1 | # Copyright (c) 2004 Python Software Foundation.
|
---|
2 | # All rights reserved.
|
---|
3 |
|
---|
4 | # Written by Eric Price <eprice at tjhsst.edu>
|
---|
5 | # and Facundo Batista <facundo at taniquetil.com.ar>
|
---|
6 | # and Raymond Hettinger <python at rcn.com>
|
---|
7 | # and Aahz <aahz at pobox.com>
|
---|
8 | # and Tim Peters
|
---|
9 |
|
---|
10 | # This module is currently Py2.3 compatible and should be kept that way
|
---|
11 | # unless a major compelling advantage arises. IOW, 2.3 compatibility is
|
---|
12 | # strongly preferred, but not guaranteed.
|
---|
13 |
|
---|
14 | # Also, this module should be kept in sync with the latest updates of
|
---|
15 | # the IBM specification as it evolves. Those updates will be treated
|
---|
16 | # as bug fixes (deviation from the spec is a compatibility, usability
|
---|
17 | # bug) and will be backported. At this point the spec is stabilizing
|
---|
18 | # and the updates are becoming fewer, smaller, and less significant.
|
---|
19 |
|
---|
20 | """
|
---|
21 | This is a Py2.3 implementation of decimal floating point arithmetic based on
|
---|
22 | the General Decimal Arithmetic Specification:
|
---|
23 |
|
---|
24 | www2.hursley.ibm.com/decimal/decarith.html
|
---|
25 |
|
---|
26 | and IEEE standard 854-1987:
|
---|
27 |
|
---|
28 | www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
|
---|
29 |
|
---|
30 | Decimal floating point has finite precision with arbitrarily large bounds.
|
---|
31 |
|
---|
32 | The purpose of this module is to support arithmetic using familiar
|
---|
33 | "schoolhouse" rules and to avoid some of the tricky representation
|
---|
34 | issues associated with binary floating point. The package is especially
|
---|
35 | useful for financial applications or for contexts where users have
|
---|
36 | expectations that are at odds with binary floating point (for instance,
|
---|
37 | in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
|
---|
38 | of the expected Decimal('0.00') returned by decimal floating point).
|
---|
39 |
|
---|
40 | Here are some examples of using the decimal module:
|
---|
41 |
|
---|
42 | >>> from decimal import *
|
---|
43 | >>> setcontext(ExtendedContext)
|
---|
44 | >>> Decimal(0)
|
---|
45 | Decimal('0')
|
---|
46 | >>> Decimal('1')
|
---|
47 | Decimal('1')
|
---|
48 | >>> Decimal('-.0123')
|
---|
49 | Decimal('-0.0123')
|
---|
50 | >>> Decimal(123456)
|
---|
51 | Decimal('123456')
|
---|
52 | >>> Decimal('123.45e12345678901234567890')
|
---|
53 | Decimal('1.2345E+12345678901234567892')
|
---|
54 | >>> Decimal('1.33') + Decimal('1.27')
|
---|
55 | Decimal('2.60')
|
---|
56 | >>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
|
---|
57 | Decimal('-2.20')
|
---|
58 | >>> dig = Decimal(1)
|
---|
59 | >>> print dig / Decimal(3)
|
---|
60 | 0.333333333
|
---|
61 | >>> getcontext().prec = 18
|
---|
62 | >>> print dig / Decimal(3)
|
---|
63 | 0.333333333333333333
|
---|
64 | >>> print dig.sqrt()
|
---|
65 | 1
|
---|
66 | >>> print Decimal(3).sqrt()
|
---|
67 | 1.73205080756887729
|
---|
68 | >>> print Decimal(3) ** 123
|
---|
69 | 4.85192780976896427E+58
|
---|
70 | >>> inf = Decimal(1) / Decimal(0)
|
---|
71 | >>> print inf
|
---|
72 | Infinity
|
---|
73 | >>> neginf = Decimal(-1) / Decimal(0)
|
---|
74 | >>> print neginf
|
---|
75 | -Infinity
|
---|
76 | >>> print neginf + inf
|
---|
77 | NaN
|
---|
78 | >>> print neginf * inf
|
---|
79 | -Infinity
|
---|
80 | >>> print dig / 0
|
---|
81 | Infinity
|
---|
82 | >>> getcontext().traps[DivisionByZero] = 1
|
---|
83 | >>> print dig / 0
|
---|
84 | Traceback (most recent call last):
|
---|
85 | ...
|
---|
86 | ...
|
---|
87 | ...
|
---|
88 | DivisionByZero: x / 0
|
---|
89 | >>> c = Context()
|
---|
90 | >>> c.traps[InvalidOperation] = 0
|
---|
91 | >>> print c.flags[InvalidOperation]
|
---|
92 | 0
|
---|
93 | >>> c.divide(Decimal(0), Decimal(0))
|
---|
94 | Decimal('NaN')
|
---|
95 | >>> c.traps[InvalidOperation] = 1
|
---|
96 | >>> print c.flags[InvalidOperation]
|
---|
97 | 1
|
---|
98 | >>> c.flags[InvalidOperation] = 0
|
---|
99 | >>> print c.flags[InvalidOperation]
|
---|
100 | 0
|
---|
101 | >>> print c.divide(Decimal(0), Decimal(0))
|
---|
102 | Traceback (most recent call last):
|
---|
103 | ...
|
---|
104 | ...
|
---|
105 | ...
|
---|
106 | InvalidOperation: 0 / 0
|
---|
107 | >>> print c.flags[InvalidOperation]
|
---|
108 | 1
|
---|
109 | >>> c.flags[InvalidOperation] = 0
|
---|
110 | >>> c.traps[InvalidOperation] = 0
|
---|
111 | >>> print c.divide(Decimal(0), Decimal(0))
|
---|
112 | NaN
|
---|
113 | >>> print c.flags[InvalidOperation]
|
---|
114 | 1
|
---|
115 | >>>
|
---|
116 | """
|
---|
117 |
|
---|
118 | __all__ = [
|
---|
119 | # Two major classes
|
---|
120 | 'Decimal', 'Context',
|
---|
121 |
|
---|
122 | # Contexts
|
---|
123 | 'DefaultContext', 'BasicContext', 'ExtendedContext',
|
---|
124 |
|
---|
125 | # Exceptions
|
---|
126 | 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
|
---|
127 | 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
|
---|
128 |
|
---|
129 | # Constants for use in setting up contexts
|
---|
130 | 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
|
---|
131 | 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
|
---|
132 |
|
---|
133 | # Functions for manipulating contexts
|
---|
134 | 'setcontext', 'getcontext', 'localcontext'
|
---|
135 | ]
|
---|
136 |
|
---|
137 | import copy as _copy
|
---|
138 | import numbers as _numbers
|
---|
139 |
|
---|
140 | try:
|
---|
141 | from collections import namedtuple as _namedtuple
|
---|
142 | DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
|
---|
143 | except ImportError:
|
---|
144 | DecimalTuple = lambda *args: args
|
---|
145 |
|
---|
146 | # Rounding
|
---|
147 | ROUND_DOWN = 'ROUND_DOWN'
|
---|
148 | ROUND_HALF_UP = 'ROUND_HALF_UP'
|
---|
149 | ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
|
---|
150 | ROUND_CEILING = 'ROUND_CEILING'
|
---|
151 | ROUND_FLOOR = 'ROUND_FLOOR'
|
---|
152 | ROUND_UP = 'ROUND_UP'
|
---|
153 | ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
|
---|
154 | ROUND_05UP = 'ROUND_05UP'
|
---|
155 |
|
---|
156 | # Errors
|
---|
157 |
|
---|
158 | class DecimalException(ArithmeticError):
|
---|
159 | """Base exception class.
|
---|
160 |
|
---|
161 | Used exceptions derive from this.
|
---|
162 | If an exception derives from another exception besides this (such as
|
---|
163 | Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
|
---|
164 | called if the others are present. This isn't actually used for
|
---|
165 | anything, though.
|
---|
166 |
|
---|
167 | handle -- Called when context._raise_error is called and the
|
---|
168 | trap_enabler is set. First argument is self, second is the
|
---|
169 | context. More arguments can be given, those being after
|
---|
170 | the explanation in _raise_error (For example,
|
---|
171 | context._raise_error(NewError, '(-x)!', self._sign) would
|
---|
172 | call NewError().handle(context, self._sign).)
|
---|
173 |
|
---|
174 | To define a new exception, it should be sufficient to have it derive
|
---|
175 | from DecimalException.
|
---|
176 | """
|
---|
177 | def handle(self, context, *args):
|
---|
178 | pass
|
---|
179 |
|
---|
180 |
|
---|
181 | class Clamped(DecimalException):
|
---|
182 | """Exponent of a 0 changed to fit bounds.
|
---|
183 |
|
---|
184 | This occurs and signals clamped if the exponent of a result has been
|
---|
185 | altered in order to fit the constraints of a specific concrete
|
---|
186 | representation. This may occur when the exponent of a zero result would
|
---|
187 | be outside the bounds of a representation, or when a large normal
|
---|
188 | number would have an encoded exponent that cannot be represented. In
|
---|
189 | this latter case, the exponent is reduced to fit and the corresponding
|
---|
190 | number of zero digits are appended to the coefficient ("fold-down").
|
---|
191 | """
|
---|
192 |
|
---|
193 | class InvalidOperation(DecimalException):
|
---|
194 | """An invalid operation was performed.
|
---|
195 |
|
---|
196 | Various bad things cause this:
|
---|
197 |
|
---|
198 | Something creates a signaling NaN
|
---|
199 | -INF + INF
|
---|
200 | 0 * (+-)INF
|
---|
201 | (+-)INF / (+-)INF
|
---|
202 | x % 0
|
---|
203 | (+-)INF % x
|
---|
204 | x._rescale( non-integer )
|
---|
205 | sqrt(-x) , x > 0
|
---|
206 | 0 ** 0
|
---|
207 | x ** (non-integer)
|
---|
208 | x ** (+-)INF
|
---|
209 | An operand is invalid
|
---|
210 |
|
---|
211 | The result of the operation after these is a quiet positive NaN,
|
---|
212 | except when the cause is a signaling NaN, in which case the result is
|
---|
213 | also a quiet NaN, but with the original sign, and an optional
|
---|
214 | diagnostic information.
|
---|
215 | """
|
---|
216 | def handle(self, context, *args):
|
---|
217 | if args:
|
---|
218 | ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
|
---|
219 | return ans._fix_nan(context)
|
---|
220 | return _NaN
|
---|
221 |
|
---|
222 | class ConversionSyntax(InvalidOperation):
|
---|
223 | """Trying to convert badly formed string.
|
---|
224 |
|
---|
225 | This occurs and signals invalid-operation if an string is being
|
---|
226 | converted to a number and it does not conform to the numeric string
|
---|
227 | syntax. The result is [0,qNaN].
|
---|
228 | """
|
---|
229 | def handle(self, context, *args):
|
---|
230 | return _NaN
|
---|
231 |
|
---|
232 | class DivisionByZero(DecimalException, ZeroDivisionError):
|
---|
233 | """Division by 0.
|
---|
234 |
|
---|
235 | This occurs and signals division-by-zero if division of a finite number
|
---|
236 | by zero was attempted (during a divide-integer or divide operation, or a
|
---|
237 | power operation with negative right-hand operand), and the dividend was
|
---|
238 | not zero.
|
---|
239 |
|
---|
240 | The result of the operation is [sign,inf], where sign is the exclusive
|
---|
241 | or of the signs of the operands for divide, or is 1 for an odd power of
|
---|
242 | -0, for power.
|
---|
243 | """
|
---|
244 |
|
---|
245 | def handle(self, context, sign, *args):
|
---|
246 | return _SignedInfinity[sign]
|
---|
247 |
|
---|
248 | class DivisionImpossible(InvalidOperation):
|
---|
249 | """Cannot perform the division adequately.
|
---|
250 |
|
---|
251 | This occurs and signals invalid-operation if the integer result of a
|
---|
252 | divide-integer or remainder operation had too many digits (would be
|
---|
253 | longer than precision). The result is [0,qNaN].
|
---|
254 | """
|
---|
255 |
|
---|
256 | def handle(self, context, *args):
|
---|
257 | return _NaN
|
---|
258 |
|
---|
259 | class DivisionUndefined(InvalidOperation, ZeroDivisionError):
|
---|
260 | """Undefined result of division.
|
---|
261 |
|
---|
262 | This occurs and signals invalid-operation if division by zero was
|
---|
263 | attempted (during a divide-integer, divide, or remainder operation), and
|
---|
264 | the dividend is also zero. The result is [0,qNaN].
|
---|
265 | """
|
---|
266 |
|
---|
267 | def handle(self, context, *args):
|
---|
268 | return _NaN
|
---|
269 |
|
---|
270 | class Inexact(DecimalException):
|
---|
271 | """Had to round, losing information.
|
---|
272 |
|
---|
273 | This occurs and signals inexact whenever the result of an operation is
|
---|
274 | not exact (that is, it needed to be rounded and any discarded digits
|
---|
275 | were non-zero), or if an overflow or underflow condition occurs. The
|
---|
276 | result in all cases is unchanged.
|
---|
277 |
|
---|
278 | The inexact signal may be tested (or trapped) to determine if a given
|
---|
279 | operation (or sequence of operations) was inexact.
|
---|
280 | """
|
---|
281 |
|
---|
282 | class InvalidContext(InvalidOperation):
|
---|
283 | """Invalid context. Unknown rounding, for example.
|
---|
284 |
|
---|
285 | This occurs and signals invalid-operation if an invalid context was
|
---|
286 | detected during an operation. This can occur if contexts are not checked
|
---|
287 | on creation and either the precision exceeds the capability of the
|
---|
288 | underlying concrete representation or an unknown or unsupported rounding
|
---|
289 | was specified. These aspects of the context need only be checked when
|
---|
290 | the values are required to be used. The result is [0,qNaN].
|
---|
291 | """
|
---|
292 |
|
---|
293 | def handle(self, context, *args):
|
---|
294 | return _NaN
|
---|
295 |
|
---|
296 | class Rounded(DecimalException):
|
---|
297 | """Number got rounded (not necessarily changed during rounding).
|
---|
298 |
|
---|
299 | This occurs and signals rounded whenever the result of an operation is
|
---|
300 | rounded (that is, some zero or non-zero digits were discarded from the
|
---|
301 | coefficient), or if an overflow or underflow condition occurs. The
|
---|
302 | result in all cases is unchanged.
|
---|
303 |
|
---|
304 | The rounded signal may be tested (or trapped) to determine if a given
|
---|
305 | operation (or sequence of operations) caused a loss of precision.
|
---|
306 | """
|
---|
307 |
|
---|
308 | class Subnormal(DecimalException):
|
---|
309 | """Exponent < Emin before rounding.
|
---|
310 |
|
---|
311 | This occurs and signals subnormal whenever the result of a conversion or
|
---|
312 | operation is subnormal (that is, its adjusted exponent is less than
|
---|
313 | Emin, before any rounding). The result in all cases is unchanged.
|
---|
314 |
|
---|
315 | The subnormal signal may be tested (or trapped) to determine if a given
|
---|
316 | or operation (or sequence of operations) yielded a subnormal result.
|
---|
317 | """
|
---|
318 |
|
---|
319 | class Overflow(Inexact, Rounded):
|
---|
320 | """Numerical overflow.
|
---|
321 |
|
---|
322 | This occurs and signals overflow if the adjusted exponent of a result
|
---|
323 | (from a conversion or from an operation that is not an attempt to divide
|
---|
324 | by zero), after rounding, would be greater than the largest value that
|
---|
325 | can be handled by the implementation (the value Emax).
|
---|
326 |
|
---|
327 | The result depends on the rounding mode:
|
---|
328 |
|
---|
329 | For round-half-up and round-half-even (and for round-half-down and
|
---|
330 | round-up, if implemented), the result of the operation is [sign,inf],
|
---|
331 | where sign is the sign of the intermediate result. For round-down, the
|
---|
332 | result is the largest finite number that can be represented in the
|
---|
333 | current precision, with the sign of the intermediate result. For
|
---|
334 | round-ceiling, the result is the same as for round-down if the sign of
|
---|
335 | the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
|
---|
336 | the result is the same as for round-down if the sign of the intermediate
|
---|
337 | result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
|
---|
338 | will also be raised.
