| 1 | # Copyright (c) 2004 Python Software Foundation.
|
|---|
| 2 | # All rights reserved.
|
|---|
| 3 |
|
|---|
| 4 | # Written by Eric Price <eprice at tjhsst.edu>
|
|---|
| 5 | # and Facundo Batista <facundo at taniquetil.com.ar>
|
|---|
| 6 | # and Raymond Hettinger <python at rcn.com>
|
|---|
| 7 | # and Aahz <aahz at pobox.com>
|
|---|
| 8 | # and Tim Peters
|
|---|
| 9 |
|
|---|
| 10 | # This module is currently Py2.3 compatible and should be kept that way
|
|---|
| 11 | # unless a major compelling advantage arises. IOW, 2.3 compatibility is
|
|---|
| 12 | # strongly preferred, but not guaranteed.
|
|---|
| 13 |
|
|---|
| 14 | # Also, this module should be kept in sync with the latest updates of
|
|---|
| 15 | # the IBM specification as it evolves. Those updates will be treated
|
|---|
| 16 | # as bug fixes (deviation from the spec is a compatibility, usability
|
|---|
| 17 | # bug) and will be backported. At this point the spec is stabilizing
|
|---|
| 18 | # and the updates are becoming fewer, smaller, and less significant.
|
|---|
| 19 |
|
|---|
| 20 | """
|
|---|
| 21 | This is a Py2.3 implementation of decimal floating point arithmetic based on
|
|---|
| 22 | the General Decimal Arithmetic Specification:
|
|---|
| 23 |
|
|---|
| 24 | www2.hursley.ibm.com/decimal/decarith.html
|
|---|
| 25 |
|
|---|
| 26 | and IEEE standard 854-1987:
|
|---|
| 27 |
|
|---|
| 28 | www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
|
|---|
| 29 |
|
|---|
| 30 | Decimal floating point has finite precision with arbitrarily large bounds.
|
|---|
| 31 |
|
|---|
| 32 | The purpose of this module is to support arithmetic using familiar
|
|---|
| 33 | "schoolhouse" rules and to avoid some of the tricky representation
|
|---|
| 34 | issues associated with binary floating point. The package is especially
|
|---|
| 35 | useful for financial applications or for contexts where users have
|
|---|
| 36 | expectations that are at odds with binary floating point (for instance,
|
|---|
| 37 | in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
|
|---|
| 38 | of the expected Decimal('0.00') returned by decimal floating point).
|
|---|
| 39 |
|
|---|
| 40 | Here are some examples of using the decimal module:
|
|---|
| 41 |
|
|---|
| 42 | >>> from decimal import *
|
|---|
| 43 | >>> setcontext(ExtendedContext)
|
|---|
| 44 | >>> Decimal(0)
|
|---|
| 45 | Decimal('0')
|
|---|
| 46 | >>> Decimal('1')
|
|---|
| 47 | Decimal('1')
|
|---|
| 48 | >>> Decimal('-.0123')
|
|---|
| 49 | Decimal('-0.0123')
|
|---|
| 50 | >>> Decimal(123456)
|
|---|
| 51 | Decimal('123456')
|
|---|
| 52 | >>> Decimal('123.45e12345678901234567890')
|
|---|
| 53 | Decimal('1.2345E+12345678901234567892')
|
|---|
| 54 | >>> Decimal('1.33') + Decimal('1.27')
|
|---|
| 55 | Decimal('2.60')
|
|---|
| 56 | >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
|
|---|
| 57 | Decimal('-2.20')
|
|---|
| 58 | >>> dig = Decimal(1)
|
|---|
| 59 | >>> print dig / Decimal(3)
|
|---|
| 60 | 0.333333333
|
|---|
| 61 | >>> getcontext().prec = 18
|
|---|
| 62 | >>> print dig / Decimal(3)
|
|---|
| 63 | 0.333333333333333333
|
|---|
| 64 | >>> print dig.sqrt()
|
|---|
| 65 | 1
|
|---|
| 66 | >>> print Decimal(3).sqrt()
|
|---|
| 67 | 1.73205080756887729
|
|---|
| 68 | >>> print Decimal(3) ** 123
|
|---|
| 69 | 4.85192780976896427E+58
|
|---|
| 70 | >>> inf = Decimal(1) / Decimal(0)
|
|---|
| 71 | >>> print inf
|
|---|
| 72 | Infinity
|
|---|
| 73 | >>> neginf = Decimal(-1) / Decimal(0)
|
|---|
| 74 | >>> print neginf
|
|---|
| 75 | -Infinity
|
|---|
| 76 | >>> print neginf + inf
|
|---|
| 77 | NaN
|
|---|
| 78 | >>> print neginf * inf
|
|---|
| 79 | -Infinity
|
|---|
| 80 | >>> print dig / 0
|
|---|
| 81 | Infinity
|
|---|
| 82 | >>> getcontext().traps[DivisionByZero] = 1
|
|---|
| 83 | >>> print dig / 0
|
|---|
| 84 | Traceback (most recent call last):
|
|---|
| 85 | ...
|
|---|
| 86 | ...
|
|---|
| 87 | ...
|
|---|
| 88 | DivisionByZero: x / 0
|
|---|
| 89 | >>> c = Context()
|
|---|
| 90 | >>> c.traps[InvalidOperation] = 0
|
|---|
| 91 | >>> print c.flags[InvalidOperation]
|
|---|
| 92 | 0
|
|---|
| 93 | >>> c.divide(Decimal(0), Decimal(0))
|
|---|
| 94 | Decimal('NaN')
|
|---|
| 95 | >>> c.traps[InvalidOperation] = 1
|
|---|
| 96 | >>> print c.flags[InvalidOperation]
|
|---|
| 97 | 1
|
|---|
| 98 | >>> c.flags[InvalidOperation] = 0
|
|---|
| 99 | >>> print c.flags[InvalidOperation]
|
|---|
| 100 | 0
|
|---|
| 101 | >>> print c.divide(Decimal(0), Decimal(0))
|
|---|
| 102 | Traceback (most recent call last):
|
|---|
| 103 | ...
|
|---|
| 104 | ...
|
|---|
| 105 | ...
|
|---|
| 106 | InvalidOperation: 0 / 0
|
|---|
| 107 | >>> print c.flags[InvalidOperation]
|
|---|
| 108 | 1
|
|---|
| 109 | >>> c.flags[InvalidOperation] = 0
|
|---|
| 110 | >>> c.traps[InvalidOperation] = 0
|
|---|
| 111 | >>> print c.divide(Decimal(0), Decimal(0))
|
|---|
| 112 | NaN
|
|---|
| 113 | >>> print c.flags[InvalidOperation]
|
|---|
| 114 | 1
|
|---|
| 115 | >>>
|
|---|
| 116 | """
|
|---|
| 117 |
|
|---|
| 118 | __all__ = [
|
|---|
| 119 | # Two major classes
|
|---|
| 120 | 'Decimal', 'Context',
|
|---|
| 121 |
|
|---|
| 122 | # Contexts
|
|---|
| 123 | 'DefaultContext', 'BasicContext', 'ExtendedContext',
|
|---|
| 124 |
|
|---|
| 125 | # Exceptions
|
|---|
| 126 | 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
|
|---|
| 127 | 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
|
|---|
| 128 |
|
|---|
| 129 | # Constants for use in setting up contexts
|
|---|
| 130 | 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
|
|---|
| 131 | 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
|
|---|
| 132 |
|
|---|
| 133 | # Functions for manipulating contexts
|
|---|
| 134 | 'setcontext', 'getcontext', 'localcontext'
|
|---|
| 135 | ]
|
|---|
| 136 |
|
|---|
| 137 | import copy as _copy
|
|---|
| 138 | import numbers as _numbers
|
|---|
| 139 |
|
|---|
| 140 | try:
|
|---|
| 141 | from collections import namedtuple as _namedtuple
|
|---|
| 142 | DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
|
|---|
| 143 | except ImportError:
|
|---|
| 144 | DecimalTuple = lambda *args: args
|
|---|
| 145 |
|
|---|
| 146 | # Rounding
|
|---|
| 147 | ROUND_DOWN = 'ROUND_DOWN'
|
|---|
| 148 | ROUND_HALF_UP = 'ROUND_HALF_UP'
|
|---|
| 149 | ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
|
|---|
| 150 | ROUND_CEILING = 'ROUND_CEILING'
|
|---|
| 151 | ROUND_FLOOR = 'ROUND_FLOOR'
|
|---|
| 152 | ROUND_UP = 'ROUND_UP'
|
|---|
| 153 | ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
|
|---|
| 154 | ROUND_05UP = 'ROUND_05UP'
|
|---|
| 155 |
|
|---|
| 156 | # Errors
|
|---|
| 157 |
|
|---|
| 158 | class DecimalException(ArithmeticError):
|
|---|
| 159 | """Base exception class.
|
|---|
| 160 |
|
|---|
| 161 | Used exceptions derive from this.
|
|---|
| 162 | If an exception derives from another exception besides this (such as
|
|---|
| 163 | Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
|
|---|
| 164 | called if the others are present. This isn't actually used for
|
|---|
| 165 | anything, though.
|
|---|
| 166 |
|
|---|
| 167 | handle -- Called when context._raise_error is called and the
|
|---|
| 168 | trap_enabler is set. First argument is self, second is the
|
|---|
| 169 | context. More arguments can be given, those being after
|
|---|
| 170 | the explanation in _raise_error (For example,
|
|---|
| 171 | context._raise_error(NewError, '(-x)!', self._sign) would
|
|---|
| 172 | call NewError().handle(context, self._sign).)
|
|---|
| 173 |
|
|---|
| 174 | To define a new exception, it should be sufficient to have it derive
|
|---|
| 175 | from DecimalException.
|
|---|
| 176 | """
|
|---|
| 177 | def handle(self, context, *args):
|
|---|
| 178 | pass
|
|---|
| 179 |
|
|---|
| 180 |
|
|---|
| 181 | class Clamped(DecimalException):
|
|---|
| 182 | """Exponent of a 0 changed to fit bounds.
|
|---|
| 183 |
|
|---|
| 184 | This occurs and signals clamped if the exponent of a result has been
|
|---|
| 185 | altered in order to fit the constraints of a specific concrete
|
|---|
| 186 | representation. This may occur when the exponent of a zero result would
|
|---|
| 187 | be outside the bounds of a representation, or when a large normal
|
|---|
| 188 | number would have an encoded exponent that cannot be represented. In
|
|---|
| 189 | this latter case, the exponent is reduced to fit and the corresponding
|
|---|
| 190 | number of zero digits are appended to the coefficient ("fold-down").
|
|---|
| 191 | """
|
|---|
| 192 |
|
|---|
| 193 | class InvalidOperation(DecimalException):
|
|---|
| 194 | """An invalid operation was performed.
|
|---|
| 195 |
|
|---|
| 196 | Various bad things cause this:
|
|---|
| 197 |
|
|---|
| 198 | Something creates a signaling NaN
|
|---|
| 199 | -INF + INF
|
|---|
| 200 | 0 * (+-)INF
|
|---|
| 201 | (+-)INF / (+-)INF
|
|---|
| 202 | x % 0
|
|---|
| 203 | (+-)INF % x
|
|---|
| 204 | x._rescale( non-integer )
|
|---|
| 205 | sqrt(-x) , x > 0
|
|---|
| 206 | 0 ** 0
|
|---|
| 207 | x ** (non-integer)
|
|---|
| 208 | x ** (+-)INF
|
|---|
| 209 | An operand is invalid
|
|---|
| 210 |
|
|---|
| 211 | The result of the operation after these is a quiet positive NaN,
|
|---|
| 212 | except when the cause is a signaling NaN, in which case the result is
|
|---|
| 213 | also a quiet NaN, but with the original sign, and an optional
|
|---|
| 214 | diagnostic information.
|
|---|
| 215 | """
|
|---|
| 216 | def handle(self, context, *args):
|
|---|
| 217 | if args:
|
|---|
| 218 | ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
|
|---|
| 219 | return ans._fix_nan(context)
|
|---|
| 220 | return _NaN
|
|---|
| 221 |
|
|---|
| 222 | class ConversionSyntax(InvalidOperation):
|
|---|
| 223 | """Trying to convert badly formed string.
|
|---|
| 224 |
|
|---|
| 225 | This occurs and signals invalid-operation if an string is being
|
|---|
| 226 | converted to a number and it does not conform to the numeric string
|
|---|
| 227 | syntax. The result is [0,qNaN].
|
|---|
| 228 | """
|
|---|
| 229 | def handle(self, context, *args):
|
|---|
| 230 | return _NaN
|
|---|
| 231 |
|
|---|
| 232 | class DivisionByZero(DecimalException, ZeroDivisionError):
|
|---|
| 233 | """Division by 0.
|
|---|
| 234 |
|
|---|
| 235 | This occurs and signals division-by-zero if division of a finite number
|
|---|
| 236 | by zero was attempted (during a divide-integer or divide operation, or a
|
|---|
| 237 | power operation with negative right-hand operand), and the dividend was
|
|---|
| 238 | not zero.
|
|---|
| 239 |
|
|---|
| 240 | The result of the operation is [sign,inf], where sign is the exclusive
|
|---|
| 241 | or of the signs of the operands for divide, or is 1 for an odd power of
|
|---|
| 242 | -0, for power.
|
|---|
| 243 | """
|
|---|
| 244 |
|
|---|
| 245 | def handle(self, context, sign, *args):
|
|---|
| 246 | return _SignedInfinity[sign]
|
|---|
| 247 |
|
|---|
| 248 | class DivisionImpossible(InvalidOperation):
|
|---|
| 249 | """Cannot perform the division adequately.
|
|---|
| 250 |
|
|---|
| 251 | This occurs and signals invalid-operation if the integer result of a
|
|---|
| 252 | divide-integer or remainder operation had too many digits (would be
|
|---|
| 253 | longer than precision). The result is [0,qNaN].
|
|---|
| 254 | """
|
|---|
| 255 |
|
|---|
| 256 | def handle(self, context, *args):
|
|---|
| 257 | return _NaN
|
|---|
| 258 |
|
|---|
| 259 | class DivisionUndefined(InvalidOperation, ZeroDivisionError):
|
|---|
| 260 | """Undefined result of division.
|
|---|
| 261 |
|
|---|
| 262 | This occurs and signals invalid-operation if division by zero was
|
|---|
| 263 | attempted (during a divide-integer, divide, or remainder operation), and
|
|---|
| 264 | the dividend is also zero. The result is [0,qNaN].
|
|---|
| 265 | """
|
|---|
| 266 |
|
|---|
| 267 | def handle(self, context, *args):
|
|---|
| 268 | return _NaN
|
|---|
| 269 |
|
|---|
| 270 | class Inexact(DecimalException):
|
|---|
| 271 | """Had to round, losing information.
|
|---|
| 272 |
|
|---|
| 273 | This occurs and signals inexact whenever the result of an operation is
|
|---|
| 274 | not exact (that is, it needed to be rounded and any discarded digits
|
|---|
| 275 | were non-zero), or if an overflow or underflow condition occurs. The
|
|---|
| 276 | result in all cases is unchanged.
|
|---|
| 277 |
|
|---|
| 278 | The inexact signal may be tested (or trapped) to determine if a given
|
|---|
| 279 | operation (or sequence of operations) was inexact.
|
|---|
| 280 | """
|
|---|
| 281 |
|
|---|
| 282 | class InvalidContext(InvalidOperation):
|
|---|
| 283 | """Invalid context. Unknown rounding, for example.
|
|---|
| 284 |
|
|---|
| 285 | This occurs and signals invalid-operation if an invalid context was
|
|---|
| 286 | detected during an operation. This can occur if contexts are not checked
|
|---|
| 287 | on creation and either the precision exceeds the capability of the
|
|---|
| 288 | underlying concrete representation or an unknown or unsupported rounding
|
|---|
| 289 | was specified. These aspects of the context need only be checked when
|
|---|
| 290 | the values are required to be used. The result is [0,qNaN].
|
|---|
| 291 | """
|
|---|
| 292 |
|
|---|
| 293 | def handle(self, context, *args):
|
|---|
| 294 | return _NaN
|
|---|
| 295 |
|
|---|
| 296 | class Rounded(DecimalException):
|
|---|
| 297 | """Number got rounded (not necessarily changed during rounding).
|
|---|
| 298 |
|
|---|
| 299 | This occurs and signals rounded whenever the result of an operation is
|
|---|
| 300 | rounded (that is, some zero or non-zero digits were discarded from the
|
|---|
| 301 | coefficient), or if an overflow or underflow condition occurs. The
|
|---|
| 302 | result in all cases is unchanged.
|
|---|
| 303 |
|
|---|
| 304 | The rounded signal may be tested (or trapped) to determine if a given
|
|---|
| 305 | operation (or sequence of operations) caused a loss of precision.
|
|---|
| 306 | """
|
|---|
| 307 |
|
|---|
| 308 | class Subnormal(DecimalException):
|
|---|
| 309 | """Exponent < Emin before rounding.
|
|---|
| 310 |
|
|---|
| 311 | This occurs and signals subnormal whenever the result of a conversion or
|
|---|
| 312 | operation is subnormal (that is, its adjusted exponent is less than
|
|---|
| 313 | Emin, before any rounding). The result in all cases is unchanged.
|
|---|
| 314 |
|
|---|
| 315 | The subnormal signal may be tested (or trapped) to determine if a given
|
|---|
| 316 | or operation (or sequence of operations) yielded a subnormal result.
|
|---|
| 317 | """
|
|---|
| 318 |
|
|---|
| 319 | class Overflow(Inexact, Rounded):
|
|---|
| 320 | """Numerical overflow.
|
|---|
| 321 |
|
|---|
| 322 | This occurs and signals overflow if the adjusted exponent of a result
|
|---|
| 323 | (from a conversion or from an operation that is not an attempt to divide
|
|---|
| 324 | by zero), after rounding, would be greater than the largest value that
|
|---|
| 325 | can be handled by the implementation (the value Emax).
|
|---|
| 326 |
|
|---|
| 327 | The result depends on the rounding mode:
|
|---|
| 328 |
|
|---|
| 329 | For round-half-up and round-half-even (and for round-half-down and
|
|---|
| 330 | round-up, if implemented), the result of the operation is [sign,inf],
|
|---|
| 331 | where sign is the sign of the intermediate result. For round-down, the
|
|---|
| 332 | result is the largest finite number that can be represented in the
|
|---|
| 333 | current precision, with the sign of the intermediate result. For
|
|---|
| 334 | round-ceiling, the result is the same as for round-down if the sign of
|
|---|
| 335 | the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
|
|---|
| 336 | the result is the same as for round-down if the sign of the intermediate
|
|---|
| 337 | result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
|
|---|
| 338 | will also be raised.
|
|---|
| 339 | """
|
|---|
| 340 |
|
|---|
| 341 | def handle(self, context, sign, *args):
|
|---|
| 342 | if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
|
|---|
| 343 | ROUND_HALF_DOWN, ROUND_UP):
|
|---|
| 344 | return _SignedInfinity[sign]
|
|---|
| 345 | if sign == 0:
|
|---|
| 346 | if context.rounding == ROUND_CEILING:
|
|---|
| 347 | return _SignedInfinity[sign]
|
|---|
| 348 | return _dec_from_triple(sign, '9'*context.prec,
|
|---|
| 349 | context.Emax-context.prec+1)
|
|---|
| 350 | if sign == 1:
|
|---|
| 351 | if context.rounding == ROUND_FLOOR:
|
|---|
| 352 | return _SignedInfinity[sign]
|
|---|
| 353 | return _dec_from_triple(sign, '9'*context.prec,
|
|---|
| 354 | context.Emax-context.prec+1)
|
|---|
| 355 |
|
|---|
| 356 |
|
|---|
| 357 | class Underflow(Inexact, Rounded, Subnormal):
|
|---|
| 358 | """Numerical underflow with result rounded to 0.
|
|---|
| 359 |
|
|---|
| 360 | This occurs and signals underflow if a result is inexact and the
|
|---|
| 361 | adjusted exponent of the result would be smaller (more negative) than
|
|---|
| 362 | the smallest value that can be handled by the implementation (the value
|
|---|
| 363 | Emin). That is, the result is both inexact and subnormal.
|
|---|
| 364 |
|
|---|
| 365 | The result after an underflow will be a subnormal number rounded, if
|
|---|
| 366 | necessary, so that its exponent is not less than Etiny. This may result
|
|---|
| 367 | in 0 with the sign of the intermediate result and an exponent of Etiny.
|
|---|
| 368 |
|
|---|
| 369 | In all cases, Inexact, Rounded, and Subnormal will also be raised.
|
|---|
| 370 | """
|
|---|
| 371 |
|
|---|
| 372 | # List of public traps and flags
|
|---|
| 373 | _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
|
|---|
| 374 | Underflow, InvalidOperation, Subnormal]
|
|---|
| 375 |
|
|---|
| 376 | # Map conditions (per the spec) to signals
|
|---|
| 377 | _condition_map = {ConversionSyntax:InvalidOperation,
|
|---|
| 378 | DivisionImpossible:InvalidOperation,
|
|---|
| 379 | DivisionUndefined:InvalidOperation,
|
|---|
| 380 | InvalidContext:InvalidOperation}
|
|---|
| 381 |
|
|---|
| 382 | ##### Context Functions ##################################################
|
|---|
| 383 |
|
|---|
| 384 | # The getcontext() and setcontext() function manage access to a thread-local
|
|---|
| 385 | # current context. Py2.4 offers direct support for thread locals. If that
|
|---|
| 386 | # is not available, use threading.currentThread() which is slower but will
|
|---|
| 387 | # work for older Pythons. If threads are not part of the build, create a
|
|---|
| 388 | # mock threading object with threading.local() returning the module namespace.
|
|---|
| 389 |
|
|---|
| 390 | try:
|
|---|
| 391 | import threading
|
|---|
| 392 | except ImportError:
|
|---|
| 393 | # Python was compiled without threads; create a mock object instead
|
|---|
| 394 | import sys
|
|---|
| 395 | class MockThreading(object):
|
|---|
| 396 | def local(self, sys=sys):
|
|---|
| 397 | return sys.modules[__name__]
|
|---|
| 398 | threading = MockThreading()
|
|---|
| 399 | del sys, MockThreading
|
|---|
| 400 |
|
|---|
| 401 | try:
|
|---|
| 402 | threading.local
|
|---|
| 403 |
|
|---|
| 404 | except AttributeError:
|
|---|
| 405 |
|
|---|
| 406 | # To fix reloading, force it to create a new context
|
|---|
| 407 | # Old contexts have different exceptions in their dicts, making problems.
|
|---|
| 408 | if hasattr(threading.currentThread(), '__decimal_context__'):
|
|---|
| 409 | del threading.currentThread().__decimal_context__
|
|---|
| 410 |
|
|---|
| 411 | def setcontext(context):
|
|---|
| 412 | """Set this thread's context to context."""
|
|---|
| 413 | if context in (DefaultContext, BasicContext, ExtendedContext):
|
|---|
| 414 | context = context.copy()
|
|---|
| 415 | context.clear_flags()
|
|---|
| 416 | threading.currentThread().__decimal_context__ = context
|
|---|
| 417 |
|
|---|
| 418 | def getcontext():
|
|---|
| 419 | """Returns this thread's context.
|
|---|
| 420 |
|
|---|
| 421 | If this thread does not yet have a context, returns
|
|---|
| 422 | a new context and sets this thread's context.
|
|---|
| 423 | New contexts are copies of DefaultContext.
|
|---|
| 424 | """
|
|---|
| 425 | try:
|
|---|
| 426 | return threading.currentThread().__decimal_context__
|
|---|
| 427 | except AttributeError:
|
|---|
| 428 | context = Context()
|
|---|
| 429 | threading.currentThread().__decimal_context__ = context
|
|---|
| 430 | return context
|
|---|
| 431 |
|
|---|
| 432 | else:
|
|---|
| 433 |
|
|---|
| 434 | local = threading.local()
|
|---|
| 435 | if hasattr(local, '__decimal_context__'):
|
|---|
| 436 | del local.__decimal_context__
|
|---|
| 437 |
|
|---|
| 438 | def getcontext(_local=local):
|
|---|
| 439 | """Returns this thread's context.
|
|---|
| 440 |
|
|---|
| 441 | If this thread does not yet have a context, returns
|
|---|
| 442 | a new context and sets this thread's context.
|
|---|
| 443 | New contexts are copies of DefaultContext.
|
|---|
| 444 | """
|
|---|
| 445 | try:
|
|---|
| 446 | return _local.__decimal_context__
|
|---|
| 447 | except AttributeError:
|
|---|
| 448 | context = Context()
|
|---|
| 449 | _local.__decimal_context__ = context
|
|---|
| 450 | return context
|
|---|
| 451 |
|
|---|
| 452 | def setcontext(context, _local=local):
|
|---|
| 453 | """Set this thread's context to context."""
|
|---|
| 454 | if context in (DefaultContext, BasicContext, ExtendedContext):
|
|---|
| 455 | context = context.copy()
|
|---|
| 456 | context.clear_flags()
|
|---|
| 457 | _local.__decimal_context__ = context
|
|---|
| 458 |
|
|---|
| 459 | del threading, local # Don't contaminate the namespace
|
|---|
| 460 |
|
|---|
| 461 | def localcontext(ctx=None):
|
|---|
| 462 | """Return a context manager for a copy of the supplied context
|
|---|
| 463 |
|
|---|
| 464 | Uses a copy of the current context if no context is specified
|
|---|
| 465 | The returned context manager creates a local decimal context
|
|---|
| 466 | in a with statement:
|
|---|
| 467 | def sin(x):
|
|---|
| 468 | with localcontext() as ctx:
|
|---|
| 469 | ctx.prec += 2
|
|---|
| 470 | # Rest of sin calculation algorithm
|
|---|
| 471 | # uses a precision 2 greater than normal
|
|---|
| 472 | return +s # Convert result to normal precision
|
|---|
| 473 |
|
|---|
| 474 | def sin(x):
|
|---|
| 475 | with localcontext(ExtendedContext):
|
|---|
| 476 | # Rest of sin calculation algorithm
|
|---|
| 477 | # uses the Extended Context from the
|
|---|
| 478 | # General Decimal Arithmetic Specification
|
|---|
| 479 | return +s # Convert result to normal context
|
|---|
| 480 |
|
|---|
| 481 | >>> setcontext(DefaultContext)
|
|---|
| 482 | >>> print getcontext().prec
|
|---|
| 483 | 28
|
|---|
| 484 | >>> with localcontext():
|
|---|
| 485 | ... ctx = getcontext()
|
|---|
| 486 | ... ctx.prec += 2
|
|---|
| 487 | ... print ctx.prec
|
|---|
| 488 | ...
|
|---|
| 489 | 30
|
|---|
| 490 | >>> with localcontext(ExtendedContext):
|
|---|
| 491 | ... print getcontext().prec
|
|---|
| 492 | ...
|
|---|
| 493 | 9
|
|---|
| 494 | >>> print getcontext().prec
|
|---|
| 495 | 28
|
|---|
| 496 | """
|
|---|
| 497 | if ctx is None: ctx = getcontext()
|
|---|
| 498 | return _ContextManager(ctx)
|
|---|
| 499 |
|
|---|
| 500 |
|
|---|
| 501 | ##### Decimal class #######################################################
|
|---|
| 502 |
|
|---|
| 503 | class Decimal(object):
|
|---|
| 504 | """Floating point class for decimal arithmetic."""
|
|---|
| 505 |
|
|---|
| 506 | __slots__ = ('_exp','_int','_sign', '_is_special')
|
|---|
| 507 | # Generally, the value of the Decimal instance is given by
|
|---|
| 508 | # (-1)**_sign * _int * 10**_exp
|
|---|
| 509 | # Special values are signified by _is_special == True
|
|---|
| 510 |
|
|---|
| 511 | # We're immutable, so use __new__ not __init__
|
|---|
| 512 | def __new__(cls, value="0", context=None):
|
|---|
| 513 | """Create a decimal point instance.
|
|---|
| 514 |
|
|---|
| 515 | >>> Decimal('3.14') # string input
|
|---|
| 516 | Decimal('3.14')
|
|---|
| 517 | >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
|
|---|
| 518 | Decimal('3.14')
|
|---|
| 519 | >>> Decimal(314) # int or long
|
|---|
| 520 | Decimal('314')
|
|---|
| 521 | >>> Decimal(Decimal(314)) # another decimal instance
|
|---|
| 522 | Decimal('314')
|
|---|
| 523 | >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
|
|---|
| 524 | Decimal('3.14')
|
|---|
| 525 | """
|
|---|
| 526 |
|
|---|
| 527 | # Note that the coefficient, self._int, is actually stored as
|
|---|
| 528 | # a string rather than as a tuple of digits. This speeds up
|
|---|
| 529 | # the "digits to integer" and "integer to digits" conversions
|
|---|
| 530 | # that are used in almost every arithmetic operation on
|
|---|
| 531 | # Decimals. This is an internal detail: the as_tuple function
|
|---|
| 532 | # and the Decimal constructor still deal with tuples of
|
|---|
| 533 | # digits.
|
|---|
| 534 |
|
|---|
| 535 | self = object.__new__(cls)
|
|---|
| 536 |
|
|---|
| 537 | # From a string
|
|---|
| 538 | # REs insist on real strings, so we can too.
|
|---|
| 539 | if isinstance(value, basestring):
|
|---|
| 540 | m = _parser(value.strip())
|
|---|
| 541 | if m is None:
|
|---|
| 542 | if context is None:
|
|---|
| 543 | context = getcontext()
|
|---|
| 544 | return context._raise_error(ConversionSyntax,
|
|---|
| 545 | "Invalid literal for Decimal: %r" % value)
|
|---|
| 546 |
|
|---|
| 547 | if m.group('sign') == "-":
|
|---|
| 548 | self._sign = 1
|
|---|
| 549 | else:
|
|---|
| 550 | self._sign = 0
|
|---|
| 551 | intpart = m.group('int')
|
|---|
| 552 | if intpart is not None:
|
|---|
| 553 | # finite number
|
|---|
| 554 | fracpart = m.group('frac') or ''
|
|---|
| 555 | exp = int(m.group('exp') or '0')
|
|---|
| 556 | self._int = str(int(intpart+fracpart))
|
|---|
| 557 | self._exp = exp - len(fracpart)
|
|---|
| 558 | self._is_special = False
|
|---|
| 559 | else:
|
|---|
| 560 | diag = m.group('diag')
|
|---|
| 561 | if diag is not None:
|
|---|
| 562 | # NaN
|
|---|
| 563 | self._int = str(int(diag or '0')).lstrip('0')
|
|---|
| 564 | if m.group('signal'):
|
|---|
| 565 | self._exp = 'N'
|
|---|
| 566 | else:
|
|---|
| 567 | self._exp = 'n'
|
|---|
| 568 | else:
|
|---|
| 569 | # infinity
|
|---|
| 570 | self._int = '0'
|
|---|
| 571 | self._exp = 'F'
|
|---|
| 572 | self._is_special = True
|
|---|
| 573 | return self
|
|---|
| 574 |
|
|---|
| 575 | # From an integer
|
|---|
| 576 | if isinstance(value, (int,long)):
|
|---|
| 577 | if value >= 0:
|
|---|
| 578 | self._sign = 0
|
|---|
| 579 | else:
|
|---|
| 580 | self._sign = 1
|
|---|
| 581 | self._exp = 0
|
|---|
| 582 | self._int = str(abs(value))
|
|---|
| 583 | self._is_special = False
|
|---|
| 584 | return self
|
|---|
| 585 |
|
|---|
| 586 | # From another decimal
|
|---|
| 587 | if isinstance(value, Decimal):
|
|---|
| 588 | self._exp = value._exp
|
|---|
| 589 | self._sign = value._sign
|
|---|
| 590 | self._int = value._int
|
|---|
| 591 | self._is_special = value._is_special
|
|---|
| 592 | return self
|
|---|
| 593 |
|
|---|
| 594 | # From an internal working value
|
|---|
| 595 | if isinstance(value, _WorkRep):
|
|---|
| 596 | self._sign = value.sign
|
|---|
| 597 | self._int = str(value.int)
|
|---|
| 598 | self._exp = int(value.exp)
|
|---|
| 599 | self._is_special = False
|
|---|
| 600 | return self
|
|---|
| 601 |
|
|---|
| 602 | # tuple/list conversion (possibly from as_tuple())
|
|---|
| 603 | if isinstance(value, (list,tuple)):
|
|---|
| 604 | if len(value) != 3:
|
|---|
| 605 | raise ValueError('Invalid tuple size in creation of Decimal '
|
|---|
| 606 | 'from list or tuple. The list or tuple '
|
|---|
| 607 | 'should have exactly three elements.')
|
|---|
| 608 | # process sign. The isinstance test rejects floats
|
|---|
| 609 | if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
|
|---|
| 610 | raise ValueError("Invalid sign. The first value in the tuple "
|
|---|
| 611 | "should be an integer; either 0 for a "
|
|---|
| 612 | "positive number or 1 for a negative number.")
|
|---|
| 613 | self._sign = value[0]
|
|---|
| 614 | if value[2] == 'F':
|
|---|
| 615 | # infinity: value[1] is ignored
|
|---|
| 616 | self._int = '0'
|
|---|
| 617 | self._exp = value[2]
|
|---|
| 618 | self._is_special = True
|
|---|
| 619 | else:
|
|---|
| 620 | # process and validate the digits in value[1]
|
|---|
| 621 | digits = []
|
|---|
| 622 | for digit in value[1]:
|
|---|
| 623 | if isinstance(digit, (int, long)) and 0 <= digit <= 9:
|
|---|
| 624 | # skip leading zeros
|
|---|
| 625 | if digits or digit != 0:
|
|---|
| 626 | digits.append(digit)
|
|---|
| 627 | else:
|
|---|
| 628 | raise ValueError("The second value in the tuple must "
|
|---|
| 629 | "be composed of integers in the range "
|
|---|
| 630 | "0 through 9.")
|
|---|
| 631 | if value[2] in ('n', 'N'):
|
|---|
| 632 | # NaN: digits form the diagnostic
|
|---|
| 633 | self._int = ''.join(map(str, digits))
|
|---|
| 634 | self._exp = value[2]
|
|---|
| 635 | self._is_special = True
|
|---|
| 636 | elif isinstance(value[2], (int, long)):
|
|---|
| 637 | # finite number: digits give the coefficient
|
|---|
| 638 | self._int = ''.join(map(str, digits or [0]))
|
|---|
| 639 | self._exp = value[2]
|
|---|
| 640 | self._is_special = False
|
|---|
| 641 | else:
|
|---|
| 642 | raise ValueError("The third value in the tuple must "
|
|---|
| 643 | "be an integer, or one of the "
|
|---|
| 644 | "strings 'F', 'n', 'N'.")
|
|---|
| 645 | return self
|
|---|
| 646 |
|
|---|
| 647 | if isinstance(value, float):
|
|---|
| 648 | raise TypeError("Cannot convert float to Decimal. " +
|
|---|
| 649 | "First convert the float to a string")
|
|---|
| 650 |
|
|---|
| 651 | raise TypeError("Cannot convert %r to Decimal" % value)
|
|---|
| 652 |
|
|---|
| 653 | def _isnan(self):
|
|---|
| 654 | """Returns whether the number is not actually one.
|
|---|
| 655 |
|
|---|
| 656 | 0 if a number
|
|---|
| 657 | 1 if NaN
|
|---|
| 658 | 2 if sNaN
|
|---|
| 659 | """
|
|---|
| 660 | if self._is_special:
|
|---|
| 661 | exp = self._exp
|
|---|
| 662 | if exp == 'n':
|
|---|
| 663 | return 1
|
|---|
| 664 | elif exp == 'N':
|
|---|
| 665 | return 2
|
|---|
| 666 | return 0
|
|---|
| 667 |
|
|---|
| 668 | def _isinfinity(self):
|
|---|
| 669 | """Returns whether the number is infinite
|
|---|
| 670 |
|
|---|
| 671 | 0 if finite or not a number
|
|---|
| 672 | 1 if +INF
|
|---|
| 673 | -1 if -INF
|
|---|
| 674 | """
|
|---|
| 675 | if self._exp == 'F':
|
|---|
| 676 | if self._sign:
|
|---|
| 677 | return -1
|
|---|
| 678 | return 1
|
|---|
| 679 | return 0
|
|---|
| 680 |
|
|---|
| 681 | def _check_nans(self, other=None, context=None):
|
|---|
| 682 | """Returns whether the number is not actually one.
|
|---|
| 683 |
|
|---|
| 684 | if self, other are sNaN, signal
|
|---|
| 685 | if self, other are NaN return nan
|
|---|
| 686 | return 0
|
|---|
| 687 |
|
|---|
| 688 | Done before operations.
|
|---|
| 689 | """
|
|---|
| 690 |
|
|---|
| 691 | self_is_nan = self._isnan()
|
|---|
| 692 | if other is None:
|
|---|
| 693 | other_is_nan = False
|
|---|
| 694 | else:
|
|---|
| 695 | other_is_nan = other._isnan()
|
|---|
| 696 |
|
|---|
| 697 | if self_is_nan or other_is_nan:
|
|---|
| 698 | if context is None:
|
|---|
| 699 | context = getcontext()
|
|---|
| 700 |
|
|---|
| 701 | if self_is_nan == 2:
|
|---|
| 702 | return context._raise_error(InvalidOperation, 'sNaN',
|
|---|
| 703 | self)
|
|---|
| 704 | if other_is_nan == 2:
|
|---|
| 705 | return context._raise_error(InvalidOperation, 'sNaN',
|
|---|
| 706 | other)
|
|---|
| 707 | if self_is_nan:
|
|---|
| 708 | return self._fix_nan(context)
|
|---|
| 709 |
|
|---|
| 710 | return other._fix_nan(context)
|
|---|
| 711 | return 0
|
|---|
| 712 |
|
|---|
| 713 | def _compare_check_nans(self, other, context):
|
|---|
| 714 | """Version of _check_nans used for the signaling comparisons
|
|---|
| 715 | compare_signal, __le__, __lt__, __ge__, __gt__.
