given base.\n\
|
---|
854 | If the base not specified, returns the natural logarithm (base e) of x.");
|
---|
855 |
|
---|
856 |
|
---|
857 | /* And now the glue to make them available from Python: */
|
---|
858 |
|
---|
859 | static PyObject *
|
---|
860 | math_error(void)
|
---|
861 | {
|
---|
862 | if (errno == EDOM)
|
---|
863 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
---|
864 | else if (errno == ERANGE)
|
---|
865 | PyErr_SetString(PyExc_OverflowError, "math range error");
|
---|
866 | else /* Unexpected math error */
|
---|
867 | PyErr_SetFromErrno(PyExc_ValueError);
|
---|
868 | return NULL;
|
---|
869 | }
|
---|
870 |
|
---|
871 | static PyObject *
|
---|
872 | math_1(PyObject *args, Py_complex (*func)(Py_complex))
|
---|
873 | {
|
---|
874 | Py_complex x,r ;
|
---|
875 | if (!PyArg_ParseTuple(args, "D", &x))
|
---|
876 | return NULL;
|
---|
877 | errno = 0;
|
---|
878 | PyFPE_START_PROTECT("complex function", return 0);
|
---|
879 | r = (*func)(x);
|
---|
880 | PyFPE_END_PROTECT(r);
|
---|
881 | if (errno == EDOM) {
|
---|
882 | PyErr_SetString(PyExc_ValueError, "math domain error");
|
---|
883 | return NULL;
|
---|
884 | }
|
---|
885 | else if (errno == ERANGE) {
|
---|
886 | PyErr_SetString(PyExc_OverflowError, "math range error");
|
---|
887 | return NULL;
|
---|
888 | }
|
---|
889 | else {
|
---|
890 | return PyComplex_FromCComplex(r);
|
---|
891 | }
|
---|
892 | }
|
---|
893 |
|
---|
894 | #define FUNC1(stubname, func) \
|
---|
895 | static PyObject * stubname(PyObject *self, PyObject *args) { \
|
---|
896 | return math_1(args, func); \
|
---|
897 | }
|
---|
898 |
|
---|
899 | FUNC1(cmath_acos, c_acos)
|
---|
900 | FUNC1(cmath_acosh, c_acosh)
|
---|
901 | FUNC1(cmath_asin, c_asin)
|
---|
902 | FUNC1(cmath_asinh, c_asinh)
|
---|
903 | FUNC1(cmath_atan, c_atan)
|
---|
904 | FUNC1(cmath_atanh, c_atanh)
|
---|
905 | FUNC1(cmath_cos, c_cos)
|
---|
906 | FUNC1(cmath_cosh, c_cosh)
|
---|
907 | FUNC1(cmath_exp, c_exp)
|
---|
908 | FUNC1(cmath_log10, c_log10)
|
---|
909 | FUNC1(cmath_sin, c_sin)
|
---|
910 | FUNC1(cmath_sinh, c_sinh)
|
---|
911 | FUNC1(cmath_sqrt, c_sqrt)
|
---|
912 | FUNC1(cmath_tan, c_tan)
|
---|
913 | FUNC1(cmath_tanh, c_tanh)
|
---|
914 |
|
---|
915 | static PyObject *
|
---|
916 | cmath_phase(PyObject *self, PyObject *args)
|
---|
917 | {
|
---|
918 | Py_complex z;
|
---|
919 | double phi;
|
---|
920 | if (!PyArg_ParseTuple(args, "D:phase", &z))
|
---|
921 | return NULL;
|
---|
922 | errno = 0;
|
---|
923 | PyFPE_START_PROTECT("arg function", return 0)
|
---|
924 | phi = c_atan2(z);
|
---|
925 | PyFPE_END_PROTECT(phi)
|
---|
926 | if (errno != 0)
|
---|
927 | return math_error();
|
---|
928 | else
|
---|
929 | return PyFloat_FromDouble(phi);
|
---|
930 | }
|
---|
931 |
|
---|
932 | PyDoc_STRVAR(cmath_phase_doc,
|
---|
933 | "phase(z) -> float\n\n\
|
---|
934 | Return argument, also known as the phase angle, of a complex.");
|
---|
935 |
|
---|
936 | static PyObject *
|
---|
937 | cmath_polar(PyObject *self, PyObject *args)
|
---|
938 | {
|
---|
939 | Py_complex z;
|
---|
940 | double r, phi;
|
---|
941 | if (!PyArg_ParseTuple(args, "D:polar", &z))
|
---|
942 | return NULL;
|
---|
943 | PyFPE_START_PROTECT("polar function", return 0)
|
---|
944 | phi = c_atan2(z); /* should not cause any exception */
|
---|
945 | r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
|
---|
946 | PyFPE_END_PROTECT(r)
|
---|
947 | if (errno != 0)
|
---|
948 | return math_error();
|
---|
949 | else
|
---|
950 | return Py_BuildValue("dd", r, phi);
|
---|
951 | }
|
---|
952 |
|
---|
953 | PyDoc_STRVAR(cmath_polar_doc,
|
---|
954 | "polar(z) -> r: float, phi: float\n\n\
|
---|
955 | Convert a complex from rectangular coordinates to polar coordinates. r is\n\
|
---|
956 | the distance from 0 and phi the phase angle.");
|
---|
957 |
|
---|
958 | /*
|
---|
959 | rect() isn't covered by the C99 standard, but it's not too hard to
|
---|
960 | figure out 'spirit of C99' rules for special value handing:
|
---|
961 |
|
---|
962 | rect(x, t) should behave like exp(log(x) + it) for positive-signed x
|
---|
963 | rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
|
---|
964 | rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
|
---|
965 | gives nan +- i0 with the sign of the imaginary part unspecified.