|
---|
339 | """
|
---|
340 |
|
---|
341 | def handle(self, context, sign, *args):
|
---|
342 | if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
|
---|
343 | ROUND_HALF_DOWN, ROUND_UP):
|
---|
344 | return _SignedInfinity[sign]
|
---|
345 | if sign == 0:
|
---|
346 | if context.rounding == ROUND_CEILING:
|
---|
347 | return _SignedInfinity[sign]
|
---|
348 | return _dec_from_triple(sign, '9'*context.prec,
|
---|
349 | context.Emax-context.prec+1)
|
---|
350 | if sign == 1:
|
---|
351 | if context.rounding == ROUND_FLOOR:
|
---|
352 | return _SignedInfinity[sign]
|
---|
353 | return _dec_from_triple(sign, '9'*context.prec,
|
---|
354 | context.Emax-context.prec+1)
|
---|
355 |
|
---|
356 |
|
---|
357 | class Underflow(Inexact, Rounded, Subnormal):
|
---|
358 | """Numerical underflow with result rounded to 0.
|
---|
359 |
|
---|
360 | This occurs and signals underflow if a result is inexact and the
|
---|
361 | adjusted exponent of the result would be smaller (more negative) than
|
---|
362 | the smallest value that can be handled by the implementation (the value
|
---|
363 | Emin). That is, the result is both inexact and subnormal.
|
---|
364 |
|
---|
365 | The result after an underflow will be a subnormal number rounded, if
|
---|
366 | necessary, so that its exponent is not less than Etiny. This may result
|
---|
367 | in 0 with the sign of the intermediate result and an exponent of Etiny.
|
---|
368 |
|
---|
369 | In all cases, Inexact, Rounded, and Subnormal will also be raised.
|
---|
370 | """
|
---|
371 |
|
---|
372 | # List of public traps and flags
|
---|
373 | _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
|
---|
374 | Underflow, InvalidOperation, Subnormal]
|
---|
375 |
|
---|
376 | # Map conditions (per the spec) to signals
|
---|
377 | _condition_map = {ConversionSyntax:InvalidOperation,
|
---|
378 | DivisionImpossible:InvalidOperation,
|
---|
379 | DivisionUndefined:InvalidOperation,
|
---|
380 | InvalidContext:InvalidOperation}
|
---|
381 |
|
---|
382 | ##### Context Functions ##################################################
|
---|
383 |
|
---|
384 | # The getcontext() and setcontext() function manage access to a thread-local
|
---|
385 | # current context. Py2.4 offers direct support for thread locals. If that
|
---|
386 | # is not available, use threading.currentThread() which is slower but will
|
---|
387 | # work for older Pythons. If threads are not part of the build, create a
|
---|
388 | # mock threading object with threading.local() returning the module namespace.
|
---|
389 |
|
---|
390 | try:
|
---|
391 | import threading
|
---|
392 | except ImportError:
|
---|
393 | # Python was compiled without threads; create a mock object instead
|
---|
394 | import sys
|
---|
395 | class MockThreading(object):
|
---|
396 | def local(self, sys=sys):
|
---|
397 | return sys.modules[__name__]
|
---|
398 | threading = MockThreading()
|
---|
399 | del sys, MockThreading
|
---|
400 |
|
---|
401 | try:
|
---|
402 | threading.local
|
---|
403 |
|
---|
404 | except AttributeError:
|
---|
405 |
|
---|
406 | # To fix reloading, force it to create a new context
|
---|
407 | # Old contexts have different exceptions in their dicts, making problems.
|
---|
408 | if hasattr(threading.currentThread(), '__decimal_context__'):
|
---|
409 | del threading.currentThread().__decimal_context__
|
---|
410 |
|
---|
411 | def setcontext(context):
|
---|
412 | """Set this thread's context to context."""
|
---|
413 | if context in (DefaultContext, BasicContext, ExtendedContext):
|
---|
414 | context = context.copy()
|
---|
415 | context.clear_flags()
|
---|
416 | threading.currentThread().__decimal_context__ = context
|
---|
417 |
|
---|
418 | def getcontext():
|
---|
419 | """Returns this thread's context.
|
---|
420 |
|
---|
421 | If this thread does not yet have a context, returns
|
---|
422 | a new context and sets this thread's context.
|
---|
423 | New contexts are copies of DefaultContext.
|
---|
424 | """
|
---|
425 | try:
|
---|
426 | return threading.currentThread().__decimal_context__
|
---|
427 | except AttributeError:
|
---|
428 | context = Context()
|
---|
429 | threading.currentThread().__decimal_context__ = context
|
---|
430 | return context
|
---|
431 |
|
---|
432 | else:
|
---|
433 |
|
---|
434 | local = threading.local()
|
---|
435 | if hasattr(local, '__decimal_context__'):
|
---|
436 | del local.__decimal_context__
|
---|
437 |
|
---|
438 | def getcontext(_local=local):
|
---|
439 | """Returns this thread's context.
|
---|
440 |
|
---|
441 | If this thread does not yet have a context, returns
|
---|
442 | a new context and sets this thread's context.
|
---|
443 | New contexts are copies of DefaultContext.
|
---|
444 | """
|
---|
445 | try:
|
---|
446 | return _local.__decimal_context__
|
---|
447 | except AttributeError:
|
---|
448 | context = Context()
|
---|
449 | _local.__decimal_context__ = context
|
---|
450 | return context
|
---|
451 |
|
---|
452 | def setcontext(context, _local=local):
|
---|
453 | """Set this thread's context to context."""
|
---|
454 | if context in (DefaultContext, BasicContext, ExtendedContext):
|
---|
455 | context = context.copy()
|
---|
456 | context.clear_flags()
|
---|
457 | _local.__decimal_context__ = context
|
---|
458 |
|
---|
459 | del threading, local # Don't contaminate the namespace
|
---|
460 |
|
---|
461 | def localcontext(ctx=None):
|
---|
462 | """Return a context manager for a copy of the supplied context
|
---|
463 |
|
---|
464 | Uses a copy of the current context if no context is specified
|
---|
465 | The returned context manager creates a local decimal context
|
---|
466 | in a with statement:
|
---|
467 | def sin(x):
|
---|
468 | with localcontext() as ctx:
|
---|
469 | ctx.prec += 2
|
---|
470 | # Rest of sin calculation algorithm
|
---|
471 | # uses a precision 2 greater than normal
|
---|
472 | return +s # Convert result to normal precision
|
---|
473 |
|
---|
474 | def sin(x):
|
---|
475 | with localcontext(ExtendedContext):
|
---|
476 | # Rest of sin calculation algorithm
|
---|
477 | # uses the Extended Context from the
|
---|
478 | # General Decimal Arithmetic Specification
|
---|
479 | return +s # Convert result to normal context
|
---|
480 |
|
---|
481 | >>> setcontext(DefaultContext)
|
---|
482 | >>> print getcontext().prec
|
---|
483 | 28
|
---|
484 | >>> with localcontext():
|
---|
485 | ... ctx = getcontext()
|
---|
486 | ... ctx.prec += 2
|
---|
487 | ... print ctx.prec
|
---|
488 | ...
|
---|
489 | 30
|
---|
490 | >>> with localcontext(ExtendedContext):
|
---|
491 | ... print getcontext().prec
|
---|
492 | ...
|
---|
493 | 9
|
---|
494 | >>> print getcontext().prec
|
---|
495 | 28
|
---|
496 | """
|
---|
497 | if ctx is None: ctx = getcontext()
|
---|
498 | return _ContextManager(ctx)
|
---|
499 |
|
---|
500 |
|
---|
501 | ##### Decimal class #######################################################
|
---|
502 |
|
---|
503 | class Decimal(object):
|
---|
504 | """Floating point class for decimal arithmetic."""
|
---|
505 |
|
---|
506 | __slots__ = ('_exp','_int','_sign', '_is_special')
|
---|
507 | # Generally, the value of the Decimal instance is given by
|
---|
508 | # (-1)**_sign * _int * 10**_exp
|
---|
509 | # Special values are signified by _is_special == True
|
---|
510 |
|
---|
511 | # We're immutable, so use __new__ not __init__
|
---|
512 | def __new__(cls, value="0", context=None):
|
---|
513 | """Create a decimal point instance.
|
---|
514 |
|
---|
515 | >>> Decimal('3.14') # string input
|
---|
516 | Decimal('3.14')
|
---|
517 | >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
|
---|
518 | Decimal('3.14')
|
---|
519 | >>> Decimal(314) # int or long
|
---|
520 | Decimal('314')
|
---|
521 | >>> Decimal(Decimal(314)) # another decimal instance
|
---|
522 | Decimal('314')
|
---|
523 | >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
|
---|
524 | Decimal('3.14')
|
---|
525 | """
|
---|
526 |
|
---|
527 | # Note that the coefficient, self._int, is actually stored as
|
---|
528 | # a string rather than as a tuple of digits. This speeds up
|
---|
529 | # the "digits to integer" and "integer to digits" conversions
|
---|
530 | # that are used in almost every arithmetic operation on
|
---|
531 | # Decimals. This is an internal detail: the as_tuple function
|
---|
532 | # and the Decimal constructor still deal with tuples of
|
---|
533 | # digits.
|
---|
534 |
|
---|
535 | self = object.__new__(cls)
|
---|
536 |
|
---|
537 | # From a string
|
---|
538 | # REs insist on real strings, so we can too.
|
---|
539 | if isinstance(value, basestring):
|
---|
540 | m = _parser(value.strip())
|
---|
541 | if m is None:
|
---|
542 | if context is None:
|
---|
543 | context = getcontext()
|
---|
544 | return context._raise_error(ConversionSyntax,
|
---|
545 | "Invalid literal for Decimal: %r" % value)
|
---|
546 |
|
---|
547 | if m.group('sign') == "-":
|
---|
548 | self._sign = 1
|
---|
549 | else:
|
---|
550 | self._sign = 0
|
---|
551 | intpart = m.group('int')
|
---|
552 | if intpart is not None:
|
---|
553 | # finite number
|
---|
554 | fracpart = m.group('frac') or ''
|
---|
555 | exp = int(m.group('exp') or '0')
|
---|
556 | self._int = str(int(intpart+fracpart))
|
---|
557 | self._exp = exp - len(fracpart)
|
---|
558 | self._is_special = False
|
---|
559 | else:
|
---|
560 | diag = m.group('diag')
|
---|
561 | if diag is not None:
|
---|
562 | # NaN
|
---|
563 | self._int = str(int(diag or '0')).lstrip('0')
|
---|
564 | if m.group('signal'):
|
---|
565 | self._exp = 'N'
|
---|
566 | else:
|
---|
567 | self._exp = 'n'
|
---|
568 | else:
|
---|
569 | # infinity
|
---|
570 | self._int = '0'
|
---|
571 | self._exp = 'F'
|
---|
572 | self._is_special = True
|
---|
573 | return self
|
---|
574 |
|
---|
575 | # From an integer
|
---|
576 | if isinstance(value, (int,long)):
|
---|
577 | if value >= 0:
|
---|
578 | self._sign = 0
|
---|
579 | else:
|
---|
580 | self._sign = 1
|
---|
581 | self._exp = 0
|
---|
582 | self._int = str(abs(value))
|
---|
583 | self._is_special = False
|
---|
584 | return self
|
---|
585 |
|
---|
586 | # From another decimal
|
---|
587 | if isinstance(value, Decimal):
|
---|
588 | self._exp = value._exp
|
---|
589 | self._sign = value._sign
|
---|
590 | self._int = value._int
|
---|
591 | self._is_special = value._is_special
|
---|
592 | return self
|
---|
593 |
|
---|
594 | # From an internal working value
|
---|
595 | if isinstance(value, _WorkRep):
|
---|
596 | self._sign = value.sign
|
---|
597 | self._int = str(value.int)
|
---|
598 | self._exp = int(value.exp)
|
---|
599 | self._is_special = False
|
---|
600 | return self
|
---|
601 |
|
---|
602 | # tuple/list conversion (possibly from as_tuple())
|
---|
603 | if isinstance(value, (list,tuple)):
|
---|
604 | if len(value) != 3:
|
---|
605 | raise ValueError('Invalid tuple size in creation of Decimal '
|
---|
606 | 'from list or tuple. The list or tuple '
|
---|
607 | 'should have exactly three elements.')
|
---|
608 | # process sign. The isinstance test rejects floats
|
---|
609 | if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
|
---|
610 | raise ValueError("Invalid sign. The first value in the tuple "
|
---|
611 | "should be an integer; either 0 for a "
|
---|
612 | "positive number or 1 for a negative number.")
|
---|
613 | self._sign = value[0]
|
---|
614 | if value[2] == 'F':
|
---|
615 | # infinity: value[1] is ignored
|
---|
616 | self._int = '0'
|
---|
617 | self._exp = value[2]
|
---|
618 | self._is_special = True
|
---|
619 | else:
|
---|
620 | # process and validate the digits in value[1]
|
---|
621 | digits = []
|
---|
622 | for digit in value[1]:
|
---|
623 | if isinstance(digit, (int, long)) and 0 <= digit <= 9:
|
---|
624 | # skip leading zeros
|
---|
625 | if digits or digit != 0:
|
---|
626 | digits.append(digit)
|
---|
627 | else:
|
---|
628 | raise ValueError("The second value in the tuple must "
|
---|
629 | "be composed of integers in the range "
|
---|
630 | "0 through 9.")
|
---|
631 | if value[2] in ('n', 'N'):
|
---|
632 | # NaN: digits form the diagnostic
|
---|
633 | self._int = ''.join(map(str, digits))
|
---|
634 | self._exp = value[2]
|
---|
635 | self._is_special = True
|
---|
636 | elif isinstance(value[2], (int, long)):
|
---|
637 | # finite number: digits give the coefficient
|
---|
638 | self._int = ''.join(map(str, digits or [0]))
|
---|
639 | self._exp = value[2]
|
---|
640 | self._is_special = False
|
---|
641 | else:
|
---|
642 | raise ValueError("The third value in the tuple must "
|
---|
643 | "be an integer, or one of the "
|
---|
644 | "strings 'F', 'n', 'N'.")
|
---|
645 | return self
|
---|
646 |
|
---|
647 | if isinstance(value, float):
|
---|
648 | raise TypeError("Cannot convert float to Decimal. " +
|
---|
649 | "First convert the float to a string")
|
---|
650 |
|
---|
651 | raise TypeError("Cannot convert %r to Decimal" % value)
|
---|
652 |
|
---|
653 | def _isnan(self):
|
---|
654 | """Returns whether the number is not actually one.
|
---|
655 |
|
---|
656 | 0 if a number
|
---|
657 | 1 if NaN
|
---|
658 | 2 if sNaN
|
---|
659 | """
|
---|
660 | if self._is_special:
|
---|
661 | exp = self._exp
|
---|
662 | if exp == 'n':
|
---|
663 | return 1
|
---|
664 | elif exp == 'N':
|
---|
665 | return 2
|
---|
666 | return 0
|
---|
667 |
|
---|
668 | def _isinfinity(self):
|
---|
669 | """Returns whether the number is infinite
|
---|
670 |
|
---|
671 | 0 if finite or not a number
|
---|
672 | 1 if +INF
|
---|
673 | -1 if -INF
|
---|
674 | """
|
---|
675 | if self._exp == 'F':
|
---|
676 | if self._sign:
|
---|
677 | return -1
|
---|
678 | return 1
|
---|
679 | return 0
|
---|
680 |
|
---|
681 | def _check_nans(self, other=None, context=None):
|
---|
682 | """Returns whether the number is not actually one.
|
---|
683 |
|
---|
684 | if self, other are sNaN, signal
|
---|
685 | if self, other are NaN return nan
|
---|
686 | return 0
|
---|
687 |
|
---|
688 | Done before operations.
|
---|
689 | """
|
---|
690 |
|
---|
691 | self_is_nan = self._isnan()
|
---|
692 | if other is None:
|
---|
693 | other_is_nan = False
|
---|
694 | else:
|
---|
695 | other_is_nan = other._isnan()
|
---|
696 |
|
---|
697 | if self_is_nan or other_is_nan:
|
---|
698 | if context is None:
|
---|
699 | context = getcontext()
|
---|
700 |
|
---|
701 | if self_is_nan == 2:
|
---|
702 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
703 | self)
|
---|
704 | if other_is_nan == 2:
|
---|
705 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
706 | other)
|
---|
707 | if self_is_nan:
|
---|
708 | return self._fix_nan(context)
|
---|
709 |
|
---|
710 | return other._fix_nan(context)
|
---|
711 | return 0
|
---|
712 |
|
---|
713 | def _compare_check_nans(self, other, context):
|
---|
714 | """Version of _check_nans used for the signaling comparisons
|
---|
715 | compare_signal, __le__, __lt__, __ge__, __gt__.