|
|---|
| 716 |
|
|---|
| 717 | Signal InvalidOperation if either self or other is a (quiet
|
|---|
| 718 | or signaling) NaN. Signaling NaNs take precedence over quiet
|
|---|
| 719 | NaNs.
|
|---|
| 720 |
|
|---|
| 721 | Return 0 if neither operand is a NaN.
|
|---|
| 722 |
|
|---|
| 723 | """
|
|---|
| 724 | if context is None:
|
|---|
| 725 | context = getcontext()
|
|---|
| 726 |
|
|---|
| 727 | if self._is_special or other._is_special:
|
|---|
| 728 | if self.is_snan():
|
|---|
| 729 | return context._raise_error(InvalidOperation,
|
|---|
| 730 | 'comparison involving sNaN',
|
|---|
| 731 | self)
|
|---|
| 732 | elif other.is_snan():
|
|---|
| 733 | return context._raise_error(InvalidOperation,
|
|---|
| 734 | 'comparison involving sNaN',
|
|---|
| 735 | other)
|
|---|
| 736 | elif self.is_qnan():
|
|---|
| 737 | return context._raise_error(InvalidOperation,
|
|---|
| 738 | 'comparison involving NaN',
|
|---|
| 739 | self)
|
|---|
| 740 | elif other.is_qnan():
|
|---|
| 741 | return context._raise_error(InvalidOperation,
|
|---|
| 742 | 'comparison involving NaN',
|
|---|
| 743 | other)
|
|---|
| 744 | return 0
|
|---|
| 745 |
|
|---|
| 746 | def __nonzero__(self):
|
|---|
| 747 | """Return True if self is nonzero; otherwise return False.
|
|---|
| 748 |
|
|---|
| 749 | NaNs and infinities are considered nonzero.
|
|---|
| 750 | """
|
|---|
| 751 | return self._is_special or self._int != '0'
|
|---|
| 752 |
|
|---|
| 753 | def _cmp(self, other):
|
|---|
| 754 | """Compare the two non-NaN decimal instances self and other.
|
|---|
| 755 |
|
|---|
| 756 | Returns -1 if self < other, 0 if self == other and 1
|
|---|
| 757 | if self > other. This routine is for internal use only."""
|
|---|
| 758 |
|
|---|
| 759 | if self._is_special or other._is_special:
|
|---|
| 760 | self_inf = self._isinfinity()
|
|---|
| 761 | other_inf = other._isinfinity()
|
|---|
| 762 | if self_inf == other_inf:
|
|---|
| 763 | return 0
|
|---|
| 764 | elif self_inf < other_inf:
|
|---|
| 765 | return -1
|
|---|
| 766 | else:
|
|---|
| 767 | return 1
|
|---|
| 768 |
|
|---|
| 769 | # check for zeros; Decimal('0') == Decimal('-0')
|
|---|
| 770 | if not self:
|
|---|
| 771 | if not other:
|
|---|
| 772 | return 0
|
|---|
| 773 | else:
|
|---|
| 774 | return -((-1)**other._sign)
|
|---|
| 775 | if not other:
|
|---|
| 776 | return (-1)**self._sign
|
|---|
| 777 |
|
|---|
| 778 | # If different signs, neg one is less
|
|---|
| 779 | if other._sign < self._sign:
|
|---|
| 780 | return -1
|
|---|
| 781 | if self._sign < other._sign:
|
|---|
| 782 | return 1
|
|---|
| 783 |
|
|---|
| 784 | self_adjusted = self.adjusted()
|
|---|
| 785 | other_adjusted = other.adjusted()
|
|---|
| 786 | if self_adjusted == other_adjusted:
|
|---|
| 787 | self_padded = self._int + '0'*(self._exp - other._exp)
|
|---|
| 788 | other_padded = other._int + '0'*(other._exp - self._exp)
|
|---|
| 789 | if self_padded == other_padded:
|
|---|
| 790 | return 0
|
|---|
| 791 | elif self_padded < other_padded:
|
|---|
| 792 | return -(-1)**self._sign
|
|---|
| 793 | else:
|
|---|
| 794 | return (-1)**self._sign
|
|---|
| 795 | elif self_adjusted > other_adjusted:
|
|---|
| 796 | return (-1)**self._sign
|
|---|
| 797 | else: # self_adjusted < other_adjusted
|
|---|
| 798 | return -((-1)**self._sign)
|
|---|
| 799 |
|
|---|
| 800 | # Note: The Decimal standard doesn't cover rich comparisons for
|
|---|
| 801 | # Decimals. In particular, the specification is silent on the
|
|---|
| 802 | # subject of what should happen for a comparison involving a NaN.
|
|---|
| 803 | # We take the following approach:
|
|---|
| 804 | #
|
|---|
| 805 | # == comparisons involving a NaN always return False
|
|---|
| 806 | # != comparisons involving a NaN always return True
|
|---|
| 807 | # <, >, <= and >= comparisons involving a (quiet or signaling)
|
|---|
| 808 | # NaN signal InvalidOperation, and return False if the
|
|---|
| 809 | # InvalidOperation is not trapped.
|
|---|
| 810 | #
|
|---|
| 811 | # This behavior is designed to conform as closely as possible to
|
|---|
| 812 | # that specified by IEEE 754.
|
|---|
| 813 |
|
|---|
| 814 | def __eq__(self, other):
|
|---|
| 815 | other = _convert_other(other)
|
|---|
| 816 | if other is NotImplemented:
|
|---|
| 817 | return other
|
|---|
| 818 | if self.is_nan() or other.is_nan():
|
|---|
| 819 | return False
|
|---|
| 820 | return self._cmp(other) == 0
|
|---|
| 821 |
|
|---|
| 822 | def __ne__(self, other):
|
|---|
| 823 | other = _convert_other(other)
|
|---|
| 824 | if other is NotImplemented:
|
|---|
| 825 | return other
|
|---|
| 826 | if self.is_nan() or other.is_nan():
|
|---|
| 827 | return True
|
|---|
| 828 | return self._cmp(other) != 0
|
|---|
| 829 |
|
|---|
| 830 | def __lt__(self, other, context=None):
|
|---|
| 831 | other = _convert_other(other)
|
|---|
| 832 | if other is NotImplemented:
|
|---|
| 833 | return other
|
|---|
| 834 | ans = self._compare_check_nans(other, context)
|
|---|
| 835 | if ans:
|
|---|
| 836 | return False
|
|---|
| 837 | return self._cmp(other) < 0
|
|---|
| 838 |
|
|---|
| 839 | def __le__(self, other, context=None):
|
|---|
| 840 | other = _convert_other(other)
|
|---|
| 841 | if other is NotImplemented:
|
|---|
| 842 | return other
|
|---|
| 843 | ans = self._compare_check_nans(other, context)
|
|---|
| 844 | if ans:
|
|---|
| 845 | return False
|
|---|
| 846 | return self._cmp(other) <= 0
|
|---|
| 847 |
|
|---|
| 848 | def __gt__(self, other, context=None):
|
|---|
| 849 | other = _convert_other(other)
|
|---|
| 850 | if other is NotImplemented:
|
|---|
| 851 | return other
|
|---|
| 852 | ans = self._compare_check_nans(other, context)
|
|---|
| 853 | if ans:
|
|---|
| 854 | return False
|
|---|
| 855 | return self._cmp(other) > 0
|
|---|
| 856 |
|
|---|
| 857 | def __ge__(self, other, context=None):
|
|---|
| 858 | other = _convert_other(other)
|
|---|
| 859 | if other is NotImplemented:
|
|---|
| 860 | return other
|
|---|
| 861 | ans = self._compare_check_nans(other, context)
|
|---|
| 862 | if ans:
|
|---|
| 863 | return False
|
|---|
| 864 | return self._cmp(other) >= 0
|
|---|
| 865 |
|
|---|
| 866 | def compare(self, other, context=None):
|
|---|
| 867 | """Compares one to another.
|
|---|
| 868 |
|
|---|
| 869 | -1 => a < b
|
|---|
| 870 | 0 => a = b
|
|---|
| 871 | 1 => a > b
|
|---|
| 872 | NaN => one is NaN
|
|---|
| 873 | Like __cmp__, but returns Decimal instances.
|
|---|
| 874 | """
|
|---|
| 875 | other = _convert_other(other, raiseit=True)
|
|---|
| 876 |
|
|---|
| 877 | # Compare(NaN, NaN) = NaN
|
|---|
| 878 | if (self._is_special or other and other._is_special):
|
|---|
| 879 | ans = self._check_nans(other, context)
|
|---|
| 880 | if ans:
|
|---|
| 881 | return ans
|
|---|
| 882 |
|
|---|
| 883 | return Decimal(self._cmp(other))
|
|---|
| 884 |
|
|---|
| 885 | def __hash__(self):
|
|---|
| 886 | """x.__hash__() <==> hash(x)"""
|
|---|
| 887 | # Decimal integers must hash the same as the ints
|
|---|
| 888 | #
|
|---|
| 889 | # The hash of a nonspecial noninteger Decimal must depend only
|
|---|
| 890 | # on the value of that Decimal, and not on its representation.
|
|---|
| 891 | # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
|
|---|
| 892 | if self._is_special:
|
|---|
| 893 | if self._isnan():
|
|---|
| 894 | raise TypeError('Cannot hash a NaN value.')
|
|---|
| 895 | return hash(str(self))
|
|---|
| 896 | if not self:
|
|---|
| 897 | return 0
|
|---|
| 898 | if self._isinteger():
|
|---|
| 899 | op = _WorkRep(self.to_integral_value())
|
|---|
| 900 | # to make computation feasible for Decimals with large
|
|---|
| 901 | # exponent, we use the fact that hash(n) == hash(m) for
|
|---|
| 902 | # any two nonzero integers n and m such that (i) n and m
|
|---|
| 903 | # have the same sign, and (ii) n is congruent to m modulo
|
|---|
| 904 | # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
|
|---|
| 905 | # hash((-1)**s*c*pow(10, e, 2**64-1).
|
|---|
| 906 | return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
|
|---|
| 907 | # The value of a nonzero nonspecial Decimal instance is
|
|---|
| 908 | # faithfully represented by the triple consisting of its sign,
|
|---|
| 909 | # its adjusted exponent, and its coefficient with trailing
|
|---|
| 910 | # zeros removed.
|
|---|
| 911 | return hash((self._sign,
|
|---|
| 912 | self._exp+len(self._int),
|
|---|
| 913 | self._int.rstrip('0')))
|
|---|
| 914 |
|
|---|
| 915 | def as_tuple(self):
|
|---|
| 916 | """Represents the number as a triple tuple.
|
|---|
| 917 |
|
|---|
| 918 | To show the internals exactly as they are.
|
|---|
| 919 | """
|
|---|
| 920 | return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
|
|---|
| 921 |
|
|---|
| 922 | def __repr__(self):
|
|---|
| 923 | """Represents the number as an instance of Decimal."""
|
|---|
| 924 | # Invariant: eval(repr(d)) == d
|
|---|
| 925 | return "Decimal('%s')" % str(self)
|
|---|
| 926 |
|
|---|
| 927 | def __str__(self, eng=False, context=None):
|
|---|
| 928 | """Return string representation of the number in scientific notation.
|
|---|
| 929 |
|
|---|
| 930 | Captures all of the information in the underlying representation.
|
|---|
| 931 | """
|
|---|
| 932 |
|
|---|
| 933 | sign = ['', '-'][self._sign]
|
|---|
| 934 | if self._is_special:
|
|---|
| 935 | if self._exp == 'F':
|
|---|
| 936 | return sign + 'Infinity'
|
|---|
| 937 | elif self._exp == 'n':
|
|---|
| 938 | return sign + 'NaN' + self._int
|
|---|
| 939 | else: # self._exp == 'N'
|
|---|
| 940 | return sign + 'sNaN' + self._int
|
|---|
| 941 |
|
|---|
| 942 | # number of digits of self._int to left of decimal point
|
|---|
| 943 | leftdigits = self._exp + len(self._int)
|
|---|
| 944 |
|
|---|
| 945 | # dotplace is number of digits of self._int to the left of the
|
|---|
| 946 | # decimal point in the mantissa of the output string (that is,
|
|---|
| 947 | # after adjusting the exponent)
|
|---|
| 948 | if self._exp <= 0 and leftdigits > -6:
|
|---|
| 949 | # no exponent required
|
|---|
| 950 | dotplace = leftdigits
|
|---|
| 951 | elif not eng:
|
|---|
| 952 | # usual scientific notation: 1 digit on left of the point
|
|---|
| 953 | dotplace = 1
|
|---|
| 954 | elif self._int == '0':
|
|---|
| 955 | # engineering notation, zero
|
|---|
| 956 | dotplace = (leftdigits + 1) % 3 - 1
|
|---|
| 957 | else:
|
|---|
| 958 | # engineering notation, nonzero
|
|---|
| 959 | dotplace = (leftdigits - 1) % 3 + 1
|
|---|
| 960 |
|
|---|
| 961 | if dotplace <= 0:
|
|---|
| 962 | intpart = '0'
|
|---|
| 963 | fracpart = '.' + '0'*(-dotplace) + self._int
|
|---|
| 964 | elif dotplace >= len(self._int):
|
|---|
| 965 | intpart = self._int+'0'*(dotplace-len(self._int))
|
|---|
| 966 | fracpart = ''
|
|---|
| 967 | else:
|
|---|
| 968 | intpart = self._int[:dotplace]
|
|---|
| 969 | fracpart = '.' + self._int[dotplace:]
|
|---|
| 970 | if leftdigits == dotplace:
|
|---|
| 971 | exp = ''
|
|---|
| 972 | else:
|
|---|
| 973 | if context is None:
|
|---|
| 974 | context = getcontext()
|
|---|
| 975 | exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
|
|---|
| 976 |
|
|---|
| 977 | return sign + intpart + fracpart + exp
|
|---|
| 978 |
|
|---|
| 979 | def to_eng_string(self, context=None):
|
|---|
| 980 | """Convert to engineering-type string.
|
|---|
| 981 |
|
|---|
| 982 | Engineering notation has an exponent which is a multiple of 3, so there
|
|---|
| 983 | are up to 3 digits left of the decimal place.
|
|---|
| 984 |
|
|---|
| 985 | Same rules for when in exponential and when as a value as in __str__.
|
|---|
| 986 | """
|
|---|
| 987 | return self.__str__(eng=True, context=context)
|
|---|
| 988 |
|
|---|
| 989 | def __neg__(self, context=None):
|
|---|
| 990 | """Returns a copy with the sign switched.
|
|---|
| 991 |
|
|---|
| 992 | Rounds, if it has reason.
|
|---|
| 993 | """
|
|---|
| 994 | if self._is_special:
|
|---|
| 995 | ans = self._check_nans(context=context)
|
|---|
| 996 | if ans:
|
|---|
| 997 | return ans
|
|---|
| 998 |
|
|---|
| 999 | if not self:
|
|---|
| 1000 | # -Decimal('0') is Decimal('0'), not Decimal('-0')
|
|---|
| 1001 | ans = self.copy_abs()
|
|---|
| 1002 | else:
|
|---|
| 1003 | ans = self.copy_negate()
|
|---|
| 1004 |
|
|---|
| 1005 | if context is None:
|
|---|
| 1006 | context = getcontext()
|
|---|
| 1007 | return ans._fix(context)
|
|---|
| 1008 |
|
|---|
| 1009 | def __pos__(self, context=None):
|
|---|
| 1010 | """Returns a copy, unless it is a sNaN.
|
|---|
| 1011 |
|
|---|
| 1012 | Rounds the number (if more then precision digits)
|
|---|
| 1013 | """
|
|---|
| 1014 | if self._is_special:
|
|---|
| 1015 | ans = self._check_nans(context=context)
|
|---|
| 1016 | if ans:
|
|---|
| 1017 | return ans
|
|---|
| 1018 |
|
|---|
| 1019 | if not self:
|
|---|
| 1020 | # + (-0) = 0
|
|---|
| 1021 | ans = self.copy_abs()
|
|---|
| 1022 | else:
|
|---|
| 1023 | ans = Decimal(self)
|
|---|
| 1024 |
|
|---|
| 1025 | if context is None:
|
|---|
| 1026 | context = getcontext()
|
|---|
| 1027 | return ans._fix(context)
|
|---|
| 1028 |
|
|---|
| 1029 | def __abs__(self, round=True, context=None):
|
|---|
| 1030 | """Returns the absolute value of self.
|
|---|
| 1031 |
|
|---|
| 1032 | If the keyword argument 'round' is false, do not round. The
|
|---|
| 1033 | expression self.__abs__(round=False) is equivalent to
|
|---|
| 1034 | self.copy_abs().
|
|---|
| 1035 | """
|
|---|
| 1036 | if not round:
|
|---|
| 1037 | return self.copy_abs()
|
|---|
| 1038 |
|
|---|
| 1039 | if self._is_special:
|
|---|
| 1040 | ans = self._check_nans(context=context)
|
|---|
| 1041 | if ans:
|
|---|
| 1042 | return ans
|
|---|
| 1043 |
|
|---|
| 1044 | if self._sign:
|
|---|
| 1045 | ans = self.__neg__(context=context)
|
|---|
| 1046 | else:
|
|---|
| 1047 | ans = self.__pos__(context=context)
|
|---|
| 1048 |
|
|---|
| 1049 | return ans
|
|---|
| 1050 |
|
|---|
| 1051 | def __add__(self, other, context=None):
|
|---|
| 1052 | """Returns self + other.
|
|---|
| 1053 |
|
|---|
| 1054 | -INF + INF (or the reverse) cause InvalidOperation errors.
|
|---|
| 1055 | """
|
|---|
| 1056 | other = _convert_other(other)
|
|---|
| 1057 | if other is NotImplemented:
|
|---|
| 1058 | return other
|
|---|
| 1059 |
|
|---|
| 1060 | if context is None:
|
|---|
| 1061 | context = getcontext()
|
|---|
| 1062 |
|
|---|
| 1063 | if self._is_special or other._is_special:
|
|---|
| 1064 | ans = self._check_nans(other, context)
|
|---|
| 1065 | if ans:
|
|---|
| 1066 | return ans
|
|---|
| 1067 |
|
|---|
| 1068 | if self._isinfinity():
|
|---|
| 1069 | # If both INF, same sign => same as both, opposite => error.
|
|---|
| 1070 | if self._sign != other._sign and other._isinfinity():
|
|---|
| 1071 | return context._raise_error(InvalidOperation, '-INF + INF')
|
|---|
| 1072 | return Decimal(self)
|
|---|
| 1073 | if other._isinfinity():
|
|---|
| 1074 | return Decimal(other) # Can't both be infinity here
|
|---|
| 1075 |
|
|---|
| 1076 | exp = min(self._exp, other._exp)
|
|---|
| 1077 | negativezero = 0
|
|---|
| 1078 | if context.rounding == ROUND_FLOOR and self._sign != other._sign:
|
|---|
| 1079 | # If the answer is 0, the sign should be negative, in this case.
|
|---|
| 1080 | negativezero = 1
|
|---|
| 1081 |
|
|---|
| 1082 | if not self and not other:
|
|---|
| 1083 | sign = min(self._sign, other._sign)
|
|---|
| 1084 | if negativezero:
|
|---|
| 1085 | sign = 1
|
|---|
| 1086 | ans = _dec_from_triple(sign, '0', exp)
|
|---|
| 1087 | ans = ans._fix(context)
|
|---|
| 1088 | return ans
|
|---|
| 1089 | if not self:
|
|---|
| 1090 | exp = max(exp, other._exp - context.prec-1)
|
|---|
| 1091 | ans = other._rescale(exp, context.rounding)
|
|---|
| 1092 | ans = ans._fix(context)
|
|---|
| 1093 | return ans
|
|---|
| 1094 | if not other:
|
|---|
| 1095 | exp = max(exp, self._exp - context.prec-1)
|
|---|
| 1096 | ans = self._rescale(exp, context.rounding)
|
|---|
| 1097 | ans = ans._fix(context)
|
|---|
| 1098 | return ans
|
|---|
| 1099 |
|
|---|
| 1100 | op1 = _WorkRep(self)
|
|---|
| 1101 | op2 = _WorkRep(other)
|
|---|
| 1102 | op1, op2 = _normalize(op1, op2, context.prec)
|
|---|
| 1103 |
|
|---|
| 1104 | result = _WorkRep()
|
|---|
| 1105 | if op1.sign != op2.sign:
|
|---|
| 1106 | # Equal and opposite
|
|---|
| 1107 | if op1.int == op2.int:
|
|---|
| 1108 | ans = _dec_from_triple(negativezero, '0', exp)
|
|---|
| 1109 | ans = ans._fix(context)
|
|---|
| 1110 | return ans
|
|---|
| 1111 | if op1.int < op2.int:
|
|---|
| 1112 | op1, op2 = op2, op1
|
|---|
| 1113 | # OK, now abs(op1) > abs(op2)
|
|---|
| 1114 | if op1.sign == 1:
|
|---|
| 1115 | result.sign = 1
|
|---|
| 1116 | op1.sign, op2.sign = op2.sign, op1.sign
|
|---|
| 1117 | else:
|
|---|
| 1118 | result.sign = 0
|
|---|
| 1119 | # So we know the sign, and op1 > 0.
|
|---|
| 1120 | elif op1.sign == 1:
|
|---|
| 1121 | result.sign = 1
|
|---|
| 1122 | op1.sign, op2.sign = (0, 0)
|
|---|
| 1123 | else:
|
|---|
| 1124 | result.sign = 0
|
|---|
| 1125 | # Now, op1 > abs(op2) > 0
|
|---|
| 1126 |
|
|---|
| 1127 | if op2.sign == 0:
|
|---|
| 1128 | result.int = op1.int + op2.int
|
|---|
| 1129 | else:
|
|---|
| 1130 | result.int = op1.int - op2.int
|
|---|
| 1131 |
|
|---|
| 1132 | result.exp = op1.exp
|
|---|
| 1133 | ans = Decimal(result)
|
|---|
| 1134 | ans = ans._fix(context)
|
|---|
| 1135 | return ans
|
|---|
| 1136 |
|
|---|
| 1137 | __radd__ = __add__
|
|---|
| 1138 |
|
|---|
| 1139 | def __sub__(self, other, context=None):
|
|---|
| 1140 | """Return self - other"""
|
|---|
| 1141 | other = _convert_other(other)
|
|---|
| 1142 | if other is NotImplemented:
|
|---|
| 1143 | return other
|
|---|
| 1144 |
|
|---|
| 1145 | if self._is_special or other._is_special:
|
|---|
| 1146 | ans = self._check_nans(other, context=context)
|
|---|
| 1147 | if ans:
|
|---|
| 1148 | return ans
|
|---|
| 1149 |
|
|---|
| 1150 | # self - other is computed as self + other.copy_negate()
|
|---|
| 1151 | return self.__add__(other.copy_negate(), context=context)
|
|---|
| 1152 |
|
|---|
| 1153 | def __rsub__(self, other, context=None):
|
|---|
| 1154 | """Return other - self"""
|
|---|
| 1155 | other = _convert_other(other)
|
|---|
| 1156 | if other is NotImplemented:
|
|---|
| 1157 | return other
|
|---|
| 1158 |
|
|---|
| 1159 | return other.__sub__(self, context=context)
|
|---|
| 1160 |
|
|---|
| 1161 | def __mul__(self, other, context=None):
|
|---|
| 1162 | """Return self * other.
|
|---|
| 1163 |
|
|---|
| 1164 | (+-) INF * 0 (or its reverse) raise InvalidOperation.
|
|---|
| 1165 | """
|
|---|
| 1166 | other = _convert_other(other)
|
|---|
| 1167 | if other is NotImplemented:
|
|---|
| 1168 | return other
|
|---|
| 1169 |
|
|---|
| 1170 | if context is None:
|
|---|
| 1171 | context = getcontext()
|
|---|
| 1172 |
|
|---|
| 1173 | resultsign = self._sign ^ other._sign
|
|---|
| 1174 |
|
|---|
| 1175 | if self._is_special or other._is_special:
|
|---|
| 1176 | ans = self._check_nans(other, context)
|
|---|
| 1177 | if ans:
|
|---|
| 1178 | return ans
|
|---|
| 1179 |
|
|---|
| 1180 | if self._isinfinity():
|
|---|
| 1181 | if not other:
|
|---|
| 1182 | return context._raise_error(InvalidOperation, '(+-)INF * 0')
|
|---|
| 1183 | return _SignedInfinity[resultsign]
|
|---|
| 1184 |
|
|---|
| 1185 | if other._isinfinity():
|
|---|
| 1186 | if not self:
|
|---|
| 1187 | return context._raise_error(InvalidOperation, '0 * (+-)INF')
|
|---|
| 1188 | return _SignedInfinity[resultsign]
|
|---|
| 1189 |
|
|---|
| 1190 | resultexp = self._exp + other._exp
|
|---|
| 1191 |
|
|---|
| 1192 | # Special case for multiplying by zero
|
|---|
| 1193 | if not self or not other:
|
|---|
| 1194 | ans = _dec_from_triple(resultsign, '0', resultexp)
|
|---|
| 1195 | # Fixing in case the exponent is out of bounds
|
|---|
| 1196 | ans = ans._fix(context)
|
|---|
| 1197 | return ans
|
|---|
| 1198 |
|
|---|
| 1199 | # Special case for multiplying by power of 10
|
|---|
| 1200 | if self._int == '1':
|
|---|
| 1201 | ans = _dec_from_triple(resultsign, other._int, resultexp)
|
|---|
| 1202 | ans = ans._fix(context)
|
|---|
| 1203 | return ans
|
|---|
| 1204 | if other._int == '1':
|
|---|
| 1205 | ans = _dec_from_triple(resultsign, self._int, resultexp)
|
|---|
| 1206 | ans = ans._fix(context)
|
|---|
| 1207 | return ans
|
|---|
| 1208 |
|
|---|
| 1209 | op1 = _WorkRep(self)
|
|---|
| 1210 | op2 = _WorkRep(other)
|
|---|
| 1211 |
|
|---|
| 1212 | ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
|
|---|
| 1213 | ans = ans._fix(context)
|
|---|
| 1214 |
|
|---|
| 1215 | return ans
|
|---|
| 1216 | __rmul__ = __mul__
|
|---|
| 1217 |
|
|---|
| 1218 | def __truediv__(self, other, context=None):
|
|---|
| 1219 | """Return self / other."""
|
|---|
| 1220 | other = _convert_other(other)
|
|---|
| 1221 | if other is NotImplemented:
|
|---|
| 1222 | return NotImplemented
|
|---|
| 1223 |
|
|---|
| 1224 | if context is None:
|
|---|
| 1225 | context = getcontext()
|
|---|
| 1226 |
|
|---|
| 1227 | sign = self._sign ^ other._sign
|
|---|
| 1228 |
|
|---|
| 1229 | if self._is_special or other._is_special:
|
|---|
| 1230 | ans = self._check_nans(other, context)
|
|---|
| 1231 | if ans:
|
|---|
| 1232 | return ans
|
|---|
| 1233 |
|
|---|
| 1234 | if self._isinfinity() and other._isinfinity():
|
|---|
| 1235 | return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
|
|---|
| 1236 |
|
|---|
| 1237 | if self._isinfinity():
|
|---|
| 1238 | return _SignedInfinity[sign]
|
|---|
| 1239 |
|
|---|
| 1240 | if other._isinfinity():
|
|---|
| 1241 | context._raise_error(Clamped, 'Division by infinity')
|
|---|
| 1242 | return _dec_from_triple(sign, '0', context.Etiny())
|
|---|
| 1243 |
|
|---|
| 1244 | # Special cases for zeroes
|
|---|
| 1245 | if not other:
|
|---|
| 1246 | if not self:
|
|---|
| 1247 | return context._raise_error(DivisionUndefined, '0 / 0')
|
|---|
| 1248 | return context._raise_error(DivisionByZero, 'x / 0', sign)
|
|---|
| 1249 |
|
|---|
| 1250 | if not self:
|
|---|
| 1251 | exp = self._exp - other._exp
|
|---|
| 1252 | coeff = 0
|
|---|
| 1253 | else:
|
|---|
| 1254 | # OK, so neither = 0, INF or NaN
|
|---|
| 1255 | shift = len(other._int) - len(self._int) + context.prec + 1
|
|---|
| 1256 | exp = self._exp - other._exp - shift
|
|---|
| 1257 | op1 = _WorkRep(self)
|
|---|
| 1258 | op2 = _WorkRep(other)
|
|---|
| 1259 | if shift >= 0:
|
|---|
| 1260 | coeff, remainder = divmod(op1.int * 10**shift, op2.int)
|
|---|
| 1261 | else:
|
|---|
| 1262 | coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
|
|---|
| 1263 | if remainder:
|
|---|
| 1264 | # result is not exact; adjust to ensure correct rounding
|
|---|
| 1265 | if coeff % 5 == 0:
|
|---|
| 1266 | coeff += 1
|
|---|
| 1267 | else:
|
|---|
| 1268 | # result is exact; get as close to ideal exponent as possible
|
|---|
| 1269 | ideal_exp = self._exp - other._exp
|
|---|
| 1270 | while exp < ideal_exp and coeff % 10 == 0:
|
|---|
| 1271 | coeff //= 10
|
|---|
| 1272 | exp += 1
|
|---|
| 1273 |
|
|---|
| 1274 | ans = _dec_from_triple(sign, str(coeff), exp)
|
|---|
| 1275 | return ans._fix(context)
|
|---|
| 1276 |
|
|---|
| 1277 | def _divide(self, other, context):
|
|---|
| 1278 | """Return (self // other, self % other), to context.prec precision.
|
|---|
| 1279 |
|
|---|
| 1280 | Assumes that neither self nor other is a NaN, that self is not
|
|---|
| 1281 | infinite and that other is nonzero.
|
|---|
| 1282 | """
|
|---|
| 1283 | sign = self._sign ^ other._sign
|
|---|
| 1284 | if other._isinfinity():
|
|---|
| 1285 | ideal_exp = self._exp
|
|---|
| 1286 | else:
|
|---|
| 1287 | ideal_exp = min(self._exp, other._exp)
|
|---|
| 1288 |
|
|---|
| 1289 | expdiff = self.adjusted() - other.adjusted()
|
|---|
| 1290 | if not self or other._isinfinity() or expdiff <= -2:
|
|---|
| 1291 | return (_dec_from_triple(sign, '0', 0),
|
|---|
| 1292 | self._rescale(ideal_exp, context.rounding))
|
|---|
| 1293 | if expdiff <= context.prec:
|
|---|
| 1294 | op1 = _WorkRep(self)
|
|---|
| 1295 | op2 = _WorkRep(other)
|
|---|
| 1296 | if op1.exp >= op2.exp:
|
|---|
| 1297 | op1.int *= 10**(op1.exp - op2.exp)
|
|---|
| 1298 | else:
|
|---|
| 1299 | op2.int *= 10**(op2.exp - op1.exp)
|
|---|
| 1300 | q, r = divmod(op1.int, op2.int)
|
|---|
| 1301 | if q < 10**context.prec:
|
|---|
| 1302 | return (_dec_from_triple(sign, str(q), 0),
|
|---|
| 1303 | _dec_from_triple(self._sign, str(r), ideal_exp))
|
|---|
| 1304 |
|
|---|
| 1305 | # Here the quotient is too large to be representable
|
|---|
| 1306 | ans = context._raise_error(DivisionImpossible,
|
|---|
| 1307 | 'quotient too large in //, % or divmod')
|
|---|
| 1308 | return ans, ans
|
|---|
| 1309 |
|
|---|
| 1310 | def __rtruediv__(self, other, context=None):
|
|---|
| 1311 | """Swaps self/other and returns __truediv__."""
|
|---|
| 1312 | other = _convert_other(other)
|
|---|
| 1313 | if other is NotImplemented:
|
|---|
| 1314 | return other
|
|---|
| 1315 | return other.__truediv__(self, context=context)
|
|---|
| 1316 |
|
|---|
| 1317 | __div__ = __truediv__
|
|---|
| 1318 | __rdiv__ = __rtruediv__
|
|---|
| 1319 |
|
|---|
| 1320 | def __divmod__(self, other, context=None):
|
|---|
| 1321 | """
|
|---|
| 1322 | Return (self // other, self % other)
|
|---|
| 1323 | """
|
|---|
| 1324 | other = _convert_other(other)
|
|---|
| 1325 | if other is NotImplemented:
|
|---|
| 1326 | return other
|
|---|
| 1327 |
|
|---|
| 1328 | if context is None:
|
|---|
| 1329 | context = getcontext()
|
|---|
| 1330 |
|
|---|
| 1331 | ans = self._check_nans(other, context)
|
|---|
| 1332 | if ans:
|
|---|
| 1333 | return (ans, ans)
|
|---|
| 1334 |
|
|---|
| 1335 | sign = self._sign ^ other._sign
|
|---|
| 1336 | if self._isinfinity():
|
|---|
| 1337 | if other._isinfinity():
|
|---|
| 1338 | ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
|
|---|
| 1339 | return ans, ans
|
|---|
| 1340 | else:
|
|---|
| 1341 | return (_SignedInfinity[sign],
|
|---|
| 1342 | context._raise_error(InvalidOperation, 'INF % x'))
|
|---|
| 1343 |
|
|---|
| 1344 | if not other:
|
|---|
| 1345 | if not self:
|
|---|
| 1346 | ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
|
|---|
| 1347 | return ans, ans
|
|---|
| 1348 | else:
|
|---|
| 1349 | return (context._raise_error(DivisionByZero, 'x // 0', sign),
|
|---|
| 1350 | context._raise_error(InvalidOperation, 'x % 0'))
|
|---|
| 1351 |
|
|---|
| 1352 | quotient, remainder = self._divide(other, context)
|
|---|
| 1353 | remainder = remainder._fix(context)
|
|---|
| 1354 | return quotient, remainder
|
|---|
| 1355 |
|
|---|
| 1356 | def __rdivmod__(self, other, context=None):
|
|---|
| 1357 | """Swaps self/other and returns __divmod__."""
|
|---|
| 1358 | other = _convert_other(other)
|
|---|
| 1359 | if other is NotImplemented:
|
|---|
| 1360 | return other
|
|---|
| 1361 | return other.__divmod__(self, context=context)
|
|---|
| 1362 |
|
|---|
| 1363 | def __mod__(self, other, context=None):
|
|---|
| 1364 | """
|
|---|
| 1365 | self % other
|
|---|
| 1366 | """
|
|---|
| 1367 | other = _convert_other(other)
|
|---|
| 1368 | if other is NotImplemented:
|
|---|
| 1369 | return other
|
|---|
| 1370 |
|
|---|
| 1371 | if context is None:
|
|---|
| 1372 | context = getcontext()
|
|---|
| 1373 |
|
|---|
| 1374 | ans = self._check_nans(other, context)
|
|---|
| 1375 | if ans:
|
|---|
| 1376 | return ans
|
|---|
| 1377 |
|
|---|
| 1378 | if self._isinfinity():
|
|---|
| 1379 | return context._raise_error(InvalidOperation, 'INF % x')
|
|---|
| 1380 | elif not other:
|
|---|
| 1381 | if self:
|
|---|
| 1382 | return context._raise_error(InvalidOperation, 'x % 0')
|
|---|
| 1383 | else:
|
|---|
| 1384 | return context._raise_error(DivisionUndefined, '0 % 0')
|
|---|
| 1385 |
|
|---|
| 1386 | remainder = self._divide(other, context)[1]
|
|---|
| 1387 | remainder = remainder._fix(context)
|
|---|
| 1388 | return remainder
|
|---|
| 1389 |
|
|---|
| 1390 | def __rmod__(self, other, context=None):
|
|---|
| 1391 | """Swaps self/other and returns __mod__."""