|
---|
966 |
|
---|
967 | */
|
---|
968 |
|
---|
969 | static Py_complex rect_special_values[7][7];
|
---|
970 |
|
---|
971 | static PyObject *
|
---|
972 | cmath_rect(PyObject *self, PyObject *args)
|
---|
973 | {
|
---|
974 | Py_complex z;
|
---|
975 | double r, phi;
|
---|
976 | if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
|
---|
977 | return NULL;
|
---|
978 | errno = 0;
|
---|
979 | PyFPE_START_PROTECT("rect function", return 0)
|
---|
980 |
|
---|
981 | /* deal with special values */
|
---|
982 | if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
|
---|
983 | /* if r is +/-infinity and phi is finite but nonzero then
|
---|
984 | result is (+-INF +-INF i), but we need to compute cos(phi)
|
---|
985 | and sin(phi) to figure out the signs. */
|
---|
986 | if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
|
---|
987 | && (phi != 0.))) {
|
---|
988 | if (r > 0) {
|
---|
989 | z.real = copysign(INF, cos(phi));
|
---|
990 | z.imag = copysign(INF, sin(phi));
|
---|
991 | }
|
---|
992 | else {
|
---|
993 | z.real = -copysign(INF, cos(phi));
|
---|
994 | z.imag = -copysign(INF, sin(phi));
|
---|
995 | }
|
---|
996 | }
|
---|
997 | else {
|
---|
998 | z = rect_special_values[special_type(r)]
|
---|
999 | [special_type(phi)];
|
---|
1000 | }
|
---|
1001 | /* need to set errno = EDOM if r is a nonzero number and phi
|
---|
1002 | is infinite */
|
---|
1003 | if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
|
---|
1004 | errno = EDOM;
|
---|
1005 | else
|
---|
1006 | errno = 0;
|
---|
1007 | }
|
---|
1008 | else {
|
---|
1009 | z.real = r * cos(phi);
|
---|
1010 | z.imag = r * sin(phi);
|
---|
1011 | errno = 0;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 | PyFPE_END_PROTECT(z)
|
---|
1015 | if (errno != 0)
|
---|
1016 | return math_error();
|
---|
1017 | else
|
---|
1018 | return PyComplex_FromCComplex(z);
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 | PyDoc_STRVAR(cmath_rect_doc,
|
---|
1022 | "rect(r, phi) -> z: complex\n\n\
|
---|
1023 | Convert from polar coordinates to rectangular coordinates.");
|
---|
1024 |
|
---|
1025 | static PyObject *
|
---|
1026 | cmath_isnan(PyObject *self, PyObject *args)
|
---|
1027 | {
|
---|
1028 | Py_complex z;
|
---|
1029 | if (!PyArg_ParseTuple(args, "D:isnan", &z))
|
---|
1030 | return NULL;
|
---|
1031 | return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 | PyDoc_STRVAR(cmath_isnan_doc,
|
---|
1035 | "isnan(z) -> bool\n\
|
---|
1036 | Checks if the real or imaginary part of z not a number (NaN)");
|
---|
1037 |
|
---|
1038 | static PyObject *
|
---|
1039 | cmath_isinf(PyObject *self, PyObject *args)
|
---|
1040 | {
|
---|
1041 | Py_complex z;
|
---|
1042 | if (!PyArg_ParseTuple(args, "D:isnan", &z))
|
---|
1043 | return NULL;
|
---|
1044 | return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
|
---|
1045 | Py_IS_INFINITY(z.imag));
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | PyDoc_STRVAR(cmath_isinf_doc,
|
---|
1049 | "isinf(z) -> bool\n\
|
---|
1050 | Checks if the real or imaginary part of z is infinite.");
|
---|
1051 |
|
---|
1052 |
|
---|
1053 | PyDoc_STRVAR(module_doc,
|
---|
1054 | "This module is always available. It provides access to mathematical\n"
|
---|
1055 | "functions for complex numbers.");
|
---|
1056 |
|
---|
1057 | static PyMethodDef cmath_methods[] = {
|
---|
1058 | {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
|
---|
1059 | {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
|
---|
1060 | {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
|
---|
1061 | {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
|
---|
1062 | {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
|
---|
1063 | {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
|
---|
1064 | {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
|
---|
1065 | {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
|
---|
1066 | {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
|
---|
1067 | {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
|
---|
1068 | {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
|
---|
1069 | {"log", cmath_log, METH_VARARGS, cmath_log_doc},
|
---|
1070 | {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
|
---|
1071 | {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
|
---|
1072 | {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
|
---|
1073 | {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
|
---|
1074 | {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
|
---|
1075 | {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
|
---|
1076 | {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
|
---|
1077 | {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
|
---|
1078 | {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
|
---|
1079 | {NULL, NULL} /* sentinel */
|
---|
1080 | };
|
---|
1081 |
|
---|
1082 | PyMODINIT_FUNC
|
---|
1083 | initcmath(void)
|
---|
1084 | {
|
---|
1085 | PyObject *m;
|
---|
1086 |
|
---|
1087 | m = Py_InitModule3("cmath", cmath_methods, module_doc);
|
---|
1088 | if (m == NULL)
|
---|
1089 | return;
|
---|
1090 |
|
---|
1091 | PyModule_AddObject(m, "pi",
|
---|
1092 | PyFloat_FromDouble(Py_MATH_PI));
|
---|
1093 | PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
|
---|
1094 |
|
---|
1095 | /* initialize special value tables */
|
---|
1096 |
|
---|
1097 | #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
|
---|
1098 | #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
|
---|
1099 |
|
---|
1100 | INIT_SPECIAL_VALUES(acos_special_values, {
|
---|
1101 | C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
|
---|
1102 | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
---|
1103 | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