|
---|
716 |
|
---|
717 | Signal InvalidOperation if either self or other is a (quiet
|
---|
718 | or signaling) NaN. Signaling NaNs take precedence over quiet
|
---|
719 | NaNs.
|
---|
720 |
|
---|
721 | Return 0 if neither operand is a NaN.
|
---|
722 |
|
---|
723 | """
|
---|
724 | if context is None:
|
---|
725 | context = getcontext()
|
---|
726 |
|
---|
727 | if self._is_special or other._is_special:
|
---|
728 | if self.is_snan():
|
---|
729 | return context._raise_error(InvalidOperation,
|
---|
730 | 'comparison involving sNaN',
|
---|
731 | self)
|
---|
732 | elif other.is_snan():
|
---|
733 | return context._raise_error(InvalidOperation,
|
---|
734 | 'comparison involving sNaN',
|
---|
735 | other)
|
---|
736 | elif self.is_qnan():
|
---|
737 | return context._raise_error(InvalidOperation,
|
---|
738 | 'comparison involving NaN',
|
---|
739 | self)
|
---|
740 | elif other.is_qnan():
|
---|
741 | return context._raise_error(InvalidOperation,
|
---|
742 | 'comparison involving NaN',
|
---|
743 | other)
|
---|
744 | return 0
|
---|
745 |
|
---|
746 | def __nonzero__(self):
|
---|
747 | """Return True if self is nonzero; otherwise return False.
|
---|
748 |
|
---|
749 | NaNs and infinities are considered nonzero.
|
---|
750 | """
|
---|
751 | return self._is_special or self._int != '0'
|
---|
752 |
|
---|
753 | def _cmp(self, other):
|
---|
754 | """Compare the two non-NaN decimal instances self and other.
|
---|
755 |
|
---|
756 | Returns -1 if self < other, 0 if self == other and 1
|
---|
757 | if self > other. This routine is for internal use only."""
|
---|
758 |
|
---|
759 | if self._is_special or other._is_special:
|
---|
760 | self_inf = self._isinfinity()
|
---|
761 | other_inf = other._isinfinity()
|
---|
762 | if self_inf == other_inf:
|
---|
763 | return 0
|
---|
764 | elif self_inf < other_inf:
|
---|
765 | return -1
|
---|
766 | else:
|
---|
767 | return 1
|
---|
768 |
|
---|
769 | # check for zeros; Decimal('0') == Decimal('-0')
|
---|
770 | if not self:
|
---|
771 | if not other:
|
---|
772 | return 0
|
---|
773 | else:
|
---|
774 | return -((-1)**other._sign)
|
---|
775 | if not other:
|
---|
776 | return (-1)**self._sign
|
---|
777 |
|
---|
778 | # If different signs, neg one is less
|
---|
779 | if other._sign < self._sign:
|
---|
780 | return -1
|
---|
781 | if self._sign < other._sign:
|
---|
782 | return 1
|
---|
783 |
|
---|
784 | self_adjusted = self.adjusted()
|
---|
785 | other_adjusted = other.adjusted()
|
---|
786 | if self_adjusted == other_adjusted:
|
---|
787 | self_padded = self._int + '0'*(self._exp - other._exp)
|
---|
788 | other_padded = other._int + '0'*(other._exp - self._exp)
|
---|
789 | if self_padded == other_padded:
|
---|
790 | return 0
|
---|
791 | elif self_padded < other_padded:
|
---|
792 | return -(-1)**self._sign
|
---|
793 | else:
|
---|
794 | return (-1)**self._sign
|
---|
795 | elif self_adjusted > other_adjusted:
|
---|
796 | return (-1)**self._sign
|
---|
797 | else: # self_adjusted < other_adjusted
|
---|
798 | return -((-1)**self._sign)
|
---|
799 |
|
---|
800 | # Note: The Decimal standard doesn't cover rich comparisons for
|
---|
801 | # Decimals. In particular, the specification is silent on the
|
---|
802 | # subject of what should happen for a comparison involving a NaN.
|
---|
803 | # We take the following approach:
|
---|
804 | #
|
---|
805 | # == comparisons involving a NaN always return False
|
---|
806 | # != comparisons involving a NaN always return True
|
---|
807 | # <, >, <= and >= comparisons involving a (quiet or signaling)
|
---|
808 | # NaN signal InvalidOperation, and return False if the
|
---|
809 | # InvalidOperation is not trapped.
|
---|
810 | #
|
---|
811 | # This behavior is designed to conform as closely as possible to
|
---|
812 | # that specified by IEEE 754.
|
---|
813 |
|
---|
814 | def __eq__(self, other):
|
---|
815 | other = _convert_other(other)
|
---|
816 | if other is NotImplemented:
|
---|
817 | return other
|
---|
818 | if self.is_nan() or other.is_nan():
|
---|
819 | return False
|
---|
820 | return self._cmp(other) == 0
|
---|
821 |
|
---|
822 | def __ne__(self, other):
|
---|
823 | other = _convert_other(other)
|
---|
824 | if other is NotImplemented:
|
---|
825 | return other
|
---|
826 | if self.is_nan() or other.is_nan():
|
---|
827 | return True
|
---|
828 | return self._cmp(other) != 0
|
---|
829 |
|
---|
830 | def __lt__(self, other, context=None):
|
---|
831 | other = _convert_other(other)
|
---|
832 | if other is NotImplemented:
|
---|
833 | return other
|
---|
834 | ans = self._compare_check_nans(other, context)
|
---|
835 | if ans:
|
---|
836 | return False
|
---|
837 | return self._cmp(other) < 0
|
---|
838 |
|
---|
839 | def __le__(self, other, context=None):
|
---|
840 | other = _convert_other(other)
|
---|
841 | if other is NotImplemented:
|
---|
842 | return other
|
---|
843 | ans = self._compare_check_nans(other, context)
|
---|
844 | if ans:
|
---|
845 | return False
|
---|
846 | return self._cmp(other) <= 0
|
---|
847 |
|
---|
848 | def __gt__(self, other, context=None):
|
---|
849 | other = _convert_other(other)
|
---|
850 | if other is NotImplemented:
|
---|
851 | return other
|
---|
852 | ans = self._compare_check_nans(other, context)
|
---|
853 | if ans:
|
---|
854 | return False
|
---|
855 | return self._cmp(other) > 0
|
---|
856 |
|
---|
857 | def __ge__(self, other, context=None):
|
---|
858 | other = _convert_other(other)
|
---|
859 | if other is NotImplemented:
|
---|
860 | return other
|
---|
861 | ans = self._compare_check_nans(other, context)
|
---|
862 | if ans:
|
---|
863 | return False
|
---|
864 | return self._cmp(other) >= 0
|
---|
865 |
|
---|
866 | def compare(self, other, context=None):
|
---|
867 | """Compares one to another.
|
---|
868 |
|
---|
869 | -1 => a < b
|
---|
870 | 0 => a = b
|
---|
871 | 1 => a > b
|
---|
872 | NaN => one is NaN
|
---|
873 | Like __cmp__, but returns Decimal instances.
|
---|
874 | """
|
---|
875 | other = _convert_other(other, raiseit=True)
|
---|
876 |
|
---|
877 | # Compare(NaN, NaN) = NaN
|
---|
878 | if (self._is_special or other and other._is_special):
|
---|
879 | ans = self._check_nans(other, context)
|
---|
880 | if ans:
|
---|
881 | return ans
|
---|
882 |
|
---|
883 | return Decimal(self._cmp(other))
|
---|
884 |
|
---|
885 | def __hash__(self):
|
---|
886 | """x.__hash__() <==> hash(x)"""
|
---|
887 | # Decimal integers must hash the same as the ints
|
---|
888 | #
|
---|
889 | # The hash of a nonspecial noninteger Decimal must depend only
|
---|
890 | # on the value of that Decimal, and not on its representation.
|
---|
891 | # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
|
---|
892 | if self._is_special:
|
---|
893 | if self._isnan():
|
---|
894 | raise TypeError('Cannot hash a NaN value.')
|
---|
895 | return hash(str(self))
|
---|
896 | if not self:
|
---|
897 | return 0
|
---|
898 | if self._isinteger():
|
---|
899 | op = _WorkRep(self.to_integral_value())
|
---|
900 | # to make computation feasible for Decimals with large
|
---|
901 | # exponent, we use the fact that hash(n) == hash(m) for
|
---|
902 | # any two nonzero integers n and m such that (i) n and m
|
---|
903 | # have the same sign, and (ii) n is congruent to m modulo
|
---|
904 | # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
|
---|
905 | # hash((-1)**s*c*pow(10, e, 2**64-1).
|
---|
906 | return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
|
---|
907 | # The value of a nonzero nonspecial Decimal instance is
|
---|
908 | # faithfully represented by the triple consisting of its sign,
|
---|
909 | # its adjusted exponent, and its coefficient with trailing
|
---|
910 | # zeros removed.
|
---|
911 | return hash((self._sign,
|
---|
912 | self._exp+len(self._int),
|
---|
913 | self._int.rstrip('0')))
|
---|
914 |
|
---|
915 | def as_tuple(self):
|
---|
916 | """Represents the number as a triple tuple.
|
---|
917 |
|
---|
918 | To show the internals exactly as they are.
|
---|
919 | """
|
---|
920 | return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
|
---|
921 |
|
---|
922 | def __repr__(self):
|
---|
923 | """Represents the number as an instance of Decimal."""
|
---|
924 | # Invariant: eval(repr(d)) == d
|
---|
925 | return "Decimal('%s')" % str(self)
|
---|
926 |
|
---|
927 | def __str__(self, eng=False, context=None):
|
---|
928 | """Return string representation of the number in scientific notation.
|
---|
929 |
|
---|
930 | Captures all of the information in the underlying representation.
|
---|
931 | """
|
---|
932 |
|
---|
933 | sign = ['', '-'][self._sign]
|
---|
934 | if self._is_special:
|
---|
935 | if self._exp == 'F':
|
---|
936 | return sign + 'Infinity'
|
---|
937 | elif self._exp == 'n':
|
---|
938 | return sign + 'NaN' + self._int
|
---|
939 | else: # self._exp == 'N'
|
---|
940 | return sign + 'sNaN' + self._int
|
---|
941 |
|
---|
942 | # number of digits of self._int to left of decimal point
|
---|
943 | leftdigits = self._exp + len(self._int)
|
---|
944 |
|
---|
945 | # dotplace is number of digits of self._int to the left of the
|
---|
946 | # decimal point in the mantissa of the output string (that is,
|
---|
947 | # after adjusting the exponent)
|
---|
948 | if self._exp <= 0 and leftdigits > -6:
|
---|
949 | # no exponent required
|
---|
950 | dotplace = leftdigits
|
---|
951 | elif not eng:
|
---|
952 | # usual scientific notation: 1 digit on left of the point
|
---|
953 | dotplace = 1
|
---|
954 | elif self._int == '0':
|
---|
955 | # engineering notation, zero
|
---|
956 | dotplace = (leftdigits + 1) % 3 - 1
|
---|
957 | else:
|
---|
958 | # engineering notation, nonzero
|
---|
959 | dotplace = (leftdigits - 1) % 3 + 1
|
---|
960 |
|
---|
961 | if dotplace <= 0:
|
---|
962 | intpart = '0'
|
---|
963 | fracpart = '.' + '0'*(-dotplace) + self._int
|
---|
964 | elif dotplace >= len(self._int):
|
---|
965 | intpart = self._int+'0'*(dotplace-len(self._int))
|
---|
966 | fracpart = ''
|
---|
967 | else:
|
---|
968 | intpart = self._int[:dotplace]
|
---|
969 | fracpart = '.' + self._int[dotplace:]
|
---|
970 | if leftdigits == dotplace:
|
---|
971 | exp = ''
|
---|
972 | else:
|
---|
973 | if context is None:
|
---|
974 | context = getcontext()
|
---|
975 | exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
|
---|
976 |
|
---|
977 | return sign + intpart + fracpart + exp
|
---|
978 |
|
---|
979 | def to_eng_string(self, context=None):
|
---|
980 | """Convert to engineering-type string.
|
---|
981 |
|
---|
982 | Engineering notation has an exponent which is a multiple of 3, so there
|
---|
983 | are up to 3 digits left of the decimal place.
|
---|
984 |
|
---|
985 | Same rules for when in exponential and when as a value as in __str__.
|
---|
986 | """
|
---|
987 | return self.__str__(eng=True, context=context)
|
---|
988 |
|
---|
989 | def __neg__(self, context=None):
|
---|
990 | """Returns a copy with the sign switched.
|
---|
991 |
|
---|
992 | Rounds, if it has reason.
|
---|
993 | """
|
---|
994 | if self._is_special:
|
---|
995 | ans = self._check_nans(context=context)
|
---|
996 | if ans:
|
---|
997 | return ans
|
---|
998 |
|
---|
999 | if not self:
|
---|
1000 | # -Decimal('0') is Decimal('0'), not Decimal('-0')
|
---|
1001 | ans = self.copy_abs()
|
---|
1002 | else:
|
---|
1003 | ans = self.copy_negate()
|
---|
1004 |
|
---|
1005 | if context is None:
|
---|
1006 | context = getcontext()
|
---|
1007 | return ans._fix(context)
|
---|
1008 |
|
---|
1009 | def __pos__(self, context=None):
|
---|
1010 | """Returns a copy, unless it is a sNaN.
|
---|
1011 |
|
---|
1012 | Rounds the number (if more then precision digits)
|
---|
1013 | """
|
---|
1014 | if self._is_special:
|
---|
1015 | ans = self._check_nans(context=context)
|
---|
1016 | if ans:
|
---|
1017 | return ans
|
---|
1018 |
|
---|
1019 | if not self:
|
---|
1020 | # + (-0) = 0
|
---|
1021 | ans = self.copy_abs()
|
---|
1022 | else:
|
---|
1023 | ans = Decimal(self)
|
---|
1024 |
|
---|
1025 | if context is None:
|
---|
1026 | context = getcontext()
|
---|
1027 | return ans._fix(context)
|
---|
1028 |
|
---|
1029 | def __abs__(self, round=True, context=None):
|
---|
1030 | """Returns the absolute value of self.
|
---|
1031 |
|
---|
1032 | If the keyword argument 'round' is false, do not round. The
|
---|
1033 | expression self.__abs__(round=False) is equivalent to
|
---|
1034 | self.copy_abs().
|
---|
1035 | """
|
---|
1036 | if not round:
|
---|
1037 | return self.copy_abs()
|
---|
1038 |
|
---|
1039 | if self._is_special:
|
---|
1040 | ans = self._check_nans(context=context)
|
---|
1041 | if ans:
|
---|
1042 | return ans
|
---|
1043 |
|
---|
1044 | if self._sign:
|
---|
1045 | ans = self.__neg__(context=context)
|
---|
1046 | else:
|
---|
1047 | ans = self.__pos__(context=context)
|
---|
1048 |
|
---|
1049 | return ans
|
---|
1050 |
|
---|
1051 | def __add__(self, other, context=None):
|
---|
1052 | """Returns self + other.
|
---|
1053 |
|
---|
1054 | -INF + INF (or the reverse) cause InvalidOperation errors.
|
---|
1055 | """
|
---|
1056 | other = _convert_other(other)
|
---|
1057 | if other is NotImplemented:
|
---|
1058 | return other
|
---|
1059 |
|
---|
1060 | if context is None:
|
---|
1061 | context = getcontext()
|
---|
1062 |
|
---|
1063 | if self._is_special or other._is_special:
|
---|
1064 | ans = self._check_nans(other, context)
|
---|
1065 | if ans:
|
---|
1066 | return ans
|
---|
1067 |
|
---|
1068 | if self._isinfinity():
|
---|
1069 | # If both INF, same sign => same as both, opposite => error.
|
---|
1070 | if self._sign != other._sign and other._isinfinity():
|
---|
1071 | return context._raise_error(InvalidOperation, '-INF + INF')
|
---|
1072 | return Decimal(self)
|
---|
1073 | if other._isinfinity():
|
---|
1074 | return Decimal(other) # Can't both be infinity here
|
---|
1075 |
|
---|
1076 | exp = min(self._exp, other._exp)
|
---|
1077 | negativezero = 0
|
---|
1078 | if context.rounding == ROUND_FLOOR and self._sign != other._sign:
|
---|
1079 | # If the answer is 0, the sign should be negative, in this case.