|
|---|
| 1392 | other = _convert_other(other)
|
|---|
| 1393 | if other is NotImplemented:
|
|---|
| 1394 | return other
|
|---|
| 1395 | return other.__mod__(self, context=context)
|
|---|
| 1396 |
|
|---|
| 1397 | def remainder_near(self, other, context=None):
|
|---|
| 1398 | """
|
|---|
| 1399 | Remainder nearest to 0- abs(remainder-near) <= other/2
|
|---|
| 1400 | """
|
|---|
| 1401 | if context is None:
|
|---|
| 1402 | context = getcontext()
|
|---|
| 1403 |
|
|---|
| 1404 | other = _convert_other(other, raiseit=True)
|
|---|
| 1405 |
|
|---|
| 1406 | ans = self._check_nans(other, context)
|
|---|
| 1407 | if ans:
|
|---|
| 1408 | return ans
|
|---|
| 1409 |
|
|---|
| 1410 | # self == +/-infinity -> InvalidOperation
|
|---|
| 1411 | if self._isinfinity():
|
|---|
| 1412 | return context._raise_error(InvalidOperation,
|
|---|
| 1413 | 'remainder_near(infinity, x)')
|
|---|
| 1414 |
|
|---|
| 1415 | # other == 0 -> either InvalidOperation or DivisionUndefined
|
|---|
| 1416 | if not other:
|
|---|
| 1417 | if self:
|
|---|
| 1418 | return context._raise_error(InvalidOperation,
|
|---|
| 1419 | 'remainder_near(x, 0)')
|
|---|
| 1420 | else:
|
|---|
| 1421 | return context._raise_error(DivisionUndefined,
|
|---|
| 1422 | 'remainder_near(0, 0)')
|
|---|
| 1423 |
|
|---|
| 1424 | # other = +/-infinity -> remainder = self
|
|---|
| 1425 | if other._isinfinity():
|
|---|
| 1426 | ans = Decimal(self)
|
|---|
| 1427 | return ans._fix(context)
|
|---|
| 1428 |
|
|---|
| 1429 | # self = 0 -> remainder = self, with ideal exponent
|
|---|
| 1430 | ideal_exponent = min(self._exp, other._exp)
|
|---|
| 1431 | if not self:
|
|---|
| 1432 | ans = _dec_from_triple(self._sign, '0', ideal_exponent)
|
|---|
| 1433 | return ans._fix(context)
|
|---|
| 1434 |
|
|---|
| 1435 | # catch most cases of large or small quotient
|
|---|
| 1436 | expdiff = self.adjusted() - other.adjusted()
|
|---|
| 1437 | if expdiff >= context.prec + 1:
|
|---|
| 1438 | # expdiff >= prec+1 => abs(self/other) > 10**prec
|
|---|
| 1439 | return context._raise_error(DivisionImpossible)
|
|---|
| 1440 | if expdiff <= -2:
|
|---|
| 1441 | # expdiff <= -2 => abs(self/other) < 0.1
|
|---|
| 1442 | ans = self._rescale(ideal_exponent, context.rounding)
|
|---|
| 1443 | return ans._fix(context)
|
|---|
| 1444 |
|
|---|
| 1445 | # adjust both arguments to have the same exponent, then divide
|
|---|
| 1446 | op1 = _WorkRep(self)
|
|---|
| 1447 | op2 = _WorkRep(other)
|
|---|
| 1448 | if op1.exp >= op2.exp:
|
|---|
| 1449 | op1.int *= 10**(op1.exp - op2.exp)
|
|---|
| 1450 | else:
|
|---|
| 1451 | op2.int *= 10**(op2.exp - op1.exp)
|
|---|
| 1452 | q, r = divmod(op1.int, op2.int)
|
|---|
| 1453 | # remainder is r*10**ideal_exponent; other is +/-op2.int *
|
|---|
| 1454 | # 10**ideal_exponent. Apply correction to ensure that
|
|---|
| 1455 | # abs(remainder) <= abs(other)/2
|
|---|
| 1456 | if 2*r + (q&1) > op2.int:
|
|---|
| 1457 | r -= op2.int
|
|---|
| 1458 | q += 1
|
|---|
| 1459 |
|
|---|
| 1460 | if q >= 10**context.prec:
|
|---|
| 1461 | return context._raise_error(DivisionImpossible)
|
|---|
| 1462 |
|
|---|
| 1463 | # result has same sign as self unless r is negative
|
|---|
| 1464 | sign = self._sign
|
|---|
| 1465 | if r < 0:
|
|---|
| 1466 | sign = 1-sign
|
|---|
| 1467 | r = -r
|
|---|
| 1468 |
|
|---|
| 1469 | ans = _dec_from_triple(sign, str(r), ideal_exponent)
|
|---|
| 1470 | return ans._fix(context)
|
|---|
| 1471 |
|
|---|
| 1472 | def __floordiv__(self, other, context=None):
|
|---|
| 1473 | """self // other"""
|
|---|
| 1474 | other = _convert_other(other)
|
|---|
| 1475 | if other is NotImplemented:
|
|---|
| 1476 | return other
|
|---|
| 1477 |
|
|---|
| 1478 | if context is None:
|
|---|
| 1479 | context = getcontext()
|
|---|
| 1480 |
|
|---|
| 1481 | ans = self._check_nans(other, context)
|
|---|
| 1482 | if ans:
|
|---|
| 1483 | return ans
|
|---|
| 1484 |
|
|---|
| 1485 | if self._isinfinity():
|
|---|
| 1486 | if other._isinfinity():
|
|---|
| 1487 | return context._raise_error(InvalidOperation, 'INF // INF')
|
|---|
| 1488 | else:
|
|---|
| 1489 | return _SignedInfinity[self._sign ^ other._sign]
|
|---|
| 1490 |
|
|---|
| 1491 | if not other:
|
|---|
| 1492 | if self:
|
|---|
| 1493 | return context._raise_error(DivisionByZero, 'x // 0',
|
|---|
| 1494 | self._sign ^ other._sign)
|
|---|
| 1495 | else:
|
|---|
| 1496 | return context._raise_error(DivisionUndefined, '0 // 0')
|
|---|
| 1497 |
|
|---|
| 1498 | return self._divide(other, context)[0]
|
|---|
| 1499 |
|
|---|
| 1500 | def __rfloordiv__(self, other, context=None):
|
|---|
| 1501 | """Swaps self/other and returns __floordiv__."""
|
|---|
| 1502 | other = _convert_other(other)
|
|---|
| 1503 | if other is NotImplemented:
|
|---|
| 1504 | return other
|
|---|
| 1505 | return other.__floordiv__(self, context=context)
|
|---|
| 1506 |
|
|---|
| 1507 | def __float__(self):
|
|---|
| 1508 | """Float representation."""
|
|---|
| 1509 | return float(str(self))
|
|---|
| 1510 |
|
|---|
| 1511 | def __int__(self):
|
|---|
| 1512 | """Converts self to an int, truncating if necessary."""
|
|---|
| 1513 | if self._is_special:
|
|---|
| 1514 | if self._isnan():
|
|---|
| 1515 | raise ValueError("Cannot convert NaN to integer")
|
|---|
| 1516 | elif self._isinfinity():
|
|---|
| 1517 | raise OverflowError("Cannot convert infinity to integer")
|
|---|
| 1518 | s = (-1)**self._sign
|
|---|
| 1519 | if self._exp >= 0:
|
|---|
| 1520 | return s*int(self._int)*10**self._exp
|
|---|
| 1521 | else:
|
|---|
| 1522 | return s*int(self._int[:self._exp] or '0')
|
|---|
| 1523 |
|
|---|
| 1524 | __trunc__ = __int__
|
|---|
| 1525 |
|
|---|
| 1526 | def real(self):
|
|---|
| 1527 | return self
|
|---|
| 1528 | real = property(real)
|
|---|
| 1529 |
|
|---|
| 1530 | def imag(self):
|
|---|
| 1531 | return Decimal(0)
|
|---|
| 1532 | imag = property(imag)
|
|---|
| 1533 |
|
|---|
| 1534 | def conjugate(self):
|
|---|
| 1535 | return self
|
|---|
| 1536 |
|
|---|
| 1537 | def __complex__(self):
|
|---|
| 1538 | return complex(float(self))
|
|---|
| 1539 |
|
|---|
| 1540 | def __long__(self):
|
|---|
| 1541 | """Converts to a long.
|
|---|
| 1542 |
|
|---|
| 1543 | Equivalent to long(int(self))
|
|---|
| 1544 | """
|
|---|
| 1545 | return long(self.__int__())
|
|---|
| 1546 |
|
|---|
| 1547 | def _fix_nan(self, context):
|
|---|
| 1548 | """Decapitate the payload of a NaN to fit the context"""
|
|---|
| 1549 | payload = self._int
|
|---|
| 1550 |
|
|---|
| 1551 | # maximum length of payload is precision if _clamp=0,
|
|---|
| 1552 | # precision-1 if _clamp=1.
|
|---|
| 1553 | max_payload_len = context.prec - context._clamp
|
|---|
| 1554 | if len(payload) > max_payload_len:
|
|---|
| 1555 | payload = payload[len(payload)-max_payload_len:].lstrip('0')
|
|---|
| 1556 | return _dec_from_triple(self._sign, payload, self._exp, True)
|
|---|
| 1557 | return Decimal(self)
|
|---|
| 1558 |
|
|---|
| 1559 | def _fix(self, context):
|
|---|
| 1560 | """Round if it is necessary to keep self within prec precision.
|
|---|
| 1561 |
|
|---|
| 1562 | Rounds and fixes the exponent. Does not raise on a sNaN.
|
|---|
| 1563 |
|
|---|
| 1564 | Arguments:
|
|---|
| 1565 | self - Decimal instance
|
|---|
| 1566 | context - context used.
|
|---|
| 1567 | """
|
|---|
| 1568 |
|
|---|
| 1569 | if self._is_special:
|
|---|
| 1570 | if self._isnan():
|
|---|
| 1571 | # decapitate payload if necessary
|
|---|
| 1572 | return self._fix_nan(context)
|
|---|
| 1573 | else:
|
|---|
| 1574 | # self is +/-Infinity; return unaltered
|
|---|
| 1575 | return Decimal(self)
|
|---|
| 1576 |
|
|---|
| 1577 | # if self is zero then exponent should be between Etiny and
|
|---|
| 1578 | # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
|
|---|
| 1579 | Etiny = context.Etiny()
|
|---|
| 1580 | Etop = context.Etop()
|
|---|
| 1581 | if not self:
|
|---|
| 1582 | exp_max = [context.Emax, Etop][context._clamp]
|
|---|
| 1583 | new_exp = min(max(self._exp, Etiny), exp_max)
|
|---|
| 1584 | if new_exp != self._exp:
|
|---|
| 1585 | context._raise_error(Clamped)
|
|---|
| 1586 | return _dec_from_triple(self._sign, '0', new_exp)
|
|---|
| 1587 | else:
|
|---|
| 1588 | return Decimal(self)
|
|---|
| 1589 |
|
|---|
| 1590 | # exp_min is the smallest allowable exponent of the result,
|
|---|
| 1591 | # equal to max(self.adjusted()-context.prec+1, Etiny)
|
|---|
| 1592 | exp_min = len(self._int) + self._exp - context.prec
|
|---|
| 1593 | if exp_min > Etop:
|
|---|
| 1594 | # overflow: exp_min > Etop iff self.adjusted() > Emax
|
|---|
| 1595 | context._raise_error(Inexact)
|
|---|
| 1596 | context._raise_error(Rounded)
|
|---|
| 1597 | return context._raise_error(Overflow, 'above Emax', self._sign)
|
|---|
| 1598 | self_is_subnormal = exp_min < Etiny
|
|---|
| 1599 | if self_is_subnormal:
|
|---|
| 1600 | context._raise_error(Subnormal)
|
|---|
| 1601 | exp_min = Etiny
|
|---|
| 1602 |
|
|---|
| 1603 | # round if self has too many digits
|
|---|
| 1604 | if self._exp < exp_min:
|
|---|
| 1605 | context._raise_error(Rounded)
|
|---|
| 1606 | digits = len(self._int) + self._exp - exp_min
|
|---|
| 1607 | if digits < 0:
|
|---|
| 1608 | self = _dec_from_triple(self._sign, '1', exp_min-1)
|
|---|
| 1609 | digits = 0
|
|---|
| 1610 | this_function = getattr(self, self._pick_rounding_function[context.rounding])
|
|---|
| 1611 | changed = this_function(digits)
|
|---|
| 1612 | coeff = self._int[:digits] or '0'
|
|---|
| 1613 | if changed == 1:
|
|---|
| 1614 | coeff = str(int(coeff)+1)
|
|---|
| 1615 | ans = _dec_from_triple(self._sign, coeff, exp_min)
|
|---|
| 1616 |
|
|---|
| 1617 | if changed:
|
|---|
| 1618 | context._raise_error(Inexact)
|
|---|
| 1619 | if self_is_subnormal:
|
|---|
| 1620 | context._raise_error(Underflow)
|
|---|
| 1621 | if not ans:
|
|---|
| 1622 | # raise Clamped on underflow to 0
|
|---|
| 1623 | context._raise_error(Clamped)
|
|---|
| 1624 | elif len(ans._int) == context.prec+1:
|
|---|
| 1625 | # we get here only if rescaling rounds the
|
|---|
| 1626 | # cofficient up to exactly 10**context.prec
|
|---|
| 1627 | if ans._exp < Etop:
|
|---|
| 1628 | ans = _dec_from_triple(ans._sign,
|
|---|
| 1629 | ans._int[:-1], ans._exp+1)
|
|---|
| 1630 | else:
|
|---|
| 1631 | # Inexact and Rounded have already been raised
|
|---|
| 1632 | ans = context._raise_error(Overflow, 'above Emax',
|
|---|
| 1633 | self._sign)
|
|---|
| 1634 | return ans
|
|---|
| 1635 |
|
|---|
| 1636 | # fold down if _clamp == 1 and self has too few digits
|
|---|
| 1637 | if context._clamp == 1 and self._exp > Etop:
|
|---|
| 1638 | context._raise_error(Clamped)
|
|---|
| 1639 | self_padded = self._int + '0'*(self._exp - Etop)
|
|---|
| 1640 | return _dec_from_triple(self._sign, self_padded, Etop)
|
|---|
| 1641 |
|
|---|
| 1642 | # here self was representable to begin with; return unchanged
|
|---|
| 1643 | return Decimal(self)
|
|---|
| 1644 |
|
|---|
| 1645 | _pick_rounding_function = {}
|
|---|
| 1646 |
|
|---|
| 1647 | # for each of the rounding functions below:
|
|---|
| 1648 | # self is a finite, nonzero Decimal
|
|---|
| 1649 | # prec is an integer satisfying 0 <= prec < len(self._int)
|
|---|
| 1650 | #
|
|---|
| 1651 | # each function returns either -1, 0, or 1, as follows:
|
|---|
| 1652 | # 1 indicates that self should be rounded up (away from zero)
|
|---|
| 1653 | # 0 indicates that self should be truncated, and that all the
|
|---|
| 1654 | # digits to be truncated are zeros (so the value is unchanged)
|
|---|
| 1655 | # -1 indicates that there are nonzero digits to be truncated
|
|---|
| 1656 |
|
|---|
| 1657 | def _round_down(self, prec):
|
|---|
| 1658 | """Also known as round-towards-0, truncate."""
|
|---|
| 1659 | if _all_zeros(self._int, prec):
|
|---|
| 1660 | return 0
|
|---|
| 1661 | else:
|
|---|
| 1662 | return -1
|
|---|
| 1663 |
|
|---|
| 1664 | def _round_up(self, prec):
|
|---|
| 1665 | """Rounds away from 0."""
|
|---|
| 1666 | return -self._round_down(prec)
|
|---|
| 1667 |
|
|---|
| 1668 | def _round_half_up(self, prec):
|
|---|
| 1669 | """Rounds 5 up (away from 0)"""
|
|---|
| 1670 | if self._int[prec] in '56789':
|
|---|
| 1671 | return 1
|
|---|
| 1672 | elif _all_zeros(self._int, prec):
|
|---|
| 1673 | return 0
|
|---|
| 1674 | else:
|
|---|
| 1675 | return -1
|
|---|
| 1676 |
|
|---|
| 1677 | def _round_half_down(self, prec):
|
|---|
| 1678 | """Round 5 down"""
|
|---|
| 1679 | if _exact_half(self._int, prec):
|
|---|
| 1680 | return -1
|
|---|
| 1681 | else:
|
|---|
| 1682 | return self._round_half_up(prec)
|
|---|
| 1683 |
|
|---|
| 1684 | def _round_half_even(self, prec):
|
|---|
| 1685 | """Round 5 to even, rest to nearest."""
|
|---|
| 1686 | if _exact_half(self._int, prec) and \
|
|---|
| 1687 | (prec == 0 or self._int[prec-1] in '02468'):
|
|---|
| 1688 | return -1
|
|---|
| 1689 | else:
|
|---|
| 1690 | return self._round_half_up(prec)
|
|---|
| 1691 |
|
|---|
| 1692 | def _round_ceiling(self, prec):
|
|---|
| 1693 | """Rounds up (not away from 0 if negative.)"""
|
|---|
| 1694 | if self._sign:
|
|---|
| 1695 | return self._round_down(prec)
|
|---|
| 1696 | else:
|
|---|
| 1697 | return -self._round_down(prec)
|
|---|
| 1698 |
|
|---|
| 1699 | def _round_floor(self, prec):
|
|---|
| 1700 | """Rounds down (not towards 0 if negative)"""
|
|---|
| 1701 | if not self._sign:
|
|---|
| 1702 | return self._round_down(prec)
|
|---|
| 1703 | else:
|
|---|
| 1704 | return -self._round_down(prec)
|
|---|
| 1705 |
|
|---|
| 1706 | def _round_05up(self, prec):
|
|---|
| 1707 | """Round down unless digit prec-1 is 0 or 5."""
|
|---|
| 1708 | if prec and self._int[prec-1] not in '05':
|
|---|
| 1709 | return self._round_down(prec)
|
|---|
| 1710 | else:
|
|---|
| 1711 | return -self._round_down(prec)
|
|---|
| 1712 |
|
|---|
| 1713 | def fma(self, other, third, context=None):
|
|---|
| 1714 | """Fused multiply-add.
|
|---|
| 1715 |
|
|---|
| 1716 | Returns self*other+third with no rounding of the intermediate
|
|---|
| 1717 | product self*other.
|
|---|
| 1718 |
|
|---|
| 1719 | self and other are multiplied together, with no rounding of
|
|---|
| 1720 | the result. The third operand is then added to the result,
|
|---|
| 1721 | and a single final rounding is performed.
|
|---|
| 1722 | """
|
|---|
| 1723 |
|
|---|
| 1724 | other = _convert_other(other, raiseit=True)
|
|---|
| 1725 |
|
|---|
| 1726 | # compute product; raise InvalidOperation if either operand is
|
|---|
| 1727 | # a signaling NaN or if the product is zero times infinity.
|
|---|
| 1728 | if self._is_special or other._is_special:
|
|---|
| 1729 | if context is None:
|
|---|
| 1730 | context = getcontext()
|
|---|
| 1731 | if self._exp == 'N':
|
|---|
| 1732 | return context._raise_error(InvalidOperation, 'sNaN', self)
|
|---|
| 1733 | if other._exp == 'N':
|
|---|
| 1734 | return context._raise_error(InvalidOperation, 'sNaN', other)
|
|---|
| 1735 | if self._exp == 'n':
|
|---|
| 1736 | product = self
|
|---|
| 1737 | elif other._exp == 'n':
|
|---|
| 1738 | product = other
|
|---|
| 1739 | elif self._exp == 'F':
|
|---|
| 1740 | if not other:
|
|---|
| 1741 | return context._raise_error(InvalidOperation,
|
|---|
| 1742 | 'INF * 0 in fma')
|
|---|
| 1743 | product = _SignedInfinity[self._sign ^ other._sign]
|
|---|
| 1744 | elif other._exp == 'F':
|
|---|
| 1745 | if not self:
|
|---|
| 1746 | return context._raise_error(InvalidOperation,
|
|---|
| 1747 | '0 * INF in fma')
|
|---|
| 1748 | product = _SignedInfinity[self._sign ^ other._sign]
|
|---|
| 1749 | else:
|
|---|
| 1750 | product = _dec_from_triple(self._sign ^ other._sign,
|
|---|
| 1751 | str(int(self._int) * int(other._int)),
|
|---|
| 1752 | self._exp + other._exp)
|
|---|
| 1753 |
|
|---|
| 1754 | third = _convert_other(third, raiseit=True)
|
|---|
| 1755 | return product.__add__(third, context)
|
|---|
| 1756 |
|
|---|
| 1757 | def _power_modulo(self, other, modulo, context=None):
|
|---|
| 1758 | """Three argument version of __pow__"""
|
|---|
| 1759 |
|
|---|
| 1760 | # if can't convert other and modulo to Decimal, raise
|
|---|
| 1761 | # TypeError; there's no point returning NotImplemented (no
|
|---|
| 1762 | # equivalent of __rpow__ for three argument pow)
|
|---|
| 1763 | other = _convert_other(other, raiseit=True)
|
|---|
| 1764 | modulo = _convert_other(modulo, raiseit=True)
|
|---|
| 1765 |
|
|---|
| 1766 | if context is None:
|
|---|
| 1767 | context = getcontext()
|
|---|
| 1768 |
|
|---|
| 1769 | # deal with NaNs: if there are any sNaNs then first one wins,
|
|---|
| 1770 | # (i.e. behaviour for NaNs is identical to that of fma)
|
|---|
| 1771 | self_is_nan = self._isnan()
|
|---|
| 1772 | other_is_nan = other._isnan()
|
|---|
| 1773 | modulo_is_nan = modulo._isnan()
|
|---|
| 1774 | if self_is_nan or other_is_nan or modulo_is_nan:
|
|---|
| 1775 | if self_is_nan == 2:
|
|---|
| 1776 | return context._raise_error(InvalidOperation, 'sNaN',
|
|---|
| 1777 | self)
|
|---|
| 1778 | if other_is_nan == 2:
|
|---|
| 1779 | return context._raise_error(InvalidOperation, 'sNaN',
|
|---|
| 1780 | other)
|
|---|
| 1781 | if modulo_is_nan == 2:
|
|---|
| 1782 | return context._raise_error(InvalidOperation, 'sNaN',
|
|---|
| 1783 | modulo)
|
|---|
| 1784 | if self_is_nan:
|
|---|
| 1785 | return self._fix_nan(context)
|
|---|
| 1786 | if other_is_nan:
|
|---|
| 1787 | return other._fix_nan(context)
|
|---|
| 1788 | return modulo._fix_nan(context)
|
|---|
| 1789 |
|
|---|
| 1790 | # check inputs: we apply same restrictions as Python's pow()
|
|---|
| 1791 | if not (self._isinteger() and
|
|---|
| 1792 | other._isinteger() and
|
|---|
| 1793 | modulo._isinteger()):
|
|---|
| 1794 | return context._raise_error(InvalidOperation,
|
|---|
| 1795 | 'pow() 3rd argument not allowed '
|
|---|
| 1796 | 'unless all arguments are integers')
|
|---|
| 1797 | if other < 0:
|
|---|
| 1798 | return context._raise_error(InvalidOperation,
|
|---|
| 1799 | 'pow() 2nd argument cannot be '
|
|---|
| 1800 | 'negative when 3rd argument specified')
|
|---|
| 1801 | if not modulo:
|
|---|
| 1802 | return context._raise_error(InvalidOperation,
|
|---|
| 1803 | 'pow() 3rd argument cannot be 0')
|
|---|
| 1804 |
|
|---|
| 1805 | # additional restriction for decimal: the modulus must be less
|
|---|
| 1806 | # than 10**prec in absolute value
|
|---|
| 1807 | if modulo.adjusted() >= context.prec:
|
|---|
| 1808 | return context._raise_error(InvalidOperation,
|
|---|
| 1809 | 'insufficient precision: pow() 3rd '
|
|---|
| 1810 | 'argument must not have more than '
|
|---|
| 1811 | 'precision digits')
|
|---|
| 1812 |
|
|---|
| 1813 | # define 0**0 == NaN, for consistency with two-argument pow
|
|---|
| 1814 | # (even though it hurts!)
|
|---|
| 1815 | if not other and not self:
|
|---|
| 1816 | return context._raise_error(InvalidOperation,
|
|---|
| 1817 | 'at least one of pow() 1st argument '
|
|---|
| 1818 | 'and 2nd argument must be nonzero ;'
|
|---|
| 1819 | '0**0 is not defined')
|
|---|
| 1820 |
|
|---|
| 1821 | # compute sign of result
|
|---|
| 1822 | if other._iseven():
|
|---|
| 1823 | sign = 0
|
|---|
| 1824 | else:
|
|---|
| 1825 | sign = self._sign
|
|---|
| 1826 |
|
|---|
| 1827 | # convert modulo to a Python integer, and self and other to
|
|---|
| 1828 | # Decimal integers (i.e. force their exponents to be >= 0)
|
|---|
| 1829 | modulo = abs(int(modulo))
|
|---|
| 1830 | base = _WorkRep(self.to_integral_value())
|
|---|
| 1831 | exponent = _WorkRep(other.to_integral_value())
|
|---|
| 1832 |
|
|---|
| 1833 | # compute result using integer pow()
|
|---|
| 1834 | base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
|
|---|
| 1835 | for i in xrange(exponent.exp):
|
|---|
| 1836 | base = pow(base, 10, modulo)
|
|---|
| 1837 | base = pow(base, exponent.int, modulo)
|
|---|
| 1838 |
|
|---|
| 1839 | return _dec_from_triple(sign, str(base), 0)
|
|---|
| 1840 |
|
|---|
| 1841 | def _power_exact(self, other, p):
|
|---|
| 1842 | """Attempt to compute self**other exactly.
|
|---|
| 1843 |
|
|---|
| 1844 | Given Decimals self and other and an integer p, attempt to
|
|---|
| 1845 | compute an exact result for the power self**other, with p
|
|---|
| 1846 | digits of precision. Return None if self**other is not
|
|---|
| 1847 | exactly representable in p digits.
|
|---|
| 1848 |
|
|---|
| 1849 | Assumes that elimination of special cases has already been
|
|---|
| 1850 | performed: self and other must both be nonspecial; self must
|
|---|
| 1851 | be positive and not numerically equal to 1; other must be
|
|---|
| 1852 | nonzero. For efficiency, other._exp should not be too large,
|
|---|
| 1853 | so that 10**abs(other._exp) is a feasible calculation."""
|
|---|
| 1854 |
|
|---|
| 1855 | # In the comments below, we write x for the value of self and
|
|---|
| 1856 | # y for the value of other. Write x = xc*10**xe and y =
|
|---|
| 1857 | # yc*10**ye.
|
|---|
| 1858 |
|
|---|
| 1859 | # The main purpose of this method is to identify the *failure*
|
|---|
| 1860 | # of x**y to be exactly representable with as little effort as
|
|---|
| 1861 | # possible. So we look for cheap and easy tests that
|
|---|
| 1862 | # eliminate the possibility of x**y being exact. Only if all
|
|---|
| 1863 | # these tests are passed do we go on to actually compute x**y.
|
|---|
| 1864 |
|
|---|
| 1865 | # Here's the main idea. First normalize both x and y. We
|
|---|
| 1866 | # express y as a rational m/n, with m and n relatively prime
|
|---|
| 1867 | # and n>0. Then for x**y to be exactly representable (at
|
|---|
| 1868 | # *any* precision), xc must be the nth power of a positive
|
|---|
| 1869 | # integer and xe must be divisible by n. If m is negative
|
|---|
| 1870 | # then additionally xc must be a power of either 2 or 5, hence
|
|---|
| 1871 | # a power of 2**n or 5**n.
|
|---|
| 1872 | #
|
|---|
| 1873 | # There's a limit to how small |y| can be: if y=m/n as above
|
|---|
| 1874 | # then:
|
|---|
| 1875 | #
|
|---|
| 1876 | # (1) if xc != 1 then for the result to be representable we
|
|---|
| 1877 | # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
|
|---|
| 1878 | # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
|
|---|
| 1879 | # 2**(1/|y|), hence xc**|y| < 2 and the result is not
|
|---|
| 1880 | # representable.
|
|---|
| 1881 | #
|
|---|
| 1882 | # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
|
|---|
| 1883 | # |y| < 1/|xe| then the result is not representable.
|
|---|
| 1884 | #
|
|---|
| 1885 | # Note that since x is not equal to 1, at least one of (1) and
|
|---|
| 1886 | # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
|
|---|
| 1887 | # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
|
|---|
| 1888 | #
|
|---|
| 1889 | # There's also a limit to how large y can be, at least if it's
|
|---|
| 1890 | # positive: the normalized result will have coefficient xc**y,
|
|---|
| 1891 | # so if it's representable then xc**y < 10**p, and y <
|
|---|
| 1892 | # p/log10(xc). Hence if y*log10(xc) >= p then the result is
|
|---|
| 1893 | # not exactly representable.
|
|---|
| 1894 |
|
|---|
| 1895 | # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
|
|---|
| 1896 | # so |y| < 1/xe and the result is not representable.
|
|---|
| 1897 | # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
|
|---|
| 1898 | # < 1/nbits(xc).
|
|---|
| 1899 |
|
|---|
| 1900 | x = _WorkRep(self)
|
|---|
| 1901 | xc, xe = x.int, x.exp
|
|---|
| 1902 | while xc % 10 == 0:
|
|---|
| 1903 | xc //= 10
|
|---|
| 1904 | xe += 1
|
|---|
| 1905 |
|
|---|
| 1906 | y = _WorkRep(other)
|
|---|
| 1907 | yc, ye = y.int, y.exp
|
|---|
| 1908 | while yc % 10 == 0:
|
|---|
| 1909 | yc //= 10
|
|---|
| 1910 | ye += 1
|
|---|
| 1911 |
|
|---|
| 1912 | # case where xc == 1: result is 10**(xe*y), with xe*y
|
|---|
| 1913 | # required to be an integer
|
|---|
| 1914 | if xc == 1:
|
|---|
| 1915 | if ye >= 0:
|
|---|
| 1916 | exponent = xe*yc*10**ye
|
|---|
| 1917 | else:
|
|---|
| 1918 | exponent, remainder = divmod(xe*yc, 10**-ye)
|
|---|
| 1919 | if remainder:
|
|---|
| 1920 | return None
|
|---|
| 1921 | if y.sign == 1:
|
|---|
| 1922 | exponent = -exponent
|
|---|
| 1923 | # if other is a nonnegative integer, use ideal exponent
|
|---|
| 1924 | if other._isinteger() and other._sign == 0:
|
|---|
| 1925 | ideal_exponent = self._exp*int(other)
|
|---|
| 1926 | zeros = min(exponent-ideal_exponent, p-1)
|
|---|
| 1927 | else:
|
|---|
| 1928 | zeros = 0
|
|---|
| 1929 | return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
|
|---|
| 1930 |
|
|---|
| 1931 | # case where y is negative: xc must be either a power
|
|---|
| 1932 | # of 2 or a power of 5.
|
|---|
| 1933 | if y.sign == 1:
|
|---|
| 1934 | last_digit = xc % 10
|
|---|
| 1935 | if last_digit in (2,4,6,8):
|
|---|
| 1936 | # quick test for power of 2
|
|---|
| 1937 | if xc & -xc != xc:
|
|---|
| 1938 | return None
|
|---|
| 1939 | # now xc is a power of 2; e is its exponent
|
|---|
| 1940 | e = _nbits(xc)-1
|
|---|
| 1941 | # find e*y and xe*y; both must be integers
|
|---|
| 1942 | if ye >= 0:
|
|---|
| 1943 | y_as_int = yc*10**ye
|
|---|
| 1944 | e = e*y_as_int
|
|---|
| 1945 | xe = xe*y_as_int
|
|---|
| 1946 | else:
|
|---|
| 1947 | ten_pow = 10**-ye
|
|---|
| 1948 | e, remainder = divmod(e*yc, ten_pow)
|
|---|
| 1949 | if remainder:
|
|---|
| 1950 | return None
|
|---|
| 1951 | xe, remainder = divmod(xe*yc, ten_pow)
|
|---|
| 1952 | if remainder:
|
|---|
| 1953 | return None
|
|---|
| 1954 |
|
|---|
| 1955 | if e*65 >= p*93: # 93/65 > log(10)/log(5)
|
|---|
| 1956 | return None
|
|---|
| 1957 | xc = 5**e
|
|---|
| 1958 |
|
|---|
| 1959 | elif last_digit == 5:
|
|---|
| 1960 | # e >= log_5(xc) if xc is a power of 5; we have
|
|---|
| 1961 | # equality all the way up to xc=5**2658
|
|---|
| 1962 | e = _nbits(xc)*28//65
|
|---|
| 1963 | xc, remainder = divmod(5**e, xc)
|
|---|
| 1964 | if remainder:
|
|---|
| 1965 | return None
|
|---|
| 1966 | while xc % 5 == 0:
|
|---|
| 1967 | xc //= 5
|
|---|
| 1968 | e -= 1
|
|---|
| 1969 | if ye >= 0:
|
|---|
| 1970 | y_as_integer = yc*10**ye
|
|---|
| 1971 | e = e*y_as_integer
|
|---|
| 1972 | xe = xe*y_as_integer
|
|---|
| 1973 | else:
|
|---|
| 1974 | ten_pow = 10**-ye
|
|---|
| 1975 | e, remainder = divmod(e*yc, ten_pow)
|
|---|
| 1976 | if remainder:
|
|---|
| 1977 | return None
|
|---|
| 1978 | xe, remainder = divmod(xe*yc, ten_pow)
|
|---|
| 1979 | if remainder:
|
|---|
| 1980 | return None
|
|---|
| 1981 | if e*3 >= p*10: # 10/3 > log(10)/log(2)
|
|---|
| 1982 | return None
|
|---|
| 1983 | xc = 2**e
|
|---|
| 1984 | else:
|
|---|
| 1985 | return None
|
|---|
| 1986 |
|
|---|
| 1987 | if xc >= 10**p:
|
|---|
| 1988 | return None
|
|---|
| 1989 | xe = -e-xe
|
|---|
| 1990 | return _dec_from_triple(0, str(xc), xe)
|
|---|
| 1991 |
|
|---|
| 1992 | # now y is positive; find m and n such that y = m/n
|
|---|
| 1993 | if ye >= 0:
|
|---|
| 1994 | m, n = yc*10**ye, 1
|
|---|
| 1995 | else:
|
|---|
| 1996 | if xe != 0 and len(str(abs(yc*xe))) <= -ye:
|
|---|
| 1997 | return None
|
|---|
| 1998 | xc_bits = _nbits(xc)
|
|---|
| 1999 | if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
|
|---|
| 2000 | return None
|
|---|
| 2001 | m, n = yc, 10**(-ye)
|
|---|
| 2002 | while m % 2 == n % 2 == 0:
|
|---|
| 2003 | m //= 2
|
|---|
| 2004 | n //= 2
|
|---|
| 2005 | while m % 5 == n % 5 == 0:
|
|---|
| 2006 | m //= 5
|
|---|
| 2007 | n //= 5
|
|---|
| 2008 |
|
|---|
| 2009 | # compute nth root of xc*10**xe
|
|---|
| 2010 | if n > 1:
|
|---|
| 2011 | # if 1 < xc < 2**n then xc isn't an nth power
|
|---|
| 2012 | if xc != 1 and xc_bits <= n:
|
|---|
| 2013 | return None
|
|---|
| 2014 |
|
|---|
| 2015 | xe, rem = divmod(xe, n)
|
|---|
| 2016 | if rem != 0:
|
|---|
| 2017 | return None
|
|---|
| 2018 |
|
|---|
| 2019 | # compute nth root of xc using Newton's method
|
|---|
| 2020 | a = 1L << -(-_nbits(xc)//n) # initial estimate
|
|---|
| 2021 | while True:
|
|---|
| 2022 | q, r = divmod(xc, a**(n-1))
|
|---|
| 2023 | if a <= q:
|
|---|
| 2024 | break
|
|---|
| 2025 | else:
|
|---|
| 2026 | a = (a*(n-1) + q)//n
|
|---|
| 2027 | if not (a == q and r == 0):
|
|---|
| 2028 | return None
|
|---|
| 2029 | xc = a
|
|---|
| 2030 |
|
|---|
| 2031 | # now xc*10**xe is the nth root of the original xc*10**xe
|
|---|
| 2032 | # compute mth power of xc*10**xe
|
|---|
| 2033 |
|
|---|
| 2034 | # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
|
|---|
| 2035 | # 10**p and the result is not representable.
|
|---|
| 2036 | if xc > 1 and m > p*100//_log10_lb(xc):
|
|---|
| 2037 | return None
|
|---|
| 2038 | xc = xc**m
|
|---|
| 2039 | xe *= m
|
|---|
| 2040 | if xc > 10**p:
|
|---|
| 2041 | return None
|
|---|
| 2042 |
|
|---|
| 2043 | # by this point the result *is* exactly representable
|
|---|
| 2044 | # adjust the exponent to get as close as possible to the ideal
|
|---|
| 2045 | # exponent, if necessary
|
|---|
| 2046 | str_xc = str(xc)
|
|---|
| 2047 | if other._isinteger() and other._sign == 0:
|
|---|
| 2048 | ideal_exponent = self._exp*int(other)
|
|---|
| 2049 | zeros = min(xe-ideal_exponent, p-len(str_xc))
|
|---|
| 2050 | else:
|
|---|
| 2051 | zeros = 0
|
|---|
| 2052 | return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
|
|---|
| 2053 |
|
|---|
| 2054 | def __pow__(self, other, modulo=None, context=None):
|
|---|
| 2055 | """Return self ** other [ % modulo].
|
|---|
| 2056 |
|
|---|
| 2057 | With two arguments, compute self**other.
|
|---|
| 2058 |
|
|---|
| 2059 | With three arguments, compute (self**other) % modulo. For the
|
|---|
| 2060 | three argument form, the following restrictions on the
|
|---|
| 2061 | arguments hold:
|
|---|
| 2062 |
|
|---|
| 2063 | - all three arguments must be integral
|
|---|
| 2064 | - other must be nonnegative
|
|---|
| 2065 | - either self or other (or both) must be nonzero
|
|---|
| 2066 | - modulo must be nonzero and must have at most p digits,
|
|---|
| 2067 | where p is the context precision.
|
|---|
| 2068 |
|
|---|
| 2069 | If any of these restrictions is violated the InvalidOperation
|
|---|
| 2070 | flag is raised.
|
|---|
| 2071 |
|
|---|
| 2072 | The result of pow(self, other, modulo) is identical to the
|
|---|
| 2073 | result that would be obtained by computing (self**other) %
|
|---|
| 2074 | modulo with unbounded precision, but is computed more
|
|---|
| 2075 | efficiently. It is always exact.