---|
1104 | C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
---|
1105 | C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
---|
1106 | C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
|
---|
1107 | C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
|
---|
1108 | })
|
---|
1109 |
|
---|
1110 | INIT_SPECIAL_VALUES(acosh_special_values, {
|
---|
1111 | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
---|
1112 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
1113 | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
---|
1114 | C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
---|
1115 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
1116 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
---|
1117 | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
---|
1118 | })
|
---|
1119 |
|
---|
1120 | INIT_SPECIAL_VALUES(asinh_special_values, {
|
---|
1121 | C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
|
---|
1122 | C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
|
---|
1123 | C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
|
---|
1124 | C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
|
---|
1125 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
1126 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
---|
1127 | C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
|
---|
1128 | })
|
---|
1129 |
|
---|
1130 | INIT_SPECIAL_VALUES(atanh_special_values, {
|
---|
1131 | C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
|
---|
1132 | C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
|
---|
1133 | C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
|
---|
1134 | C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
|
---|
1135 | C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
|
---|
1136 | C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
|
---|
1137 | C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
|
---|
1138 | })
|
---|
1139 |
|
---|
1140 | INIT_SPECIAL_VALUES(cosh_special_values, {
|
---|
1141 | C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
---|
1142 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1143 | C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
|
---|
1144 | C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
|
---|
1145 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1146 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
1147 | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
1148 | })
|
---|
1149 |
|
---|
1150 | INIT_SPECIAL_VALUES(exp_special_values, {
|
---|
1151 | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
---|
1152 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1153 | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
---|
1154 | C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
---|
1155 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1156 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
1157 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
1158 | })
|
---|
1159 |
|
---|
1160 | INIT_SPECIAL_VALUES(log_special_values, {
|
---|
1161 | C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
---|
1162 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
1163 | C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
|
---|
1164 | C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
|
---|
1165 | C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
---|
1166 | C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
---|
1167 | C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
---|
1168 | })
|
---|
1169 |
|
---|
1170 | INIT_SPECIAL_VALUES(sinh_special_values, {
|
---|
1171 | C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
1172 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1173 | C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
|
---|
1174 | C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
|
---|
1175 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1176 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
1177 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
1178 | })
|
---|
1179 |
|
---|
1180 | INIT_SPECIAL_VALUES(sqrt_special_values, {
|
---|
1181 | C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
|
---|
1182 | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
---|
1183 | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
---|
1184 | C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
---|
1185 | C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
---|
1186 | C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
|
---|
1187 | C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
|
---|
1188 | })
|
---|
1189 |
|
---|
1190 | INIT_SPECIAL_VALUES(tanh_special_values, {
|
---|
1191 | C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
|
---|
1192 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1193 | C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
|
---|
1194 | C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
|
---|
1195 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1196 | C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
|
---|
1197 | C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
1198 | })
|
---|
1199 |
|
---|
1200 | INIT_SPECIAL_VALUES(rect_special_values, {
|
---|
1201 | C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
---|
1202 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1203 | C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
|
---|
1204 | C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
---|
1205 | C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
---|
1206 | C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
---|
1207 | C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
---|
1208 | })
|
---|
1209 | }
|
---|