|
---|
1080 | negativezero = 1
|
---|
1081 |
|
---|
1082 | if not self and not other:
|
---|
1083 | sign = min(self._sign, other._sign)
|
---|
1084 | if negativezero:
|
---|
1085 | sign = 1
|
---|
1086 | ans = _dec_from_triple(sign, '0', exp)
|
---|
1087 | ans = ans._fix(context)
|
---|
1088 | return ans
|
---|
1089 | if not self:
|
---|
1090 | exp = max(exp, other._exp - context.prec-1)
|
---|
1091 | ans = other._rescale(exp, context.rounding)
|
---|
1092 | ans = ans._fix(context)
|
---|
1093 | return ans
|
---|
1094 | if not other:
|
---|
1095 | exp = max(exp, self._exp - context.prec-1)
|
---|
1096 | ans = self._rescale(exp, context.rounding)
|
---|
1097 | ans = ans._fix(context)
|
---|
1098 | return ans
|
---|
1099 |
|
---|
1100 | op1 = _WorkRep(self)
|
---|
1101 | op2 = _WorkRep(other)
|
---|
1102 | op1, op2 = _normalize(op1, op2, context.prec)
|
---|
1103 |
|
---|
1104 | result = _WorkRep()
|
---|
1105 | if op1.sign != op2.sign:
|
---|
1106 | # Equal and opposite
|
---|
1107 | if op1.int == op2.int:
|
---|
1108 | ans = _dec_from_triple(negativezero, '0', exp)
|
---|
1109 | ans = ans._fix(context)
|
---|
1110 | return ans
|
---|
1111 | if op1.int < op2.int:
|
---|
1112 | op1, op2 = op2, op1
|
---|
1113 | # OK, now abs(op1) > abs(op2)
|
---|
1114 | if op1.sign == 1:
|
---|
1115 | result.sign = 1
|
---|
1116 | op1.sign, op2.sign = op2.sign, op1.sign
|
---|
1117 | else:
|
---|
1118 | result.sign = 0
|
---|
1119 | # So we know the sign, and op1 > 0.
|
---|
1120 | elif op1.sign == 1:
|
---|
1121 | result.sign = 1
|
---|
1122 | op1.sign, op2.sign = (0, 0)
|
---|
1123 | else:
|
---|
1124 | result.sign = 0
|
---|
1125 | # Now, op1 > abs(op2) > 0
|
---|
1126 |
|
---|
1127 | if op2.sign == 0:
|
---|
1128 | result.int = op1.int + op2.int
|
---|
1129 | else:
|
---|
1130 | result.int = op1.int - op2.int
|
---|
1131 |
|
---|
1132 | result.exp = op1.exp
|
---|
1133 | ans = Decimal(result)
|
---|
1134 | ans = ans._fix(context)
|
---|
1135 | return ans
|
---|
1136 |
|
---|
1137 | __radd__ = __add__
|
---|
1138 |
|
---|
1139 | def __sub__(self, other, context=None):
|
---|
1140 | """Return self - other"""
|
---|
1141 | other = _convert_other(other)
|
---|
1142 | if other is NotImplemented:
|
---|
1143 | return other
|
---|
1144 |
|
---|
1145 | if self._is_special or other._is_special:
|
---|
1146 | ans = self._check_nans(other, context=context)
|
---|
1147 | if ans:
|
---|
1148 | return ans
|
---|
1149 |
|
---|
1150 | # self - other is computed as self + other.copy_negate()
|
---|
1151 | return self.__add__(other.copy_negate(), context=context)
|
---|
1152 |
|
---|
1153 | def __rsub__(self, other, context=None):
|
---|
1154 | """Return other - self"""
|
---|
1155 | other = _convert_other(other)
|
---|
1156 | if other is NotImplemented:
|
---|
1157 | return other
|
---|
1158 |
|
---|
1159 | return other.__sub__(self, context=context)
|
---|
1160 |
|
---|
1161 | def __mul__(self, other, context=None):
|
---|
1162 | """Return self * other.
|
---|
1163 |
|
---|
1164 | (+-) INF * 0 (or its reverse) raise InvalidOperation.
|
---|
1165 | """
|
---|
1166 | other = _convert_other(other)
|
---|
1167 | if other is NotImplemented:
|
---|
1168 | return other
|
---|
1169 |
|
---|
1170 | if context is None:
|
---|
1171 | context = getcontext()
|
---|
1172 |
|
---|
1173 | resultsign = self._sign ^ other._sign
|
---|
1174 |
|
---|
1175 | if self._is_special or other._is_special:
|
---|
1176 | ans = self._check_nans(other, context)
|
---|
1177 | if ans:
|
---|
1178 | return ans
|
---|
1179 |
|
---|
1180 | if self._isinfinity():
|
---|
1181 | if not other:
|
---|
1182 | return context._raise_error(InvalidOperation, '(+-)INF * 0')
|
---|
1183 | return _SignedInfinity[resultsign]
|
---|
1184 |
|
---|
1185 | if other._isinfinity():
|
---|
1186 | if not self:
|
---|
1187 | return context._raise_error(InvalidOperation, '0 * (+-)INF')
|
---|
1188 | return _SignedInfinity[resultsign]
|
---|
1189 |
|
---|
1190 | resultexp = self._exp + other._exp
|
---|
1191 |
|
---|
1192 | # Special case for multiplying by zero
|
---|
1193 | if not self or not other:
|
---|
1194 | ans = _dec_from_triple(resultsign, '0', resultexp)
|
---|
1195 | # Fixing in case the exponent is out of bounds
|
---|
1196 | ans = ans._fix(context)
|
---|
1197 | return ans
|
---|
1198 |
|
---|
1199 | # Special case for multiplying by power of 10
|
---|
1200 | if self._int == '1':
|
---|
1201 | ans = _dec_from_triple(resultsign, other._int, resultexp)
|
---|
1202 | ans = ans._fix(context)
|
---|
1203 | return ans
|
---|
1204 | if other._int == '1':
|
---|
1205 | ans = _dec_from_triple(resultsign, self._int, resultexp)
|
---|
1206 | ans = ans._fix(context)
|
---|
1207 | return ans
|
---|
1208 |
|
---|
1209 | op1 = _WorkRep(self)
|
---|
1210 | op2 = _WorkRep(other)
|
---|
1211 |
|
---|
1212 | ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
|
---|
1213 | ans = ans._fix(context)
|
---|
1214 |
|
---|
1215 | return ans
|
---|
1216 | __rmul__ = __mul__
|
---|
1217 |
|
---|
1218 | def __truediv__(self, other, context=None):
|
---|
1219 | """Return self / other."""
|
---|
1220 | other = _convert_other(other)
|
---|
1221 | if other is NotImplemented:
|
---|
1222 | return NotImplemented
|
---|
1223 |
|
---|
1224 | if context is None:
|
---|
1225 | context = getcontext()
|
---|
1226 |
|
---|
1227 | sign = self._sign ^ other._sign
|
---|
1228 |
|
---|
1229 | if self._is_special or other._is_special:
|
---|
1230 | ans = self._check_nans(other, context)
|
---|
1231 | if ans:
|
---|
1232 | return ans
|
---|
1233 |
|
---|
1234 | if self._isinfinity() and other._isinfinity():
|
---|
1235 | return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
|
---|
1236 |
|
---|
1237 | if self._isinfinity():
|
---|
1238 | return _SignedInfinity[sign]
|
---|
1239 |
|
---|
1240 | if other._isinfinity():
|
---|
1241 | context._raise_error(Clamped, 'Division by infinity')
|
---|
1242 | return _dec_from_triple(sign, '0', context.Etiny())
|
---|
1243 |
|
---|
1244 | # Special cases for zeroes
|
---|
1245 | if not other:
|
---|
1246 | if not self:
|
---|
1247 | return context._raise_error(DivisionUndefined, '0 / 0')
|
---|
1248 | return context._raise_error(DivisionByZero, 'x / 0', sign)
|
---|
1249 |
|
---|
1250 | if not self:
|
---|
1251 | exp = self._exp - other._exp
|
---|
1252 | coeff = 0
|
---|
1253 | else:
|
---|
1254 | # OK, so neither = 0, INF or NaN
|
---|
1255 | shift = len(other._int) - len(self._int) + context.prec + 1
|
---|
1256 | exp = self._exp - other._exp - shift
|
---|
1257 | op1 = _WorkRep(self)
|
---|
1258 | op2 = _WorkRep(other)
|
---|
1259 | if shift >= 0:
|
---|
1260 | coeff, remainder = divmod(op1.int * 10**shift, op2.int)
|
---|
1261 | else:
|
---|
1262 | coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
|
---|
1263 | if remainder:
|
---|
1264 | # result is not exact; adjust to ensure correct rounding
|
---|
1265 | if coeff % 5 == 0:
|
---|
1266 | coeff += 1
|
---|
1267 | else:
|
---|
1268 | # result is exact; get as close to ideal exponent as possible
|
---|
1269 | ideal_exp = self._exp - other._exp
|
---|
1270 | while exp < ideal_exp and coeff % 10 == 0:
|
---|
1271 | coeff //= 10
|
---|
1272 | exp += 1
|
---|
1273 |
|
---|
1274 | ans = _dec_from_triple(sign, str(coeff), exp)
|
---|
1275 | return ans._fix(context)
|
---|
1276 |
|
---|
1277 | def _divide(self, other, context):
|
---|
1278 | """Return (self // other, self % other), to context.prec precision.
|
---|
1279 |
|
---|
1280 | Assumes that neither self nor other is a NaN, that self is not
|
---|
1281 | infinite and that other is nonzero.
|
---|
1282 | """
|
---|
1283 | sign = self._sign ^ other._sign
|
---|
1284 | if other._isinfinity():
|
---|
1285 | ideal_exp = self._exp
|
---|
1286 | else:
|
---|
1287 | ideal_exp = min(self._exp, other._exp)
|
---|
1288 |
|
---|
1289 | expdiff = self.adjusted() - other.adjusted()
|
---|
1290 | if not self or other._isinfinity() or expdiff <= -2:
|
---|
1291 | return (_dec_from_triple(sign, '0', 0),
|
---|
1292 | self._rescale(ideal_exp, context.rounding))
|
---|
1293 | if expdiff <= context.prec:
|
---|
1294 | op1 = _WorkRep(self)
|
---|
1295 | op2 = _WorkRep(other)
|
---|
1296 | if op1.exp >= op2.exp:
|
---|
1297 | op1.int *= 10**(op1.exp - op2.exp)
|
---|
1298 | else:
|
---|
1299 | op2.int *= 10**(op2.exp - op1.exp)
|
---|
1300 | q, r = divmod(op1.int, op2.int)
|
---|
1301 | if q < 10**context.prec:
|
---|
1302 | return (_dec_from_triple(sign, str(q), 0),
|
---|
1303 | _dec_from_triple(self._sign, str(r), ideal_exp))
|
---|
1304 |
|
---|
1305 | # Here the quotient is too large to be representable
|
---|
1306 | ans = context._raise_error(DivisionImpossible,
|
---|
1307 | 'quotient too large in //, % or divmod')
|
---|
1308 | return ans, ans
|
---|
1309 |
|
---|
1310 | def __rtruediv__(self, other, context=None):
|
---|
1311 | """Swaps self/other and returns __truediv__."""
|
---|
1312 | other = _convert_other(other)
|
---|
1313 | if other is NotImplemented:
|
---|
1314 | return other
|
---|
1315 | return other.__truediv__(self, context=context)
|
---|
1316 |
|
---|
1317 | __div__ = __truediv__
|
---|
1318 | __rdiv__ = __rtruediv__
|
---|
1319 |
|
---|
1320 | def __divmod__(self, other, context=None):
|
---|
1321 | """
|
---|
1322 | Return (self // other, self % other)
|
---|
1323 | """
|
---|
1324 | other = _convert_other(other)
|
---|
1325 | if other is NotImplemented:
|
---|
1326 | return other
|
---|
1327 |
|
---|
1328 | if context is None:
|
---|
1329 | context = getcontext()
|
---|
1330 |
|
---|
1331 | ans = self._check_nans(other, context)
|
---|
1332 | if ans:
|
---|
1333 | return (ans, ans)
|
---|
1334 |
|
---|
1335 | sign = self._sign ^ other._sign
|
---|
1336 | if self._isinfinity():
|
---|
1337 | if other._isinfinity():
|
---|
1338 | ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
|
---|
1339 | return ans, ans
|
---|
1340 | else:
|
---|
1341 | return (_SignedInfinity[sign],
|
---|
1342 | context._raise_error(InvalidOperation, 'INF % x'))
|
---|
1343 |
|
---|
1344 | if not other:
|
---|
1345 | if not self:
|
---|
1346 | ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
|
---|
1347 | return ans, ans
|
---|
1348 | else:
|
---|
1349 | return (context._raise_error(DivisionByZero, 'x // 0', sign),
|
---|
1350 | context._raise_error(InvalidOperation, 'x % 0'))
|
---|
1351 |
|
---|
1352 | quotient, remainder = self._divide(other, context)
|
---|
1353 | remainder = remainder._fix(context)
|
---|
1354 | return quotient, remainder
|
---|
1355 |
|
---|
1356 | def __rdivmod__(self, other, context=None):
|
---|
1357 | """Swaps self/other and returns __divmod__."""
|
---|
1358 | other = _convert_other(other)
|
---|
1359 | if other is NotImplemented:
|
---|
1360 | return other
|
---|
1361 | return other.__divmod__(self, context=context)
|
---|
1362 |
|
---|
1363 | def __mod__(self, other, context=None):
|
---|
1364 | """
|
---|
1365 | self % other
|
---|
1366 | """
|
---|
1367 | other = _convert_other(other)
|
---|
1368 | if other is NotImplemented:
|
---|
1369 | return other
|
---|
1370 |
|
---|
1371 | if context is None:
|
---|
1372 | context = getcontext()
|
---|
1373 |
|
---|
1374 | ans = self._check_nans(other, context)
|
---|
1375 | if ans:
|
---|
1376 | return ans
|
---|
1377 |
|
---|
1378 | if self._isinfinity():
|
---|
1379 | return context._raise_error(InvalidOperation, 'INF % x')
|
---|
1380 | elif not other:
|
---|
1381 | if self:
|
---|
1382 | return context._raise_error(InvalidOperation, 'x % 0')
|
---|
1383 | else:
|
---|
1384 | return context._raise_error(DivisionUndefined, '0 % 0')
|
---|
1385 |
|
---|
1386 | remainder = self._divide(other, context)[1]
|
---|
1387 | remainder = remainder._fix(context)
|
---|
1388 | return remainder
|
---|
1389 |
|
---|
1390 | def __rmod__(self, other, context=None):
|
---|
1391 | """Swaps self/other and returns __mod__."""