|
|---|
| 2076 | """
|
|---|
| 2077 |
|
|---|
| 2078 | if modulo is not None:
|
|---|
| 2079 | return self._power_modulo(other, modulo, context)
|
|---|
| 2080 |
|
|---|
| 2081 | other = _convert_other(other)
|
|---|
| 2082 | if other is NotImplemented:
|
|---|
| 2083 | return other
|
|---|
| 2084 |
|
|---|
| 2085 | if context is None:
|
|---|
| 2086 | context = getcontext()
|
|---|
| 2087 |
|
|---|
| 2088 | # either argument is a NaN => result is NaN
|
|---|
| 2089 | ans = self._check_nans(other, context)
|
|---|
| 2090 | if ans:
|
|---|
| 2091 | return ans
|
|---|
| 2092 |
|
|---|
| 2093 | # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
|
|---|
| 2094 | if not other:
|
|---|
| 2095 | if not self:
|
|---|
| 2096 | return context._raise_error(InvalidOperation, '0 ** 0')
|
|---|
| 2097 | else:
|
|---|
| 2098 | return _One
|
|---|
| 2099 |
|
|---|
| 2100 | # result has sign 1 iff self._sign is 1 and other is an odd integer
|
|---|
| 2101 | result_sign = 0
|
|---|
| 2102 | if self._sign == 1:
|
|---|
| 2103 | if other._isinteger():
|
|---|
| 2104 | if not other._iseven():
|
|---|
| 2105 | result_sign = 1
|
|---|
| 2106 | else:
|
|---|
| 2107 | # -ve**noninteger = NaN
|
|---|
| 2108 | # (-0)**noninteger = 0**noninteger
|
|---|
| 2109 | if self:
|
|---|
| 2110 | return context._raise_error(InvalidOperation,
|
|---|
| 2111 | 'x ** y with x negative and y not an integer')
|
|---|
| 2112 | # negate self, without doing any unwanted rounding
|
|---|
| 2113 | self = self.copy_negate()
|
|---|
| 2114 |
|
|---|
| 2115 | # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
|
|---|
| 2116 | if not self:
|
|---|
| 2117 | if other._sign == 0:
|
|---|
| 2118 | return _dec_from_triple(result_sign, '0', 0)
|
|---|
| 2119 | else:
|
|---|
| 2120 | return _SignedInfinity[result_sign]
|
|---|
| 2121 |
|
|---|
| 2122 | # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
|
|---|
| 2123 | if self._isinfinity():
|
|---|
| 2124 | if other._sign == 0:
|
|---|
| 2125 | return _SignedInfinity[result_sign]
|
|---|
| 2126 | else:
|
|---|
| 2127 | return _dec_from_triple(result_sign, '0', 0)
|
|---|
| 2128 |
|
|---|
| 2129 | # 1**other = 1, but the choice of exponent and the flags
|
|---|
| 2130 | # depend on the exponent of self, and on whether other is a
|
|---|
| 2131 | # positive integer, a negative integer, or neither
|
|---|
| 2132 | if self == _One:
|
|---|
| 2133 | if other._isinteger():
|
|---|
| 2134 | # exp = max(self._exp*max(int(other), 0),
|
|---|
| 2135 | # 1-context.prec) but evaluating int(other) directly
|
|---|
| 2136 | # is dangerous until we know other is small (other
|
|---|
| 2137 | # could be 1e999999999)
|
|---|
| 2138 | if other._sign == 1:
|
|---|
| 2139 | multiplier = 0
|
|---|
| 2140 | elif other > context.prec:
|
|---|
| 2141 | multiplier = context.prec
|
|---|
| 2142 | else:
|
|---|
| 2143 | multiplier = int(other)
|
|---|
| 2144 |
|
|---|
| 2145 | exp = self._exp * multiplier
|
|---|
| 2146 | if exp < 1-context.prec:
|
|---|
| 2147 | exp = 1-context.prec
|
|---|
| 2148 | context._raise_error(Rounded)
|
|---|
| 2149 | else:
|
|---|
| 2150 | context._raise_error(Inexact)
|
|---|
| 2151 | context._raise_error(Rounded)
|
|---|
| 2152 | exp = 1-context.prec
|
|---|
| 2153 |
|
|---|
| 2154 | return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
|
|---|
| 2155 |
|
|---|
| 2156 | # compute adjusted exponent of self
|
|---|
| 2157 | self_adj = self.adjusted()
|
|---|
| 2158 |
|
|---|
| 2159 | # self ** infinity is infinity if self > 1, 0 if self < 1
|
|---|
| 2160 | # self ** -infinity is infinity if self < 1, 0 if self > 1
|
|---|
| 2161 | if other._isinfinity():
|
|---|
| 2162 | if (other._sign == 0) == (self_adj < 0):
|
|---|
| 2163 | return _dec_from_triple(result_sign, '0', 0)
|
|---|
| 2164 | else:
|
|---|
| 2165 | return _SignedInfinity[result_sign]
|
|---|
| 2166 |
|
|---|
| 2167 | # from here on, the result always goes through the call
|
|---|
| 2168 | # to _fix at the end of this function.
|
|---|
| 2169 | ans = None
|
|---|
| 2170 |
|
|---|
| 2171 | # crude test to catch cases of extreme overflow/underflow. If
|
|---|
| 2172 | # log10(self)*other >= 10**bound and bound >= len(str(Emax))
|
|---|
| 2173 | # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
|
|---|
| 2174 | # self**other >= 10**(Emax+1), so overflow occurs. The test
|
|---|
| 2175 | # for underflow is similar.
|
|---|
| 2176 | bound = self._log10_exp_bound() + other.adjusted()
|
|---|
| 2177 | if (self_adj >= 0) == (other._sign == 0):
|
|---|
| 2178 | # self > 1 and other +ve, or self < 1 and other -ve
|
|---|
| 2179 | # possibility of overflow
|
|---|
| 2180 | if bound >= len(str(context.Emax)):
|
|---|
| 2181 | ans = _dec_from_triple(result_sign, '1', context.Emax+1)
|
|---|
| 2182 | else:
|
|---|
| 2183 | # self > 1 and other -ve, or self < 1 and other +ve
|
|---|
| 2184 | # possibility of underflow to 0
|
|---|
| 2185 | Etiny = context.Etiny()
|
|---|
| 2186 | if bound >= len(str(-Etiny)):
|
|---|
| 2187 | ans = _dec_from_triple(result_sign, '1', Etiny-1)
|
|---|
| 2188 |
|
|---|
| 2189 | # try for an exact result with precision +1
|
|---|
| 2190 | if ans is None:
|
|---|
| 2191 | ans = self._power_exact(other, context.prec + 1)
|
|---|
| 2192 | if ans is not None and result_sign == 1:
|
|---|
| 2193 | ans = _dec_from_triple(1, ans._int, ans._exp)
|
|---|
| 2194 |
|
|---|
| 2195 | # usual case: inexact result, x**y computed directly as exp(y*log(x))
|
|---|
| 2196 | if ans is None:
|
|---|
| 2197 | p = context.prec
|
|---|
| 2198 | x = _WorkRep(self)
|
|---|
| 2199 | xc, xe = x.int, x.exp
|
|---|
| 2200 | y = _WorkRep(other)
|
|---|
| 2201 | yc, ye = y.int, y.exp
|
|---|
| 2202 | if y.sign == 1:
|
|---|
| 2203 | yc = -yc
|
|---|
| 2204 |
|
|---|
| 2205 | # compute correctly rounded result: start with precision +3,
|
|---|
| 2206 | # then increase precision until result is unambiguously roundable
|
|---|
| 2207 | extra = 3
|
|---|
| 2208 | while True:
|
|---|
| 2209 | coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
|
|---|
| 2210 | if coeff % (5*10**(len(str(coeff))-p-1)):
|
|---|
| 2211 | break
|
|---|
| 2212 | extra += 3
|
|---|
| 2213 |
|
|---|
| 2214 | ans = _dec_from_triple(result_sign, str(coeff), exp)
|
|---|
| 2215 |
|
|---|
| 2216 | # the specification says that for non-integer other we need to
|
|---|
| 2217 | # raise Inexact, even when the result is actually exact. In
|
|---|
| 2218 | # the same way, we need to raise Underflow here if the result
|
|---|
| 2219 | # is subnormal. (The call to _fix will take care of raising
|
|---|
| 2220 | # Rounded and Subnormal, as usual.)
|
|---|
| 2221 | if not other._isinteger():
|
|---|
| 2222 | context._raise_error(Inexact)
|
|---|
| 2223 | # pad with zeros up to length context.prec+1 if necessary
|
|---|
| 2224 | if len(ans._int) <= context.prec:
|
|---|
| 2225 | expdiff = context.prec+1 - len(ans._int)
|
|---|
| 2226 | ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
|
|---|
| 2227 | ans._exp-expdiff)
|
|---|
| 2228 | if ans.adjusted() < context.Emin:
|
|---|
| 2229 | context._raise_error(Underflow)
|
|---|
| 2230 |
|
|---|
| 2231 | # unlike exp, ln and log10, the power function respects the
|
|---|
| 2232 | # rounding mode; no need to use ROUND_HALF_EVEN here
|
|---|
| 2233 | ans = ans._fix(context)
|
|---|
| 2234 | return ans
|
|---|
| 2235 |
|
|---|
| 2236 | def __rpow__(self, other, context=None):
|
|---|
| 2237 | """Swaps self/other and returns __pow__."""
|
|---|
| 2238 | other = _convert_other(other)
|
|---|
| 2239 | if other is NotImplemented:
|
|---|
| 2240 | return other
|
|---|
| 2241 | return other.__pow__(self, context=context)
|
|---|
| 2242 |
|
|---|
| 2243 | def normalize(self, context=None):
|
|---|
| 2244 | """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
|
|---|
| 2245 |
|
|---|
| 2246 | if context is None:
|
|---|
| 2247 | context = getcontext()
|
|---|
| 2248 |
|
|---|
| 2249 | if self._is_special:
|
|---|
| 2250 | ans = self._check_nans(context=context)
|
|---|
| 2251 | if ans:
|
|---|
| 2252 | return ans
|
|---|
| 2253 |
|
|---|
| 2254 | dup = self._fix(context)
|
|---|
| 2255 | if dup._isinfinity():
|
|---|
| 2256 | return dup
|
|---|
| 2257 |
|
|---|
| 2258 | if not dup:
|
|---|
| 2259 | return _dec_from_triple(dup._sign, '0', 0)
|
|---|
| 2260 | exp_max = [context.Emax, context.Etop()][context._clamp]
|
|---|
| 2261 | end = len(dup._int)
|
|---|
| 2262 | exp = dup._exp
|
|---|
| 2263 | while dup._int[end-1] == '0' and exp < exp_max:
|
|---|
| 2264 | exp += 1
|
|---|
| 2265 | end -= 1
|
|---|
| 2266 | return _dec_from_triple(dup._sign, dup._int[:end], exp)
|
|---|
| 2267 |
|
|---|
| 2268 | def quantize(self, exp, rounding=None, context=None, watchexp=True):
|
|---|
| 2269 | """Quantize self so its exponent is the same as that of exp.
|
|---|
| 2270 |
|
|---|
| 2271 | Similar to self._rescale(exp._exp) but with error checking.
|
|---|
| 2272 | """
|
|---|
| 2273 | exp = _convert_other(exp, raiseit=True)
|
|---|
| 2274 |
|
|---|
| 2275 | if context is None:
|
|---|
| 2276 | context = getcontext()
|
|---|
| 2277 | if rounding is None:
|
|---|
| 2278 | rounding = context.rounding
|
|---|
| 2279 |
|
|---|
| 2280 | if self._is_special or exp._is_special:
|
|---|
| 2281 | ans = self._check_nans(exp, context)
|
|---|
| 2282 | if ans:
|
|---|
| 2283 | return ans
|
|---|
| 2284 |
|
|---|
| 2285 | if exp._isinfinity() or self._isinfinity():
|
|---|
| 2286 | if exp._isinfinity() and self._isinfinity():
|
|---|
| 2287 | return Decimal(self) # if both are inf, it is OK
|
|---|
| 2288 | return context._raise_error(InvalidOperation,
|
|---|
| 2289 | 'quantize with one INF')
|
|---|
| 2290 |
|
|---|
| 2291 | # if we're not watching exponents, do a simple rescale
|
|---|
| 2292 | if not watchexp:
|
|---|
| 2293 | ans = self._rescale(exp._exp, rounding)
|
|---|
| 2294 | # raise Inexact and Rounded where appropriate
|
|---|
| 2295 | if ans._exp > self._exp:
|
|---|
| 2296 | context._raise_error(Rounded)
|
|---|
| 2297 | if ans != self:
|
|---|
| 2298 | context._raise_error(Inexact)
|
|---|
| 2299 | return ans
|
|---|
| 2300 |
|
|---|
| 2301 | # exp._exp should be between Etiny and Emax
|
|---|
| 2302 | if not (context.Etiny() <= exp._exp <= context.Emax):
|
|---|
| 2303 | return context._raise_error(InvalidOperation,
|
|---|
| 2304 | 'target exponent out of bounds in quantize')
|
|---|
| 2305 |
|
|---|
| 2306 | if not self:
|
|---|
| 2307 | ans = _dec_from_triple(self._sign, '0', exp._exp)
|
|---|
| 2308 | return ans._fix(context)
|
|---|
| 2309 |
|
|---|
| 2310 | self_adjusted = self.adjusted()
|
|---|
| 2311 | if self_adjusted > context.Emax:
|
|---|
| 2312 | return context._raise_error(InvalidOperation,
|
|---|
| 2313 | 'exponent of quantize result too large for current context')
|
|---|
| 2314 | if self_adjusted - exp._exp + 1 > context.prec:
|
|---|
| 2315 | return context._raise_error(InvalidOperation,
|
|---|
| 2316 | 'quantize result has too many digits for current context')
|
|---|
| 2317 |
|
|---|
| 2318 | ans = self._rescale(exp._exp, rounding)
|
|---|
| 2319 | if ans.adjusted() > context.Emax:
|
|---|
| 2320 | return context._raise_error(InvalidOperation,
|
|---|
| 2321 | 'exponent of quantize result too large for current context')
|
|---|
| 2322 | if len(ans._int) > context.prec:
|
|---|
| 2323 | return context._raise_error(InvalidOperation,
|
|---|
| 2324 | 'quantize result has too many digits for current context')
|
|---|
| 2325 |
|
|---|
| 2326 | # raise appropriate flags
|
|---|
| 2327 | if ans._exp > self._exp:
|
|---|
| 2328 | context._raise_error(Rounded)
|
|---|
| 2329 | if ans != self:
|
|---|
| 2330 | context._raise_error(Inexact)
|
|---|
| 2331 | if ans and ans.adjusted() < context.Emin:
|
|---|
| 2332 | context._raise_error(Subnormal)
|
|---|
| 2333 |
|
|---|
| 2334 | # call to fix takes care of any necessary folddown
|
|---|
| 2335 | ans = ans._fix(context)
|
|---|
| 2336 | return ans
|
|---|
| 2337 |
|
|---|
| 2338 | def same_quantum(self, other):
|
|---|
| 2339 | """Return True if self and other have the same exponent; otherwise
|
|---|
| 2340 | return False.
|
|---|
| 2341 |
|
|---|
| 2342 | If either operand is a special value, the following rules are used:
|
|---|
| 2343 | * return True if both operands are infinities
|
|---|
| 2344 | * return True if both operands are NaNs
|
|---|
| 2345 | * otherwise, return False.
|
|---|
| 2346 | """
|
|---|
| 2347 | other = _convert_other(other, raiseit=True)
|
|---|
| 2348 | if self._is_special or other._is_special:
|
|---|
| 2349 | return (self.is_nan() and other.is_nan() or
|
|---|
| 2350 | self.is_infinite() and other.is_infinite())
|
|---|
| 2351 | return self._exp == other._exp
|
|---|
| 2352 |
|
|---|
| 2353 | def _rescale(self, exp, rounding):
|
|---|
| 2354 | """Rescale self so that the exponent is exp, either by padding with zeros
|
|---|
| 2355 | or by truncating digits, using the given rounding mode.
|
|---|
| 2356 |
|
|---|
| 2357 | Specials are returned without change. This operation is
|
|---|
| 2358 | quiet: it raises no flags, and uses no information from the
|
|---|
| 2359 | context.
|
|---|
| 2360 |
|
|---|
| 2361 | exp = exp to scale to (an integer)
|
|---|
| 2362 | rounding = rounding mode
|
|---|
| 2363 | """
|
|---|
| 2364 | if self._is_special:
|
|---|
| 2365 | return Decimal(self)
|
|---|
| 2366 | if not self:
|
|---|
| 2367 | return _dec_from_triple(self._sign, '0', exp)
|
|---|
| 2368 |
|
|---|
| 2369 | if self._exp >= exp:
|
|---|
| 2370 | # pad answer with zeros if necessary
|
|---|
| 2371 | return _dec_from_triple(self._sign,
|
|---|
| 2372 | self._int + '0'*(self._exp - exp), exp)
|
|---|
| 2373 |
|
|---|
| 2374 | # too many digits; round and lose data. If self.adjusted() <
|
|---|
| 2375 | # exp-1, replace self by 10**(exp-1) before rounding
|
|---|
| 2376 | digits = len(self._int) + self._exp - exp
|
|---|
| 2377 | if digits < 0:
|
|---|
| 2378 | self = _dec_from_triple(self._sign, '1', exp-1)
|
|---|
| 2379 | digits = 0
|
|---|
| 2380 | this_function = getattr(self, self._pick_rounding_function[rounding])
|
|---|
| 2381 | changed = this_function(digits)
|
|---|
| 2382 | coeff = self._int[:digits] or '0'
|
|---|
| 2383 | if changed == 1:
|
|---|
| 2384 | coeff = str(int(coeff)+1)
|
|---|
| 2385 | return _dec_from_triple(self._sign, coeff, exp)
|
|---|
| 2386 |
|
|---|
| 2387 | def _round(self, places, rounding):
|
|---|
| 2388 | """Round a nonzero, nonspecial Decimal to a fixed number of
|
|---|
| 2389 | significant figures, using the given rounding mode.
|
|---|
| 2390 |
|
|---|
| 2391 | Infinities, NaNs and zeros are returned unaltered.
|
|---|
| 2392 |
|
|---|
| 2393 | This operation is quiet: it raises no flags, and uses no
|
|---|
| 2394 | information from the context.
|
|---|
| 2395 |
|
|---|
| 2396 | """
|
|---|
| 2397 | if places <= 0:
|
|---|
| 2398 | raise ValueError("argument should be at least 1 in _round")
|
|---|
| 2399 | if self._is_special or not self:
|
|---|
| 2400 | return Decimal(self)
|
|---|
| 2401 | ans = self._rescale(self.adjusted()+1-places, rounding)
|
|---|
| 2402 | # it can happen that the rescale alters the adjusted exponent;
|
|---|
| 2403 | # for example when rounding 99.97 to 3 significant figures.
|
|---|
| 2404 | # When this happens we end up with an extra 0 at the end of
|
|---|
| 2405 | # the number; a second rescale fixes this.
|
|---|
| 2406 | if ans.adjusted() != self.adjusted():
|
|---|
| 2407 | ans = ans._rescale(ans.adjusted()+1-places, rounding)
|
|---|
| 2408 | return ans
|
|---|
| 2409 |
|
|---|
| 2410 | def to_integral_exact(self, rounding=None, context=None):
|
|---|
| 2411 | """Rounds to a nearby integer.
|
|---|
| 2412 |
|
|---|
| 2413 | If no rounding mode is specified, take the rounding mode from
|
|---|
| 2414 | the context. This method raises the Rounded and Inexact flags
|
|---|
| 2415 | when appropriate.
|
|---|
| 2416 |
|
|---|
| 2417 | See also: to_integral_value, which does exactly the same as
|
|---|
| 2418 | this method except that it doesn't raise Inexact or Rounded.
|
|---|
| 2419 | """
|
|---|
| 2420 | if self._is_special:
|
|---|
| 2421 | ans = self._check_nans(context=context)
|
|---|
| 2422 | if ans:
|
|---|
| 2423 | return ans
|
|---|
| 2424 | return Decimal(self)
|
|---|
| 2425 | if self._exp >= 0:
|
|---|
| 2426 | return Decimal(self)
|
|---|
| 2427 | if not self:
|
|---|
| 2428 | return _dec_from_triple(self._sign, '0', 0)
|
|---|
| 2429 | if context is None:
|
|---|
| 2430 | context = getcontext()
|
|---|
| 2431 | if rounding is None:
|
|---|
| 2432 | rounding = context.rounding
|
|---|
| 2433 | context._raise_error(Rounded)
|
|---|
| 2434 | ans = self._rescale(0, rounding)
|
|---|
| 2435 | if ans != self:
|
|---|
| 2436 | context._raise_error(Inexact)
|
|---|
| 2437 | return ans
|
|---|
| 2438 |
|
|---|
| 2439 | def to_integral_value(self, rounding=None, context=None):
|
|---|
| 2440 | """Rounds to the nearest integer, without raising inexact, rounded."""
|
|---|
| 2441 | if context is None:
|
|---|
| 2442 | context = getcontext()
|
|---|
| 2443 | if rounding is None:
|
|---|
| 2444 | rounding = context.rounding
|
|---|
| 2445 | if self._is_special:
|
|---|
| 2446 | ans = self._check_nans(context=context)
|
|---|
| 2447 | if ans:
|
|---|
| 2448 | return ans
|
|---|
| 2449 | return Decimal(self)
|
|---|
| 2450 | if self._exp >= 0:
|
|---|
| 2451 | return Decimal(self)
|
|---|
| 2452 | else:
|
|---|
| 2453 | return self._rescale(0, rounding)
|
|---|
| 2454 |
|
|---|
| 2455 | # the method name changed, but we provide also the old one, for compatibility
|
|---|
| 2456 | to_integral = to_integral_value
|
|---|
| 2457 |
|
|---|
| 2458 | def sqrt(self, context=None):
|
|---|
| 2459 | """Return the square root of self."""
|
|---|
| 2460 | if context is None:
|
|---|
| 2461 | context = getcontext()
|
|---|
| 2462 |
|
|---|
| 2463 | if self._is_special:
|
|---|
| 2464 | ans = self._check_nans(context=context)
|
|---|
| 2465 | if ans:
|
|---|
| 2466 | return ans
|
|---|
| 2467 |
|
|---|
| 2468 | if self._isinfinity() and self._sign == 0:
|
|---|
| 2469 | return Decimal(self)
|
|---|
| 2470 |
|
|---|
| 2471 | if not self:
|
|---|
| 2472 | # exponent = self._exp // 2. sqrt(-0) = -0
|
|---|
| 2473 | ans = _dec_from_triple(self._sign, '0', self._exp // 2)
|
|---|
| 2474 | return ans._fix(context)
|
|---|
| 2475 |
|
|---|
| 2476 | if self._sign == 1:
|
|---|
| 2477 | return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
|
|---|
| 2478 |
|
|---|
| 2479 | # At this point self represents a positive number. Let p be
|
|---|
| 2480 | # the desired precision and express self in the form c*100**e
|
|---|
| 2481 | # with c a positive real number and e an integer, c and e
|
|---|
| 2482 | # being chosen so that 100**(p-1) <= c < 100**p. Then the
|
|---|
| 2483 | # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
|
|---|
| 2484 | # <= sqrt(c) < 10**p, so the closest representable Decimal at
|
|---|
| 2485 | # precision p is n*10**e where n = round_half_even(sqrt(c)),
|
|---|
| 2486 | # the closest integer to sqrt(c) with the even integer chosen
|
|---|
| 2487 | # in the case of a tie.
|
|---|
| 2488 | #
|
|---|
| 2489 | # To ensure correct rounding in all cases, we use the
|
|---|
| 2490 | # following trick: we compute the square root to an extra
|
|---|
| 2491 | # place (precision p+1 instead of precision p), rounding down.
|
|---|
| 2492 | # Then, if the result is inexact and its last digit is 0 or 5,
|
|---|
| 2493 | # we increase the last digit to 1 or 6 respectively; if it's
|
|---|
| 2494 | # exact we leave the last digit alone. Now the final round to
|
|---|
| 2495 | # p places (or fewer in the case of underflow) will round
|
|---|
| 2496 | # correctly and raise the appropriate flags.
|
|---|
| 2497 |
|
|---|
| 2498 | # use an extra digit of precision
|
|---|
| 2499 | prec = context.prec+1
|
|---|
| 2500 |
|
|---|
| 2501 | # write argument in the form c*100**e where e = self._exp//2
|
|---|
| 2502 | # is the 'ideal' exponent, to be used if the square root is
|
|---|
| 2503 | # exactly representable. l is the number of 'digits' of c in
|
|---|
| 2504 | # base 100, so that 100**(l-1) <= c < 100**l.
|
|---|
| 2505 | op = _WorkRep(self)
|
|---|
| 2506 | e = op.exp >> 1
|
|---|
| 2507 | if op.exp & 1:
|
|---|
| 2508 | c = op.int * 10
|
|---|
| 2509 | l = (len(self._int) >> 1) + 1
|
|---|
| 2510 | else:
|
|---|
| 2511 | c = op.int
|
|---|
| 2512 | l = len(self._int)+1 >> 1
|
|---|
| 2513 |
|
|---|
| 2514 | # rescale so that c has exactly prec base 100 'digits'
|
|---|
| 2515 | shift = prec-l
|
|---|
| 2516 | if shift >= 0:
|
|---|
| 2517 | c *= 100**shift
|
|---|
| 2518 | exact = True
|
|---|
| 2519 | else:
|
|---|
| 2520 | c, remainder = divmod(c, 100**-shift)
|
|---|
| 2521 | exact = not remainder
|
|---|
| 2522 | e -= shift
|
|---|
| 2523 |
|
|---|
| 2524 | # find n = floor(sqrt(c)) using Newton's method
|
|---|
| 2525 | n = 10**prec
|
|---|
| 2526 | while True:
|
|---|
| 2527 | q = c//n
|
|---|
| 2528 | if n <= q:
|
|---|
| 2529 | break
|
|---|
| 2530 | else:
|
|---|
| 2531 | n = n + q >> 1
|
|---|
| 2532 | exact = exact and n*n == c
|
|---|
| 2533 |
|
|---|
| 2534 | if exact:
|
|---|
| 2535 | # result is exact; rescale to use ideal exponent e
|
|---|
| 2536 | if shift >= 0:
|
|---|
| 2537 | # assert n % 10**shift == 0
|
|---|
| 2538 | n //= 10**shift
|
|---|
| 2539 | else:
|
|---|
| 2540 | n *= 10**-shift
|
|---|
| 2541 | e += shift
|
|---|
| 2542 | else:
|
|---|
| 2543 | # result is not exact; fix last digit as described above
|
|---|
| 2544 | if n % 5 == 0:
|
|---|
| 2545 | n += 1
|
|---|
| 2546 |
|
|---|
| 2547 | ans = _dec_from_triple(0, str(n), e)
|
|---|
| 2548 |
|
|---|
| 2549 | # round, and fit to current context
|
|---|
| 2550 | context = context._shallow_copy()
|
|---|
| 2551 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
|---|
| 2552 | ans = ans._fix(context)
|
|---|
| 2553 | context.rounding = rounding
|
|---|
| 2554 |
|
|---|
| 2555 | return ans
|
|---|
| 2556 |
|
|---|
| 2557 | def max(self, other, context=None):
|
|---|
| 2558 | """Returns the larger value.
|
|---|
| 2559 |
|
|---|
| 2560 | Like max(self, other) except if one is not a number, returns
|
|---|
| 2561 | NaN (and signals if one is sNaN). Also rounds.
|
|---|
| 2562 | """
|
|---|
| 2563 | other = _convert_other(other, raiseit=True)
|
|---|
| 2564 |
|
|---|
| 2565 | if context is None:
|
|---|
| 2566 | context = getcontext()
|
|---|
| 2567 |
|
|---|
| 2568 | if self._is_special or other._is_special:
|
|---|
| 2569 | # If one operand is a quiet NaN and the other is number, then the
|
|---|
| 2570 | # number is always returned
|
|---|
| 2571 | sn = self._isnan()
|
|---|
| 2572 | on = other._isnan()
|
|---|
| 2573 | if sn or on:
|
|---|
| 2574 | if on == 1 and sn == 0:
|
|---|
| 2575 | return self._fix(context)
|
|---|
| 2576 | if sn == 1 and on == 0:
|
|---|
| 2577 | return other._fix(context)
|
|---|
| 2578 | return self._check_nans(other, context)
|
|---|
| 2579 |
|
|---|
| 2580 | c = self._cmp(other)
|
|---|
| 2581 | if c == 0:
|
|---|
| 2582 | # If both operands are finite and equal in numerical value
|
|---|
| 2583 | # then an ordering is applied:
|
|---|
| 2584 | #
|
|---|
| 2585 | # If the signs differ then max returns the operand with the
|
|---|
| 2586 | # positive sign and min returns the operand with the negative sign
|
|---|
| 2587 | #
|
|---|
| 2588 | # If the signs are the same then the exponent is used to select
|
|---|
| 2589 | # the result. This is exactly the ordering used in compare_total.
|
|---|
| 2590 | c = self.compare_total(other)
|
|---|
| 2591 |
|
|---|
| 2592 | if c == -1:
|
|---|
| 2593 | ans = other
|
|---|
| 2594 | else:
|
|---|
| 2595 | ans = self
|
|---|
| 2596 |
|
|---|
| 2597 | return ans._fix(context)
|
|---|
| 2598 |
|
|---|
| 2599 | def min(self, other, context=None):
|
|---|
| 2600 | """Returns the smaller value.
|
|---|
| 2601 |
|
|---|
| 2602 | Like min(self, other) except if one is not a number, returns
|
|---|
| 2603 | NaN (and signals if one is sNaN). Also rounds.
|
|---|
| 2604 | """
|
|---|
| 2605 | other = _convert_other(other, raiseit=True)
|
|---|
| 2606 |
|
|---|
| 2607 | if context is None:
|
|---|
| 2608 | context = getcontext()
|
|---|
| 2609 |
|
|---|
| 2610 | if self._is_special or other._is_special:
|
|---|
| 2611 | # If one operand is a quiet NaN and the other is number, then the
|
|---|
| 2612 | # number is always returned
|
|---|
| 2613 | sn = self._isnan()
|
|---|
| 2614 | on = other._isnan()
|
|---|
| 2615 | if sn or on:
|
|---|
| 2616 | if on == 1 and sn == 0:
|
|---|
| 2617 | return self._fix(context)
|
|---|
| 2618 | if sn == 1 and on == 0:
|
|---|
| 2619 | return other._fix(context)
|
|---|
| 2620 | return self._check_nans(other, context)
|
|---|
| 2621 |
|
|---|
| 2622 | c = self._cmp(other)
|
|---|
| 2623 | if c == 0:
|
|---|
| 2624 | c = self.compare_total(other)
|
|---|
| 2625 |
|
|---|
| 2626 | if c == -1:
|
|---|
| 2627 | ans = self
|
|---|
| 2628 | else:
|
|---|
| 2629 | ans = other
|
|---|
| 2630 |
|
|---|
| 2631 | return ans._fix(context)
|
|---|
| 2632 |
|
|---|
| 2633 | def _isinteger(self):
|
|---|
| 2634 | """Returns whether self is an integer"""
|
|---|
| 2635 | if self._is_special:
|
|---|
| 2636 | return False
|
|---|
| 2637 | if self._exp >= 0:
|
|---|
| 2638 | return True
|
|---|
| 2639 | rest = self._int[self._exp:]
|
|---|
| 2640 | return rest == '0'*len(rest)
|
|---|
| 2641 |
|
|---|
| 2642 | def _iseven(self):
|
|---|
| 2643 | """Returns True if self is even. Assumes self is an integer."""
|
|---|
| 2644 | if not self or self._exp > 0:
|
|---|
| 2645 | return True
|
|---|
| 2646 | return self._int[-1+self._exp] in '02468'
|
|---|
| 2647 |
|
|---|
| 2648 | def adjusted(self):
|
|---|
| 2649 | """Return the adjusted exponent of self"""
|
|---|
| 2650 | try:
|
|---|
| 2651 | return self._exp + len(self._int) - 1
|
|---|
| 2652 | # If NaN or Infinity, self._exp is string
|
|---|
| 2653 | except TypeError:
|
|---|
| 2654 | return 0
|
|---|
| 2655 |
|
|---|
| 2656 | def canonical(self, context=None):
|
|---|
| 2657 | """Returns the same Decimal object.
|
|---|
| 2658 |
|
|---|
| 2659 | As we do not have different encodings for the same number, the
|
|---|
| 2660 | received object already is in its canonical form.
|
|---|
| 2661 | """
|
|---|
| 2662 | return self
|
|---|
| 2663 |
|
|---|
| 2664 | def compare_signal(self, other, context=None):
|
|---|
| 2665 | """Compares self to the other operand numerically.
|
|---|
| 2666 |
|
|---|
| 2667 | It's pretty much like compare(), but all NaNs signal, with signaling
|
|---|
| 2668 | NaNs taking precedence over quiet NaNs.
|
|---|
| 2669 | """
|
|---|
| 2670 | other = _convert_other(other, raiseit = True)
|
|---|
| 2671 | ans = self._compare_check_nans(other, context)
|
|---|
| 2672 | if ans:
|
|---|
| 2673 | return ans
|
|---|
| 2674 | return self.compare(other, context=context)
|
|---|
| 2675 |
|
|---|
| 2676 | def compare_total(self, other):
|
|---|
| 2677 | """Compares self to other using the abstract representations.
|
|---|
| 2678 |
|
|---|
| 2679 | This is not like the standard compare, which use their numerical
|
|---|
| 2680 | value. Note that a total ordering is defined for all possible abstract
|
|---|
| 2681 | representations.
|
|---|
| 2682 | """
|
|---|
| 2683 | other = _convert_other(other, raiseit=True)
|
|---|
| 2684 |
|
|---|
| 2685 | # if one is negative and the other is positive, it's easy
|
|---|
| 2686 | if self._sign and not other._sign:
|
|---|
| 2687 | return _NegativeOne
|
|---|
| 2688 | if not self._sign and other._sign:
|
|---|
| 2689 | return _One
|
|---|
| 2690 | sign = self._sign
|
|---|
| 2691 |
|
|---|
| 2692 | # let's handle both NaN types
|
|---|
| 2693 | self_nan = self._isnan()
|
|---|
| 2694 | other_nan = other._isnan()
|
|---|
| 2695 | if self_nan or other_nan:
|
|---|
| 2696 | if self_nan == other_nan:
|
|---|
| 2697 | # compare payloads as though they're integers
|
|---|
| 2698 | self_key = len(self._int), self._int
|
|---|
| 2699 | other_key = len(other._int), other._int
|
|---|
| 2700 | if self_key < other_key:
|
|---|
| 2701 | if sign:
|
|---|
| 2702 | return _One
|
|---|
| 2703 | else:
|
|---|
| 2704 | return _NegativeOne
|
|---|
| 2705 | if self_key > other_key:
|
|---|
| 2706 | if sign:
|
|---|
| 2707 | return _NegativeOne
|
|---|
| 2708 | else:
|
|---|
| 2709 | return _One
|
|---|
| 2710 | return _Zero
|
|---|
| 2711 |
|
|---|
| 2712 | if sign:
|
|---|
| 2713 | if self_nan == 1:
|
|---|
| 2714 | return _NegativeOne
|
|---|
| 2715 | if other_nan == 1:
|
|---|
| 2716 | return _One
|
|---|
| 2717 | if self_nan == 2:
|
|---|
| 2718 | return _NegativeOne
|
|---|
| 2719 | if other_nan == 2:
|
|---|
| 2720 | return _One
|
|---|
| 2721 | else:
|
|---|
| 2722 | if self_nan == 1:
|
|---|
| 2723 | return _One
|
|---|
| 2724 | if other_nan == 1:
|
|---|
| 2725 | return _NegativeOne
|
|---|
| 2726 | if self_nan == 2:
|
|---|
| 2727 | return _One
|
|---|
| 2728 | if other_nan == 2:
|
|---|
| 2729 | return _NegativeOne
|
|---|
| 2730 |
|
|---|
| 2731 | if self < other:
|
|---|
| 2732 | return _NegativeOne
|
|---|
| 2733 | if self > other:
|
|---|
| 2734 | return _One
|
|---|
| 2735 |
|
|---|
| 2736 | if self._exp < other._exp:
|
|---|
| 2737 | if sign:
|
|---|
| 2738 | return _One
|
|---|
| 2739 | else:
|
|---|
| 2740 | return _NegativeOne
|
|---|
| 2741 | if self._exp > other._exp:
|
|---|
| 2742 | if sign:
|
|---|
| 2743 | return _NegativeOne
|
|---|
| 2744 | else:
|
|---|
| 2745 | return _One
|
|---|
| 2746 | return _Zero
|
|---|
| 2747 |
|
|---|
| 2748 |
|
|---|
| 2749 | def compare_total_mag(self, other):
|
|---|
| 2750 | """Compares self to other using abstract repr., ignoring sign.
|
|---|
| 2751 |
|
|---|
| 2752 | Like compare_total, but with operand's sign ignored and assumed to be 0.
|
|---|
| 2753 | """
|
|---|
| 2754 | other = _convert_other(other, raiseit=True)
|
|---|
| 2755 |
|
|---|
| 2756 | s = self.copy_abs()
|
|---|
| 2757 | o = other.copy_abs()
|
|---|
| 2758 | return s.compare_total(o)
|
|---|
| 2759 |
|
|---|
| 2760 | def copy_abs(self):
|
|---|
| 2761 | """Returns a copy with the sign set to 0. """
|
|---|
| 2762 | return _dec_from_triple(0, self._int, self._exp, self._is_special)
|
|---|
| 2763 |
|
|---|
| 2764 | def copy_negate(self):
|
|---|
| 2765 | """Returns a copy with the sign inverted."""
|
|---|
| 2766 | if self._sign:
|
|---|
| 2767 | return _dec_from_triple(0, self._int, self._exp, self._is_special)
|
|---|
| 2768 | else:
|
|---|
| 2769 | return _dec_from_triple(1, self._int, self._exp, self._is_special)
|
|---|
| 2770 |
|
|---|
| 2771 | def copy_sign(self, other):
|
|---|
| 2772 | """Returns self with the sign of other."""
|
|---|
| 2773 | return _dec_from_triple(other._sign, self._int,
|
|---|
| 2774 | self._exp, self._is_special)
|
|---|
| 2775 |
|
|---|
| 2776 | def exp(self, context=None):
|
|---|
| 2777 | """Returns e ** self."""