|
---|
1392 | other = _convert_other(other)
|
---|
1393 | if other is NotImplemented:
|
---|
1394 | return other
|
---|
1395 | return other.__mod__(self, context=context)
|
---|
1396 |
|
---|
1397 | def remainder_near(self, other, context=None):
|
---|
1398 | """
|
---|
1399 | Remainder nearest to 0- abs(remainder-near) <= other/2
|
---|
1400 | """
|
---|
1401 | if context is None:
|
---|
1402 | context = getcontext()
|
---|
1403 |
|
---|
1404 | other = _convert_other(other, raiseit=True)
|
---|
1405 |
|
---|
1406 | ans = self._check_nans(other, context)
|
---|
1407 | if ans:
|
---|
1408 | return ans
|
---|
1409 |
|
---|
1410 | # self == +/-infinity -> InvalidOperation
|
---|
1411 | if self._isinfinity():
|
---|
1412 | return context._raise_error(InvalidOperation,
|
---|
1413 | 'remainder_near(infinity, x)')
|
---|
1414 |
|
---|
1415 | # other == 0 -> either InvalidOperation or DivisionUndefined
|
---|
1416 | if not other:
|
---|
1417 | if self:
|
---|
1418 | return context._raise_error(InvalidOperation,
|
---|
1419 | 'remainder_near(x, 0)')
|
---|
1420 | else:
|
---|
1421 | return context._raise_error(DivisionUndefined,
|
---|
1422 | 'remainder_near(0, 0)')
|
---|
1423 |
|
---|
1424 | # other = +/-infinity -> remainder = self
|
---|
1425 | if other._isinfinity():
|
---|
1426 | ans = Decimal(self)
|
---|
1427 | return ans._fix(context)
|
---|
1428 |
|
---|
1429 | # self = 0 -> remainder = self, with ideal exponent
|
---|
1430 | ideal_exponent = min(self._exp, other._exp)
|
---|
1431 | if not self:
|
---|
1432 | ans = _dec_from_triple(self._sign, '0', ideal_exponent)
|
---|
1433 | return ans._fix(context)
|
---|
1434 |
|
---|
1435 | # catch most cases of large or small quotient
|
---|
1436 | expdiff = self.adjusted() - other.adjusted()
|
---|
1437 | if expdiff >= context.prec + 1:
|
---|
1438 | # expdiff >= prec+1 => abs(self/other) > 10**prec
|
---|
1439 | return context._raise_error(DivisionImpossible)
|
---|
1440 | if expdiff <= -2:
|
---|
1441 | # expdiff <= -2 => abs(self/other) < 0.1
|
---|
1442 | ans = self._rescale(ideal_exponent, context.rounding)
|
---|
1443 | return ans._fix(context)
|
---|
1444 |
|
---|
1445 | # adjust both arguments to have the same exponent, then divide
|
---|
1446 | op1 = _WorkRep(self)
|
---|
1447 | op2 = _WorkRep(other)
|
---|
1448 | if op1.exp >= op2.exp:
|
---|
1449 | op1.int *= 10**(op1.exp - op2.exp)
|
---|
1450 | else:
|
---|
1451 | op2.int *= 10**(op2.exp - op1.exp)
|
---|
1452 | q, r = divmod(op1.int, op2.int)
|
---|
1453 | # remainder is r*10**ideal_exponent; other is +/-op2.int *
|
---|
1454 | # 10**ideal_exponent. Apply correction to ensure that
|
---|
1455 | # abs(remainder) <= abs(other)/2
|
---|
1456 | if 2*r + (q&1) > op2.int:
|
---|
1457 | r -= op2.int
|
---|
1458 | q += 1
|
---|
1459 |
|
---|
1460 | if q >= 10**context.prec:
|
---|
1461 | return context._raise_error(DivisionImpossible)
|
---|
1462 |
|
---|
1463 | # result has same sign as self unless r is negative
|
---|
1464 | sign = self._sign
|
---|
1465 | if r < 0:
|
---|
1466 | sign = 1-sign
|
---|
1467 | r = -r
|
---|
1468 |
|
---|
1469 | ans = _dec_from_triple(sign, str(r), ideal_exponent)
|
---|
1470 | return ans._fix(context)
|
---|
1471 |
|
---|
1472 | def __floordiv__(self, other, context=None):
|
---|
1473 | """self // other"""
|
---|
1474 | other = _convert_other(other)
|
---|
1475 | if other is NotImplemented:
|
---|
1476 | return other
|
---|
1477 |
|
---|
1478 | if context is None:
|
---|
1479 | context = getcontext()
|
---|
1480 |
|
---|
1481 | ans = self._check_nans(other, context)
|
---|
1482 | if ans:
|
---|
1483 | return ans
|
---|
1484 |
|
---|
1485 | if self._isinfinity():
|
---|
1486 | if other._isinfinity():
|
---|
1487 | return context._raise_error(InvalidOperation, 'INF // INF')
|
---|
1488 | else:
|
---|
1489 | return _SignedInfinity[self._sign ^ other._sign]
|
---|
1490 |
|
---|
1491 | if not other:
|
---|
1492 | if self:
|
---|
1493 | return context._raise_error(DivisionByZero, 'x // 0',
|
---|
1494 | self._sign ^ other._sign)
|
---|
1495 | else:
|
---|
1496 | return context._raise_error(DivisionUndefined, '0 // 0')
|
---|
1497 |
|
---|
1498 | return self._divide(other, context)[0]
|
---|
1499 |
|
---|
1500 | def __rfloordiv__(self, other, context=None):
|
---|
1501 | """Swaps self/other and returns __floordiv__."""
|
---|
1502 | other = _convert_other(other)
|
---|
1503 | if other is NotImplemented:
|
---|
1504 | return other
|
---|
1505 | return other.__floordiv__(self, context=context)
|
---|
1506 |
|
---|
1507 | def __float__(self):
|
---|
1508 | """Float representation."""
|
---|
1509 | return float(str(self))
|
---|
1510 |
|
---|
1511 | def __int__(self):
|
---|
1512 | """Converts self to an int, truncating if necessary."""
|
---|
1513 | if self._is_special:
|
---|
1514 | if self._isnan():
|
---|
1515 | raise ValueError("Cannot convert NaN to integer")
|
---|
1516 | elif self._isinfinity():
|
---|
1517 | raise OverflowError("Cannot convert infinity to integer")
|
---|
1518 | s = (-1)**self._sign
|
---|
1519 | if self._exp >= 0:
|
---|
1520 | return s*int(self._int)*10**self._exp
|
---|
1521 | else:
|
---|
1522 | return s*int(self._int[:self._exp] or '0')
|
---|
1523 |
|
---|
1524 | __trunc__ = __int__
|
---|
1525 |
|
---|
1526 | def real(self):
|
---|
1527 | return self
|
---|
1528 | real = property(real)
|
---|
1529 |
|
---|
1530 | def imag(self):
|
---|
1531 | return Decimal(0)
|
---|
1532 | imag = property(imag)
|
---|
1533 |
|
---|
1534 | def conjugate(self):
|
---|
1535 | return self
|
---|
1536 |
|
---|
1537 | def __complex__(self):
|
---|
1538 | return complex(float(self))
|
---|
1539 |
|
---|
1540 | def __long__(self):
|
---|
1541 | """Converts to a long.
|
---|
1542 |
|
---|
1543 | Equivalent to long(int(self))
|
---|
1544 | """
|
---|
1545 | return long(self.__int__())
|
---|
1546 |
|
---|
1547 | def _fix_nan(self, context):
|
---|
1548 | """Decapitate the payload of a NaN to fit the context"""
|
---|
1549 | payload = self._int
|
---|
1550 |
|
---|
1551 | # maximum length of payload is precision if _clamp=0,
|
---|
1552 | # precision-1 if _clamp=1.
|
---|
1553 | max_payload_len = context.prec - context._clamp
|
---|
1554 | if len(payload) > max_payload_len:
|
---|
1555 | payload = payload[len(payload)-max_payload_len:].lstrip('0')
|
---|
1556 | return _dec_from_triple(self._sign, payload, self._exp, True)
|
---|
1557 | return Decimal(self)
|
---|
1558 |
|
---|
1559 | def _fix(self, context):
|
---|
1560 | """Round if it is necessary to keep self within prec precision.
|
---|
1561 |
|
---|
1562 | Rounds and fixes the exponent. Does not raise on a sNaN.
|
---|
1563 |
|
---|
1564 | Arguments:
|
---|
1565 | self - Decimal instance
|
---|
1566 | context - context used.
|
---|
1567 | """
|
---|
1568 |
|
---|
1569 | if self._is_special:
|
---|
1570 | if self._isnan():
|
---|
1571 | # decapitate payload if necessary
|
---|
1572 | return self._fix_nan(context)
|
---|
1573 | else:
|
---|
1574 | # self is +/-Infinity; return unaltered
|
---|
1575 | return Decimal(self)
|
---|
1576 |
|
---|
1577 | # if self is zero then exponent should be between Etiny and
|
---|
1578 | # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
|
---|
1579 | Etiny = context.Etiny()
|
---|
1580 | Etop = context.Etop()
|
---|
1581 | if not self:
|
---|
1582 | exp_max = [context.Emax, Etop][context._clamp]
|
---|
1583 | new_exp = min(max(self._exp, Etiny), exp_max)
|
---|
1584 | if new_exp != self._exp:
|
---|
1585 | context._raise_error(Clamped)
|
---|
1586 | return _dec_from_triple(self._sign, '0', new_exp)
|
---|
1587 | else:
|
---|
1588 | return Decimal(self)
|
---|
1589 |
|
---|
1590 | # exp_min is the smallest allowable exponent of the result,
|
---|
1591 | # equal to max(self.adjusted()-context.prec+1, Etiny)
|
---|
1592 | exp_min = len(self._int) + self._exp - context.prec
|
---|
1593 | if exp_min > Etop:
|
---|
1594 | # overflow: exp_min > Etop iff self.adjusted() > Emax
|
---|
1595 | context._raise_error(Inexact)
|
---|
1596 | context._raise_error(Rounded)
|
---|
1597 | return context._raise_error(Overflow, 'above Emax', self._sign)
|
---|
1598 | self_is_subnormal = exp_min < Etiny
|
---|
1599 | if self_is_subnormal:
|
---|
1600 | context._raise_error(Subnormal)
|
---|
1601 | exp_min = Etiny
|
---|
1602 |
|
---|
1603 | # round if self has too many digits
|
---|
1604 | if self._exp < exp_min:
|
---|
1605 | context._raise_error(Rounded)
|
---|
1606 | digits = len(self._int) + self._exp - exp_min
|
---|
1607 | if digits < 0:
|
---|
1608 | self = _dec_from_triple(self._sign, '1', exp_min-1)
|
---|
1609 | digits = 0
|
---|
1610 | this_function = getattr(self, self._pick_rounding_function[context.rounding])
|
---|
1611 | changed = this_function(digits)
|
---|
1612 | coeff = self._int[:digits] or '0'
|
---|
1613 | if changed == 1:
|
---|
1614 | coeff = str(int(coeff)+1)
|
---|
1615 | ans = _dec_from_triple(self._sign, coeff, exp_min)
|
---|
1616 |
|
---|
1617 | if changed:
|
---|
1618 | context._raise_error(Inexact)
|
---|
1619 | if self_is_subnormal:
|
---|
1620 | context._raise_error(Underflow)
|
---|
1621 | if not ans:
|
---|
1622 | # raise Clamped on underflow to 0
|
---|
1623 | context._raise_error(Clamped)
|
---|
1624 | elif len(ans._int) == context.prec+1:
|
---|
1625 | # we get here only if rescaling rounds the
|
---|
1626 | # cofficient up to exactly 10**context.prec
|
---|
1627 | if ans._exp < Etop:
|
---|
1628 | ans = _dec_from_triple(ans._sign,
|
---|
1629 | ans._int[:-1], ans._exp+1)
|
---|
1630 | else:
|
---|
1631 | # Inexact and Rounded have already been raised
|
---|
1632 | ans = context._raise_error(Overflow, 'above Emax',
|
---|
1633 | self._sign)
|
---|
1634 | return ans
|
---|
1635 |
|
---|
1636 | # fold down if _clamp == 1 and self has too few digits
|
---|
1637 | if context._clamp == 1 and self._exp > Etop:
|
---|
1638 | context._raise_error(Clamped)
|
---|
1639 | self_padded = self._int + '0'*(self._exp - Etop)
|
---|
1640 | return _dec_from_triple(self._sign, self_padded, Etop)
|
---|
1641 |
|
---|
1642 | # here self was representable to begin with; return unchanged
|
---|
1643 | return Decimal(self)
|
---|
1644 |
|
---|
1645 | _pick_rounding_function = {}
|
---|
1646 |
|
---|
1647 | # for each of the rounding functions below:
|
---|
1648 | # self is a finite, nonzero Decimal
|
---|
1649 | # prec is an integer satisfying 0 <= prec < len(self._int)
|
---|
1650 | #
|
---|
1651 | # each function returns either -1, 0, or 1, as follows:
|
---|
1652 | # 1 indicates that self should be rounded up (away from zero)
|
---|
1653 | # 0 indicates that self should be truncated, and that all the
|
---|
1654 | # digits to be truncated are zeros (so the value is unchanged)
|
---|
1655 | # -1 indicates that there are nonzero digits to be truncated
|
---|
1656 |
|
---|
1657 | def _round_down(self, prec):
|
---|
1658 | """Also known as round-towards-0, truncate."""
|
---|
1659 | if _all_zeros(self._int, prec):
|
---|
1660 | return 0
|
---|
1661 | else:
|
---|
1662 | return -1
|
---|
1663 |
|
---|
1664 | def _round_up(self, prec):
|
---|
1665 | """Rounds away from 0."""
|
---|
1666 | return -self._round_down(prec)
|
---|
1667 |
|
---|
1668 | def _round_half_up(self, prec):
|
---|
1669 | """Rounds 5 up (away from 0)"""
|
---|
1670 | if self._int[prec] in '56789':
|
---|
1671 | return 1
|
---|
1672 | elif _all_zeros(self._int, prec):
|
---|
1673 | return 0
|
---|
1674 | else:
|
---|
1675 | return -1
|
---|
1676 |
|
---|
1677 | def _round_half_down(self, prec):
|
---|
1678 | """Round 5 down"""
|
---|
1679 | if _exact_half(self._int, prec):
|
---|
1680 | return -1
|
---|
1681 | else:
|
---|
1682 | return self._round_half_up(prec)
|
---|
1683 |
|
---|
1684 | def _round_half_even(self, prec):
|
---|
1685 | """Round 5 to even, rest to nearest."""
|
---|
1686 | if _exact_half(self._int, prec) and \
|
---|
1687 | (prec == 0 or self._int[prec-1] in '02468'):
|
---|
1688 | return -1
|
---|
1689 | else:
|
---|
1690 | return self._round_half_up(prec)
|
---|
1691 |
|
---|
1692 | def _round_ceiling(self, prec):
|
---|
1693 | """Rounds up (not away from 0 if negative.)"""
|
---|
1694 | if self._sign:
|
---|
1695 | return self._round_down(prec)
|
---|
1696 | else:
|
---|
1697 | return -self._round_down(prec)
|
---|
1698 |
|
---|
1699 | def _round_floor(self, prec):
|
---|
1700 | """Rounds down (not towards 0 if negative)"""
|
---|
1701 | if not self._sign:
|
---|
1702 | return self._round_down(prec)
|
---|
1703 | else:
|
---|
1704 | return -self._round_down(prec)
|
---|
1705 |
|
---|
1706 | def _round_05up(self, prec):
|
---|
1707 | """Round down unless digit prec-1 is 0 or 5."""
|
---|
1708 | if prec and self._int[prec-1] not in '05':
|
---|
1709 | return self._round_down(prec)
|
---|
1710 | else:
|
---|
1711 | return -self._round_down(prec)
|
---|
1712 |
|
---|
1713 | def fma(self, other, third, context=None):
|
---|
1714 | """Fused multiply-add.
|
---|
1715 |
|
---|
1716 | Returns self*other+third with no rounding of the intermediate
|
---|
1717 | product self*other.
|
---|
1718 |
|
---|
1719 | self and other are multiplied together, with no rounding of
|
---|
1720 | the result. The third operand is then added to the result,
|
---|
1721 | and a single final rounding is performed.
|
---|
1722 | """
|
---|
1723 |
|
---|
1724 | other = _convert_other(other, raiseit=True)
|
---|
1725 |
|
---|
1726 | # compute product; raise InvalidOperation if either operand is
|
---|
1727 | # a signaling NaN or if the product is zero times infinity.
|
---|
1728 | if self._is_special or other._is_special:
|
---|
1729 | if context is None:
|
---|
1730 | context = getcontext()
|
---|
1731 | if self._exp == 'N':
|
---|
1732 | return context._raise_error(InvalidOperation, 'sNaN', self)
|
---|
1733 | if other._exp == 'N':
|
---|
1734 | return context._raise_error(InvalidOperation, 'sNaN', other)
|
---|
1735 | if self._exp == 'n':
|
---|
1736 | product = self
|
---|
1737 | elif other._exp == 'n':
|
---|
1738 | product = other
|
---|
1739 | elif self._exp == 'F':
|
---|
1740 | if not other:
|
---|
1741 | return context._raise_error(InvalidOperation,
|
---|
1742 | 'INF * 0 in fma')
|
---|
1743 | product = _SignedInfinity[self._sign ^ other._sign]
|
---|
1744 | elif other._exp == 'F':
|
---|
1745 | if not self:
|
---|
1746 | return context._raise_error(InvalidOperation,
|
---|
1747 | '0 * INF in fma')
|
---|
1748 | product = _SignedInfinity[self._sign ^ other._sign]
|
---|
1749 | else:
|
---|
1750 | product = _dec_from_triple(self._sign ^ other._sign,
|
---|
1751 | str(int(self._int) * int(other._int)),
|
---|
1752 | self._exp + other._exp)
|
---|
1753 |
|
---|
1754 | third = _convert_other(third, raiseit=True)
|
---|
1755 | return product.__add__(third, context)
|
---|
1756 |
|
---|
1757 | def _power_modulo(self, other, modulo, context=None):
|
---|
1758 | """Three argument version of __pow__"""
|
---|
1759 |
|
---|
1760 | # if can't convert other and modulo to Decimal, raise
|
---|
1761 | # TypeError; there's no point returning NotImplemented (no
|
---|
1762 | # equivalent of __rpow__ for three argument pow)
|
---|
1763 | other = _convert_other(other, raiseit=True)
|
---|
1764 | modulo = _convert_other(modulo, raiseit=True)
|
---|
1765 |
|
---|
1766 | if context is None:
|
---|
1767 | context = getcontext()
|
---|
1768 |
|
---|
1769 | # deal with NaNs: if there are any sNaNs then first one wins,
|
---|
1770 | # (i.e. behaviour for NaNs is identical to that of fma)
|
---|
1771 | self_is_nan = self._isnan()
|
---|
1772 | other_is_nan = other._isnan()
|
---|
1773 | modulo_is_nan = modulo._isnan()
|
---|
1774 | if self_is_nan or other_is_nan or modulo_is_nan:
|
---|
1775 | if self_is_nan == 2:
|
---|
1776 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
1777 | self)
|
---|
1778 | if other_is_nan == 2:
|
---|
1779 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
1780 | other)
|
---|
1781 | if modulo_is_nan == 2:
|
---|
1782 | return context._raise_error(InvalidOperation, 'sNaN',
|
---|
1783 | modulo)
|
---|
1784 | if self_is_nan:
|
---|
1785 | return self._fix_nan(context)
|
---|
1786 | if other_is_nan:
|
---|
1787 | return other._fix_nan(context)
|
---|
1788 | return modulo._fix_nan(context)
|
---|
1789 |
|
---|
1790 | # check inputs: we apply same restrictions as Python's pow()
|
---|
1791 | if not (self._isinteger() and
|
---|
1792 | other._isinteger() and
|
---|
1793 | modulo._isinteger()):
|
---|
1794 | return context._raise_error(InvalidOperation,
|
---|
1795 | 'pow() 3rd argument not allowed '
|
---|
1796 | 'unless all arguments are integers')
|
---|
1797 | if other < 0:
|
---|
1798 | return context._raise_error(InvalidOperation,
|
---|
1799 | 'pow() 2nd argument cannot be '
|
---|
1800 | 'negative when 3rd argument specified')
|
---|
1801 | if not modulo:
|
---|
1802 | return context._raise_error(InvalidOperation,
|
---|
1803 | 'pow() 3rd argument cannot be 0')
|
---|
1804 |
|
---|
1805 | # additional restriction for decimal: the modulus must be less
|
---|
1806 | # than 10**prec in absolute value
|
---|
1807 | if modulo.adjusted() >= context.prec:
|
---|
1808 | return context._raise_error(InvalidOperation,
|
---|
1809 | 'insufficient precision: pow() 3rd '
|
---|
1810 | 'argument must not have more than '
|
---|
1811 | 'precision digits')
|
---|
1812 |
|
---|
1813 | # define 0**0 == NaN, for consistency with two-argument pow
|
---|
1814 | # (even though it hurts!)
|
---|
1815 | if not other and not self:
|
---|
1816 | return context._raise_error(InvalidOperation,
|
---|
1817 | 'at least one of pow() 1st argument '
|
---|
1818 | 'and 2nd argument must be nonzero ;'
|
---|
1819 | '0**0 is not defined')
|
---|
1820 |
|
---|
1821 | # compute sign of result
|
---|
1822 | if other._iseven():
|
---|
1823 | sign = 0
|
---|
1824 | else:
|
---|
1825 | sign = self._sign
|
---|
1826 |
|
---|
1827 | # convert modulo to a Python integer, and self and other to
|
---|
1828 | # Decimal integers (i.e. force their exponents to be >= 0)
|
---|
1829 | modulo = abs(int(modulo))
|
---|
1830 | base = _WorkRep(self.to_integral_value())
|
---|
1831 | exponent = _WorkRep(other.to_integral_value())
|
---|
1832 |
|
---|
1833 | # compute result using integer pow()
|
---|
1834 | base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
|
---|
1835 | for i in xrange(exponent.exp):
|
---|
1836 | base = pow(base, 10, modulo)
|
---|
1837 | base = pow(base, exponent.int, modulo)
|
---|
1838 |
|
---|
1839 | return _dec_from_triple(sign, str(base), 0)
|
---|
1840 |
|
---|
1841 | def _power_exact(self, other, p):
|
---|
1842 | """Attempt to compute self**other exactly.
|
---|
1843 |
|
---|
1844 | Given Decimals self and other and an integer p, attempt to
|
---|
1845 | compute an exact result for the power self**other, with p
|
---|
1846 | digits of precision. Return None if self**other is not
|
---|
1847 | exactly representable in p digits.
|
---|
1848 |
|
---|
1849 | Assumes that elimination of special cases has already been
|
---|
1850 | performed: self and other must both be nonspecial; self must
|
---|
1851 | be positive and not numerically equal to 1; other must be
|
---|
1852 | nonzero. For efficiency, other._exp should not be too large,
|
---|
1853 | so that 10**abs(other._exp) is a feasible calculation."""
|
---|
1854 |
|
---|
1855 | # In the comments below, we write x for the value of self and
|
---|
1856 | # y for the value of other. Write x = xc*10**xe and y =
|
---|
1857 | # yc*10**ye.
|
---|
1858 |
|
---|
1859 | # The main purpose of this method is to identify the *failure*
|
---|
1860 | # of x**y to be exactly representable with as little effort as
|
---|
1861 | # possible. So we look for cheap and easy tests that
|
---|
1862 | # eliminate the possibility of x**y being exact. Only if all
|
---|
1863 | # these tests are passed do we go on to actually compute x**y.
|
---|
1864 |
|
---|
1865 | # Here's the main idea. First normalize both x and y. We
|
---|
1866 | # express y as a rational m/n, with m and n relatively prime
|
---|
1867 | # and n>0. Then for x**y to be exactly representable (at
|
---|
1868 | # *any* precision), xc must be the nth power of a positive
|
---|
1869 | # integer and xe must be divisible by n. If m is negative
|
---|
1870 | # then additionally xc must be a power of either 2 or 5, hence
|
---|
1871 | # a power of 2**n or 5**n.
|
---|
1872 | #
|
---|
1873 | # There's a limit to how small |y| can be: if y=m/n as above
|
---|
1874 | # then:
|
---|
1875 | #
|
---|
1876 | # (1) if xc != 1 then for the result to be representable we
|
---|
1877 | # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
|
---|
1878 | # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
|
---|
1879 | # 2**(1/|y|), hence xc**|y| < 2 and the result is not
|
---|
1880 | # representable.
|
---|
1881 | #
|
---|
1882 | # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
|
---|
1883 | # |y| < 1/|xe| then the result is not representable.
|
---|
1884 | #
|
---|
1885 | # Note that since x is not equal to 1, at least one of (1) and
|
---|
1886 | # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
|
---|
1887 | # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
|
---|
1888 | #
|
---|
1889 | # There's also a limit to how large y can be, at least if it's
|
---|
1890 | # positive: the normalized result will have coefficient xc**y,
|
---|
1891 | # so if it's representable then xc**y < 10**p, and y <
|
---|
1892 | # p/log10(xc). Hence if y*log10(xc) >= p then the result is
|
---|
1893 | # not exactly representable.
|
---|
1894 |
|
---|
1895 | # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
|
---|
1896 | # so |y| < 1/xe and the result is not representable.
|
---|
1897 | # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
|
---|
1898 | # < 1/nbits(xc).
|
---|
1899 |
|
---|
1900 | x = _WorkRep(self)
|
---|
1901 | xc, xe = x.int, x.exp
|
---|
1902 | while xc % 10 == 0:
|
---|
1903 | xc //= 10
|
---|
1904 | xe += 1
|
---|
1905 |
|
---|
1906 | y = _WorkRep(other)
|
---|
1907 | yc, ye = y.int, y.exp
|
---|
1908 | while yc % 10 == 0:
|
---|
1909 | yc //= 10
|
---|
1910 | ye += 1
|
---|
1911 |
|
---|
1912 | # case where xc == 1: result is 10**(xe*y), with xe*y
|
---|
1913 | # required to be an integer
|
---|
1914 | if xc == 1:
|
---|
1915 | if ye >= 0:
|
---|
1916 | exponent = xe*yc*10**ye
|
---|
1917 | else:
|
---|
1918 | exponent, remainder = divmod(xe*yc, 10**-ye)
|
---|
1919 | if remainder:
|
---|
1920 | return None
|
---|
1921 | if y.sign == 1:
|
---|
1922 | exponent = -exponent
|
---|
1923 | # if other is a nonnegative integer, use ideal exponent
|
---|
1924 | if other._isinteger() and other._sign == 0:
|
---|
1925 | ideal_exponent = self._exp*int(other)
|
---|
1926 | zeros = min(exponent-ideal_exponent, p-1)
|
---|
1927 | else:
|
---|
1928 | zeros = 0
|
---|
1929 | return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
|
---|
1930 |
|
---|
1931 | # case where y is negative: xc must be either a power
|
---|
1932 | # of 2 or a power of 5.
|
---|
1933 | if y.sign == 1:
|
---|
1934 | last_digit = xc % 10
|
---|
1935 | if last_digit in (2,4,6,8):
|
---|
1936 | # quick test for power of 2
|
---|
1937 | if xc & -xc != xc:
|
---|
1938 | return None
|
---|
1939 | # now xc is a power of 2; e is its exponent
|
---|
1940 | e = _nbits(xc)-1
|
---|
1941 | # find e*y and xe*y; both must be integers
|
---|
1942 | if ye >= 0:
|
---|
1943 | y_as_int = yc*10**ye
|
---|
1944 | e = e*y_as_int
|
---|
1945 | xe = xe*y_as_int
|
---|
1946 | else:
|
---|
1947 | ten_pow = 10**-ye
|
---|
1948 | e, remainder = divmod(e*yc, ten_pow)
|
---|
1949 | if remainder:
|
---|
1950 | return None
|
---|
1951 | xe, remainder = divmod(xe*yc, ten_pow)
|
---|
1952 | if remainder:
|
---|
1953 | return None
|
---|
1954 |
|
---|
1955 | if e*65 >= p*93: # 93/65 > log(10)/log(5)
|
---|
1956 | return None
|
---|
1957 | xc = 5**e
|
---|
1958 |
|
---|
1959 | elif last_digit == 5:
|
---|
1960 | # e >= log_5(xc) if xc is a power of 5; we have
|
---|
1961 | # equality all the way up to xc=5**2658
|
---|
1962 | e = _nbits(xc)*28//65
|
---|
1963 | xc, remainder = divmod(5**e, xc)
|
---|
1964 | if remainder:
|
---|
1965 | return None
|
---|
1966 | while xc % 5 == 0:
|
---|
1967 | xc //= 5
|
---|
1968 | e -= 1
|
---|
1969 | if ye >= 0:
|
---|
1970 | y_as_integer = yc*10**ye
|
---|
1971 | e = e*y_as_integer
|
---|
1972 | xe = xe*y_as_integer
|
---|
1973 | else:
|
---|
1974 | ten_pow = 10**-ye
|
---|
1975 | e, remainder = divmod(e*yc, ten_pow)
|
---|
1976 | if remainder:
|
---|
1977 | return None
|
---|
1978 | xe, remainder = divmod(xe*yc, ten_pow)
|
---|
1979 | if remainder:
|
---|
1980 | return None
|
---|
1981 | if e*3 >= p*10: # 10/3 > log(10)/log(2)
|
---|
1982 | return None
|
---|
1983 | xc = 2**e
|
---|
1984 | else:
|
---|
1985 | return None
|
---|
1986 |
|
---|
1987 | if xc >= 10**p:
|
---|
1988 | return None
|
---|
1989 | xe = -e-xe
|
---|
1990 | return _dec_from_triple(0, str(xc), xe)
|
---|
1991 |
|
---|
1992 | # now y is positive; find m and n such that y = m/n
|
---|
1993 | if ye >= 0:
|
---|
1994 | m, n = yc*10**ye, 1
|
---|
1995 | else:
|
---|
1996 | if xe != 0 and len(str(abs(yc*xe))) <= -ye:
|
---|
1997 | return None
|
---|
1998 | xc_bits = _nbits(xc)
|
---|
1999 | if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
|
---|
2000 | return None
|
---|
2001 | m, n = yc, 10**(-ye)
|
---|
2002 | while m % 2 == n % 2 == 0:
|
---|
2003 | m //= 2
|
---|
2004 | n //= 2
|
---|
2005 | while m % 5 == n % 5 == 0:
|
---|
2006 | m //= 5
|
---|
2007 | n //= 5
|
---|
2008 |
|
---|
2009 | # compute nth root of xc*10**xe
|
---|
2010 | if n > 1:
|
---|
2011 | # if 1 < xc < 2**n then xc isn't an nth power
|
---|
2012 | if xc != 1 and xc_bits <= n:
|
---|
2013 | return None
|
---|
2014 |
|
---|
2015 | xe, rem = divmod(xe, n)
|
---|
2016 | if rem != 0:
|
---|
2017 | return None
|
---|
2018 |
|
---|
2019 | # compute nth root of xc using Newton's method
|
---|
2020 | a = 1L << -(-_nbits(xc)//n) # initial estimate
|
---|
2021 | while True:
|
---|
2022 | q, r = divmod(xc, a**(n-1))
|
---|
2023 | if a <= q:
|
---|
2024 | break
|
---|
2025 | else:
|
---|
2026 | a = (a*(n-1) + q)//n
|
---|
2027 | if not (a == q and r == 0):
|
---|
2028 | return None
|
---|
2029 | xc = a
|
---|
2030 |
|
---|
2031 | # now xc*10**xe is the nth root of the original xc*10**xe
|
---|
2032 | # compute mth power of xc*10**xe
|
---|
2033 |
|
---|
2034 | # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
|
---|
2035 | # 10**p and the result is not representable.
|
---|
2036 | if xc > 1 and m > p*100//_log10_lb(xc):
|
---|
2037 | return None
|
---|
2038 | xc = xc**m
|
---|
2039 | xe *= m
|
---|
2040 | if xc > 10**p:
|
---|
2041 | return None
|
---|
2042 |
|
---|
2043 | # by this point the result *is* exactly representable
|
---|
2044 | # adjust the exponent to get as close as possible to the ideal
|
---|
2045 | # exponent, if necessary
|
---|
2046 | str_xc = str(xc)
|
---|
2047 | if other._isinteger() and other._sign == 0:
|
---|
2048 | ideal_exponent = self._exp*int(other)
|
---|
2049 | zeros = min(xe-ideal_exponent, p-len(str_xc))
|
---|
2050 | else:
|
---|
2051 | zeros = 0
|
---|
2052 | return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
|
---|
2053 |
|
---|
2054 | def __pow__(self, other, modulo=None, context=None):
|
---|
2055 | """Return self ** other [ % modulo].
|
---|
2056 |
|
---|
2057 | With two arguments, compute self**other.
|
---|
2058 |
|
---|
2059 | With three arguments, compute (self**other) % modulo. For the
|
---|
2060 | three argument form, the following restrictions on the
|
---|
2061 | arguments hold:
|
---|
2062 |
|
---|
2063 | - all three arguments must be integral
|
---|
2064 | - other must be nonnegative
|
---|
2065 | - either self or other (or both) must be nonzero
|
---|
2066 | - modulo must be nonzero and must have at most p digits,
|
---|
2067 | where p is the context precision.
|
---|
2068 |
|
---|
2069 | If any of these restrictions is violated the InvalidOperation
|
---|
2070 | flag is raised.
|
---|
2071 |
|
---|
2072 | The result of pow(self, other, modulo) is identical to the
|
---|
2073 | result that would be obtained by computing (self**other) %
|
---|
2074 | modulo with unbounded precision, but is computed more
|
---|
2075 | efficiently. It is always exact.