|
|---|
| 2778 |
|
|---|
| 2779 | if context is None:
|
|---|
| 2780 | context = getcontext()
|
|---|
| 2781 |
|
|---|
| 2782 | # exp(NaN) = NaN
|
|---|
| 2783 | ans = self._check_nans(context=context)
|
|---|
| 2784 | if ans:
|
|---|
| 2785 | return ans
|
|---|
| 2786 |
|
|---|
| 2787 | # exp(-Infinity) = 0
|
|---|
| 2788 | if self._isinfinity() == -1:
|
|---|
| 2789 | return _Zero
|
|---|
| 2790 |
|
|---|
| 2791 | # exp(0) = 1
|
|---|
| 2792 | if not self:
|
|---|
| 2793 | return _One
|
|---|
| 2794 |
|
|---|
| 2795 | # exp(Infinity) = Infinity
|
|---|
| 2796 | if self._isinfinity() == 1:
|
|---|
| 2797 | return Decimal(self)
|
|---|
| 2798 |
|
|---|
| 2799 | # the result is now guaranteed to be inexact (the true
|
|---|
| 2800 | # mathematical result is transcendental). There's no need to
|
|---|
| 2801 | # raise Rounded and Inexact here---they'll always be raised as
|
|---|
| 2802 | # a result of the call to _fix.
|
|---|
| 2803 | p = context.prec
|
|---|
| 2804 | adj = self.adjusted()
|
|---|
| 2805 |
|
|---|
| 2806 | # we only need to do any computation for quite a small range
|
|---|
| 2807 | # of adjusted exponents---for example, -29 <= adj <= 10 for
|
|---|
| 2808 | # the default context. For smaller exponent the result is
|
|---|
| 2809 | # indistinguishable from 1 at the given precision, while for
|
|---|
| 2810 | # larger exponent the result either overflows or underflows.
|
|---|
| 2811 | if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
|
|---|
| 2812 | # overflow
|
|---|
| 2813 | ans = _dec_from_triple(0, '1', context.Emax+1)
|
|---|
| 2814 | elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
|
|---|
| 2815 | # underflow to 0
|
|---|
| 2816 | ans = _dec_from_triple(0, '1', context.Etiny()-1)
|
|---|
| 2817 | elif self._sign == 0 and adj < -p:
|
|---|
| 2818 | # p+1 digits; final round will raise correct flags
|
|---|
| 2819 | ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
|
|---|
| 2820 | elif self._sign == 1 and adj < -p-1:
|
|---|
| 2821 | # p+1 digits; final round will raise correct flags
|
|---|
| 2822 | ans = _dec_from_triple(0, '9'*(p+1), -p-1)
|
|---|
| 2823 | # general case
|
|---|
| 2824 | else:
|
|---|
| 2825 | op = _WorkRep(self)
|
|---|
| 2826 | c, e = op.int, op.exp
|
|---|
| 2827 | if op.sign == 1:
|
|---|
| 2828 | c = -c
|
|---|
| 2829 |
|
|---|
| 2830 | # compute correctly rounded result: increase precision by
|
|---|
| 2831 | # 3 digits at a time until we get an unambiguously
|
|---|
| 2832 | # roundable result
|
|---|
| 2833 | extra = 3
|
|---|
| 2834 | while True:
|
|---|
| 2835 | coeff, exp = _dexp(c, e, p+extra)
|
|---|
| 2836 | if coeff % (5*10**(len(str(coeff))-p-1)):
|
|---|
| 2837 | break
|
|---|
| 2838 | extra += 3
|
|---|
| 2839 |
|
|---|
| 2840 | ans = _dec_from_triple(0, str(coeff), exp)
|
|---|
| 2841 |
|
|---|
| 2842 | # at this stage, ans should round correctly with *any*
|
|---|
| 2843 | # rounding mode, not just with ROUND_HALF_EVEN
|
|---|
| 2844 | context = context._shallow_copy()
|
|---|
| 2845 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
|---|
| 2846 | ans = ans._fix(context)
|
|---|
| 2847 | context.rounding = rounding
|
|---|
| 2848 |
|
|---|
| 2849 | return ans
|
|---|
| 2850 |
|
|---|
| 2851 | def is_canonical(self):
|
|---|
| 2852 | """Return True if self is canonical; otherwise return False.
|
|---|
| 2853 |
|
|---|
| 2854 | Currently, the encoding of a Decimal instance is always
|
|---|
| 2855 | canonical, so this method returns True for any Decimal.
|
|---|
| 2856 | """
|
|---|
| 2857 | return True
|
|---|
| 2858 |
|
|---|
| 2859 | def is_finite(self):
|
|---|
| 2860 | """Return True if self is finite; otherwise return False.
|
|---|
| 2861 |
|
|---|
| 2862 | A Decimal instance is considered finite if it is neither
|
|---|
| 2863 | infinite nor a NaN.
|
|---|
| 2864 | """
|
|---|
| 2865 | return not self._is_special
|
|---|
| 2866 |
|
|---|
| 2867 | def is_infinite(self):
|
|---|
| 2868 | """Return True if self is infinite; otherwise return False."""
|
|---|
| 2869 | return self._exp == 'F'
|
|---|
| 2870 |
|
|---|
| 2871 | def is_nan(self):
|
|---|
| 2872 | """Return True if self is a qNaN or sNaN; otherwise return False."""
|
|---|
| 2873 | return self._exp in ('n', 'N')
|
|---|
| 2874 |
|
|---|
| 2875 | def is_normal(self, context=None):
|
|---|
| 2876 | """Return True if self is a normal number; otherwise return False."""
|
|---|
| 2877 | if self._is_special or not self:
|
|---|
| 2878 | return False
|
|---|
| 2879 | if context is None:
|
|---|
| 2880 | context = getcontext()
|
|---|
| 2881 | return context.Emin <= self.adjusted()
|
|---|
| 2882 |
|
|---|
| 2883 | def is_qnan(self):
|
|---|
| 2884 | """Return True if self is a quiet NaN; otherwise return False."""
|
|---|
| 2885 | return self._exp == 'n'
|
|---|
| 2886 |
|
|---|
| 2887 | def is_signed(self):
|
|---|
| 2888 | """Return True if self is negative; otherwise return False."""
|
|---|
| 2889 | return self._sign == 1
|
|---|
| 2890 |
|
|---|
| 2891 | def is_snan(self):
|
|---|
| 2892 | """Return True if self is a signaling NaN; otherwise return False."""
|
|---|
| 2893 | return self._exp == 'N'
|
|---|
| 2894 |
|
|---|
| 2895 | def is_subnormal(self, context=None):
|
|---|
| 2896 | """Return True if self is subnormal; otherwise return False."""
|
|---|
| 2897 | if self._is_special or not self:
|
|---|
| 2898 | return False
|
|---|
| 2899 | if context is None:
|
|---|
| 2900 | context = getcontext()
|
|---|
| 2901 | return self.adjusted() < context.Emin
|
|---|
| 2902 |
|
|---|
| 2903 | def is_zero(self):
|
|---|
| 2904 | """Return True if self is a zero; otherwise return False."""
|
|---|
| 2905 | return not self._is_special and self._int == '0'
|
|---|
| 2906 |
|
|---|
| 2907 | def _ln_exp_bound(self):
|
|---|
| 2908 | """Compute a lower bound for the adjusted exponent of self.ln().
|
|---|
| 2909 | In other words, compute r such that self.ln() >= 10**r. Assumes
|
|---|
| 2910 | that self is finite and positive and that self != 1.
|
|---|
| 2911 | """
|
|---|
| 2912 |
|
|---|
| 2913 | # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
|
|---|
| 2914 | adj = self._exp + len(self._int) - 1
|
|---|
| 2915 | if adj >= 1:
|
|---|
| 2916 | # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
|
|---|
| 2917 | return len(str(adj*23//10)) - 1
|
|---|
| 2918 | if adj <= -2:
|
|---|
| 2919 | # argument <= 0.1
|
|---|
| 2920 | return len(str((-1-adj)*23//10)) - 1
|
|---|
| 2921 | op = _WorkRep(self)
|
|---|
| 2922 | c, e = op.int, op.exp
|
|---|
| 2923 | if adj == 0:
|
|---|
| 2924 | # 1 < self < 10
|
|---|
| 2925 | num = str(c-10**-e)
|
|---|
| 2926 | den = str(c)
|
|---|
| 2927 | return len(num) - len(den) - (num < den)
|
|---|
| 2928 | # adj == -1, 0.1 <= self < 1
|
|---|
| 2929 | return e + len(str(10**-e - c)) - 1
|
|---|
| 2930 |
|
|---|
| 2931 |
|
|---|
| 2932 | def ln(self, context=None):
|
|---|
| 2933 | """Returns the natural (base e) logarithm of self."""
|
|---|
| 2934 |
|
|---|
| 2935 | if context is None:
|
|---|
| 2936 | context = getcontext()
|
|---|
| 2937 |
|
|---|
| 2938 | # ln(NaN) = NaN
|
|---|
| 2939 | ans = self._check_nans(context=context)
|
|---|
| 2940 | if ans:
|
|---|
| 2941 | return ans
|
|---|
| 2942 |
|
|---|
| 2943 | # ln(0.0) == -Infinity
|
|---|
| 2944 | if not self:
|
|---|
| 2945 | return _NegativeInfinity
|
|---|
| 2946 |
|
|---|
| 2947 | # ln(Infinity) = Infinity
|
|---|
| 2948 | if self._isinfinity() == 1:
|
|---|
| 2949 | return _Infinity
|
|---|
| 2950 |
|
|---|
| 2951 | # ln(1.0) == 0.0
|
|---|
| 2952 | if self == _One:
|
|---|
| 2953 | return _Zero
|
|---|
| 2954 |
|
|---|
| 2955 | # ln(negative) raises InvalidOperation
|
|---|
| 2956 | if self._sign == 1:
|
|---|
| 2957 | return context._raise_error(InvalidOperation,
|
|---|
| 2958 | 'ln of a negative value')
|
|---|
| 2959 |
|
|---|
| 2960 | # result is irrational, so necessarily inexact
|
|---|
| 2961 | op = _WorkRep(self)
|
|---|
| 2962 | c, e = op.int, op.exp
|
|---|
| 2963 | p = context.prec
|
|---|
| 2964 |
|
|---|
| 2965 | # correctly rounded result: repeatedly increase precision by 3
|
|---|
| 2966 | # until we get an unambiguously roundable result
|
|---|
| 2967 | places = p - self._ln_exp_bound() + 2 # at least p+3 places
|
|---|
| 2968 | while True:
|
|---|
| 2969 | coeff = _dlog(c, e, places)
|
|---|
| 2970 | # assert len(str(abs(coeff)))-p >= 1
|
|---|
| 2971 | if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
|
|---|
| 2972 | break
|
|---|
| 2973 | places += 3
|
|---|
| 2974 | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
|
|---|
| 2975 |
|
|---|
| 2976 | context = context._shallow_copy()
|
|---|
| 2977 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
|---|
| 2978 | ans = ans._fix(context)
|
|---|
| 2979 | context.rounding = rounding
|
|---|
| 2980 | return ans
|
|---|
| 2981 |
|
|---|
| 2982 | def _log10_exp_bound(self):
|
|---|
| 2983 | """Compute a lower bound for the adjusted exponent of self.log10().
|
|---|
| 2984 | In other words, find r such that self.log10() >= 10**r.
|
|---|
| 2985 | Assumes that self is finite and positive and that self != 1.
|
|---|
| 2986 | """
|
|---|
| 2987 |
|
|---|
| 2988 | # For x >= 10 or x < 0.1 we only need a bound on the integer
|
|---|
| 2989 | # part of log10(self), and this comes directly from the
|
|---|
| 2990 | # exponent of x. For 0.1 <= x <= 10 we use the inequalities
|
|---|
| 2991 | # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
|
|---|
| 2992 | # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
|
|---|
| 2993 |
|
|---|
| 2994 | adj = self._exp + len(self._int) - 1
|
|---|
| 2995 | if adj >= 1:
|
|---|
| 2996 | # self >= 10
|
|---|
| 2997 | return len(str(adj))-1
|
|---|
| 2998 | if adj <= -2:
|
|---|
| 2999 | # self < 0.1
|
|---|
| 3000 | return len(str(-1-adj))-1
|
|---|
| 3001 | op = _WorkRep(self)
|
|---|
| 3002 | c, e = op.int, op.exp
|
|---|
| 3003 | if adj == 0:
|
|---|
| 3004 | # 1 < self < 10
|
|---|
| 3005 | num = str(c-10**-e)
|
|---|
| 3006 | den = str(231*c)
|
|---|
| 3007 | return len(num) - len(den) - (num < den) + 2
|
|---|
| 3008 | # adj == -1, 0.1 <= self < 1
|
|---|
| 3009 | num = str(10**-e-c)
|
|---|
| 3010 | return len(num) + e - (num < "231") - 1
|
|---|
| 3011 |
|
|---|
| 3012 | def log10(self, context=None):
|
|---|
| 3013 | """Returns the base 10 logarithm of self."""
|
|---|
| 3014 |
|
|---|
| 3015 | if context is None:
|
|---|
| 3016 | context = getcontext()
|
|---|
| 3017 |
|
|---|
| 3018 | # log10(NaN) = NaN
|
|---|
| 3019 | ans = self._check_nans(context=context)
|
|---|
| 3020 | if ans:
|
|---|
| 3021 | return ans
|
|---|
| 3022 |
|
|---|
| 3023 | # log10(0.0) == -Infinity
|
|---|
| 3024 | if not self:
|
|---|
| 3025 | return _NegativeInfinity
|
|---|
| 3026 |
|
|---|
| 3027 | # log10(Infinity) = Infinity
|
|---|
| 3028 | if self._isinfinity() == 1:
|
|---|
| 3029 | return _Infinity
|
|---|
| 3030 |
|
|---|
| 3031 | # log10(negative or -Infinity) raises InvalidOperation
|
|---|
| 3032 | if self._sign == 1:
|
|---|
| 3033 | return context._raise_error(InvalidOperation,
|
|---|
| 3034 | 'log10 of a negative value')
|
|---|
| 3035 |
|
|---|
| 3036 | # log10(10**n) = n
|
|---|
| 3037 | if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
|
|---|
| 3038 | # answer may need rounding
|
|---|
| 3039 | ans = Decimal(self._exp + len(self._int) - 1)
|
|---|
| 3040 | else:
|
|---|
| 3041 | # result is irrational, so necessarily inexact
|
|---|
| 3042 | op = _WorkRep(self)
|
|---|
| 3043 | c, e = op.int, op.exp
|
|---|
| 3044 | p = context.prec
|
|---|
| 3045 |
|
|---|
| 3046 | # correctly rounded result: repeatedly increase precision
|
|---|
| 3047 | # until result is unambiguously roundable
|
|---|
| 3048 | places = p-self._log10_exp_bound()+2
|
|---|
| 3049 | while True:
|
|---|
| 3050 | coeff = _dlog10(c, e, places)
|
|---|
| 3051 | # assert len(str(abs(coeff)))-p >= 1
|
|---|
| 3052 | if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
|
|---|
| 3053 | break
|
|---|
| 3054 | places += 3
|
|---|
| 3055 | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
|
|---|
| 3056 |
|
|---|
| 3057 | context = context._shallow_copy()
|
|---|
| 3058 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
|---|
| 3059 | ans = ans._fix(context)
|
|---|
| 3060 | context.rounding = rounding
|
|---|
| 3061 | return ans
|
|---|
| 3062 |
|
|---|
| 3063 | def logb(self, context=None):
|
|---|
| 3064 | """ Returns the exponent of the magnitude of self's MSD.
|
|---|
| 3065 |
|
|---|
| 3066 | The result is the integer which is the exponent of the magnitude
|
|---|
| 3067 | of the most significant digit of self (as though it were truncated
|
|---|
| 3068 | to a single digit while maintaining the value of that digit and
|
|---|
| 3069 | without limiting the resulting exponent).
|
|---|
| 3070 | """
|
|---|
| 3071 | # logb(NaN) = NaN
|
|---|
| 3072 | ans = self._check_nans(context=context)
|
|---|
| 3073 | if ans:
|
|---|
| 3074 | return ans
|
|---|
| 3075 |
|
|---|
| 3076 | if context is None:
|
|---|
| 3077 | context = getcontext()
|
|---|
| 3078 |
|
|---|
| 3079 | # logb(+/-Inf) = +Inf
|
|---|
| 3080 | if self._isinfinity():
|
|---|
| 3081 | return _Infinity
|
|---|
| 3082 |
|
|---|
| 3083 | # logb(0) = -Inf, DivisionByZero
|
|---|
| 3084 | if not self:
|
|---|
| 3085 | return context._raise_error(DivisionByZero, 'logb(0)', 1)
|
|---|
| 3086 |
|
|---|
| 3087 | # otherwise, simply return the adjusted exponent of self, as a
|
|---|
| 3088 | # Decimal. Note that no attempt is made to fit the result
|
|---|
| 3089 | # into the current context.
|
|---|
| 3090 | ans = Decimal(self.adjusted())
|
|---|
| 3091 | return ans._fix(context)
|
|---|
| 3092 |
|
|---|
| 3093 | def _islogical(self):
|
|---|
| 3094 | """Return True if self is a logical operand.
|
|---|
| 3095 |
|
|---|
| 3096 | For being logical, it must be a finite number with a sign of 0,
|
|---|
| 3097 | an exponent of 0, and a coefficient whose digits must all be
|
|---|
| 3098 | either 0 or 1.
|
|---|
| 3099 | """
|
|---|
| 3100 | if self._sign != 0 or self._exp != 0:
|
|---|
| 3101 | return False
|
|---|
| 3102 | for dig in self._int:
|
|---|
| 3103 | if dig not in '01':
|
|---|
| 3104 | return False
|
|---|
| 3105 | return True
|
|---|
| 3106 |
|
|---|
| 3107 | def _fill_logical(self, context, opa, opb):
|
|---|
| 3108 | dif = context.prec - len(opa)
|
|---|
| 3109 | if dif > 0:
|
|---|
| 3110 | opa = '0'*dif + opa
|
|---|
| 3111 | elif dif < 0:
|
|---|
| 3112 | opa = opa[-context.prec:]
|
|---|
| 3113 | dif = context.prec - len(opb)
|
|---|
| 3114 | if dif > 0:
|
|---|
| 3115 | opb = '0'*dif + opb
|
|---|
| 3116 | elif dif < 0:
|
|---|
| 3117 | opb = opb[-context.prec:]
|
|---|
| 3118 | return opa, opb
|
|---|
| 3119 |
|
|---|
| 3120 | def logical_and(self, other, context=None):
|
|---|
| 3121 | """Applies an 'and' operation between self and other's digits."""
|
|---|
| 3122 | if context is None:
|
|---|
| 3123 | context = getcontext()
|
|---|
| 3124 |
|
|---|
| 3125 | other = _convert_other(other, raiseit=True)
|
|---|
| 3126 |
|
|---|
| 3127 | if not self._islogical() or not other._islogical():
|
|---|
| 3128 | return context._raise_error(InvalidOperation)
|
|---|
| 3129 |
|
|---|
| 3130 | # fill to context.prec
|
|---|
| 3131 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
|---|
| 3132 |
|
|---|
| 3133 | # make the operation, and clean starting zeroes
|
|---|
| 3134 | result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
|
|---|
| 3135 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
|---|
| 3136 |
|
|---|
| 3137 | def logical_invert(self, context=None):
|
|---|
| 3138 | """Invert all its digits."""
|
|---|
| 3139 | if context is None:
|
|---|
| 3140 | context = getcontext()
|
|---|
| 3141 | return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
|
|---|
| 3142 | context)
|
|---|
| 3143 |
|
|---|
| 3144 | def logical_or(self, other, context=None):
|
|---|
| 3145 | """Applies an 'or' operation between self and other's digits."""
|
|---|
| 3146 | if context is None:
|
|---|
| 3147 | context = getcontext()
|
|---|
| 3148 |
|
|---|
| 3149 | other = _convert_other(other, raiseit=True)
|
|---|
| 3150 |
|
|---|
| 3151 | if not self._islogical() or not other._islogical():
|
|---|
| 3152 | return context._raise_error(InvalidOperation)
|
|---|
| 3153 |
|
|---|
| 3154 | # fill to context.prec
|
|---|
| 3155 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
|---|
| 3156 |
|
|---|
| 3157 | # make the operation, and clean starting zeroes
|
|---|
| 3158 | result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
|
|---|
| 3159 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
|---|
| 3160 |
|
|---|
| 3161 | def logical_xor(self, other, context=None):
|
|---|
| 3162 | """Applies an 'xor' operation between self and other's digits."""
|
|---|
| 3163 | if context is None:
|
|---|
| 3164 | context = getcontext()
|
|---|
| 3165 |
|
|---|
| 3166 | other = _convert_other(other, raiseit=True)
|
|---|
| 3167 |
|
|---|
| 3168 | if not self._islogical() or not other._islogical():
|
|---|
| 3169 | return context._raise_error(InvalidOperation)
|
|---|
| 3170 |
|
|---|
| 3171 | # fill to context.prec
|
|---|
| 3172 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
|---|
| 3173 |
|
|---|
| 3174 | # make the operation, and clean starting zeroes
|
|---|
| 3175 | result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
|
|---|
| 3176 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
|---|
| 3177 |
|
|---|
| 3178 | def max_mag(self, other, context=None):
|
|---|
| 3179 | """Compares the values numerically with their sign ignored."""
|
|---|
| 3180 | other = _convert_other(other, raiseit=True)
|
|---|
| 3181 |
|
|---|
| 3182 | if context is None:
|
|---|
| 3183 | context = getcontext()
|
|---|
| 3184 |
|
|---|
| 3185 | if self._is_special or other._is_special:
|
|---|
| 3186 | # If one operand is a quiet NaN and the other is number, then the
|
|---|
| 3187 | # number is always returned
|
|---|
| 3188 | sn = self._isnan()
|
|---|
| 3189 | on = other._isnan()
|
|---|
| 3190 | if sn or on:
|
|---|
| 3191 | if on == 1 and sn == 0:
|
|---|
| 3192 | return self._fix(context)
|
|---|
| 3193 | if sn == 1 and on == 0:
|
|---|
| 3194 | return other._fix(context)
|
|---|
| 3195 | return self._check_nans(other, context)
|
|---|
| 3196 |
|
|---|
| 3197 | c = self.copy_abs()._cmp(other.copy_abs())
|
|---|
| 3198 | if c == 0:
|
|---|
| 3199 | c = self.compare_total(other)
|
|---|
| 3200 |
|
|---|
| 3201 | if c == -1:
|
|---|
| 3202 | ans = other
|
|---|
| 3203 | else:
|
|---|
| 3204 | ans = self
|
|---|
| 3205 |
|
|---|
| 3206 | return ans._fix(context)
|
|---|
| 3207 |
|
|---|
| 3208 | def min_mag(self, other, context=None):
|
|---|
| 3209 | """Compares the values numerically with their sign ignored."""
|
|---|
| 3210 | other = _convert_other(other, raiseit=True)
|
|---|
| 3211 |
|
|---|
| 3212 | if context is None:
|
|---|
| 3213 | context = getcontext()
|
|---|
| 3214 |
|
|---|
| 3215 | if self._is_special or other._is_special:
|
|---|
| 3216 | # If one operand is a quiet NaN and the other is number, then the
|
|---|
| 3217 | # number is always returned
|
|---|
| 3218 | sn = self._isnan()
|
|---|
| 3219 | on = other._isnan()
|
|---|
| 3220 | if sn or on:
|
|---|
| 3221 | if on == 1 and sn == 0:
|
|---|
| 3222 | return self._fix(context)
|
|---|
| 3223 | if sn == 1 and on == 0:
|
|---|
| 3224 | return other._fix(context)
|
|---|
| 3225 | return self._check_nans(other, context)
|
|---|
| 3226 |
|
|---|
| 3227 | c = self.copy_abs()._cmp(other.copy_abs())
|
|---|
| 3228 | if c == 0:
|
|---|
| 3229 | c = self.compare_total(other)
|
|---|
| 3230 |
|
|---|
| 3231 | if c == -1:
|
|---|
| 3232 | ans = self
|
|---|
| 3233 | else:
|
|---|
| 3234 | ans = other
|
|---|
| 3235 |
|
|---|
| 3236 | return ans._fix(context)
|
|---|
| 3237 |
|
|---|
| 3238 | def next_minus(self, context=None):
|
|---|
| 3239 | """Returns the largest representable number smaller than itself."""
|
|---|
| 3240 | if context is None:
|
|---|
| 3241 | context = getcontext()
|
|---|
| 3242 |
|
|---|
| 3243 | ans = self._check_nans(context=context)
|
|---|
| 3244 | if ans:
|
|---|
| 3245 | return ans
|
|---|
| 3246 |
|
|---|
| 3247 | if self._isinfinity() == -1:
|
|---|
| 3248 | return _NegativeInfinity
|
|---|
| 3249 | if self._isinfinity() == 1:
|
|---|
| 3250 | return _dec_from_triple(0, '9'*context.prec, context.Etop())
|
|---|
| 3251 |
|
|---|
| 3252 | context = context.copy()
|
|---|
| 3253 | context._set_rounding(ROUND_FLOOR)
|
|---|
| 3254 | context._ignore_all_flags()
|
|---|
| 3255 | new_self = self._fix(context)
|
|---|
| 3256 | if new_self != self:
|
|---|
| 3257 | return new_self
|
|---|
| 3258 | return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
|
|---|
| 3259 | context)
|
|---|
| 3260 |
|
|---|
| 3261 | def next_plus(self, context=None):
|
|---|
| 3262 | """Returns the smallest representable number larger than itself."""
|
|---|
| 3263 | if context is None:
|
|---|
| 3264 | context = getcontext()
|
|---|
| 3265 |
|
|---|
| 3266 | ans = self._check_nans(context=context)
|
|---|
| 3267 | if ans:
|
|---|
| 3268 | return ans
|
|---|
| 3269 |
|
|---|
| 3270 | if self._isinfinity() == 1:
|
|---|
| 3271 | return _Infinity
|
|---|
| 3272 | if self._isinfinity() == -1:
|
|---|
| 3273 | return _dec_from_triple(1, '9'*context.prec, context.Etop())
|
|---|
| 3274 |
|
|---|
| 3275 | context = context.copy()
|
|---|
| 3276 | context._set_rounding(ROUND_CEILING)
|
|---|
| 3277 | context._ignore_all_flags()
|
|---|
| 3278 | new_self = self._fix(context)
|
|---|
| 3279 | if new_self != self:
|
|---|
| 3280 | return new_self
|
|---|
| 3281 | return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
|
|---|
| 3282 | context)
|
|---|
| 3283 |
|
|---|
| 3284 | def next_toward(self, other, context=None):
|
|---|
| 3285 | """Returns the number closest to self, in the direction towards other.
|
|---|
| 3286 |
|
|---|
| 3287 | The result is the closest representable number to self
|
|---|
| 3288 | (excluding self) that is in the direction towards other,
|
|---|
| 3289 | unless both have the same value. If the two operands are
|
|---|
| 3290 | numerically equal, then the result is a copy of self with the
|
|---|
| 3291 | sign set to be the same as the sign of other.
|
|---|
| 3292 | """
|
|---|
| 3293 | other = _convert_other(other, raiseit=True)
|
|---|
| 3294 |
|
|---|
| 3295 | if context is None:
|
|---|
| 3296 | context = getcontext()
|
|---|
| 3297 |
|
|---|
| 3298 | ans = self._check_nans(other, context)
|
|---|
| 3299 | if ans:
|
|---|
| 3300 | return ans
|
|---|
| 3301 |
|
|---|
| 3302 | comparison = self._cmp(other)
|
|---|
| 3303 | if comparison == 0:
|
|---|
| 3304 | return self.copy_sign(other)
|
|---|
| 3305 |
|
|---|
| 3306 | if comparison == -1:
|
|---|
| 3307 | ans = self.next_plus(context)
|
|---|
| 3308 | else: # comparison == 1
|
|---|
| 3309 | ans = self.next_minus(context)
|
|---|
| 3310 |
|
|---|
| 3311 | # decide which flags to raise using value of ans
|
|---|
| 3312 | if ans._isinfinity():
|
|---|
| 3313 | context._raise_error(Overflow,
|
|---|
| 3314 | 'Infinite result from next_toward',
|
|---|
| 3315 | ans._sign)
|
|---|
| 3316 | context._raise_error(Rounded)
|
|---|
| 3317 | context._raise_error(Inexact)
|
|---|
| 3318 | elif ans.adjusted() < context.Emin:
|
|---|
| 3319 | context._raise_error(Underflow)
|
|---|
| 3320 | context._raise_error(Subnormal)
|
|---|
| 3321 | context._raise_error(Rounded)
|
|---|
| 3322 | context._raise_error(Inexact)
|
|---|
| 3323 | # if precision == 1 then we don't raise Clamped for a
|
|---|
| 3324 | # result 0E-Etiny.
|
|---|
| 3325 | if not ans:
|
|---|
| 3326 | context._raise_error(Clamped)
|
|---|
| 3327 |
|
|---|
| 3328 | return ans
|
|---|
| 3329 |
|
|---|
| 3330 | def number_class(self, context=None):
|
|---|
| 3331 | """Returns an indication of the class of self.
|
|---|
| 3332 |
|
|---|
| 3333 | The class is one of the following strings:
|
|---|
| 3334 | sNaN
|
|---|
| 3335 | NaN
|
|---|
| 3336 | -Infinity
|
|---|
| 3337 | -Normal
|
|---|
| 3338 | -Subnormal
|
|---|
| 3339 | -Zero
|
|---|
| 3340 | +Zero
|
|---|
| 3341 | +Subnormal
|
|---|
| 3342 | +Normal
|
|---|
| 3343 | +Infinity
|
|---|
| 3344 | """
|
|---|
| 3345 | if self.is_snan():
|
|---|
| 3346 | return "sNaN"
|
|---|
| 3347 | if self.is_qnan():
|
|---|
| 3348 | return "NaN"
|
|---|
| 3349 | inf = self._isinfinity()
|
|---|
| 3350 | if inf == 1:
|
|---|
| 3351 | return "+Infinity"
|
|---|
| 3352 | if inf == -1:
|
|---|
| 3353 | return "-Infinity"
|
|---|
| 3354 | if self.is_zero():
|
|---|
| 3355 | if self._sign:
|
|---|
| 3356 | return "-Zero"
|
|---|
| 3357 | else:
|
|---|
| 3358 | return "+Zero"
|
|---|
| 3359 | if context is None:
|
|---|
| 3360 | context = getcontext()
|
|---|
| 3361 | if self.is_subnormal(context=context):
|
|---|
| 3362 | if self._sign:
|
|---|
| 3363 | return "-Subnormal"
|
|---|
| 3364 | else:
|
|---|
| 3365 | return "+Subnormal"
|
|---|
| 3366 | # just a normal, regular, boring number, :)
|
|---|
| 3367 | if self._sign:
|
|---|
| 3368 | return "-Normal"
|
|---|
| 3369 | else:
|
|---|
| 3370 | return "+Normal"
|
|---|
| 3371 |
|
|---|
| 3372 | def radix(self):
|
|---|
| 3373 | """Just returns 10, as this is Decimal, :)"""
|
|---|
| 3374 | return Decimal(10)
|
|---|
| 3375 |
|
|---|
| 3376 | def rotate(self, other, context=None):
|
|---|
| 3377 | """Returns a rotated copy of self, value-of-other times."""
|
|---|
| 3378 | if context is None:
|
|---|
| 3379 | context = getcontext()
|
|---|
| 3380 |
|
|---|
| 3381 | other = _convert_other(other, raiseit=True)
|
|---|
| 3382 |
|
|---|
| 3383 | ans = self._check_nans(other, context)
|
|---|
| 3384 | if ans:
|
|---|
| 3385 | return ans
|
|---|
| 3386 |
|
|---|
| 3387 | if other._exp != 0:
|
|---|
| 3388 | return context._raise_error(InvalidOperation)
|
|---|
| 3389 | if not (-context.prec <= int(other) <= context.prec):
|
|---|
| 3390 | return context._raise_error(InvalidOperation)
|
|---|
| 3391 |
|
|---|
| 3392 | if self._isinfinity():
|
|---|
| 3393 | return Decimal(self)
|
|---|
| 3394 |
|
|---|
| 3395 | # get values, pad if necessary
|
|---|
| 3396 | torot = int(other)
|
|---|
| 3397 | rotdig = self._int
|
|---|
| 3398 | topad = context.prec - len(rotdig)
|
|---|
| 3399 | if topad > 0:
|
|---|
| 3400 | rotdig = '0'*topad + rotdig
|
|---|
| 3401 | elif topad < 0:
|
|---|
| 3402 | rotdig = rotdig[-topad:]
|
|---|
| 3403 |
|
|---|
| 3404 | # let's rotate!
|
|---|
| 3405 | rotated = rotdig[torot:] + rotdig[:torot]
|
|---|
| 3406 | return _dec_from_triple(self._sign,
|
|---|
| 3407 | rotated.lstrip('0') or '0', self._exp)
|
|---|
| 3408 |
|
|---|
| 3409 | def scaleb(self, other, context=None):
|
|---|
| 3410 | """Returns self operand after adding the second value to its exp."""
|
|---|
| 3411 | if context is None:
|
|---|
| 3412 | context = getcontext()
|
|---|
| 3413 |
|
|---|
| 3414 | other = _convert_other(other, raiseit=True)
|
|---|
| 3415 |
|
|---|
| 3416 | ans = self._check_nans(other, context)
|
|---|
| 3417 | if ans:
|
|---|
| 3418 | return ans
|
|---|
| 3419 |
|
|---|
| 3420 | if other._exp != 0:
|
|---|
| 3421 | return context._raise_error(InvalidOperation)
|
|---|
| 3422 | liminf = -2 * (context.Emax + context.prec)
|
|---|
| 3423 | limsup = 2 * (context.Emax + context.prec)
|
|---|
| 3424 | if not (liminf <= int(other) <= limsup):
|
|---|
| 3425 | return context._raise_error(InvalidOperation)
|
|---|
| 3426 |
|
|---|
| 3427 | if self._isinfinity():
|
|---|
| 3428 | return Decimal(self)
|
|---|
| 3429 |
|
|---|
| 3430 | d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
|
|---|
| 3431 | d = d._fix(context)
|
|---|
| 3432 | return d
|
|---|
| 3433 |
|
|---|
| 3434 | def shift(self, other, context=None):
|
|---|
| 3435 | """Returns a shifted copy of self, value-of-other times."""
|
|---|
| 3436 | if context is None:
|
|---|
| 3437 | context = getcontext()
|
|---|
| 3438 |
|
|---|
| 3439 | other = _convert_other(other, raiseit=True)
|
|---|
| 3440 |
|
|---|
| 3441 | ans = self._check_nans(other, context)
|
|---|
| 3442 | if ans:
|
|---|
| 3443 | return ans
|
|---|
| 3444 |
|
|---|
| 3445 | if other._exp != 0:
|
|---|
| 3446 | return context._raise_error(InvalidOperation)
|
|---|
| 3447 | if not (-context.prec <= int(other) <= context.prec):
|
|---|
| 3448 | return context._raise_error(InvalidOperation)
|
|---|
| 3449 |
|
|---|
| 3450 | if self._isinfinity():
|
|---|
| 3451 | return Decimal(self)
|
|---|
| 3452 |
|
|---|
| 3453 | # get values, pad if necessary
|
|---|
| 3454 | torot = int(other)
|
|---|
| 3455 | rotdig = self._int
|
|---|
| 3456 | topad = context.prec - len(rotdig)
|
|---|
| 3457 | if topad > 0:
|
|---|
| 3458 | rotdig = '0'*topad + rotdig
|
|---|
| 3459 | elif topad < 0:
|
|---|
| 3460 | rotdig = rotdig[-topad:]
|
|---|
| 3461 |
|
|---|
| 3462 | # let's shift!
|
|---|
| 3463 | if torot < 0:
|
|---|
| 3464 | shifted = rotdig[:torot]
|
|---|
| 3465 | else:
|
|---|
| 3466 | shifted = rotdig + '0'*torot
|
|---|
| 3467 | shifted = shifted[-context.prec:]
|
|---|
| 3468 |
|
|---|
| 3469 | return _dec_from_triple(self._sign,
|
|---|
| 3470 | shifted.lstrip('0') or '0', self._exp)
|
|---|
| 3471 |
|
|---|
| 3472 | # Support for pickling, copy, and deepcopy
|
|---|
| 3473 | def __reduce__(self):
|
|---|
| 3474 | return (self.__class__, (str(self),))
|
|---|
| 3475 |
|
|---|
| 3476 | def __copy__(self):
|
|---|
| 3477 | if type(self) == Decimal:
|
|---|
| 3478 | return self # I'm immutable; therefore I am my own clone
|
|---|
| 3479 | return self.__class__(str(self))
|
|---|
| 3480 |
|
|---|
| 3481 | def __deepcopy__(self, memo):
|
|---|
| 3482 | if type(self) == Decimal:
|
|---|
| 3483 | return self # My components are also immutable
|
|---|
| 3484 | return self.__class__(str(self))
|
|---|
| 3485 |
|
|---|
| 3486 | # PEP 3101 support. See also _parse_format_specifier and _format_align
|
|---|
| 3487 | def __format__(self, specifier, context=None):
|
|---|
| 3488 | """Format a Decimal instance according to the given specifier.
|
|---|
| 3489 |
|
|---|
| 3490 | The specifier should be a standard format specifier, with the
|
|---|
| 3491 | form described in PEP 3101. Formatting types 'e', 'E', 'f',
|
|---|
| 3492 | 'F', 'g', 'G', and '%' are supported. If the formatting type
|
|---|
| 3493 | is omitted it defaults to 'g' or 'G', depending on the value
|
|---|
| 3494 | of context.capitals.
|
|---|
| 3495 |
|
|---|
| 3496 | At this time the 'n' format specifier type (which is supposed
|
|---|
| 3497 | to use the current locale) is not supported.