|
---|
2076 | """
|
---|
2077 |
|
---|
2078 | if modulo is not None:
|
---|
2079 | return self._power_modulo(other, modulo, context)
|
---|
2080 |
|
---|
2081 | other = _convert_other(other)
|
---|
2082 | if other is NotImplemented:
|
---|
2083 | return other
|
---|
2084 |
|
---|
2085 | if context is None:
|
---|
2086 | context = getcontext()
|
---|
2087 |
|
---|
2088 | # either argument is a NaN => result is NaN
|
---|
2089 | ans = self._check_nans(other, context)
|
---|
2090 | if ans:
|
---|
2091 | return ans
|
---|
2092 |
|
---|
2093 | # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
|
---|
2094 | if not other:
|
---|
2095 | if not self:
|
---|
2096 | return context._raise_error(InvalidOperation, '0 ** 0')
|
---|
2097 | else:
|
---|
2098 | return _One
|
---|
2099 |
|
---|
2100 | # result has sign 1 iff self._sign is 1 and other is an odd integer
|
---|
2101 | result_sign = 0
|
---|
2102 | if self._sign == 1:
|
---|
2103 | if other._isinteger():
|
---|
2104 | if not other._iseven():
|
---|
2105 | result_sign = 1
|
---|
2106 | else:
|
---|
2107 | # -ve**noninteger = NaN
|
---|
2108 | # (-0)**noninteger = 0**noninteger
|
---|
2109 | if self:
|
---|
2110 | return context._raise_error(InvalidOperation,
|
---|
2111 | 'x ** y with x negative and y not an integer')
|
---|
2112 | # negate self, without doing any unwanted rounding
|
---|
2113 | self = self.copy_negate()
|
---|
2114 |
|
---|
2115 | # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
|
---|
2116 | if not self:
|
---|
2117 | if other._sign == 0:
|
---|
2118 | return _dec_from_triple(result_sign, '0', 0)
|
---|
2119 | else:
|
---|
2120 | return _SignedInfinity[result_sign]
|
---|
2121 |
|
---|
2122 | # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
|
---|
2123 | if self._isinfinity():
|
---|
2124 | if other._sign == 0:
|
---|
2125 | return _SignedInfinity[result_sign]
|
---|
2126 | else:
|
---|
2127 | return _dec_from_triple(result_sign, '0', 0)
|
---|
2128 |
|
---|
2129 | # 1**other = 1, but the choice of exponent and the flags
|
---|
2130 | # depend on the exponent of self, and on whether other is a
|
---|
2131 | # positive integer, a negative integer, or neither
|
---|
2132 | if self == _One:
|
---|
2133 | if other._isinteger():
|
---|
2134 | # exp = max(self._exp*max(int(other), 0),
|
---|
2135 | # 1-context.prec) but evaluating int(other) directly
|
---|
2136 | # is dangerous until we know other is small (other
|
---|
2137 | # could be 1e999999999)
|
---|
2138 | if other._sign == 1:
|
---|
2139 | multiplier = 0
|
---|
2140 | elif other > context.prec:
|
---|
2141 | multiplier = context.prec
|
---|
2142 | else:
|
---|
2143 | multiplier = int(other)
|
---|
2144 |
|
---|
2145 | exp = self._exp * multiplier
|
---|
2146 | if exp < 1-context.prec:
|
---|
2147 | exp = 1-context.prec
|
---|
2148 | context._raise_error(Rounded)
|
---|
2149 | else:
|
---|
2150 | context._raise_error(Inexact)
|
---|
2151 | context._raise_error(Rounded)
|
---|
2152 | exp = 1-context.prec
|
---|
2153 |
|
---|
2154 | return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
|
---|
2155 |
|
---|
2156 | # compute adjusted exponent of self
|
---|
2157 | self_adj = self.adjusted()
|
---|
2158 |
|
---|
2159 | # self ** infinity is infinity if self > 1, 0 if self < 1
|
---|
2160 | # self ** -infinity is infinity if self < 1, 0 if self > 1
|
---|
2161 | if other._isinfinity():
|
---|
2162 | if (other._sign == 0) == (self_adj < 0):
|
---|
2163 | return _dec_from_triple(result_sign, '0', 0)
|
---|
2164 | else:
|
---|
2165 | return _SignedInfinity[result_sign]
|
---|
2166 |
|
---|
2167 | # from here on, the result always goes through the call
|
---|
2168 | # to _fix at the end of this function.
|
---|
2169 | ans = None
|
---|
2170 |
|
---|
2171 | # crude test to catch cases of extreme overflow/underflow. If
|
---|
2172 | # log10(self)*other >= 10**bound and bound >= len(str(Emax))
|
---|
2173 | # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
|
---|
2174 | # self**other >= 10**(Emax+1), so overflow occurs. The test
|
---|
2175 | # for underflow is similar.
|
---|
2176 | bound = self._log10_exp_bound() + other.adjusted()
|
---|
2177 | if (self_adj >= 0) == (other._sign == 0):
|
---|
2178 | # self > 1 and other +ve, or self < 1 and other -ve
|
---|
2179 | # possibility of overflow
|
---|
2180 | if bound >= len(str(context.Emax)):
|
---|
2181 | ans = _dec_from_triple(result_sign, '1', context.Emax+1)
|
---|
2182 | else:
|
---|
2183 | # self > 1 and other -ve, or self < 1 and other +ve
|
---|
2184 | # possibility of underflow to 0
|
---|
2185 | Etiny = context.Etiny()
|
---|
2186 | if bound >= len(str(-Etiny)):
|
---|
2187 | ans = _dec_from_triple(result_sign, '1', Etiny-1)
|
---|
2188 |
|
---|
2189 | # try for an exact result with precision +1
|
---|
2190 | if ans is None:
|
---|
2191 | ans = self._power_exact(other, context.prec + 1)
|
---|
2192 | if ans is not None and result_sign == 1:
|
---|
2193 | ans = _dec_from_triple(1, ans._int, ans._exp)
|
---|
2194 |
|
---|
2195 | # usual case: inexact result, x**y computed directly as exp(y*log(x))
|
---|
2196 | if ans is None:
|
---|
2197 | p = context.prec
|
---|
2198 | x = _WorkRep(self)
|
---|
2199 | xc, xe = x.int, x.exp
|
---|
2200 | y = _WorkRep(other)
|
---|
2201 | yc, ye = y.int, y.exp
|
---|
2202 | if y.sign == 1:
|
---|
2203 | yc = -yc
|
---|
2204 |
|
---|
2205 | # compute correctly rounded result: start with precision +3,
|
---|
2206 | # then increase precision until result is unambiguously roundable
|
---|
2207 | extra = 3
|
---|
2208 | while True:
|
---|
2209 | coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
|
---|
2210 | if coeff % (5*10**(len(str(coeff))-p-1)):
|
---|
2211 | break
|
---|
2212 | extra += 3
|
---|
2213 |
|
---|
2214 | ans = _dec_from_triple(result_sign, str(coeff), exp)
|
---|
2215 |
|
---|
2216 | # the specification says that for non-integer other we need to
|
---|
2217 | # raise Inexact, even when the result is actually exact. In
|
---|
2218 | # the same way, we need to raise Underflow here if the result
|
---|
2219 | # is subnormal. (The call to _fix will take care of raising
|
---|
2220 | # Rounded and Subnormal, as usual.)
|
---|
2221 | if not other._isinteger():
|
---|
2222 | context._raise_error(Inexact)
|
---|
2223 | # pad with zeros up to length context.prec+1 if necessary
|
---|
2224 | if len(ans._int) <= context.prec:
|
---|
2225 | expdiff = context.prec+1 - len(ans._int)
|
---|
2226 | ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
|
---|
2227 | ans._exp-expdiff)
|
---|
2228 | if ans.adjusted() < context.Emin:
|
---|
2229 | context._raise_error(Underflow)
|
---|
2230 |
|
---|
2231 | # unlike exp, ln and log10, the power function respects the
|
---|
2232 | # rounding mode; no need to use ROUND_HALF_EVEN here
|
---|
2233 | ans = ans._fix(context)
|
---|
2234 | return ans
|
---|
2235 |
|
---|
2236 | def __rpow__(self, other, context=None):
|
---|
2237 | """Swaps self/other and returns __pow__."""
|
---|
2238 | other = _convert_other(other)
|
---|
2239 | if other is NotImplemented:
|
---|
2240 | return other
|
---|
2241 | return other.__pow__(self, context=context)
|
---|
2242 |
|
---|
2243 | def normalize(self, context=None):
|
---|
2244 | """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
|
---|
2245 |
|
---|
2246 | if context is None:
|
---|
2247 | context = getcontext()
|
---|
2248 |
|
---|
2249 | if self._is_special:
|
---|
2250 | ans = self._check_nans(context=context)
|
---|
2251 | if ans:
|
---|
2252 | return ans
|
---|
2253 |
|
---|
2254 | dup = self._fix(context)
|
---|
2255 | if dup._isinfinity():
|
---|
2256 | return dup
|
---|
2257 |
|
---|
2258 | if not dup:
|
---|
2259 | return _dec_from_triple(dup._sign, '0', 0)
|
---|
2260 | exp_max = [context.Emax, context.Etop()][context._clamp]
|
---|
2261 | end = len(dup._int)
|
---|
2262 | exp = dup._exp
|
---|
2263 | while dup._int[end-1] == '0' and exp < exp_max:
|
---|
2264 | exp += 1
|
---|
2265 | end -= 1
|
---|
2266 | return _dec_from_triple(dup._sign, dup._int[:end], exp)
|
---|
2267 |
|
---|
2268 | def quantize(self, exp, rounding=None, context=None, watchexp=True):
|
---|
2269 | """Quantize self so its exponent is the same as that of exp.
|
---|
2270 |
|
---|
2271 | Similar to self._rescale(exp._exp) but with error checking.
|
---|
2272 | """
|
---|
2273 | exp = _convert_other(exp, raiseit=True)
|
---|
2274 |
|
---|
2275 | if context is None:
|
---|
2276 | context = getcontext()
|
---|
2277 | if rounding is None:
|
---|
2278 | rounding = context.rounding
|
---|
2279 |
|
---|
2280 | if self._is_special or exp._is_special:
|
---|
2281 | ans = self._check_nans(exp, context)
|
---|
2282 | if ans:
|
---|
2283 | return ans
|
---|
2284 |
|
---|
2285 | if exp._isinfinity() or self._isinfinity():
|
---|
2286 | if exp._isinfinity() and self._isinfinity():
|
---|
2287 | return Decimal(self) # if both are inf, it is OK
|
---|
2288 | return context._raise_error(InvalidOperation,
|
---|
2289 | 'quantize with one INF')
|
---|
2290 |
|
---|
2291 | # if we're not watching exponents, do a simple rescale
|
---|
2292 | if not watchexp:
|
---|
2293 | ans = self._rescale(exp._exp, rounding)
|
---|
2294 | # raise Inexact and Rounded where appropriate
|
---|
2295 | if ans._exp > self._exp:
|
---|
2296 | context._raise_error(Rounded)
|
---|
2297 | if ans != self:
|
---|
2298 | context._raise_error(Inexact)
|
---|
2299 | return ans
|
---|
2300 |
|
---|
2301 | # exp._exp should be between Etiny and Emax
|
---|
2302 | if not (context.Etiny() <= exp._exp <= context.Emax):
|
---|
2303 | return context._raise_error(InvalidOperation,
|
---|
2304 | 'target exponent out of bounds in quantize')
|
---|
2305 |
|
---|
2306 | if not self:
|
---|
2307 | ans = _dec_from_triple(self._sign, '0', exp._exp)
|
---|
2308 | return ans._fix(context)
|
---|
2309 |
|
---|
2310 | self_adjusted = self.adjusted()
|
---|
2311 | if self_adjusted > context.Emax:
|
---|
2312 | return context._raise_error(InvalidOperation,
|
---|
2313 | 'exponent of quantize result too large for current context')
|
---|
2314 | if self_adjusted - exp._exp + 1 > context.prec:
|
---|
2315 | return context._raise_error(InvalidOperation,
|
---|
2316 | 'quantize result has too many digits for current context')
|
---|
2317 |
|
---|
2318 | ans = self._rescale(exp._exp, rounding)
|
---|
2319 | if ans.adjusted() > context.Emax:
|
---|
2320 | return context._raise_error(InvalidOperation,
|
---|
2321 | 'exponent of quantize result too large for current context')
|
---|
2322 | if len(ans._int) > context.prec:
|
---|
2323 | return context._raise_error(InvalidOperation,
|
---|
2324 | 'quantize result has too many digits for current context')
|
---|
2325 |
|
---|
2326 | # raise appropriate flags
|
---|
2327 | if ans._exp > self._exp:
|
---|
2328 | context._raise_error(Rounded)
|
---|
2329 | if ans != self:
|
---|
2330 | context._raise_error(Inexact)
|
---|
2331 | if ans and ans.adjusted() < context.Emin:
|
---|
2332 | context._raise_error(Subnormal)
|
---|
2333 |
|
---|
2334 | # call to fix takes care of any necessary folddown
|
---|
2335 | ans = ans._fix(context)
|
---|
2336 | return ans
|
---|
2337 |
|
---|
2338 | def same_quantum(self, other):
|
---|
2339 | """Return True if self and other have the same exponent; otherwise
|
---|
2340 | return False.
|
---|
2341 |
|
---|
2342 | If either operand is a special value, the following rules are used:
|
---|
2343 | * return True if both operands are infinities
|
---|
2344 | * return True if both operands are NaNs
|
---|
2345 | * otherwise, return False.
|
---|
2346 | """
|
---|
2347 | other = _convert_other(other, raiseit=True)
|
---|
2348 | if self._is_special or other._is_special:
|
---|
2349 | return (self.is_nan() and other.is_nan() or
|
---|
2350 | self.is_infinite() and other.is_infinite())
|
---|
2351 | return self._exp == other._exp
|
---|
2352 |
|
---|
2353 | def _rescale(self, exp, rounding):
|
---|
2354 | """Rescale self so that the exponent is exp, either by padding with zeros
|
---|
2355 | or by truncating digits, using the given rounding mode.
|
---|
2356 |
|
---|
2357 | Specials are returned without change. This operation is
|
---|
2358 | quiet: it raises no flags, and uses no information from the
|
---|
2359 | context.
|
---|
2360 |
|
---|
2361 | exp = exp to scale to (an integer)
|
---|
2362 | rounding = rounding mode
|
---|
2363 | """
|
---|
2364 | if self._is_special:
|
---|
2365 | return Decimal(self)
|
---|
2366 | if not self:
|
---|
2367 | return _dec_from_triple(self._sign, '0', exp)
|
---|
2368 |
|
---|
2369 | if self._exp >= exp:
|
---|
2370 | # pad answer with zeros if necessary
|
---|
2371 | return _dec_from_triple(self._sign,
|
---|
2372 | self._int + '0'*(self._exp - exp), exp)
|
---|
2373 |
|
---|
2374 | # too many digits; round and lose data. If self.adjusted() <
|
---|
2375 | # exp-1, replace self by 10**(exp-1) before rounding
|
---|
2376 | digits = len(self._int) + self._exp - exp
|
---|
2377 | if digits < 0:
|
---|
2378 | self = _dec_from_triple(self._sign, '1', exp-1)
|
---|
2379 | digits = 0
|
---|
2380 | this_function = getattr(self, self._pick_rounding_function[rounding])
|
---|
2381 | changed = this_function(digits)
|
---|
2382 | coeff = self._int[:digits] or '0'
|
---|
2383 | if changed == 1:
|
---|
2384 | coeff = str(int(coeff)+1)
|
---|
2385 | return _dec_from_triple(self._sign, coeff, exp)
|
---|
2386 |
|
---|
2387 | def _round(self, places, rounding):
|
---|
2388 | """Round a nonzero, nonspecial Decimal to a fixed number of
|
---|
2389 | significant figures, using the given rounding mode.
|
---|
2390 |
|
---|
2391 | Infinities, NaNs and zeros are returned unaltered.
|
---|
2392 |
|
---|
2393 | This operation is quiet: it raises no flags, and uses no
|
---|
2394 | information from the context.
|
---|
2395 |
|
---|
2396 | """
|
---|
2397 | if places <= 0:
|
---|
2398 | raise ValueError("argument should be at least 1 in _round")
|
---|
2399 | if self._is_special or not self:
|
---|
2400 | return Decimal(self)
|
---|
2401 | ans = self._rescale(self.adjusted()+1-places, rounding)
|
---|
2402 | # it can happen that the rescale alters the adjusted exponent;
|
---|
2403 | # for example when rounding 99.97 to 3 significant figures.
|
---|
2404 | # When this happens we end up with an extra 0 at the end of
|
---|
2405 | # the number; a second rescale fixes this.
|
---|
2406 | if ans.adjusted() != self.adjusted():
|
---|
2407 | ans = ans._rescale(ans.adjusted()+1-places, rounding)
|
---|
2408 | return ans
|
---|
2409 |
|
---|
2410 | def to_integral_exact(self, rounding=None, context=None):
|
---|
2411 | """Rounds to a nearby integer.
|
---|
2412 |
|
---|
2413 | If no rounding mode is specified, take the rounding mode from
|
---|
2414 | the context. This method raises the Rounded and Inexact flags
|
---|
2415 | when appropriate.