|
|---|
| 3498 | """
|
|---|
| 3499 |
|
|---|
| 3500 | # Note: PEP 3101 says that if the type is not present then
|
|---|
| 3501 | # there should be at least one digit after the decimal point.
|
|---|
| 3502 | # We take the liberty of ignoring this requirement for
|
|---|
| 3503 | # Decimal---it's presumably there to make sure that
|
|---|
| 3504 | # format(float, '') behaves similarly to str(float).
|
|---|
| 3505 | if context is None:
|
|---|
| 3506 | context = getcontext()
|
|---|
| 3507 |
|
|---|
| 3508 | spec = _parse_format_specifier(specifier)
|
|---|
| 3509 |
|
|---|
| 3510 | # special values don't care about the type or precision...
|
|---|
| 3511 | if self._is_special:
|
|---|
| 3512 | return _format_align(str(self), spec)
|
|---|
| 3513 |
|
|---|
| 3514 | # a type of None defaults to 'g' or 'G', depending on context
|
|---|
| 3515 | # if type is '%', adjust exponent of self accordingly
|
|---|
| 3516 | if spec['type'] is None:
|
|---|
| 3517 | spec['type'] = ['g', 'G'][context.capitals]
|
|---|
| 3518 | elif spec['type'] == '%':
|
|---|
| 3519 | self = _dec_from_triple(self._sign, self._int, self._exp+2)
|
|---|
| 3520 |
|
|---|
| 3521 | # round if necessary, taking rounding mode from the context
|
|---|
| 3522 | rounding = context.rounding
|
|---|
| 3523 | precision = spec['precision']
|
|---|
| 3524 | if precision is not None:
|
|---|
| 3525 | if spec['type'] in 'eE':
|
|---|
| 3526 | self = self._round(precision+1, rounding)
|
|---|
| 3527 | elif spec['type'] in 'gG':
|
|---|
| 3528 | if len(self._int) > precision:
|
|---|
| 3529 | self = self._round(precision, rounding)
|
|---|
| 3530 | elif spec['type'] in 'fF%':
|
|---|
| 3531 | self = self._rescale(-precision, rounding)
|
|---|
| 3532 | # special case: zeros with a positive exponent can't be
|
|---|
| 3533 | # represented in fixed point; rescale them to 0e0.
|
|---|
| 3534 | elif not self and self._exp > 0 and spec['type'] in 'fF%':
|
|---|
| 3535 | self = self._rescale(0, rounding)
|
|---|
| 3536 |
|
|---|
| 3537 | # figure out placement of the decimal point
|
|---|
| 3538 | leftdigits = self._exp + len(self._int)
|
|---|
| 3539 | if spec['type'] in 'fF%':
|
|---|
| 3540 | dotplace = leftdigits
|
|---|
| 3541 | elif spec['type'] in 'eE':
|
|---|
| 3542 | if not self and precision is not None:
|
|---|
| 3543 | dotplace = 1 - precision
|
|---|
| 3544 | else:
|
|---|
| 3545 | dotplace = 1
|
|---|
| 3546 | elif spec['type'] in 'gG':
|
|---|
| 3547 | if self._exp <= 0 and leftdigits > -6:
|
|---|
| 3548 | dotplace = leftdigits
|
|---|
| 3549 | else:
|
|---|
| 3550 | dotplace = 1
|
|---|
| 3551 |
|
|---|
| 3552 | # figure out main part of numeric string...
|
|---|
| 3553 | if dotplace <= 0:
|
|---|
| 3554 | num = '0.' + '0'*(-dotplace) + self._int
|
|---|
| 3555 | elif dotplace >= len(self._int):
|
|---|
| 3556 | # make sure we're not padding a '0' with extra zeros on the right
|
|---|
| 3557 | assert dotplace==len(self._int) or self._int != '0'
|
|---|
| 3558 | num = self._int + '0'*(dotplace-len(self._int))
|
|---|
| 3559 | else:
|
|---|
| 3560 | num = self._int[:dotplace] + '.' + self._int[dotplace:]
|
|---|
| 3561 |
|
|---|
| 3562 | # ...then the trailing exponent, or trailing '%'
|
|---|
| 3563 | if leftdigits != dotplace or spec['type'] in 'eE':
|
|---|
| 3564 | echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
|
|---|
| 3565 | num = num + "{0}{1:+}".format(echar, leftdigits-dotplace)
|
|---|
| 3566 | elif spec['type'] == '%':
|
|---|
| 3567 | num = num + '%'
|
|---|
| 3568 |
|
|---|
| 3569 | # add sign
|
|---|
| 3570 | if self._sign == 1:
|
|---|
| 3571 | num = '-' + num
|
|---|
| 3572 | return _format_align(num, spec)
|
|---|
| 3573 |
|
|---|
| 3574 |
|
|---|
| 3575 | def _dec_from_triple(sign, coefficient, exponent, special=False):
|
|---|
| 3576 | """Create a decimal instance directly, without any validation,
|
|---|
| 3577 | normalization (e.g. removal of leading zeros) or argument
|
|---|
| 3578 | conversion.
|
|---|
| 3579 |
|
|---|
| 3580 | This function is for *internal use only*.
|
|---|
| 3581 | """
|
|---|
| 3582 |
|
|---|
| 3583 | self = object.__new__(Decimal)
|
|---|
| 3584 | self._sign = sign
|
|---|
| 3585 | self._int = coefficient
|
|---|
| 3586 | self._exp = exponent
|
|---|
| 3587 | self._is_special = special
|
|---|
| 3588 |
|
|---|
| 3589 | return self
|
|---|
| 3590 |
|
|---|
| 3591 | # Register Decimal as a kind of Number (an abstract base class).
|
|---|
| 3592 | # However, do not register it as Real (because Decimals are not
|
|---|
| 3593 | # interoperable with floats).
|
|---|
| 3594 | _numbers.Number.register(Decimal)
|
|---|
| 3595 |
|
|---|
| 3596 |
|
|---|
| 3597 | ##### Context class #######################################################
|
|---|
| 3598 |
|
|---|
| 3599 |
|
|---|
| 3600 | # get rounding method function:
|
|---|
| 3601 | rounding_functions = [name for name in Decimal.__dict__.keys()
|
|---|
| 3602 | if name.startswith('_round_')]
|
|---|
| 3603 | for name in rounding_functions:
|
|---|
| 3604 | # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
|
|---|
| 3605 | globalname = name[1:].upper()
|
|---|
| 3606 | val = globals()[globalname]
|
|---|
| 3607 | Decimal._pick_rounding_function[val] = name
|
|---|
| 3608 |
|
|---|
| 3609 | del name, val, globalname, rounding_functions
|
|---|
| 3610 |
|
|---|
| 3611 | class _ContextManager(object):
|
|---|
| 3612 | """Context manager class to support localcontext().
|
|---|
| 3613 |
|
|---|
| 3614 | Sets a copy of the supplied context in __enter__() and restores
|
|---|
| 3615 | the previous decimal context in __exit__()
|
|---|
| 3616 | """
|
|---|
| 3617 | def __init__(self, new_context):
|
|---|
| 3618 | self.new_context = new_context.copy()
|
|---|
| 3619 | def __enter__(self):
|
|---|
| 3620 | self.saved_context = getcontext()
|
|---|
| 3621 | setcontext(self.new_context)
|
|---|
| 3622 | return self.new_context
|
|---|
| 3623 | def __exit__(self, t, v, tb):
|
|---|
| 3624 | setcontext(self.saved_context)
|
|---|
| 3625 |
|
|---|
| 3626 | class Context(object):
|
|---|
| 3627 | """Contains the context for a Decimal instance.
|
|---|
| 3628 |
|
|---|
| 3629 | Contains:
|
|---|
| 3630 | prec - precision (for use in rounding, division, square roots..)
|
|---|
| 3631 | rounding - rounding type (how you round)
|
|---|
| 3632 | traps - If traps[exception] = 1, then the exception is
|
|---|
| 3633 | raised when it is caused. Otherwise, a value is
|
|---|
| 3634 | substituted in.
|
|---|
| 3635 | flags - When an exception is caused, flags[exception] is set.
|
|---|
| 3636 | (Whether or not the trap_enabler is set)
|
|---|
| 3637 | Should be reset by user of Decimal instance.
|
|---|
| 3638 | Emin - Minimum exponent
|
|---|
| 3639 | Emax - Maximum exponent
|
|---|
| 3640 | capitals - If 1, 1*10^1 is printed as 1E+1.
|
|---|
| 3641 | If 0, printed as 1e1
|
|---|
| 3642 | _clamp - If 1, change exponents if too high (Default 0)
|
|---|
| 3643 | """
|
|---|
| 3644 |
|
|---|
| 3645 | def __init__(self, prec=None, rounding=None,
|
|---|
| 3646 | traps=None, flags=None,
|
|---|
| 3647 | Emin=None, Emax=None,
|
|---|
| 3648 | capitals=None, _clamp=0,
|
|---|
| 3649 | _ignored_flags=None):
|
|---|
| 3650 | if flags is None:
|
|---|
| 3651 | flags = []
|
|---|
| 3652 | if _ignored_flags is None:
|
|---|
| 3653 | _ignored_flags = []
|
|---|
| 3654 | if not isinstance(flags, dict):
|
|---|
| 3655 | flags = dict([(s, int(s in flags)) for s in _signals])
|
|---|
| 3656 | del s
|
|---|
| 3657 | if traps is not None and not isinstance(traps, dict):
|
|---|
| 3658 | traps = dict([(s, int(s in traps)) for s in _signals])
|
|---|
| 3659 | del s
|
|---|
| 3660 | for name, val in locals().items():
|
|---|
| 3661 | if val is None:
|
|---|
| 3662 | setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
|
|---|
| 3663 | else:
|
|---|
| 3664 | setattr(self, name, val)
|
|---|
| 3665 | del self.self
|
|---|
| 3666 |
|
|---|
| 3667 | def __repr__(self):
|
|---|
| 3668 | """Show the current context."""
|
|---|
| 3669 | s = []
|
|---|
| 3670 | s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
|
|---|
| 3671 | 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
|
|---|
| 3672 | % vars(self))
|
|---|
| 3673 | names = [f.__name__ for f, v in self.flags.items() if v]
|
|---|
| 3674 | s.append('flags=[' + ', '.join(names) + ']')
|
|---|
| 3675 | names = [t.__name__ for t, v in self.traps.items() if v]
|
|---|
| 3676 | s.append('traps=[' + ', '.join(names) + ']')
|
|---|
| 3677 | return ', '.join(s) + ')'
|
|---|
| 3678 |
|
|---|
| 3679 | def clear_flags(self):
|
|---|
| 3680 | """Reset all flags to zero"""
|
|---|
| 3681 | for flag in self.flags:
|
|---|
| 3682 | self.flags[flag] = 0
|
|---|
| 3683 |
|
|---|
| 3684 | def _shallow_copy(self):
|
|---|
| 3685 | """Returns a shallow copy from self."""
|
|---|
| 3686 | nc = Context(self.prec, self.rounding, self.traps,
|
|---|
| 3687 | self.flags, self.Emin, self.Emax,
|
|---|
| 3688 | self.capitals, self._clamp, self._ignored_flags)
|
|---|
| 3689 | return nc
|
|---|
| 3690 |
|
|---|
| 3691 | def copy(self):
|
|---|
| 3692 | """Returns a deep copy from self."""
|
|---|
| 3693 | nc = Context(self.prec, self.rounding, self.traps.copy(),
|
|---|
| 3694 | self.flags.copy(), self.Emin, self.Emax,
|
|---|
| 3695 | self.capitals, self._clamp, self._ignored_flags)
|
|---|
| 3696 | return nc
|
|---|
| 3697 | __copy__ = copy
|
|---|
| 3698 |
|
|---|
| 3699 | def _raise_error(self, condition, explanation = None, *args):
|
|---|
| 3700 | """Handles an error
|
|---|
| 3701 |
|
|---|
| 3702 | If the flag is in _ignored_flags, returns the default response.
|
|---|
| 3703 | Otherwise, it sets the flag, then, if the corresponding
|
|---|
| 3704 | trap_enabler is set, it reaises the exception. Otherwise, it returns
|
|---|
| 3705 | the default value after setting the flag.
|
|---|
| 3706 | """
|
|---|
| 3707 | error = _condition_map.get(condition, condition)
|
|---|
| 3708 | if error in self._ignored_flags:
|
|---|
| 3709 | # Don't touch the flag
|
|---|
| 3710 | return error().handle(self, *args)
|
|---|
| 3711 |
|
|---|
| 3712 | self.flags[error] = 1
|
|---|
| 3713 | if not self.traps[error]:
|
|---|
| 3714 | # The errors define how to handle themselves.
|
|---|
| 3715 | return condition().handle(self, *args)
|
|---|
| 3716 |
|
|---|
| 3717 | # Errors should only be risked on copies of the context
|
|---|
| 3718 | # self._ignored_flags = []
|
|---|
| 3719 | raise error(explanation)
|
|---|
| 3720 |
|
|---|
| 3721 | def _ignore_all_flags(self):
|
|---|
| 3722 | """Ignore all flags, if they are raised"""
|
|---|
| 3723 | return self._ignore_flags(*_signals)
|
|---|
| 3724 |
|
|---|
| 3725 | def _ignore_flags(self, *flags):
|
|---|
| 3726 | """Ignore the flags, if they are raised"""
|
|---|
| 3727 | # Do not mutate-- This way, copies of a context leave the original
|
|---|
| 3728 | # alone.
|
|---|
| 3729 | self._ignored_flags = (self._ignored_flags + list(flags))
|
|---|
| 3730 | return list(flags)
|
|---|
| 3731 |
|
|---|
| 3732 | def _regard_flags(self, *flags):
|
|---|
| 3733 | """Stop ignoring the flags, if they are raised"""
|
|---|
| 3734 | if flags and isinstance(flags[0], (tuple,list)):
|
|---|
| 3735 | flags = flags[0]
|
|---|
| 3736 | for flag in flags:
|
|---|
| 3737 | self._ignored_flags.remove(flag)
|
|---|
| 3738 |
|
|---|
| 3739 | # We inherit object.__hash__, so we must deny this explicitly
|
|---|
| 3740 | __hash__ = None
|
|---|
| 3741 |
|
|---|
| 3742 | def Etiny(self):
|
|---|
| 3743 | """Returns Etiny (= Emin - prec + 1)"""
|
|---|
| 3744 | return int(self.Emin - self.prec + 1)
|
|---|
| 3745 |
|
|---|
| 3746 | def Etop(self):
|
|---|
| 3747 | """Returns maximum exponent (= Emax - prec + 1)"""
|
|---|
| 3748 | return int(self.Emax - self.prec + 1)
|
|---|
| 3749 |
|
|---|
| 3750 | def _set_rounding(self, type):
|
|---|
| 3751 | """Sets the rounding type.
|
|---|
| 3752 |
|
|---|
| 3753 | Sets the rounding type, and returns the current (previous)
|
|---|
| 3754 | rounding type. Often used like:
|
|---|
| 3755 |
|
|---|
| 3756 | context = context.copy()
|
|---|
| 3757 | # so you don't change the calling context
|
|---|
| 3758 | # if an error occurs in the middle.
|
|---|
| 3759 | rounding = context._set_rounding(ROUND_UP)
|
|---|
| 3760 | val = self.__sub__(other, context=context)
|
|---|
| 3761 | context._set_rounding(rounding)
|
|---|
| 3762 |
|
|---|
| 3763 | This will make it round up for that operation.
|
|---|
| 3764 | """
|
|---|
| 3765 | rounding = self.rounding
|
|---|
| 3766 | self.rounding= type
|
|---|
| 3767 | return rounding
|
|---|
| 3768 |
|
|---|
| 3769 | def create_decimal(self, num='0'):
|
|---|
| 3770 | """Creates a new Decimal instance but using self as context.
|
|---|
| 3771 |
|
|---|
| 3772 | This method implements the to-number operation of the
|
|---|
| 3773 | IBM Decimal specification."""
|
|---|
| 3774 |
|
|---|
| 3775 | if isinstance(num, basestring) and num != num.strip():
|
|---|
| 3776 | return self._raise_error(ConversionSyntax,
|
|---|
| 3777 | "no trailing or leading whitespace is "
|
|---|
| 3778 | "permitted.")
|
|---|
| 3779 |
|
|---|
| 3780 | d = Decimal(num, context=self)
|
|---|
| 3781 | if d._isnan() and len(d._int) > self.prec - self._clamp:
|
|---|
| 3782 | return self._raise_error(ConversionSyntax,
|
|---|
| 3783 | "diagnostic info too long in NaN")
|
|---|
| 3784 | return d._fix(self)
|
|---|
| 3785 |
|
|---|
| 3786 | # Methods
|
|---|
| 3787 | def abs(self, a):
|
|---|
| 3788 | """Returns the absolute value of the operand.
|
|---|
| 3789 |
|
|---|
| 3790 | If the operand is negative, the result is the same as using the minus
|
|---|
| 3791 | operation on the operand. Otherwise, the result is the same as using
|
|---|
| 3792 | the plus operation on the operand.
|
|---|
| 3793 |
|
|---|
| 3794 | >>> ExtendedContext.abs(Decimal('2.1'))
|
|---|
| 3795 | Decimal('2.1')
|
|---|
| 3796 | >>> ExtendedContext.abs(Decimal('-100'))
|
|---|
| 3797 | Decimal('100')
|
|---|
| 3798 | >>> ExtendedContext.abs(Decimal('101.5'))
|
|---|
| 3799 | Decimal('101.5')
|
|---|
| 3800 | >>> ExtendedContext.abs(Decimal('-101.5'))
|
|---|
| 3801 | Decimal('101.5')
|
|---|
| 3802 | """
|
|---|
| 3803 | return a.__abs__(context=self)
|
|---|
| 3804 |
|
|---|
| 3805 | def add(self, a, b):
|
|---|
| 3806 | """Return the sum of the two operands.
|
|---|
| 3807 |
|
|---|
| 3808 | >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
|
|---|
| 3809 | Decimal('19.00')
|
|---|
| 3810 | >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
|
|---|
| 3811 | Decimal('1.02E+4')
|
|---|
| 3812 | """
|
|---|
| 3813 | return a.__add__(b, context=self)
|
|---|
| 3814 |
|
|---|
| 3815 | def _apply(self, a):
|
|---|
| 3816 | return str(a._fix(self))
|
|---|
| 3817 |
|
|---|
| 3818 | def canonical(self, a):
|
|---|
| 3819 | """Returns the same Decimal object.
|
|---|
| 3820 |
|
|---|
| 3821 | As we do not have different encodings for the same number, the
|
|---|
| 3822 | received object already is in its canonical form.
|
|---|
| 3823 |
|
|---|
| 3824 | >>> ExtendedContext.canonical(Decimal('2.50'))
|
|---|
| 3825 | Decimal('2.50')
|
|---|
| 3826 | """
|
|---|
| 3827 | return a.canonical(context=self)
|
|---|
| 3828 |
|
|---|
| 3829 | def compare(self, a, b):
|
|---|
| 3830 | """Compares values numerically.
|
|---|
| 3831 |
|
|---|
| 3832 | If the signs of the operands differ, a value representing each operand
|
|---|
| 3833 | ('-1' if the operand is less than zero, '0' if the operand is zero or
|
|---|
| 3834 | negative zero, or '1' if the operand is greater than zero) is used in
|
|---|
| 3835 | place of that operand for the comparison instead of the actual
|
|---|
| 3836 | operand.
|
|---|
| 3837 |
|
|---|
| 3838 | The comparison is then effected by subtracting the second operand from
|
|---|
| 3839 | the first and then returning a value according to the result of the
|
|---|
| 3840 | subtraction: '-1' if the result is less than zero, '0' if the result is
|
|---|
| 3841 | zero or negative zero, or '1' if the result is greater than zero.
|
|---|
| 3842 |
|
|---|
| 3843 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
|
|---|
| 3844 | Decimal('-1')
|
|---|
| 3845 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
|
|---|
| 3846 | Decimal('0')
|
|---|
| 3847 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
|
|---|
| 3848 | Decimal('0')
|
|---|
| 3849 | >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
|
|---|
| 3850 | Decimal('1')
|
|---|
| 3851 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
|
|---|
| 3852 | Decimal('1')
|
|---|
| 3853 | >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
|
|---|
| 3854 | Decimal('-1')
|
|---|
| 3855 | """
|
|---|
| 3856 | return a.compare(b, context=self)
|
|---|
| 3857 |
|
|---|
| 3858 | def compare_signal(self, a, b):
|
|---|
| 3859 | """Compares the values of the two operands numerically.
|
|---|
| 3860 |
|
|---|
| 3861 | It's pretty much like compare(), but all NaNs signal, with signaling
|
|---|
| 3862 | NaNs taking precedence over quiet NaNs.
|
|---|
| 3863 |
|
|---|
| 3864 | >>> c = ExtendedContext
|
|---|
| 3865 | >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
|
|---|
| 3866 | Decimal('-1')
|
|---|
| 3867 | >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
|
|---|
| 3868 | Decimal('0')
|
|---|
| 3869 | >>> c.flags[InvalidOperation] = 0
|
|---|
| 3870 | >>> print c.flags[InvalidOperation]
|
|---|
| 3871 | 0
|
|---|
| 3872 | >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
|
|---|
| 3873 | Decimal('NaN')
|
|---|
| 3874 | >>> print c.flags[InvalidOperation]
|
|---|
| 3875 | 1
|
|---|
| 3876 | >>> c.flags[InvalidOperation] = 0
|
|---|
| 3877 | >>> print c.flags[InvalidOperation]
|
|---|
| 3878 | 0
|
|---|
| 3879 | >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
|
|---|
| 3880 | Decimal('NaN')
|
|---|
| 3881 | >>> print c.flags[InvalidOperation]
|
|---|
| 3882 | 1
|
|---|
| 3883 | """
|
|---|
| 3884 | return a.compare_signal(b, context=self)
|
|---|
| 3885 |
|
|---|
| 3886 | def compare_total(self, a, b):
|
|---|
| 3887 | """Compares two operands using their abstract representation.
|
|---|
| 3888 |
|
|---|
| 3889 | This is not like the standard compare, which use their numerical
|
|---|
| 3890 | value. Note that a total ordering is defined for all possible abstract
|
|---|
| 3891 | representations.
|
|---|
| 3892 |
|
|---|
| 3893 | >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
|
|---|
| 3894 | Decimal('-1')
|
|---|
| 3895 | >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
|
|---|
| 3896 | Decimal('-1')
|
|---|
| 3897 | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
|
|---|
| 3898 | Decimal('-1')
|
|---|
| 3899 | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
|
|---|
| 3900 | Decimal('0')
|
|---|
| 3901 | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
|
|---|
| 3902 | Decimal('1')
|
|---|
| 3903 | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
|
|---|
| 3904 | Decimal('-1')
|
|---|
| 3905 | """
|
|---|
| 3906 | return a.compare_total(b)
|
|---|
| 3907 |
|
|---|
| 3908 | def compare_total_mag(self, a, b):
|
|---|
| 3909 | """Compares two operands using their abstract representation ignoring sign.
|
|---|
| 3910 |
|
|---|
| 3911 | Like compare_total, but with operand's sign ignored and assumed to be 0.
|
|---|
| 3912 | """
|
|---|
| 3913 | return a.compare_total_mag(b)
|
|---|
| 3914 |
|
|---|
| 3915 | def copy_abs(self, a):
|
|---|
| 3916 | """Returns a copy of the operand with the sign set to 0.
|
|---|
| 3917 |
|
|---|
| 3918 | >>> ExtendedContext.copy_abs(Decimal('2.1'))
|
|---|
| 3919 | Decimal('2.1')
|
|---|
| 3920 | >>> ExtendedContext.copy_abs(Decimal('-100'))
|
|---|
| 3921 | Decimal('100')
|
|---|
| 3922 | """
|
|---|
| 3923 | return a.copy_abs()
|
|---|
| 3924 |
|
|---|
| 3925 | def copy_decimal(self, a):
|
|---|
| 3926 | """Returns a copy of the decimal objet.
|
|---|
| 3927 |
|
|---|
| 3928 | >>> ExtendedContext.copy_decimal(Decimal('2.1'))
|
|---|
| 3929 | Decimal('2.1')
|
|---|
| 3930 | >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
|
|---|
| 3931 | Decimal('-1.00')
|
|---|
| 3932 | """
|
|---|
| 3933 | return Decimal(a)
|
|---|
| 3934 |
|
|---|
| 3935 | def copy_negate(self, a):
|
|---|
| 3936 | """Returns a copy of the operand with the sign inverted.
|
|---|
| 3937 |
|
|---|
| 3938 | >>> ExtendedContext.copy_negate(Decimal('101.5'))
|
|---|
| 3939 | Decimal('-101.5')
|
|---|
| 3940 | >>> ExtendedContext.copy_negate(Decimal('-101.5'))
|
|---|
| 3941 | Decimal('101.5')
|
|---|
| 3942 | """
|
|---|
| 3943 | return a.copy_negate()
|
|---|
| 3944 |
|
|---|
| 3945 | def copy_sign(self, a, b):
|
|---|
| 3946 | """Copies the second operand's sign to the first one.
|
|---|
| 3947 |
|
|---|
| 3948 | In detail, it returns a copy of the first operand with the sign
|
|---|
| 3949 | equal to the sign of the second operand.
|
|---|
| 3950 |
|
|---|
| 3951 | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
|
|---|
| 3952 | Decimal('1.50')
|
|---|
| 3953 | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
|
|---|
| 3954 | Decimal('1.50')
|
|---|
| 3955 | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
|
|---|
| 3956 | Decimal('-1.50')
|
|---|
| 3957 | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
|
|---|
| 3958 | Decimal('-1.50')
|
|---|
| 3959 | """
|
|---|
| 3960 | return a.copy_sign(b)
|
|---|
| 3961 |
|
|---|
| 3962 | def divide(self, a, b):
|
|---|
| 3963 | """Decimal division in a specified context.
|
|---|
| 3964 |
|
|---|
| 3965 | >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
|
|---|
| 3966 | Decimal('0.333333333')
|
|---|
| 3967 | >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
|
|---|
| 3968 | Decimal('0.666666667')
|
|---|
| 3969 | >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
|
|---|
| 3970 | Decimal('2.5')
|
|---|
| 3971 | >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
|
|---|
| 3972 | Decimal('0.1')
|
|---|
| 3973 | >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
|
|---|
| 3974 | Decimal('1')
|
|---|
| 3975 | >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
|
|---|
| 3976 | Decimal('4.00')
|
|---|
| 3977 | >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
|
|---|
| 3978 | Decimal('1.20')
|
|---|
| 3979 | >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
|
|---|
| 3980 | Decimal('10')
|
|---|
| 3981 | >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
|
|---|
| 3982 | Decimal('1000')
|
|---|
| 3983 | >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
|
|---|
| 3984 | Decimal('1.20E+6')
|
|---|
| 3985 | """
|
|---|
| 3986 | return a.__div__(b, context=self)
|
|---|
| 3987 |
|
|---|
| 3988 | def divide_int(self, a, b):
|
|---|
| 3989 | """Divides two numbers and returns the integer part of the result.
|
|---|
| 3990 |
|
|---|
| 3991 | >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
|
|---|
| 3992 | Decimal('0')
|
|---|
| 3993 | >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
|
|---|
| 3994 | Decimal('3')
|
|---|
| 3995 | >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
|
|---|
| 3996 | Decimal('3')
|
|---|
| 3997 | """
|
|---|
| 3998 | return a.__floordiv__(b, context=self)
|
|---|
| 3999 |
|
|---|
| 4000 | def divmod(self, a, b):
|
|---|
| 4001 | """Return (a // b, a % b)
|
|---|
| 4002 |
|
|---|
| 4003 | >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
|
|---|
| 4004 | (Decimal('2'), Decimal('2'))
|
|---|
| 4005 | >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
|
|---|
| 4006 | (Decimal('2'), Decimal('0'))
|
|---|
| 4007 | """
|
|---|
| 4008 | return a.__divmod__(b, context=self)
|
|---|
| 4009 |
|
|---|
| 4010 | def exp(self, a):
|
|---|
| 4011 | """Returns e ** a.
|
|---|
| 4012 |
|
|---|
| 4013 | >>> c = ExtendedContext.copy()
|
|---|
| 4014 | >>> c.Emin = -999
|
|---|
| 4015 | >>> c.Emax = 999
|
|---|
| 4016 | >>> c.exp(Decimal('-Infinity'))
|
|---|
| 4017 | Decimal('0')
|
|---|
| 4018 | >>> c.exp(Decimal('-1'))
|
|---|
| 4019 | Decimal('0.367879441')
|
|---|
| 4020 | >>> c.exp(Decimal('0'))
|
|---|
| 4021 | Decimal('1')
|
|---|
| 4022 | >>> c.exp(Decimal('1'))
|
|---|
| 4023 | Decimal('2.71828183')
|
|---|
| 4024 | >>> c.exp(Decimal('0.693147181'))
|
|---|
| 4025 | Decimal('2.00000000')
|
|---|
| 4026 | >>> c.exp(Decimal('+Infinity'))
|
|---|
| 4027 | Decimal('Infinity')
|
|---|
| 4028 | """
|
|---|
| 4029 | return a.exp(context=self)
|
|---|
| 4030 |
|
|---|
| 4031 | def fma(self, a, b, c):
|
|---|
| 4032 | """Returns a multiplied by b, plus c.
|
|---|
| 4033 |
|
|---|
| 4034 | The first two operands are multiplied together, using multiply,
|
|---|
| 4035 | the third operand is then added to the result of that
|
|---|
| 4036 | multiplication, using add, all with only one final rounding.
|
|---|
| 4037 |
|
|---|
| 4038 | >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
|
|---|
| 4039 | Decimal('22')
|
|---|
| 4040 | >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
|
|---|
| 4041 | Decimal('-8')
|
|---|
| 4042 | >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
|
|---|
| 4043 | Decimal('1.38435736E+12')
|
|---|
| 4044 | """
|
|---|
| 4045 | return a.fma(b, c, context=self)
|
|---|
| 4046 |
|
|---|
| 4047 | def is_canonical(self, a):
|
|---|
| 4048 | """Return True if the operand is canonical; otherwise return False.
|
|---|
| 4049 |
|
|---|
| 4050 | Currently, the encoding of a Decimal instance is always
|
|---|
| 4051 | canonical, so this method returns True for any Decimal.
|
|---|
| 4052 |
|
|---|
| 4053 | >>> ExtendedContext.is_canonical(Decimal('2.50'))
|
|---|
| 4054 | True
|
|---|
| 4055 | """
|
|---|
| 4056 | return a.is_canonical()
|
|---|
| 4057 |
|
|---|
| 4058 | def is_finite(self, a):
|
|---|
| 4059 | """Return True if the operand is finite; otherwise return False.
|
|---|
| 4060 |
|
|---|
| 4061 | A Decimal instance is considered finite if it is neither
|
|---|
| 4062 | infinite nor a NaN.
|
|---|
| 4063 |
|
|---|
| 4064 | >>> ExtendedContext.is_finite(Decimal('2.50'))
|
|---|
| 4065 | True
|
|---|
| 4066 | >>> ExtendedContext.is_finite(Decimal('-0.3'))
|
|---|
| 4067 | True
|
|---|
| 4068 | >>> ExtendedContext.is_finite(Decimal('0'))
|
|---|
| 4069 | True
|
|---|
| 4070 | >>> ExtendedContext.is_finite(Decimal('Inf'))
|
|---|
| 4071 | False
|
|---|
| 4072 | >>> ExtendedContext.is_finite(Decimal('NaN'))
|
|---|
| 4073 | False
|
|---|
| 4074 | """
|
|---|
| 4075 | return a.is_finite()
|
|---|
| 4076 |
|
|---|
| 4077 | def is_infinite(self, a):
|
|---|
| 4078 | """Return True if the operand is infinite; otherwise return False.
|
|---|
| 4079 |
|
|---|
| 4080 | >>> ExtendedContext.is_infinite(Decimal('2.50'))
|
|---|
| 4081 | False
|
|---|
| 4082 | >>> ExtendedContext.is_infinite(Decimal('-Inf'))
|
|---|
| 4083 | True
|
|---|
| 4084 | >>> ExtendedContext.is_infinite(Decimal('NaN'))
|
|---|
| 4085 | False
|
|---|
| 4086 | """
|
|---|
| 4087 | return a.is_infinite()
|
|---|
| 4088 |
|
|---|
| 4089 | def is_nan(self, a):
|
|---|
| 4090 | """Return True if the operand is a qNaN or sNaN;
|
|---|
| 4091 | otherwise return False.
|
|---|
| 4092 |
|
|---|
| 4093 | >>> ExtendedContext.is_nan(Decimal('2.50'))
|
|---|
| 4094 | False
|
|---|
| 4095 | >>> ExtendedContext.is_nan(Decimal('NaN'))
|
|---|
| 4096 | True
|
|---|
| 4097 | >>> ExtendedContext.is_nan(Decimal('-sNaN'))
|
|---|
| 4098 | True
|
|---|
| 4099 | """
|
|---|
| 4100 | return a.is_nan()
|
|---|
| 4101 |
|
|---|
| 4102 | def is_normal(self, a):
|
|---|
| 4103 | """Return True if the operand is a normal number;
|
|---|
| 4104 | otherwise return False.
|
|---|
| 4105 |
|
|---|
| 4106 | >>> c = ExtendedContext.copy()
|
|---|
| 4107 | >>> c.Emin = -999
|
|---|
| 4108 | >>> c.Emax = 999
|
|---|
| 4109 | >>> c.is_normal(Decimal('2.50'))
|
|---|
| 4110 | True
|
|---|
| 4111 | >>> c.is_normal(Decimal('0.1E-999'))
|
|---|
| 4112 | False
|
|---|
| 4113 | >>> c.is_normal(Decimal('0.00'))
|
|---|
| 4114 | False
|
|---|
| 4115 | >>> c.is_normal(Decimal('-Inf'))
|
|---|
| 4116 | False
|
|---|
| 4117 | >>> c.is_normal(Decimal('NaN'))
|
|---|
| 4118 | False
|
|---|
| 4119 | """
|
|---|
| 4120 | return a.is_normal(context=self)
|
|---|
| 4121 |
|
|---|
| 4122 | def is_qnan(self, a):
|
|---|
| 4123 | """Return True if the operand is a quiet NaN; otherwise return False.
|
|---|
| 4124 |
|
|---|
| 4125 | >>> ExtendedContext.is_qnan(Decimal('2.50'))
|
|---|
| 4126 | False
|
|---|
| 4127 | >>> ExtendedContext.is_qnan(Decimal('NaN'))
|
|---|
| 4128 | True
|
|---|
| 4129 | >>> ExtendedContext.is_qnan(Decimal('sNaN'))
|
|---|
| 4130 | False
|
|---|
| 4131 | """
|
|---|
| 4132 | return a.is_qnan()
|
|---|
| 4133 |
|
|---|
| 4134 | def is_signed(self, a):
|
|---|
| 4135 | """Return True if the operand is negative; otherwise return False.
|
|---|
| 4136 |
|
|---|
| 4137 | >>> ExtendedContext.is_signed(Decimal('2.50'))
|
|---|
| 4138 | False
|
|---|
| 4139 | >>> ExtendedContext.is_signed(Decimal('-12'))
|
|---|
| 4140 | True
|
|---|
| 4141 | >>> ExtendedContext.is_signed(Decimal('-0'))
|
|---|
| 4142 | True
|
|---|
| 4143 | """
|
|---|
| 4144 | return a.is_signed()
|
|---|
| 4145 |
|
|---|
| 4146 | def is_snan(self, a):
|
|---|
| 4147 | """Return True if the operand is a signaling NaN;
|
|---|
| 4148 | otherwise return False.
|
|---|
| 4149 |
|
|---|
| 4150 | >>> ExtendedContext.is_snan(Decimal('2.50'))
|
|---|
| 4151 | False
|
|---|
| 4152 | >>> ExtendedContext.is_snan(Decimal('NaN'))
|
|---|
| 4153 | False
|
|---|
| 4154 | >>> ExtendedContext.is_snan(Decimal('sNaN'))
|
|---|
| 4155 | True
|
|---|
| 4156 | """
|
|---|
| 4157 | return a.is_snan()
|
|---|
| 4158 |
|
|---|
| 4159 | def is_subnormal(self, a):
|
|---|
| 4160 | """Return True if the operand is subnormal; otherwise return False.
|
|---|
| 4161 |
|
|---|
| 4162 | >>> c = ExtendedContext.copy()
|
|---|
| 4163 | >>> c.Emin = -999
|
|---|
| 4164 | >>> c.Emax = 999
|
|---|
| 4165 | >>> c.is_subnormal(Decimal('2.50'))
|
|---|
| 4166 | False
|
|---|
| 4167 | >>> c.is_subnormal(Decimal('0.1E-999'))
|
|---|
| 4168 | True
|
|---|
| 4169 | >>> c.is_subnormal(Decimal('0.00'))
|
|---|
| 4170 | False
|
|---|
| 4171 | >>> c.is_subnormal(Decimal('-Inf'))
|
|---|
| 4172 | False
|
|---|
| 4173 | >>> c.is_subnormal(Decimal('NaN'))
|
|---|
| 4174 | False
|
|---|
| 4175 | """
|
|---|
| 4176 | return a.is_subnormal(context=self)
|
|---|
| 4177 |
|
|---|
| 4178 | def is_zero(self, a):
|
|---|
| 4179 | """Return True if the operand is a zero; otherwise return False.
|
|---|
| 4180 |
|
|---|
| 4181 | >>> ExtendedContext.is_zero(Decimal('0'))
|
|---|
| 4182 | True
|
|---|
| 4183 | >>> ExtendedContext.is_zero(Decimal('2.50'))
|
|---|
| 4184 | False
|
|---|
| 4185 | >>> ExtendedContext.is_zero(Decimal('-0E+2'))
|
|---|
| 4186 | True
|
|---|
| 4187 | """
|
|---|
| 4188 | return a.is_zero()
|
|---|
| 4189 |
|
|---|
| 4190 | def ln(self, a):
|
|---|
| 4191 | """Returns the natural (base e) logarithm of the operand.
|
|---|
| 4192 |
|
|---|
| 4193 | >>> c = ExtendedContext.copy()
|
|---|
| 4194 | >>> c.Emin = -999
|
|---|
| 4195 | >>> c.Emax = 999
|
|---|
| 4196 | >>> c.ln(Decimal('0'))
|
|---|
| 4197 | Decimal('-Infinity')
|
|---|
| 4198 | >>> c.ln(Decimal('1.000'))
|
|---|
| 4199 | Decimal('0')
|
|---|
| 4200 | >>> c.ln(Decimal('2.71828183'))
|
|---|
| 4201 | Decimal('1.00000000')
|
|---|
| 4202 | >>> c.ln(Decimal('10'))
|
|---|
| 4203 | Decimal('2.30258509')
|
|---|
| 4204 | >>> c.ln(Decimal('+Infinity'))
|
|---|
| 4205 | Decimal('Infinity')
|
|---|
| 4206 | """
|
|---|
| 4207 | return a.ln(context=self)
|
|---|
| 4208 |
|
|---|
| 4209 | def log10(self, a):
|
|---|
| 4210 | """Returns the base 10 logarithm of the operand.
|
|---|
| 4211 |
|
|---|
| 4212 | >>> c = ExtendedContext.copy()
|
|---|
| 4213 | >>> c.Emin = -999
|
|---|
| 4214 | >>> c.Emax = 999
|
|---|
| 4215 | >>> c.log10(Decimal('0'))
|
|---|
| 4216 | Decimal('-Infinity')
|
|---|
| 4217 | >>> c.log10(Decimal('0.001'))
|
|---|
| 4218 | Decimal('-3')
|
|---|
| 4219 | >>> c.log10(Decimal('1.000'))
|
|---|
| 4220 | Decimal('0')
|
|---|
| 4221 | >>> c.log10(Decimal('2'))
|
|---|
| 4222 | Decimal('0.301029996')
|
|---|
| 4223 | >>> c.log10(Decimal('10'))
|
|---|
| 4224 | Decimal('1')
|
|---|
| 4225 | >>> c.log10(Decimal('70'))
|
|---|
| 4226 | Decimal('1.84509804')
|
|---|
| 4227 | >>> c.log10(Decimal('+Infinity'))
|
|---|
| 4228 | Decimal('Infinity')
|
|---|
| 4229 | """
|
|---|
| 4230 | return a.log10(context=self)
|
|---|
| 4231 |
|
|---|
| 4232 | def logb(self, a):
|
|---|
| 4233 | """ Returns the exponent of the magnitude of the operand's MSD.
|
|---|
| 4234 |
|
|---|
| 4235 | The result is the integer which is the exponent of the magnitude
|
|---|
| 4236 | of the most significant digit of the operand (as though the
|
|---|
| 4237 | operand were truncated to a single digit while maintaining the
|
|---|
| 4238 | value of that digit and without limiting the resulting exponent).
|
|---|
| 4239 |
|
|---|
| 4240 | >>> ExtendedContext.logb(Decimal('250'))
|
|---|
| 4241 | Decimal('2')
|
|---|
| 4242 | >>> ExtendedContext.logb(Decimal('2.50'))
|
|---|
| 4243 | Decimal('0')
|
|---|
| 4244 | >>> ExtendedContext.logb(Decimal('0.03'))
|
|---|
| 4245 | Decimal('-2')
|
|---|
| 4246 | >>> ExtendedContext.logb(Decimal('0'))
|
|---|
| 4247 | Decimal('-Infinity')
|
|---|
| 4248 | """
|
|---|
| 4249 | return a.logb(context=self)
|
|---|
| 4250 |
|
|---|
| 4251 | def logical_and(self, a, b):
|
|---|
| 4252 | """Applies the logical operation 'and' between each operand's digits.
|
|---|
| 4253 |
|
|---|
| 4254 | The operands must be both logical numbers.
|
|---|
| 4255 |
|
|---|
| 4256 | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
|
|---|
| 4257 | Decimal('0')
|
|---|
| 4258 | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
|
|---|
| 4259 | Decimal('0')
|
|---|
| 4260 | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
|
|---|
| 4261 | Decimal('0')
|
|---|
| 4262 | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
|
|---|
| 4263 | Decimal('1')
|
|---|
| 4264 | >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
|
|---|
| 4265 | Decimal('1000')
|
|---|
| 4266 | >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
|
|---|
| 4267 | Decimal('10')
|
|---|
| 4268 | """
|
|---|
| 4269 | return a.logical_and(b, context=self)
|
|---|
| 4270 |
|
|---|
| 4271 | def logical_invert(self, a):
|
|---|
| 4272 | """Invert all the digits in the operand.
|
|---|
| 4273 |
|
|---|
| 4274 | The operand must be a logical number.
|
|---|
| 4275 |
|
|---|
| 4276 | >>> ExtendedContext.logical_invert(Decimal('0'))
|
|---|
| 4277 | Decimal('111111111')
|
|---|
| 4278 | >>> ExtendedContext.logical_invert(Decimal('1'))
|
|---|
| 4279 | Decimal('111111110')
|
|---|
| 4280 | >>> ExtendedContext.logical_invert(Decimal('111111111'))
|
|---|
| 4281 | Decimal('0')
|
|---|
| 4282 | >>> ExtendedContext.logical_invert(Decimal('101010101'))
|
|---|
| 4283 | Decimal('10101010')
|
|---|
| 4284 | """
|
|---|
| 4285 | return a.logical_invert(context=self)
|
|---|
| 4286 |
|
|---|
| 4287 | def logical_or(self, a, b):
|
|---|
| 4288 | """Applies the logical operation 'or' between each operand's digits.
|
|---|
| 4289 |
|
|---|
| 4290 | The operands must be both logical numbers.
|
|---|
| 4291 |
|
|---|
| 4292 | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
|
|---|
| 4293 | Decimal('0')
|
|---|
| 4294 | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
|
|---|
| 4295 | Decimal('1')
|
|---|
| 4296 | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
|
|---|
| 4297 | Decimal('1')
|
|---|
| 4298 | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
|
|---|
| 4299 | Decimal('1')
|
|---|
| 4300 | >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
|
|---|
| 4301 | Decimal('1110')
|
|---|
| 4302 | >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
|
|---|
| 4303 | Decimal('1110')
|
|---|
| 4304 | """
|
|---|
| 4305 | return a.logical_or(b, context=self)
|
|---|
| 4306 |
|
|---|
| 4307 | def logical_xor(self, a, b):
|
|---|
| 4308 | """Applies the logical operation 'xor' between each operand's digits.
|
|---|
| 4309 |
|
|---|
| 4310 | The operands must be both logical numbers.
|
|---|
| 4311 |
|
|---|
| 4312 | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
|
|---|
| 4313 | Decimal('0')
|
|---|
| 4314 | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
|
|---|
| 4315 | Decimal('1')
|
|---|
| 4316 | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
|
|---|
| 4317 | Decimal('1')
|
|---|
| 4318 | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
|
|---|
| 4319 | Decimal('0')
|
|---|
| 4320 | >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
|
|---|
| 4321 | Decimal('110')
|
|---|
| 4322 | >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
|
|---|
| 4323 | Decimal('1101')
|
|---|
| 4324 | """
|
|---|
| 4325 | return a.logical_xor(b, context=self)
|
|---|
| 4326 |
|
|---|
| 4327 | def max(self, a,b):
|
|---|
| 4328 | """max compares two values numerically and returns the maximum.
|
|---|
| 4329 |
|
|---|
| 4330 | If either operand is a NaN then the general rules apply.
|
|---|
| 4331 | Otherwise, the operands are compared as though by the compare
|
|---|
| 4332 | operation. If they are numerically equal then the left-hand operand
|
|---|
| 4333 | is chosen as the result. Otherwise the maximum (closer to positive
|
|---|
| 4334 | infinity) of the two operands is chosen as the result.
|
|---|
| 4335 |
|
|---|
| 4336 | >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
|
|---|
| 4337 | Decimal('3')
|
|---|
| 4338 | >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
|
|---|
| 4339 | Decimal('3')
|
|---|
| 4340 | >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
|
|---|
| 4341 | Decimal('1')
|
|---|
| 4342 | >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
|
|---|
| 4343 | Decimal('7')
|
|---|
| 4344 | """
|
|---|
| 4345 | return a.max(b, context=self)
|
|---|
| 4346 |
|
|---|
| 4347 | def max_mag(self, a, b):
|
|---|
| 4348 | """Compares the values numerically with their sign ignored."""
|
|---|
| 4349 | return a.max_mag(b, context=self)
|
|---|
| 4350 |
|
|---|
| 4351 | def min(self, a,b):
|
|---|
| 4352 | """min compares two values numerically and returns the minimum.
|
|---|
| 4353 |
|
|---|
| 4354 | If either operand is a NaN then the general rules apply.
|
|---|
| 4355 | Otherwise, the operands are compared as though by the compare
|
|---|
| 4356 | operation. If they are numerically equal then the left-hand operand
|
|---|
| 4357 | is chosen as the result. Otherwise the minimum (closer to negative
|
|---|
| 4358 | infinity) of the two operands is chosen as the result.
|
|---|
| 4359 |
|
|---|
| 4360 | >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
|
|---|
| 4361 | Decimal('2')
|
|---|
| 4362 | >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
|
|---|
| 4363 | Decimal('-10')
|
|---|
| 4364 | >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
|
|---|
| 4365 | Decimal('1.0')
|
|---|
| 4366 | >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
|
|---|
| 4367 | Decimal('7')
|
|---|
| 4368 | """
|
|---|
| 4369 | return a.min(b, context=self)
|
|---|
| 4370 |
|
|---|
| 4371 | def min_mag(self, a, b):
|
|---|
| 4372 | """Compares the values numerically with their sign ignored."""
|
|---|
| 4373 | return a.min_mag(b, context=self)
|
|---|
| 4374 |
|
|---|
| 4375 | def minus(self, a):
|
|---|
| 4376 | """Minus corresponds to unary prefix minus in Python.
|
|---|
| 4377 |
|
|---|
| 4378 | The operation is evaluated using the same rules as subtract; the
|
|---|
| 4379 | operation minus(a) is calculated as subtract('0', a) where the '0'
|
|---|
| 4380 | has the same exponent as the operand.
|
|---|
| 4381 |
|
|---|
| 4382 | >>> ExtendedContext.minus(Decimal('1.3'))
|
|---|
| 4383 | Decimal('-1.3')
|
|---|
| 4384 | >>> ExtendedContext.minus(Decimal('-1.3'))
|
|---|
| 4385 | Decimal('1.3')
|
|---|
| 4386 | """
|
|---|
| 4387 | return a.__neg__(context=self)
|
|---|
| 4388 |
|
|---|
| 4389 | def multiply(self, a, b):
|
|---|
| 4390 | """multiply multiplies two operands.
|
|---|
| 4391 |
|
|---|
| 4392 | If either operand is a special value then the general rules apply.
|
|---|
| 4393 | Otherwise, the operands are multiplied together ('long multiplication'),
|
|---|
| 4394 | resulting in a number which may be as long as the sum of the lengths
|
|---|
| 4395 | of the two operands.
|
|---|
| 4396 |
|
|---|
| 4397 | >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
|
|---|
| 4398 | Decimal('3.60')
|
|---|
| 4399 | >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
|
|---|
| 4400 | Decimal('21')
|
|---|
| 4401 | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
|
|---|
| 4402 | Decimal('0.72')
|
|---|
| 4403 | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
|
|---|
| 4404 | Decimal('-0.0')
|
|---|
| 4405 | >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
|
|---|
| 4406 | Decimal('4.28135971E+11')
|
|---|
| 4407 | """
|
|---|
| 4408 | return a.__mul__(b, context=self)
|
|---|
| 4409 |
|
|---|
| 4410 | def next_minus(self, a):
|
|---|
| 4411 | """Returns the largest representable number smaller than a.
|
|---|
| 4412 |
|
|---|
| 4413 | >>> c = ExtendedContext.copy()
|
|---|
| 4414 | >>> c.Emin = -999
|
|---|
| 4415 | >>> c.Emax = 999
|
|---|
| 4416 | >>> ExtendedContext.next_minus(Decimal('1'))
|
|---|
| 4417 | Decimal('0.999999999')
|
|---|
| 4418 | >>> c.next_minus(Decimal('1E-1007'))
|
|---|
| 4419 | Decimal('0E-1007')
|
|---|
| 4420 | >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
|
|---|
| 4421 | Decimal('-1.00000004')
|
|---|
| 4422 | >>> c.next_minus(Decimal('Infinity'))
|
|---|
| 4423 | Decimal('9.99999999E+999')
|
|---|
| 4424 | """
|
|---|
| 4425 | return a.next_minus(context=self)
|
|---|
| 4426 |
|
|---|
| 4427 | def next_plus(self, a):
|
|---|
| 4428 | """Returns the smallest representable number larger than a.
|
|---|
| 4429 |
|
|---|
| 4430 | >>> c = ExtendedContext.copy()
|
|---|
| 4431 | >>> c.Emin = -999
|
|---|
| 4432 | >>> c.Emax = 999
|
|---|
| 4433 | >>> ExtendedContext.next_plus(Decimal('1'))
|
|---|
| 4434 | Decimal('1.00000001')
|
|---|
| 4435 | >>> c.next_plus(Decimal('-1E-1007'))
|
|---|
| 4436 | Decimal('-0E-1007')
|
|---|
| 4437 | >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
|
|---|
| 4438 | Decimal('-1.00000002')
|
|---|
| 4439 | >>> c.next_plus(Decimal('-Infinity'))
|
|---|
| 4440 | Decimal('-9.99999999E+999')
|
|---|
| 4441 | """
|
|---|
| 4442 | return a.next_plus(context=self)
|
|---|
| 4443 |
|
|---|
| 4444 | def next_toward(self, a, b):
|
|---|
| 4445 | """Returns the number closest to a, in direction towards b.
|
|---|
| 4446 |
|
|---|
| 4447 | The result is the closest representable number from the first
|
|---|
| 4448 | operand (but not the first operand) that is in the direction
|
|---|
| 4449 | towards the second operand, unless the operands have the same
|
|---|
| 4450 | value.
|
|---|
| 4451 |
|
|---|
| 4452 | >>> c = ExtendedContext.copy()
|
|---|
| 4453 | >>> c.Emin = -999
|
|---|
| 4454 | >>> c.Emax = 999
|
|---|
| 4455 | >>> c.next_toward(Decimal('1'), Decimal('2'))
|
|---|
| 4456 | Decimal('1.00000001')
|
|---|
| 4457 | >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
|
|---|
| 4458 | Decimal('-0E-1007')
|
|---|
| 4459 | >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
|
|---|
| 4460 | Decimal('-1.00000002')
|
|---|
| 4461 | >>> c.next_toward(Decimal('1'), Decimal('0'))
|
|---|
| 4462 | Decimal('0.999999999')
|
|---|
| 4463 | >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
|
|---|
| 4464 | Decimal('0E-1007')
|
|---|
| 4465 | >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
|
|---|
| 4466 | Decimal('-1.00000004')
|
|---|
| 4467 | >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
|
|---|
| 4468 | Decimal('-0.00')
|
|---|
| 4469 | """
|
|---|
| 4470 | return a.next_toward(b, context=self)
|
|---|
| 4471 |
|
|---|
| 4472 | def normalize(self, a):
|
|---|
| 4473 | """normalize reduces an operand to its simplest form.
|
|---|
| 4474 |
|
|---|
| 4475 | Essentially a plus operation with all trailing zeros removed from the
|
|---|
| 4476 | result.
|
|---|
| 4477 |
|
|---|
| 4478 | >>> ExtendedContext.normalize(Decimal('2.1'))
|
|---|
| 4479 | Decimal('2.1')
|
|---|
| 4480 | >>> ExtendedContext.normalize(Decimal('-2.0'))
|
|---|
| 4481 | Decimal('-2')
|
|---|
| 4482 | >>> ExtendedContext.normalize(Decimal('1.200'))
|
|---|
| 4483 | Decimal('1.2')
|
|---|
| 4484 | >>> ExtendedContext.normalize(Decimal('-120'))
|
|---|
| 4485 | Decimal('-1.2E+2')
|
|---|
| 4486 | >>> ExtendedContext.normalize(Decimal('120.00'))
|
|---|
| 4487 | Decimal('1.2E+2')
|
|---|
| 4488 | >>> ExtendedContext.normalize(Decimal('0.00'))
|
|---|
| 4489 | Decimal('0')
|
|---|
| 4490 | """
|
|---|
| 4491 | return a.normalize(context=self)
|
|---|
| 4492 |
|
|---|
| 4493 | def number_class(self, a):
|
|---|
| 4494 | """Returns an indication of the class of the operand.
|
|---|
| 4495 |
|
|---|
| 4496 | The class is one of the following strings:
|
|---|
| 4497 | -sNaN
|
|---|
| 4498 | -NaN
|
|---|
| 4499 | -Infinity
|
|---|
| 4500 | -Normal
|
|---|
| 4501 | -Subnormal
|
|---|
| 4502 | -Zero
|
|---|
| 4503 | +Zero
|
|---|
| 4504 | +Subnormal
|
|---|
| 4505 | +Normal
|
|---|
| 4506 | +Infinity
|
|---|
| 4507 |
|
|---|
| 4508 | >>> c = Context(ExtendedContext)
|
|---|
| 4509 | >>> c.Emin = -999
|
|---|
| 4510 | >>> c.Emax = 999
|
|---|
| 4511 | >>> c.number_class(Decimal('Infinity'))
|
|---|
| 4512 | '+Infinity'
|
|---|
| 4513 | >>> c.number_class(Decimal('1E-10'))
|
|---|
| 4514 | '+Normal'
|
|---|
| 4515 | >>> c.number_class(Decimal('2.50'))
|
|---|
| 4516 | '+Normal'
|
|---|
| 4517 | >>> c.number_class(Decimal('0.1E-999'))
|
|---|
| 4518 | '+Subnormal'
|
|---|
| 4519 | >>> c.number_class(Decimal('0'))
|
|---|
| 4520 | '+Zero'
|
|---|
| 4521 | >>> c.number_class(Decimal('-0'))
|
|---|
| 4522 | '-Zero'
|
|---|
| 4523 | >>> c.number_class(Decimal('-0.1E-999'))
|
|---|
| 4524 | '-Subnormal'
|
|---|
| 4525 | >>> c.number_class(Decimal('-1E-10'))
|
|---|
| 4526 | '-Normal'
|
|---|
| 4527 | >>> c.number_class(Decimal('-2.50'))
|
|---|
| 4528 | '-Normal'
|
|---|
| 4529 | >>> c.number_class(Decimal('-Infinity'))
|
|---|
| 4530 | '-Infinity'
|
|---|
| 4531 | >>> c.number_class(Decimal('NaN'))
|
|---|
| 4532 | 'NaN'
|
|---|
| 4533 | >>> c.number_class(Decimal('-NaN'))
|
|---|
| 4534 | 'NaN'
|
|---|
| 4535 | >>> c.number_class(Decimal('sNaN'))
|
|---|
| 4536 | 'sNaN'
|
|---|
| 4537 | """
|
|---|
| 4538 | return a.number_class(context=self)
|
|---|
| 4539 |
|
|---|
| 4540 | def plus(self, a):
|
|---|
| 4541 | """Plus corresponds to unary prefix plus in Python.
|
|---|
| 4542 |
|
|---|
| 4543 | The operation is evaluated using the same rules as add; the
|
|---|
| 4544 | operation plus(a) is calculated as add('0', a) where the '0'
|
|---|
| 4545 | has the same exponent as the operand.
|
|---|
| 4546 |
|
|---|
| 4547 | >>> ExtendedContext.plus(Decimal('1.3'))
|
|---|
| 4548 | Decimal('1.3')
|
|---|
| 4549 | >>> ExtendedContext.plus(Decimal('-1.3'))
|
|---|
| 4550 | Decimal('-1.3')
|
|---|
| 4551 | """
|
|---|
| 4552 | return a.__pos__(context=self)
|
|---|
| 4553 |
|
|---|
| 4554 | def power(self, a, b, modulo=None):
|
|---|
| 4555 | """Raises a to the power of b, to modulo if given.
|
|---|
| 4556 |
|
|---|
| 4557 | With two arguments, compute a**b. If a is negative then b
|
|---|
| 4558 | must be integral. The result will be inexact unless b is
|
|---|
| 4559 | integral and the result is finite and can be expressed exactly
|
|---|
| 4560 | in 'precision' digits.
|
|---|
| 4561 |
|
|---|
| 4562 | With three arguments, compute (a**b) % modulo. For the
|
|---|
| 4563 | three argument form, the following restrictions on the
|
|---|
| 4564 | arguments hold:
|
|---|
| 4565 |
|
|---|
| 4566 | - all three arguments must be integral
|
|---|
| 4567 | - b must be nonnegative
|
|---|
| 4568 | - at least one of a or b must be nonzero
|
|---|
| 4569 | - modulo must be nonzero and have at most 'precision' digits
|
|---|
| 4570 |
|
|---|
| 4571 | The result of pow(a, b, modulo) is identical to the result
|
|---|
| 4572 | that would be obtained by computing (a**b) % modulo with
|
|---|
| 4573 | unbounded precision, but is computed more efficiently. It is
|
|---|
| 4574 | always exact.
|
|---|
| 4575 |
|
|---|
| 4576 | >>> c = ExtendedContext.copy()
|
|---|
| 4577 | >>> c.Emin = -999
|
|---|
| 4578 | >>> c.Emax = 999
|
|---|
| 4579 | >>> c.power(Decimal('2'), Decimal('3'))
|
|---|
| 4580 | Decimal('8')
|
|---|
| 4581 | >>> c.power(Decimal('-2'), Decimal('3'))
|
|---|
| 4582 | Decimal('-8')
|
|---|
| 4583 | >>> c.power(Decimal('2'), Decimal('-3'))
|
|---|
| 4584 | Decimal('0.125')
|
|---|
| 4585 | >>> c.power(Decimal('1.7'), Decimal('8'))
|
|---|
| 4586 | Decimal('69.7575744')
|
|---|
| 4587 | >>> c.power(Decimal('10'), Decimal('0.301029996'))
|
|---|
| 4588 | Decimal('2.00000000')
|
|---|
| 4589 | >>> c.power(Decimal('Infinity'), Decimal('-1'))
|
|---|
| 4590 | Decimal('0')
|
|---|
| 4591 | >>> c.power(Decimal('Infinity'), Decimal('0'))
|
|---|
| 4592 | Decimal('1')
|
|---|
| 4593 | >>> c.power(Decimal('Infinity'), Decimal('1'))
|
|---|
| 4594 | Decimal('Infinity')
|
|---|
| 4595 | >>> c.power(Decimal('-Infinity'), Decimal('-1'))
|
|---|
| 4596 | Decimal('-0')
|
|---|
| 4597 | >>> c.power(Decimal('-Infinity'), Decimal('0'))
|
|---|
| 4598 | Decimal('1')
|
|---|
| 4599 | >>> c.power(Decimal('-Infinity'), Decimal('1'))
|
|---|
| 4600 | Decimal('-Infinity')
|
|---|
| 4601 | >>> c.power(Decimal('-Infinity'), Decimal('2'))
|
|---|
| 4602 | Decimal('Infinity')
|
|---|
| 4603 | >>> c.power(Decimal('0'), Decimal('0'))
|
|---|
| 4604 | Decimal('NaN')
|
|---|
| 4605 |
|
|---|
| 4606 | >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
|
|---|
| 4607 | Decimal('11')
|
|---|
| 4608 | >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
|
|---|
| 4609 | Decimal('-11')
|
|---|
| 4610 | >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
|
|---|
| 4611 | Decimal('1')
|
|---|
| 4612 | >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
|
|---|
| 4613 | Decimal('11')
|
|---|
| 4614 | >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
|
|---|
| 4615 | Decimal('11729830')
|
|---|
| 4616 | >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
|
|---|
| 4617 | Decimal('-0')
|
|---|
| 4618 | >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
|
|---|
| 4619 | Decimal('1')
|
|---|
| 4620 | """
|
|---|
| 4621 | return a.__pow__(b, modulo, context=self)
|
|---|
| 4622 |
|
|---|
| 4623 | def quantize(self, a, b):
|
|---|
| 4624 | """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
|
|---|
| 4625 |
|
|---|
| 4626 | The coefficient of the result is derived from that of the left-hand
|
|---|
| 4627 | operand. It may be rounded using the current rounding setting (if the
|
|---|
| 4628 | exponent is being increased), multiplied by a positive power of ten (if
|
|---|
| 4629 | the exponent is being decreased), or is unchanged (if the exponent is
|
|---|
| 4630 | already equal to that of the right-hand operand).
|
|---|
| 4631 |
|
|---|
| 4632 | Unlike other operations, if the length of the coefficient after the
|
|---|
| 4633 | quantize operation would be greater than precision then an Invalid
|
|---|
| 4634 | operation condition is raised. This guarantees that, unless there is
|
|---|
| 4635 | an error condition, the exponent of the result of a quantize is always
|
|---|
| 4636 | equal to that of the right-hand operand.
|
|---|
| 4637 |
|
|---|
| 4638 | Also unlike other operations, quantize will never raise Underflow, even
|
|---|
| 4639 | if the result is subnormal and inexact.
|
|---|
| 4640 |
|
|---|
| 4641 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
|
|---|
| 4642 | Decimal('2.170')
|
|---|
| 4643 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
|
|---|
| 4644 | Decimal('2.17')
|
|---|
| 4645 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
|
|---|
| 4646 | Decimal('2.2')
|
|---|
| 4647 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
|
|---|
| 4648 | Decimal('2')
|
|---|
| 4649 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
|
|---|
| 4650 | Decimal('0E+1')
|
|---|
| 4651 | >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
|
|---|
| 4652 | Decimal('-Infinity')
|
|---|
| 4653 | >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
|
|---|
| 4654 | Decimal('NaN')
|
|---|
| 4655 | >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
|
|---|
| 4656 | Decimal('-0')
|
|---|
| 4657 | >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
|
|---|
| 4658 | Decimal('-0E+5')
|
|---|
| 4659 | >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
|
|---|
| 4660 | Decimal('NaN')
|
|---|
| 4661 | >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
|
|---|
| 4662 | Decimal('NaN')
|
|---|
| 4663 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
|
|---|
| 4664 | Decimal('217.0')
|
|---|
| 4665 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
|
|---|
| 4666 | Decimal('217')
|
|---|
| 4667 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
|
|---|
| 4668 | Decimal('2.2E+2')
|
|---|
| 4669 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
|
|---|
| 4670 | Decimal('2E+2')
|
|---|
| 4671 | """
|
|---|
| 4672 | return a.quantize(b, context=self)
|
|---|
| 4673 |
|
|---|
| 4674 | def radix(self):
|
|---|
| 4675 | """Just returns 10, as this is Decimal, :)
|
|---|
| 4676 |
|
|---|
| 4677 | >>> ExtendedContext.radix()
|
|---|
| 4678 | Decimal('10')
|
|---|
| 4679 | """
|
|---|
| 4680 | return Decimal(10)
|
|---|
| 4681 |
|
|---|
| 4682 | def remainder(self, a, b):
|
|---|
| 4683 | """Returns the remainder from integer division.
|
|---|
| 4684 |
|
|---|
| 4685 | The result is the residue of the dividend after the operation of
|
|---|
| 4686 | calculating integer division as described for divide-integer, rounded
|
|---|
| 4687 | to precision digits if necessary. The sign of the result, if
|
|---|
| 4688 | non-zero, is the same as that of the original dividend.
|
|---|
| 4689 |
|
|---|
| 4690 | This operation will fail under the same conditions as integer division
|
|---|
| 4691 | (that is, if integer division on the same two operands would fail, the
|
|---|
| 4692 | remainder cannot be calculated).
|
|---|
| 4693 |
|
|---|
| 4694 | >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
|
|---|
| 4695 | Decimal('2.1')
|
|---|
| 4696 | >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
|
|---|
| 4697 | Decimal('1')
|
|---|
| 4698 | >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
|
|---|
| 4699 | Decimal('-1')
|
|---|
| 4700 | >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
|
|---|
| 4701 | Decimal('0.2')
|
|---|
| 4702 | >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
|
|---|
| 4703 | Decimal('0.1')
|
|---|
| 4704 | >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
|
|---|
| 4705 | Decimal('1.0')
|
|---|
| 4706 | """
|
|---|
| 4707 | return a.__mod__(b, context=self)
|
|---|
| 4708 |
|
|---|
| 4709 | def remainder_near(self, a, b):
|
|---|
| 4710 | """Returns to be "a - b * n", where n is the integer nearest the exact
|
|---|
| 4711 | value of "x / b" (if two integers are equally near then the even one
|
|---|
| 4712 | is chosen). If the result is equal to 0 then its sign will be the
|
|---|
| 4713 | sign of a.
|
|---|
| 4714 |
|
|---|
| 4715 | This operation will fail under the same conditions as integer division
|
|---|
| 4716 | (that is, if integer division on the same two operands would fail, the
|
|---|
| 4717 | remainder cannot be calculated).
|
|---|
| 4718 |
|
|---|
| 4719 | >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
|
|---|
| 4720 | Decimal('-0.9')
|
|---|
| 4721 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
|
|---|
| 4722 | Decimal('-2')
|
|---|
| 4723 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
|
|---|
| 4724 | Decimal('1')
|
|---|
| 4725 | >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
|
|---|
| 4726 | Decimal('-1')
|
|---|
| 4727 | >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
|
|---|
| 4728 | Decimal('0.2')
|
|---|
| 4729 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
|
|---|
| 4730 | Decimal('0.1')
|
|---|
| 4731 | >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
|
|---|
| 4732 | Decimal('-0.3')
|
|---|
| 4733 | """
|
|---|
| 4734 | return a.remainder_near(b, context=self)
|
|---|
| 4735 |
|
|---|
| 4736 | def rotate(self, a, b):
|
|---|
| 4737 | """Returns a rotated copy of a, b times.
|
|---|
| 4738 |
|
|---|
| 4739 | The coefficient of the result is a rotated copy of the digits in
|
|---|
| 4740 | the coefficient of the first operand. The number of places of
|
|---|
| 4741 | rotation is taken from the absolute value of the second operand,
|
|---|
| 4742 | with the rotation being to the left if the second operand is
|
|---|
| 4743 | positive or to the right otherwise.
|
|---|
| 4744 |
|
|---|
| 4745 | >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
|
|---|
| 4746 | Decimal('400000003')
|
|---|
| 4747 | >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
|
|---|
| 4748 | Decimal('12')
|
|---|
| 4749 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
|
|---|
| 4750 | Decimal('891234567')
|
|---|
| 4751 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
|
|---|
| 4752 | Decimal('123456789')
|
|---|
| 4753 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
|
|---|
| 4754 | Decimal('345678912')
|
|---|
| 4755 | """
|
|---|
| 4756 | return a.rotate(b, context=self)
|
|---|
| 4757 |
|
|---|
| 4758 | def same_quantum(self, a, b):
|
|---|
| 4759 | """Returns True if the two operands have the same exponent.
|
|---|
| 4760 |
|
|---|
| 4761 | The result is never affected by either the sign or the coefficient of
|
|---|
| 4762 | either operand.
|
|---|
| 4763 |
|
|---|
| 4764 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
|
|---|
| 4765 | False
|
|---|
| 4766 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
|
|---|
| 4767 | True
|
|---|
| 4768 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
|
|---|
| 4769 | False
|
|---|
| 4770 | >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
|
|---|
| 4771 | True
|
|---|
| 4772 | """
|
|---|
| 4773 | return a.same_quantum(b)
|
|---|
| 4774 |
|
|---|
| 4775 | def scaleb (self, a, b):
|
|---|
| 4776 | """Returns the first operand after adding the second value its exp.
|
|---|
| 4777 |
|
|---|
| 4778 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
|
|---|
| 4779 | Decimal('0.0750')
|
|---|
| 4780 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
|
|---|
| 4781 | Decimal('7.50')
|
|---|
| 4782 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
|
|---|
| 4783 | Decimal('7.50E+3')
|
|---|
| 4784 | """
|
|---|
| 4785 | return a.scaleb (b, context=self)
|
|---|
| 4786 |
|
|---|
| 4787 | def shift(self, a, b):
|
|---|
| 4788 | """Returns a shifted copy of a, b times.
|
|---|
| 4789 |
|
|---|
| 4790 | The coefficient of the result is a shifted copy of the digits
|
|---|
| 4791 | in the coefficient of the first operand. The number of places
|
|---|
| 4792 | to shift is taken from the absolute value of the second operand,
|
|---|
| 4793 | with the shift being to the left if the second operand is
|
|---|
| 4794 | positive or to the right otherwise. Digits shifted into the
|
|---|
| 4795 | coefficient are zeros.
|
|---|
| 4796 |
|
|---|
| 4797 | >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
|
|---|
| 4798 | Decimal('400000000')
|
|---|
| 4799 | >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
|
|---|
| 4800 | Decimal('0')
|
|---|
| 4801 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
|
|---|
| 4802 | Decimal('1234567')
|
|---|
| 4803 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
|
|---|
| 4804 | Decimal('123456789')
|
|---|
| 4805 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
|
|---|
| 4806 | Decimal('345678900')
|
|---|
| 4807 | """
|
|---|
| 4808 | return a.shift(b, context=self)
|
|---|
| 4809 |
|
|---|
| 4810 | def sqrt(self, a):
|
|---|
| 4811 | """Square root of a non-negative number to context precision.
|
|---|
| 4812 |
|
|---|
| 4813 | If the result must be inexact, it is rounded using the round-half-even
|
|---|
| 4814 | algorithm.
|
|---|
| 4815 |
|
|---|
| 4816 | >>> ExtendedContext.sqrt(Decimal('0'))
|
|---|
| 4817 | Decimal('0')
|
|---|
| 4818 | >>> ExtendedContext.sqrt(Decimal('-0'))
|
|---|
| 4819 | Decimal('-0')
|
|---|
| 4820 | >>> ExtendedContext.sqrt(Decimal('0.39'))
|
|---|
| 4821 | Decimal('0.624499800')
|
|---|
| 4822 | >>> ExtendedContext.sqrt(Decimal('100'))
|
|---|
| 4823 | Decimal('10')
|
|---|
| 4824 | >>> ExtendedContext.sqrt(Decimal('1'))
|
|---|
| 4825 | Decimal('1')
|
|---|
| 4826 | >>> ExtendedContext.sqrt(Decimal('1.0'))
|
|---|
| 4827 | Decimal('1.0')
|
|---|
| 4828 | >>> ExtendedContext.sqrt(Decimal('1.00'))
|
|---|
| 4829 | Decimal('1.0')
|
|---|
| 4830 | >>> ExtendedContext.sqrt(Decimal('7'))
|
|---|
| 4831 | Decimal('2.64575131')
|
|---|
| 4832 | >>> ExtendedContext.sqrt(Decimal('10'))
|
|---|
| 4833 | Decimal('3.16227766')
|
|---|
| 4834 | >>> ExtendedContext.prec
|
|---|
| 4835 | 9
|
|---|
| 4836 | """
|
|---|
| 4837 | return a.sqrt(context=self)
|
|---|
| 4838 |
|
|---|
| 4839 | def subtract(self, a, b):
|
|---|
| 4840 | """Return the difference between the two operands.
|
|---|
| 4841 |
|
|---|
| 4842 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
|
|---|
| 4843 | Decimal('0.23')
|
|---|
| 4844 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
|
|---|
| 4845 | Decimal('0.00')
|
|---|
| 4846 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
|
|---|
| 4847 | Decimal('-0.77')
|
|---|
| 4848 | """
|
|---|
| 4849 | return a.__sub__(b, context=self)
|
|---|
| 4850 |
|
|---|
| 4851 | def to_eng_string(self, a):
|
|---|
| 4852 | """Converts a number to a string, using scientific notation.
|
|---|
| 4853 |
|
|---|
| 4854 | The operation is not affected by the context.
|
|---|
| 4855 | """
|
|---|
| 4856 | return a.to_eng_string(context=self)
|
|---|
| 4857 |
|
|---|
| 4858 | def to_sci_string(self, a):
|
|---|
| 4859 | """Converts a number to a string, using scientific notation.
|
|---|
| 4860 |
|
|---|
| 4861 | The operation is not affected by the context.
|
|---|
| 4862 | """
|
|---|
| 4863 | return a.__str__(context=self)
|
|---|
| 4864 |
|
|---|
| 4865 | def to_integral_exact(self, a):
|
|---|
| 4866 | """Rounds to an integer.
|
|---|
| 4867 |
|
|---|
| 4868 | When the operand has a negative exponent, the result is the same
|
|---|
| 4869 | as using the quantize() operation using the given operand as the
|
|---|
| 4870 | left-hand-operand, 1E+0 as the right-hand-operand, and the precision
|
|---|
| 4871 | of the operand as the precision setting; Inexact and Rounded flags
|
|---|
| 4872 | are allowed in this operation. The rounding mode is taken from the
|
|---|
| 4873 | context.
|
|---|
| 4874 |
|
|---|
| 4875 | >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
|
|---|
| 4876 | Decimal('2')
|
|---|
| 4877 | >>> ExtendedContext.to_integral_exact(Decimal('100'))
|
|---|
| 4878 | Decimal('100')
|
|---|
| 4879 | >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
|
|---|
| 4880 | Decimal('100')
|
|---|
| 4881 | >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
|
|---|
| 4882 | Decimal('102')
|
|---|
| 4883 | >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
|
|---|
| 4884 | Decimal('-102')
|
|---|
| 4885 | >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
|
|---|
| 4886 | Decimal('1.0E+6')
|
|---|
| 4887 | >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
|
|---|
| 4888 | Decimal('7.89E+77')
|
|---|
| 4889 | >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
|
|---|
| 4890 | Decimal('-Infinity')
|
|---|
| 4891 | """
|
|---|
| 4892 | return a.to_integral_exact(context=self)
|
|---|
| 4893 |
|
|---|
| 4894 | def to_integral_value(self, a):
|
|---|
| 4895 | """Rounds to an integer.
|
|---|
| 4896 |
|
|---|
| 4897 | When the operand has a negative exponent, the result is the same
|
|---|
| 4898 | as using the quantize() operation using the given operand as the
|
|---|
| 4899 | left-hand-operand, 1E+0 as the right-hand-operand, and the precision
|
|---|
| 4900 | of the operand as the precision setting, except that no flags will
|
|---|
| 4901 | be set. The rounding mode is taken from the context.
|
|---|
| 4902 |
|
|---|
| 4903 | >>> ExtendedContext.to_integral_value(Decimal('2.1'))
|
|---|
| 4904 | Decimal('2')
|
|---|
| 4905 | >>> ExtendedContext.to_integral_value(Decimal('100'))
|
|---|
| 4906 | Decimal('100')
|
|---|
| 4907 | >>> ExtendedContext.to_integral_value(Decimal('100.0'))
|
|---|
| 4908 | Decimal('100')
|
|---|
| 4909 | >>> ExtendedContext.to_integral_value(Decimal('101.5'))
|
|---|
| 4910 | Decimal('102')
|
|---|
| 4911 | >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
|
|---|
| 4912 | Decimal('-102')
|
|---|
| 4913 | >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
|
|---|
| 4914 | Decimal('1.0E+6')
|
|---|
| 4915 | >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
|
|---|
| 4916 | Decimal('7.89E+77')
|
|---|
| 4917 | >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
|
|---|
| 4918 | Decimal('-Infinity')
|
|---|
| 4919 | """
|
|---|
| 4920 | return a.to_integral_value(context=self)
|
|---|
| 4921 |
|
|---|
| 4922 | # the method name changed, but we provide also the old one, for compatibility
|
|---|
| 4923 | to_integral = to_integral_value
|
|---|
| 4924 |
|
|---|
| 4925 | class _WorkRep(object):
|
|---|
| 4926 | __slots__ = ('sign','int','exp')
|
|---|
| 4927 | # sign: 0 or 1
|
|---|
| 4928 | # int: int or long
|
|---|
| 4929 | # exp: None, int, or string
|
|---|
| 4930 |
|
|---|
| 4931 | def __init__(self, value=None):
|
|---|
| 4932 | if value is None:
|
|---|
| 4933 | self.sign = None
|
|---|
| 4934 | self.int = 0
|
|---|
| 4935 | self.exp = None
|
|---|
| 4936 | elif isinstance(value, Decimal):
|
|---|
| 4937 | self.sign = value._sign
|
|---|
| 4938 | self.int = int(value._int)
|
|---|
| 4939 | self.exp = value._exp
|
|---|
| 4940 | else:
|
|---|
| 4941 | # assert isinstance(value, tuple)
|
|---|
| 4942 | self.sign = value[0]
|
|---|
| 4943 | self.int = value[1]
|
|---|
| 4944 | self.exp = value[2]
|
|---|
| 4945 |
|
|---|
| 4946 | def __repr__(self):
|
|---|
| 4947 | return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
|
|---|
| 4948 |
|
|---|
| 4949 | __str__ = __repr__
|
|---|
| 4950 |
|
|---|
| 4951 |
|
|---|
| 4952 |
|
|---|
| 4953 | def _normalize(op1, op2, prec = 0):
|
|---|
| 4954 | """Normalizes op1, op2 to have the same exp and length of coefficient.
|
|---|
| 4955 |
|
|---|
| 4956 | Done during addition.
|
|---|
| 4957 | """
|
|---|
| 4958 | if op1.exp < op2.exp:
|
|---|
| 4959 | tmp = op2
|
|---|
| 4960 | other = op1
|
|---|
| 4961 | else:
|
|---|
| 4962 | tmp = op1
|
|---|
| 4963 | other = op2
|
|---|
| 4964 |
|
|---|
| 4965 | # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
|
|---|
| 4966 | # Then adding 10**exp to tmp has the same effect (after rounding)
|
|---|
| 4967 | # as adding any positive quantity smaller than 10**exp; similarly
|
|---|
| 4968 | # for subtraction. So if other is smaller than 10**exp we replace
|
|---|
| 4969 | # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
|
|---|
| 4970 | tmp_len = len(str(tmp.int))
|
|---|
| 4971 | other_len = len(str(other.int))
|
|---|
| 4972 | exp = tmp.exp + min(-1, tmp_len - prec - 2)
|
|---|
| 4973 | if other_len + other.exp - 1 < exp:
|
|---|
| 4974 | other.int = 1
|
|---|
| 4975 | other.exp = exp
|
|---|
| 4976 |
|
|---|
| 4977 | tmp.int *= 10 ** (tmp.exp - other.exp)
|
|---|
| 4978 | tmp.exp = other.exp
|
|---|
| 4979 | return op1, op2
|
|---|
| 4980 |
|
|---|
| 4981 | ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
|
|---|
| 4982 |
|
|---|
| 4983 | # This function from Tim Peters was taken from here:
|
|---|
| 4984 | # http://mail.python.org/pipermail/python-list/1999-July/007758.html
|
|---|
| 4985 | # The correction being in the function definition is for speed, and
|
|---|
| 4986 | # the whole function is not resolved with math.log because of avoiding
|
|---|
| 4987 | # the use of floats.
|
|---|
| 4988 | def _nbits(n, correction = {
|
|---|
| 4989 | '0': 4, '1': 3, '2': 2, '3': 2,
|
|---|
| 4990 | '4': 1, '5': 1, '6': 1, '7': 1,
|
|---|
| 4991 | '8': 0, '9': 0, 'a': 0, 'b': 0,
|
|---|
| 4992 | 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
|
|---|
| 4993 | """Number of bits in binary representation of the positive integer n,
|
|---|
| 4994 | or 0 if n == 0.
|
|---|
| 4995 | """
|
|---|
| 4996 | if n < 0:
|
|---|
| 4997 | raise ValueError("The argument to _nbits should be nonnegative.")
|
|---|
| 4998 | hex_n = "%x" % n
|
|---|
| 4999 | return 4*len(hex_n) - correction[hex_n[0]]
|
|---|
| 5000 |
|
|---|
| 5001 | def _sqrt_nearest(n, a):
|
|---|
| 5002 | """Closest integer to the square root of the positive integer n. a is
|
|---|
| 5003 | an initial approximation to the square root. Any positive integer
|
|---|
| 5004 | will do for a, but the closer a is to the square root of n the
|
|---|
| 5005 | faster convergence will be.
|
|---|
| 5006 |
|
|---|
| 5007 | """
|
|---|
| 5008 | if n <= 0 or a <= 0:
|
|---|
| 5009 | raise ValueError("Both arguments to _sqrt_nearest should be positive.")
|
|---|
| 5010 |
|
|---|
| 5011 | b=0
|
|---|
| 5012 | while a != b:
|
|---|
| 5013 | b, a = a, a--n//a>>1
|
|---|
| 5014 | return a
|
|---|
| 5015 |
|
|---|
| 5016 | def _rshift_nearest(x, shift):
|
|---|
| 5017 | """Given an integer x and a nonnegative integer shift, return closest
|
|---|
| 5018 | integer to x / 2**shift; use round-to-even in case of a tie.
|
|---|
| 5019 |
|
|---|
| 5020 | """
|
|---|
| 5021 | b, q = 1L << shift, x >> shift
|
|---|
| 5022 | return q + (2*(x & (b-1)) + (q&1) > b)
|
|---|
| 5023 |
|
|---|
| 5024 | def _div_nearest(a, b):
|
|---|
| 5025 | """Closest integer to a/b, a and b positive integers; rounds to even
|
|---|
| 5026 | in the case of a tie.
|
|---|
| 5027 |
|
|---|
| 5028 | """
|
|---|
| 5029 | q, r = divmod(a, b)
|
|---|
| 5030 | return q + (2*r + (q&1) > b)
|
|---|
| 5031 |
|
|---|
| 5032 | def _ilog(x, M, L = 8):
|
|---|
| 5033 | """Integer approximation to M*log(x/M), with absolute error boundable
|
|---|
| 5034 | in terms only of x/M.
|
|---|
| 5035 |
|
|---|
| 5036 | Given positive integers x and M, return an integer approximation to
|
|---|
| 5037 | M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
|
|---|
| 5038 | between the approximation and the exact result is at most 22. For
|
|---|
| 5039 | L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
|
|---|
| 5040 | both cases these are upper bounds on the error; it will usually be
|
|---|
| 5041 | much smaller."""
|
|---|
| 5042 |
|
|---|
| 5043 | # The basic algorithm is the following: let log1p be the function
|
|---|
| 5044 | # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
|
|---|
| 5045 | # the reduction
|
|---|
| 5046 | #
|
|---|
| 5047 | # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
|
|---|
| 5048 | #
|
|---|
| 5049 | # repeatedly until the argument to log1p is small (< 2**-L in
|
|---|
| 5050 | # absolute value). For small y we can use the Taylor series
|
|---|
| 5051 | # expansion
|
|---|
| 5052 | #
|
|---|
| 5053 | # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
|
|---|
| 5054 | #
|
|---|
| 5055 | # truncating at T such that y**T is small enough. The whole
|
|---|
| 5056 | # computation is carried out in a form of fixed-point arithmetic,
|
|---|
| 5057 | # with a real number z being represented by an integer
|
|---|
| 5058 | # approximation to z*M. To avoid loss of precision, the y below
|
|---|
| 5059 | # is actually an integer approximation to 2**R*y*M, where R is the
|
|---|
| 5060 | # number of reductions performed so far.
|
|---|
| 5061 |
|
|---|
| 5062 | y = x-M
|
|---|
| 5063 | # argument reduction; R = number of reductions performed
|
|---|
| 5064 | R = 0
|
|---|
| 5065 | while (R <= L and long(abs(y)) << L-R >= M or
|
|---|
| 5066 | R > L and abs(y) >> R-L >= M):
|
|---|
| 5067 | y = _div_nearest(long(M*y) << 1,
|
|---|
| 5068 | M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
|
|---|
| 5069 | R += 1
|
|---|
| 5070 |
|
|---|
| 5071 | # Taylor series with T terms
|
|---|
| 5072 | T = -int(-10*len(str(M))//(3*L))
|
|---|
| 5073 | yshift = _rshift_nearest(y, R)
|
|---|
| 5074 | w = _div_nearest(M, T)
|
|---|
| 5075 | for k in xrange(T-1, 0, -1):
|
|---|
| 5076 | w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
|
|---|
| 5077 |
|
|---|
| 5078 | return _div_nearest(w*y, M)
|
|---|
| 5079 |
|
|---|
| 5080 | def _dlog10(c, e, p):
|
|---|
| 5081 | """Given integers c, e and p with c > 0, p >= 0, compute an integer
|
|---|
| 5082 | approximation to 10**p * log10(c*10**e), with an absolute error of
|
|---|
| 5083 | at most 1. Assumes that c*10**e is not exactly 1."""
|
|---|
| 5084 |
|
|---|
| 5085 | # increase precision by 2; compensate for this by dividing
|
|---|
| 5086 | # final result by 100
|
|---|
| 5087 | p += 2
|
|---|
| 5088 |
|
|---|
| 5089 | # write c*10**e as d*10**f with either:
|
|---|
| 5090 | # f >= 0 and 1 <= d <= 10, or
|
|---|
| 5091 | # f <= 0 and 0.1 <= d <= 1.
|
|---|
| 5092 | # Thus for c*10**e close to 1, f = 0
|
|---|
| 5093 | l = len(str(c))
|
|---|
| 5094 | f = e+l - (e+l >= 1)
|
|---|
| 5095 |
|
|---|
| 5096 | if p > 0:
|
|---|
| 5097 | M = 10**p
|
|---|
| 5098 | k = e+p-f
|
|---|
| 5099 | if k >= 0:
|
|---|
| 5100 | c *= 10**k
|
|---|
| 5101 | else:
|
|---|
| 5102 | c = _div_nearest(c, 10**-k)
|
|---|
| 5103 |
|
|---|
| 5104 | log_d = _ilog(c, M) # error < 5 + 22 = 27
|
|---|
| 5105 | log_10 = _log10_digits(p) # error < 1
|
|---|
| 5106 | log_d = _div_nearest(log_d*M, log_10)
|
|---|
| 5107 | log_tenpower = f*M # exact
|
|---|
| 5108 | else:
|
|---|
| 5109 | log_d = 0 # error < 2.31
|
|---|
| 5110 | log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
|
|---|
| 5111 |
|
|---|
| 5112 | return _div_nearest(log_tenpower+log_d, 100)
|
|---|
| 5113 |
|
|---|
| 5114 | def _dlog(c, e, p):
|
|---|
| 5115 | """Given integers c, e and p with c > 0, compute an integer
|
|---|
| 5116 | approximation to 10**p * log(c*10**e), with an absolute error of
|
|---|
| 5117 | at most 1. Assumes that c*10**e is not exactly 1."""
|
|---|
| 5118 |
|
|---|
| 5119 | # Increase precision by 2. The precision increase is compensated
|
|---|
| 5120 | # for at the end with a division by 100.
|
|---|
| 5121 | p += 2
|
|---|
| 5122 |
|
|---|
| 5123 | # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
|
|---|
| 5124 | # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
|
|---|
| 5125 | # as 10**p * log(d) + 10**p*f * log(10).
|
|---|
| 5126 | l = len(str(c))
|
|---|
| 5127 | f = e+l - (e+l >= 1)
|
|---|
| 5128 |
|
|---|
| 5129 | # compute approximation to 10**p*log(d), with error < 27
|
|---|
| 5130 | if p > 0:
|
|---|
| 5131 | k = e+p-f
|
|---|
| 5132 | if k >= 0:
|
|---|
| 5133 | c *= 10**k
|
|---|
| 5134 | else:
|
|---|
| 5135 | c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
|
|---|
| 5136 |
|
|---|
| 5137 | # _ilog magnifies existing error in c by a factor of at most 10
|
|---|
| 5138 | log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
|
|---|
| 5139 | else:
|
|---|
| 5140 | # p <= 0: just approximate the whole thing by 0; error < 2.31
|
|---|
| 5141 | log_d = 0
|
|---|
| 5142 |
|
|---|
| 5143 | # compute approximation to f*10**p*log(10), with error < 11.
|
|---|
| 5144 | if f:
|
|---|
| 5145 | extra = len(str(abs(f)))-1
|
|---|
| 5146 | if p + extra >= 0:
|
|---|
| 5147 | # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
|
|---|
| 5148 | # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
|
|---|
| 5149 | f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
|
|---|
| 5150 | else:
|
|---|
| 5151 | f_log_ten = 0
|
|---|
| 5152 | else:
|
|---|
| 5153 | f_log_ten = 0
|
|---|
| 5154 |
|
|---|
| 5155 | # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
|
|---|
| 5156 | return _div_nearest(f_log_ten + log_d, 100)
|
|---|
| 5157 |
|
|---|
| 5158 | class _Log10Memoize(object):
|
|---|
| 5159 | """Class to compute, store, and allow retrieval of, digits of the
|
|---|
| 5160 | constant log(10) = 2.302585.... This constant is needed by
|
|---|
| 5161 | Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
|
|---|
| 5162 | def __init__(self):
|
|---|
| 5163 | self.digits = "23025850929940456840179914546843642076011014886"
|
|---|
| 5164 |
|
|---|
| 5165 | def getdigits(self, p):
|
|---|
| 5166 | """Given an integer p >= 0, return floor(10**p)*log(10).
|
|---|
| 5167 |
|
|---|
| 5168 | For example, self.getdigits(3) returns 2302.
|
|---|
| 5169 | """
|
|---|
| 5170 | # digits are stored as a string, for quick conversion to
|
|---|
| 5171 | # integer in the case that we've already computed enough
|
|---|
| 5172 | # digits; the stored digits should always be correct
|
|---|
| 5173 | # (truncated, not rounded to nearest).
|
|---|
| 5174 | if p < 0:
|
|---|
| 5175 | raise ValueError("p should be nonnegative")
|
|---|
| 5176 |
|
|---|
| 5177 | if p >= len(self.digits):
|
|---|
| 5178 | # compute p+3, p+6, p+9, ... digits; continue until at
|
|---|
| 5179 | # least one of the extra digits is nonzero
|
|---|
| 5180 | extra = 3
|
|---|
| 5181 | while True:
|
|---|
| 5182 | # compute p+extra digits, correct to within 1ulp
|
|---|
| 5183 | M = 10**(p+extra+2)
|
|---|
| 5184 | digits = str(_div_nearest(_ilog(10*M, M), 100))
|
|---|
| 5185 | if digits[-extra:] != '0'*extra:
|
|---|
| 5186 | break
|
|---|
| 5187 | extra += 3
|
|---|
| 5188 | # keep all reliable digits so far; remove trailing zeros
|
|---|
| 5189 | # and next nonzero digit
|
|---|
| 5190 | self.digits = digits.rstrip('0')[:-1]
|
|---|
| 5191 | return int(self.digits[:p+1])
|
|---|
| 5192 |
|
|---|
| 5193 | _log10_digits = _Log10Memoize().getdigits
|
|---|
| 5194 |
|
|---|
| 5195 | def _iexp(x, M, L=8):
|
|---|
| 5196 | """Given integers x and M, M > 0, such that x/M is small in absolute
|
|---|
| 5197 | value, compute an integer approximation to M*exp(x/M). For 0 <=
|
|---|
| 5198 | x/M <= 2.4, the absolute error in the result is bounded by 60 (and
|
|---|
| 5199 | is usually much smaller)."""
|
|---|
| 5200 |
|
|---|
| 5201 | # Algorithm: to compute exp(z) for a real number z, first divide z
|
|---|
| 5202 | # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
|
|---|
| 5203 | # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
|
|---|
| 5204 | # series
|
|---|
| 5205 | #
|
|---|
| 5206 | # expm1(x) = x + x**2/2! + x**3/3! + ...
|
|---|
| 5207 | #
|
|---|
| 5208 | # Now use the identity
|
|---|
| 5209 | #
|
|---|
| 5210 | # expm1(2x) = expm1(x)*(expm1(x)+2)
|
|---|
| 5211 | #
|
|---|
| 5212 | # R times to compute the sequence expm1(z/2**R),
|
|---|
| 5213 | # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
|
|---|
| 5214 |
|
|---|
| 5215 | # Find R such that x/2**R/M <= 2**-L
|
|---|
| 5216 | R = _nbits((long(x)<<L)//M)
|
|---|
| 5217 |
|
|---|
| 5218 | # Taylor series. (2**L)**T > M
|
|---|
| 5219 | T = -int(-10*len(str(M))//(3*L))
|
|---|
| 5220 | y = _div_nearest(x, T)
|
|---|
| 5221 | Mshift = long(M)<<R
|
|---|
| 5222 | for i in xrange(T-1, 0, -1):
|
|---|
| 5223 | y = _div_nearest(x*(Mshift + y), Mshift * i)
|
|---|
| 5224 |
|
|---|
| 5225 | # Expansion
|
|---|
| 5226 | for k in xrange(R-1, -1, -1):
|
|---|
| 5227 | Mshift = long(M)<<(k+2)
|
|---|
| 5228 | y = _div_nearest(y*(y+Mshift), Mshift)
|
|---|
| 5229 |
|
|---|
| 5230 | return M+y
|
|---|
| 5231 |
|
|---|
| 5232 | def _dexp(c, e, p):
|
|---|
| 5233 | """Compute an approximation to exp(c*10**e), with p decimal places of
|
|---|
| 5234 | precision.
|
|---|
| 5235 |
|
|---|
| 5236 | Returns integers d, f such that:
|
|---|
| 5237 |
|
|---|
| 5238 | 10**(p-1) <= d <= 10**p, and
|
|---|
| 5239 | (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
|---|
| 5240 |
|
|---|
| 5241 | In other words, d*10**f is an approximation to exp(c*10**e) with p
|
|---|
| 5242 | digits of precision, and with an error in d of at most 1. This is
|
|---|
| 5243 | almost, but not quite, the same as the error being < 1ulp: when d
|
|---|
| 5244 | = 10**(p-1) the error could be up to 10 ulp."""
|
|---|
| 5245 |
|
|---|
| 5246 | # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
|---|
| 5247 | p += 2
|
|---|
| 5248 |
|
|---|
| 5249 | # compute log(10) with extra precision = adjusted exponent of c*10**e
|
|---|
| 5250 | extra = max(0, e + len(str(c)) - 1)
|
|---|
| 5251 | q = p + extra
|
|---|
| 5252 |
|
|---|
| 5253 | # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
|---|
| 5254 | # rounding down
|
|---|
| 5255 | shift = e+q
|
|---|
| 5256 | if shift >= 0:
|
|---|
| 5257 | cshift = c*10**shift
|
|---|
| 5258 | else:
|
|---|
| 5259 | cshift = c//10**-shift
|
|---|
| 5260 | quot, rem = divmod(cshift, _log10_digits(q))
|
|---|
| 5261 |
|
|---|
| 5262 | # reduce remainder back to original precision
|
|---|
| 5263 | rem = _div_nearest(rem, 10**extra)
|
|---|
| 5264 |
|
|---|
| 5265 | # error in result of _iexp < 120; error after division < 0.62
|
|---|
| 5266 | return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
|---|
| 5267 |
|
|---|
| 5268 | def _dpower(xc, xe, yc, ye, p):
|
|---|
| 5269 | """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
|
|---|
| 5270 | y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
|
|---|
| 5271 |
|
|---|
| 5272 | 10**(p-1) <= c <= 10**p, and
|
|---|
| 5273 | (c-1)*10**e < x**y < (c+1)*10**e
|
|---|
| 5274 |
|
|---|
| 5275 | in other words, c*10**e is an approximation to x**y with p digits
|
|---|
| 5276 | of precision, and with an error in c of at most 1. (This is
|
|---|
| 5277 | almost, but not quite, the same as the error being < 1ulp: when c
|
|---|
| 5278 | == 10**(p-1) we can only guarantee error < 10ulp.)
|
|---|
| 5279 |
|
|---|
| 5280 | We assume that: x is positive and not equal to 1, and y is nonzero.
|
|---|
| 5281 | """
|
|---|
| 5282 |
|
|---|
| 5283 | # Find b such that 10**(b-1) <= |y| <= 10**b
|
|---|
| 5284 | b = len(str(abs(yc))) + ye
|
|---|
| 5285 |
|
|---|
| 5286 | # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
|
|---|
| 5287 | lxc = _dlog(xc, xe, p+b+1)
|
|---|
| 5288 |
|
|---|
| 5289 | # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
|
|---|
| 5290 | shift = ye-b
|
|---|
| 5291 | if shift >= 0:
|
|---|
| 5292 | pc = lxc*yc*10**shift
|
|---|
| 5293 | else:
|
|---|
| 5294 | pc = _div_nearest(lxc*yc, 10**-shift)
|
|---|
| 5295 |
|
|---|
| 5296 | if pc == 0:
|
|---|
| 5297 | # we prefer a result that isn't exactly 1; this makes it
|
|---|
| 5298 | # easier to compute a correctly rounded result in __pow__
|
|---|
| 5299 | if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
|
|---|
| 5300 | coeff, exp = 10**(p-1)+1, 1-p
|
|---|
| 5301 | else:
|
|---|
| 5302 | coeff, exp = 10**p-1, -p
|
|---|
| 5303 | else:
|
|---|
| 5304 | coeff, exp = _dexp(pc, -(p+1), p+1)
|
|---|
| 5305 | coeff = _div_nearest(coeff, 10)
|
|---|
| 5306 | exp += 1
|
|---|
| 5307 |
|
|---|
| 5308 | return coeff, exp
|
|---|
| 5309 |
|
|---|
| 5310 | def _log10_lb(c, correction = {
|
|---|
| 5311 | '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
|
|---|
| 5312 | '6': 23, '7': 16, '8': 10, '9': 5}):
|
|---|
| 5313 | """Compute a lower bound for 100*log10(c) for a positive integer c."""
|
|---|
| 5314 | if c <= 0:
|
|---|
| 5315 | raise ValueError("The argument to _log10_lb should be nonnegative.")
|
|---|
| 5316 | str_c = str(c)
|
|---|
| 5317 | return 100*len(str_c) - correction[str_c[0]]
|
|---|
| 5318 |
|
|---|
| 5319 | ##### Helper Functions ####################################################
|
|---|
| 5320 |
|
|---|
| 5321 | def _convert_other(other, raiseit=False):
|
|---|
| 5322 | """Convert other to Decimal.
|
|---|
| 5323 |
|
|---|
| 5324 | Verifies that it's ok to use in an implicit construction.
|
|---|
| 5325 | """
|
|---|
| 5326 | if isinstance(other, Decimal):
|
|---|
| 5327 | return other
|
|---|
| 5328 | if isinstance(other, (int, long)):
|
|---|
| 5329 | return Decimal(other)
|
|---|
| 5330 | if raiseit:
|
|---|
| 5331 | raise TypeError("Unable to convert %s to Decimal" % other)
|
|---|
| 5332 | return NotImplemented
|
|---|
| 5333 |
|
|---|
| 5334 | ##### Setup Specific Contexts ############################################
|
|---|
| 5335 |
|
|---|
| 5336 | # The default context prototype used by Context()
|
|---|
| 5337 | # Is mutable, so that new contexts can have different default values
|
|---|
| 5338 |
|
|---|
| 5339 | DefaultContext = Context(
|
|---|
| 5340 | prec=28, rounding=ROUND_HALF_EVEN,
|
|---|
| 5341 | traps=[DivisionByZero, Overflow, InvalidOperation],
|
|---|
| 5342 | flags=[],
|
|---|
| 5343 | Emax=999999999,
|
|---|
| 5344 | Emin=-999999999,
|
|---|
| 5345 | capitals=1
|
|---|
| 5346 | )
|
|---|
| 5347 |
|
|---|
| 5348 | # Pre-made alternate contexts offered by the specification
|
|---|
| 5349 | # Don't change these; the user should be able to select these
|
|---|
| 5350 | # contexts and be able to reproduce results from other implementations
|
|---|
| 5351 | # of the spec.
|
|---|
| 5352 |
|
|---|
| 5353 | BasicContext = Context(
|
|---|
| 5354 | prec=9, rounding=ROUND_HALF_UP,
|
|---|
| 5355 | traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
|
|---|
| 5356 | flags=[],
|
|---|
| 5357 | )
|
|---|
| 5358 |
|
|---|
| 5359 | ExtendedContext = Context(
|
|---|
| 5360 | prec=9, rounding=ROUND_HALF_EVEN,
|
|---|
| 5361 | traps=[],
|
|---|
| 5362 | flags=[],
|
|---|
| 5363 | )
|
|---|
| 5364 |
|
|---|
| 5365 |
|
|---|
| 5366 | ##### crud for parsing strings #############################################
|
|---|
| 5367 | #
|
|---|
| 5368 | # Regular expression used for parsing numeric strings. Additional
|
|---|
| 5369 | # comments:
|
|---|
| 5370 | #
|
|---|
| 5371 | # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
|
|---|
| 5372 | # whitespace. But note that the specification disallows whitespace in
|
|---|
| 5373 | # a numeric string.
|
|---|
| 5374 | #
|
|---|
| 5375 | # 2. For finite numbers (not infinities and NaNs) the body of the
|
|---|
| 5376 | # number between the optional sign and the optional exponent must have
|
|---|
| 5377 | # at least one decimal digit, possibly after the decimal point. The
|
|---|
| 5378 | # lookahead expression '(?=\d|\.\d)' checks this.
|
|---|
| 5379 |
|
|---|
| 5380 | import re
|
|---|
| 5381 | _parser = re.compile(r""" # A numeric string consists of:
|
|---|
| 5382 | # \s*
|
|---|
| 5383 | (?P<sign>[-+])? # an optional sign, followed by either...
|
|---|
| 5384 | (
|
|---|
| 5385 | (?=\d|\.\d) # ...a number (with at least one digit)
|
|---|
| 5386 | (?P<int>\d*) # having a (possibly empty) integer part
|
|---|
| 5387 | (\.(?P<frac>\d*))? # followed by an optional fractional part
|
|---|
| 5388 | (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
|
|---|
| 5389 | |
|
|---|
| 5390 | Inf(inity)? # ...an infinity, or...
|
|---|
| 5391 | |
|
|---|
| 5392 | (?P<signal>s)? # ...an (optionally signaling)
|
|---|
| 5393 | NaN # NaN
|
|---|
| 5394 | (?P<diag>\d*) # with (possibly empty) diagnostic info.
|
|---|
| 5395 | )
|
|---|
| 5396 | # \s*
|
|---|
| 5397 | \Z
|
|---|
| 5398 | """, re.VERBOSE | re.IGNORECASE | re.UNICODE).match
|
|---|
| 5399 |
|
|---|
| 5400 | _all_zeros = re.compile('0*$').match
|
|---|
| 5401 | _exact_half = re.compile('50*$').match
|
|---|
| 5402 |
|
|---|
| 5403 | ##### PEP3101 support functions ##############################################
|
|---|
| 5404 | # The functions parse_format_specifier and format_align have little to do
|
|---|
| 5405 | # with the Decimal class, and could potentially be reused for other pure
|
|---|
| 5406 | # Python numeric classes that want to implement __format__
|
|---|
| 5407 | #
|
|---|
| 5408 | # A format specifier for Decimal looks like:
|
|---|
| 5409 | #
|
|---|
| 5410 | # [[fill]align][sign][0][minimumwidth][.precision][type]
|
|---|
| 5411 | #
|
|---|
| 5412 |
|
|---|
| 5413 | _parse_format_specifier_regex = re.compile(r"""\A
|
|---|
| 5414 | (?:
|
|---|
| 5415 | (?P<fill>.)?
|
|---|
| 5416 | (?P<align>[<>=^])
|
|---|
| 5417 | )?
|
|---|
| 5418 | (?P<sign>[-+ ])?
|
|---|
| 5419 | (?P<zeropad>0)?
|
|---|
| 5420 | (?P<minimumwidth>(?!0)\d+)?
|
|---|
| 5421 | (?:\.(?P<precision>0|(?!0)\d+))?
|
|---|
| 5422 | (?P<type>[eEfFgG%])?
|
|---|
| 5423 | \Z
|
|---|
| 5424 | """, re.VERBOSE)
|
|---|
| 5425 |
|
|---|
| 5426 | del re
|
|---|
| 5427 |
|
|---|
| 5428 | def _parse_format_specifier(format_spec):
|
|---|
| 5429 | """Parse and validate a format specifier.
|
|---|
| 5430 |
|
|---|
| 5431 | Turns a standard numeric format specifier into a dict, with the
|
|---|
| 5432 | following entries:
|
|---|
| 5433 |
|
|---|
| 5434 | fill: fill character to pad field to minimum width
|
|---|
| 5435 | align: alignment type, either '<', '>', '=' or '^'
|
|---|
| 5436 | sign: either '+', '-' or ' '
|
|---|
| 5437 | minimumwidth: nonnegative integer giving minimum width
|
|---|
| 5438 | precision: nonnegative integer giving precision, or None
|
|---|
| 5439 | type: one of the characters 'eEfFgG%', or None
|
|---|
| 5440 | unicode: either True or False (always True for Python 3.x)
|
|---|
| 5441 |
|
|---|
| 5442 | """
|
|---|
| 5443 | m = _parse_format_specifier_regex.match(format_spec)
|
|---|
| 5444 | if m is None:
|
|---|
| 5445 | raise ValueError("Invalid format specifier: " + format_spec)
|
|---|
| 5446 |
|
|---|
| 5447 | # get the dictionary
|
|---|
| 5448 | format_dict = m.groupdict()
|
|---|
| 5449 |
|
|---|
| 5450 | # defaults for fill and alignment
|
|---|
| 5451 | fill = format_dict['fill']
|
|---|
| 5452 | align = format_dict['align']
|
|---|
| 5453 | if format_dict.pop('zeropad') is not None:
|
|---|
| 5454 | # in the face of conflict, refuse the temptation to guess
|
|---|
| 5455 | if fill is not None and fill != '0':
|
|---|
| 5456 | raise ValueError("Fill character conflicts with '0'"
|
|---|
| 5457 | " in format specifier: " + format_spec)
|
|---|
| 5458 | if align is not None and align != '=':
|
|---|
| 5459 | raise ValueError("Alignment conflicts with '0' in "
|
|---|
| 5460 | "format specifier: " + format_spec)
|
|---|
| 5461 | fill = '0'
|
|---|
| 5462 | align = '='
|
|---|
| 5463 | format_dict['fill'] = fill or ' '
|
|---|
| 5464 | format_dict['align'] = align or '<'
|
|---|
| 5465 |
|
|---|
| 5466 | if format_dict['sign'] is None:
|
|---|
| 5467 | format_dict['sign'] = '-'
|
|---|
| 5468 |
|
|---|
| 5469 | # turn minimumwidth and precision entries into integers.
|
|---|
| 5470 | # minimumwidth defaults to 0; precision remains None if not given
|
|---|
| 5471 | format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
|
|---|
| 5472 | if format_dict['precision'] is not None:
|
|---|
| 5473 | format_dict['precision'] = int(format_dict['precision'])
|
|---|
| 5474 |
|
|---|
| 5475 | # if format type is 'g' or 'G' then a precision of 0 makes little
|
|---|
| 5476 | # sense; convert it to 1. Same if format type is unspecified.
|
|---|
| 5477 | if format_dict['precision'] == 0:
|
|---|
| 5478 | if format_dict['type'] is None or format_dict['type'] in 'gG':
|
|---|
| 5479 | format_dict['precision'] = 1
|
|---|
| 5480 |
|
|---|
| 5481 | # record whether return type should be str or unicode
|
|---|
| 5482 | format_dict['unicode'] = isinstance(format_spec, unicode)
|
|---|
| 5483 |
|
|---|
| 5484 | return format_dict
|
|---|
| 5485 |
|
|---|
| 5486 | def _format_align(body, spec_dict):
|
|---|
| 5487 | """Given an unpadded, non-aligned numeric string, add padding and
|
|---|
| 5488 | aligment to conform with the given format specifier dictionary (as
|
|---|
| 5489 | output from parse_format_specifier).
|
|---|
| 5490 |
|
|---|
| 5491 | It's assumed that if body is negative then it starts with '-'.
|
|---|
| 5492 | Any leading sign ('-' or '+') is stripped from the body before
|
|---|
| 5493 | applying the alignment and padding rules, and replaced in the
|
|---|
| 5494 | appropriate position.
|
|---|
| 5495 |
|
|---|
| 5496 | """
|
|---|
| 5497 | # figure out the sign; we only examine the first character, so if
|
|---|
| 5498 | # body has leading whitespace the results may be surprising.
|
|---|
| 5499 | if len(body) > 0 and body[0] in '-+':
|
|---|
| 5500 | sign = body[0]
|
|---|
| 5501 | body = body[1:]
|
|---|
| 5502 | else:
|
|---|
| 5503 | sign = ''
|
|---|
| 5504 |
|
|---|
| 5505 | if sign != '-':
|
|---|
| 5506 | if spec_dict['sign'] in ' +':
|
|---|
| 5507 | sign = spec_dict['sign']
|
|---|
| 5508 | else:
|
|---|
| 5509 | sign = ''
|
|---|
| 5510 |
|
|---|
| 5511 | # how much extra space do we have to play with?
|
|---|
| 5512 | minimumwidth = spec_dict['minimumwidth']
|
|---|
| 5513 | fill = spec_dict['fill']
|
|---|
| 5514 | padding = fill*(max(minimumwidth - (len(sign+body)), 0))
|
|---|
| 5515 |
|
|---|
| 5516 | align = spec_dict['align']
|
|---|
| 5517 | if align == '<':
|
|---|
| 5518 | result = sign + body + padding
|
|---|
| 5519 | elif align == '>':
|
|---|
| 5520 | result = padding + sign + body
|
|---|
| 5521 | elif align == '=':
|
|---|
| 5522 | result = sign + padding + body
|
|---|
| 5523 | else: #align == '^'
|
|---|
| 5524 | half = len(padding)//2
|
|---|
| 5525 | result = padding[:half] + sign + body + padding[half:]
|
|---|
| 5526 |
|
|---|
| 5527 | # make sure that result is unicode if necessary
|
|---|
| 5528 | if spec_dict['unicode']:
|
|---|
| 5529 | result = unicode(result)
|
|---|
| 5530 |
|
|---|
| 5531 | return result
|
|---|
| 5532 |
|
|---|
| 5533 | ##### Useful Constants (internal use only) ################################
|
|---|
| 5534 |
|
|---|
| 5535 | # Reusable defaults
|
|---|
| 5536 | _Infinity = Decimal('Inf')
|
|---|
| 5537 | _NegativeInfinity = Decimal('-Inf')
|
|---|
| 5538 | _NaN = Decimal('NaN')
|
|---|
| 5539 | _Zero = Decimal(0)
|
|---|
| 5540 | _One = Decimal(1)
|
|---|
| 5541 | _NegativeOne = Decimal(-1)
|
|---|
| 5542 |
|
|---|
| 5543 | # _SignedInfinity[sign] is infinity w/ that sign
|
|---|
| 5544 | _SignedInfinity = (_Infinity, _NegativeInfinity)
|
|---|
| 5545 |
|
|---|
| 5546 |
|
|---|
| 5547 |
|
|---|
| 5548 | if __name__ == '__main__':
|
|---|
| 5549 | import doctest, sys
|
|---|
| 5550 | doctest.testmod(sys.modules[__name__])
|
|---|