|
---|
2416 |
|
---|
2417 | See also: to_integral_value, which does exactly the same as
|
---|
2418 | this method except that it doesn't raise Inexact or Rounded.
|
---|
2419 | """
|
---|
2420 | if self._is_special:
|
---|
2421 | ans = self._check_nans(context=context)
|
---|
2422 | if ans:
|
---|
2423 | return ans
|
---|
2424 | return Decimal(self)
|
---|
2425 | if self._exp >= 0:
|
---|
2426 | return Decimal(self)
|
---|
2427 | if not self:
|
---|
2428 | return _dec_from_triple(self._sign, '0', 0)
|
---|
2429 | if context is None:
|
---|
2430 | context = getcontext()
|
---|
2431 | if rounding is None:
|
---|
2432 | rounding = context.rounding
|
---|
2433 | context._raise_error(Rounded)
|
---|
2434 | ans = self._rescale(0, rounding)
|
---|
2435 | if ans != self:
|
---|
2436 | context._raise_error(Inexact)
|
---|
2437 | return ans
|
---|
2438 |
|
---|
2439 | def to_integral_value(self, rounding=None, context=None):
|
---|
2440 | """Rounds to the nearest integer, without raising inexact, rounded."""
|
---|
2441 | if context is None:
|
---|
2442 | context = getcontext()
|
---|
2443 | if rounding is None:
|
---|
2444 | rounding = context.rounding
|
---|
2445 | if self._is_special:
|
---|
2446 | ans = self._check_nans(context=context)
|
---|
2447 | if ans:
|
---|
2448 | return ans
|
---|
2449 | return Decimal(self)
|
---|
2450 | if self._exp >= 0:
|
---|
2451 | return Decimal(self)
|
---|
2452 | else:
|
---|
2453 | return self._rescale(0, rounding)
|
---|
2454 |
|
---|
2455 | # the method name changed, but we provide also the old one, for compatibility
|
---|
2456 | to_integral = to_integral_value
|
---|
2457 |
|
---|
2458 | def sqrt(self, context=None):
|
---|
2459 | """Return the square root of self."""
|
---|
2460 | if context is None:
|
---|
2461 | context = getcontext()
|
---|
2462 |
|
---|
2463 | if self._is_special:
|
---|
2464 | ans = self._check_nans(context=context)
|
---|
2465 | if ans:
|
---|
2466 | return ans
|
---|
2467 |
|
---|
2468 | if self._isinfinity() and self._sign == 0:
|
---|
2469 | return Decimal(self)
|
---|
2470 |
|
---|
2471 | if not self:
|
---|
2472 | # exponent = self._exp // 2. sqrt(-0) = -0
|
---|
2473 | ans = _dec_from_triple(self._sign, '0', self._exp // 2)
|
---|
2474 | return ans._fix(context)
|
---|
2475 |
|
---|
2476 | if self._sign == 1:
|
---|
2477 | return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
|
---|
2478 |
|
---|
2479 | # At this point self represents a positive number. Let p be
|
---|
2480 | # the desired precision and express self in the form c*100**e
|
---|
2481 | # with c a positive real number and e an integer, c and e
|
---|
2482 | # being chosen so that 100**(p-1) <= c < 100**p. Then the
|
---|
2483 | # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
|
---|
2484 | # <= sqrt(c) < 10**p, so the closest representable Decimal at
|
---|
2485 | # precision p is n*10**e where n = round_half_even(sqrt(c)),
|
---|
2486 | # the closest integer to sqrt(c) with the even integer chosen
|
---|
2487 | # in the case of a tie.
|
---|
2488 | #
|
---|
2489 | # To ensure correct rounding in all cases, we use the
|
---|
2490 | # following trick: we compute the square root to an extra
|
---|
2491 | # place (precision p+1 instead of precision p), rounding down.
|
---|
2492 | # Then, if the result is inexact and its last digit is 0 or 5,
|
---|
2493 | # we increase the last digit to 1 or 6 respectively; if it's
|
---|
2494 | # exact we leave the last digit alone. Now the final round to
|
---|
2495 | # p places (or fewer in the case of underflow) will round
|
---|
2496 | # correctly and raise the appropriate flags.
|
---|
2497 |
|
---|
2498 | # use an extra digit of precision
|
---|
2499 | prec = context.prec+1
|
---|
2500 |
|
---|
2501 | # write argument in the form c*100**e where e = self._exp//2
|
---|
2502 | # is the 'ideal' exponent, to be used if the square root is
|
---|
2503 | # exactly representable. l is the number of 'digits' of c in
|
---|
2504 | # base 100, so that 100**(l-1) <= c < 100**l.
|
---|
2505 | op = _WorkRep(self)
|
---|
2506 | e = op.exp >> 1
|
---|
2507 | if op.exp & 1:
|
---|
2508 | c = op.int * 10
|
---|
2509 | l = (len(self._int) >> 1) + 1
|
---|
2510 | else:
|
---|
2511 | c = op.int
|
---|
2512 | l = len(self._int)+1 >> 1
|
---|
2513 |
|
---|
2514 | # rescale so that c has exactly prec base 100 'digits'
|
---|
2515 | shift = prec-l
|
---|
2516 | if shift >= 0:
|
---|
2517 | c *= 100**shift
|
---|
2518 | exact = True
|
---|
2519 | else:
|
---|
2520 | c, remainder = divmod(c, 100**-shift)
|
---|
2521 | exact = not remainder
|
---|
2522 | e -= shift
|
---|
2523 |
|
---|
2524 | # find n = floor(sqrt(c)) using Newton's method
|
---|
2525 | n = 10**prec
|
---|
2526 | while True:
|
---|
2527 | q = c//n
|
---|
2528 | if n <= q:
|
---|
2529 | break
|
---|
2530 | else:
|
---|
2531 | n = n + q >> 1
|
---|
2532 | exact = exact and n*n == c
|
---|
2533 |
|
---|
2534 | if exact:
|
---|
2535 | # result is exact; rescale to use ideal exponent e
|
---|
2536 | if shift >= 0:
|
---|
2537 | # assert n % 10**shift == 0
|
---|
2538 | n //= 10**shift
|
---|
2539 | else:
|
---|
2540 | n *= 10**-shift
|
---|
2541 | e += shift
|
---|
2542 | else:
|
---|
2543 | # result is not exact; fix last digit as described above
|
---|
2544 | if n % 5 == 0:
|
---|
2545 | n += 1
|
---|
2546 |
|
---|
2547 | ans = _dec_from_triple(0, str(n), e)
|
---|
2548 |
|
---|
2549 | # round, and fit to current context
|
---|
2550 | context = context._shallow_copy()
|
---|
2551 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
2552 | ans = ans._fix(context)
|
---|
2553 | context.rounding = rounding
|
---|
2554 |
|
---|
2555 | return ans
|
---|
2556 |
|
---|
2557 | def max(self, other, context=None):
|
---|
2558 | """Returns the larger value.
|
---|
2559 |
|
---|
2560 | Like max(self, other) except if one is not a number, returns
|
---|
2561 | NaN (and signals if one is sNaN). Also rounds.
|
---|
2562 | """
|
---|
2563 | other = _convert_other(other, raiseit=True)
|
---|
2564 |
|
---|
2565 | if context is None:
|
---|
2566 | context = getcontext()
|
---|
2567 |
|
---|
2568 | if self._is_special or other._is_special:
|
---|
2569 | # If one operand is a quiet NaN and the other is number, then the
|
---|
2570 | # number is always returned
|
---|
2571 | sn = self._isnan()
|
---|
2572 | on = other._isnan()
|
---|
2573 | if sn or on:
|
---|
2574 | if on == 1 and sn == 0:
|
---|
2575 | return self._fix(context)
|
---|
2576 | if sn == 1 and on == 0:
|
---|
2577 | return other._fix(context)
|
---|
2578 | return self._check_nans(other, context)
|
---|
2579 |
|
---|
2580 | c = self._cmp(other)
|
---|
2581 | if c == 0:
|
---|
2582 | # If both operands are finite and equal in numerical value
|
---|
2583 | # then an ordering is applied:
|
---|
2584 | #
|
---|
2585 | # If the signs differ then max returns the operand with the
|
---|
2586 | # positive sign and min returns the operand with the negative sign
|
---|
2587 | #
|
---|
2588 | # If the signs are the same then the exponent is used to select
|
---|
2589 | # the result. This is exactly the ordering used in compare_total.
|
---|
2590 | c = self.compare_total(other)
|
---|
2591 |
|
---|
2592 | if c == -1:
|
---|
2593 | ans = other
|
---|
2594 | else:
|
---|
2595 | ans = self
|
---|
2596 |
|
---|
2597 | return ans._fix(context)
|
---|
2598 |
|
---|
2599 | def min(self, other, context=None):
|
---|
2600 | """Returns the smaller value.
|
---|
2601 |
|
---|
2602 | Like min(self, other) except if one is not a number, returns
|
---|
2603 | NaN (and signals if one is sNaN). Also rounds.
|
---|
2604 | """
|
---|
2605 | other = _convert_other(other, raiseit=True)
|
---|
2606 |
|
---|
2607 | if context is None:
|
---|
2608 | context = getcontext()
|
---|
2609 |
|
---|
2610 | if self._is_special or other._is_special:
|
---|
2611 | # If one operand is a quiet NaN and the other is number, then the
|
---|
2612 | # number is always returned
|
---|
2613 | sn = self._isnan()
|
---|
2614 | on = other._isnan()
|
---|
2615 | if sn or on:
|
---|
2616 | if on == 1 and sn == 0:
|
---|
2617 | return self._fix(context)
|
---|
2618 | if sn == 1 and on == 0:
|
---|
2619 | return other._fix(context)
|
---|
2620 | return self._check_nans(other, context)
|
---|
2621 |
|
---|
2622 | c = self._cmp(other)
|
---|
2623 | if c == 0:
|
---|
2624 | c = self.compare_total(other)
|
---|
2625 |
|
---|
2626 | if c == -1:
|
---|
2627 | ans = self
|
---|
2628 | else:
|
---|
2629 | ans = other
|
---|
2630 |
|
---|
2631 | return ans._fix(context)
|
---|
2632 |
|
---|
2633 | def _isinteger(self):
|
---|
2634 | """Returns whether self is an integer"""
|
---|
2635 | if self._is_special:
|
---|
2636 | return False
|
---|
2637 | if self._exp >= 0:
|
---|
2638 | return True
|
---|
2639 | rest = self._int[self._exp:]
|
---|
2640 | return rest == '0'*len(rest)
|
---|
2641 |
|
---|
2642 | def _iseven(self):
|
---|
2643 | """Returns True if self is even. Assumes self is an integer."""
|
---|
2644 | if not self or self._exp > 0:
|
---|
2645 | return True
|
---|
2646 | return self._int[-1+self._exp] in '02468'
|
---|
2647 |
|
---|
2648 | def adjusted(self):
|
---|
2649 | """Return the adjusted exponent of self"""
|
---|
2650 | try:
|
---|
2651 | return self._exp + len(self._int) - 1
|
---|
2652 | # If NaN or Infinity, self._exp is string
|
---|
2653 | except TypeError:
|
---|
2654 | return 0
|
---|
2655 |
|
---|
2656 | def canonical(self, context=None):
|
---|
2657 | """Returns the same Decimal object.
|
---|
2658 |
|
---|
2659 | As we do not have different encodings for the same number, the
|
---|
2660 | received object already is in its canonical form.
|
---|
2661 | """
|
---|
2662 | return self
|
---|
2663 |
|
---|
2664 | def compare_signal(self, other, context=None):
|
---|
2665 | """Compares self to the other operand numerically.
|
---|
2666 |
|
---|
2667 | It's pretty much like compare(), but all NaNs signal, with signaling
|
---|
2668 | NaNs taking precedence over quiet NaNs.
|
---|
2669 | """
|
---|
2670 | other = _convert_other(other, raiseit = True)
|
---|
2671 | ans = self._compare_check_nans(other, context)
|
---|
2672 | if ans:
|
---|
2673 | return ans
|
---|
2674 | return self.compare(other, context=context)
|
---|
2675 |
|
---|
2676 | def compare_total(self, other):
|
---|
2677 | """Compares self to other using the abstract representations.
|
---|
2678 |
|
---|
2679 | This is not like the standard compare, which use their numerical
|
---|
2680 | value. Note that a total ordering is defined for all possible abstract
|
---|
2681 | representations.
|
---|
2682 | """
|
---|
2683 | other = _convert_other(other, raiseit=True)
|
---|
2684 |
|
---|
2685 | # if one is negative and the other is positive, it's easy
|
---|
2686 | if self._sign and not other._sign:
|
---|
2687 | return _NegativeOne
|
---|
2688 | if not self._sign and other._sign:
|
---|
2689 | return _One
|
---|
2690 | sign = self._sign
|
---|
2691 |
|
---|
2692 | # let's handle both NaN types
|
---|
2693 | self_nan = self._isnan()
|
---|
2694 | other_nan = other._isnan()
|
---|
2695 | if self_nan or other_nan:
|
---|
2696 | if self_nan == other_nan:
|
---|
2697 | # compare payloads as though they're integers
|
---|
2698 | self_key = len(self._int), self._int
|
---|
2699 | other_key = len(other._int), other._int
|
---|
2700 | if self_key < other_key:
|
---|
2701 | if sign:
|
---|
2702 | return _One
|
---|
2703 | else:
|
---|
2704 | return _NegativeOne
|
---|
2705 | if self_key > other_key:
|
---|
2706 | if sign:
|
---|
2707 | return _NegativeOne
|
---|
2708 | else:
|
---|
2709 | return _One
|
---|
2710 | return _Zero
|
---|
2711 |
|
---|
2712 | if sign:
|
---|
2713 | if self_nan == 1:
|
---|
2714 | return _NegativeOne
|
---|
2715 | if other_nan == 1:
|
---|
2716 | return _One
|
---|
2717 | if self_nan == 2:
|
---|
2718 | return _NegativeOne
|
---|
2719 | if other_nan == 2:
|
---|
2720 | return _One
|
---|
2721 | else:
|
---|
2722 | if self_nan == 1:
|
---|
2723 | return _One
|
---|
2724 | if other_nan == 1:
|
---|
2725 | return _NegativeOne
|
---|
2726 | if self_nan == 2:
|
---|
2727 | return _One
|
---|
2728 | if other_nan == 2:
|
---|
2729 | return _NegativeOne
|
---|
2730 |
|
---|
2731 | if self < other:
|
---|
2732 | return _NegativeOne
|
---|
2733 | if self > other:
|
---|
2734 | return _One
|
---|
2735 |
|
---|
2736 | if self._exp < other._exp:
|
---|
2737 | if sign:
|
---|
2738 | return _One
|
---|
2739 | else:
|
---|
2740 | return _NegativeOne
|
---|
2741 | if self._exp > other._exp:
|
---|
2742 | if sign:
|
---|
2743 | return _NegativeOne
|
---|
2744 | else:
|
---|
2745 | return _One
|
---|
2746 | return _Zero
|
---|
2747 |
|
---|
2748 |
|
---|
2749 | def compare_total_mag(self, other):
|
---|
2750 | """Compares self to other using abstract repr., ignoring sign.
|
---|
2751 |
|
---|
2752 | Like compare_total, but with operand's sign ignored and assumed to be 0.
|
---|
2753 | """
|
---|
2754 | other = _convert_other(other, raiseit=True)
|
---|
2755 |
|
---|
2756 | s = self.copy_abs()
|
---|
2757 | o = other.copy_abs()
|
---|
2758 | return s.compare_total(o)
|
---|
2759 |
|
---|
2760 | def copy_abs(self):
|
---|
2761 | """Returns a copy with the sign set to 0. """
|
---|
2762 | return _dec_from_triple(0, self._int, self._exp, self._is_special)
|
---|
2763 |
|
---|
2764 | def copy_negate(self):
|
---|
2765 | """Returns a copy with the sign inverted."""
|
---|
2766 | if self._sign:
|
---|
2767 | return _dec_from_triple(0, self._int, self._exp, self._is_special)
|
---|
2768 | else:
|
---|
2769 | return _dec_from_triple(1, self._int, self._exp, self._is_special)
|
---|
2770 |
|
---|
2771 | def copy_sign(self, other):
|
---|
2772 | """Returns self with the sign of other."""
|
---|
2773 | return _dec_from_triple(other._sign, self._int,
|
---|
2774 | self._exp, self._is_special)
|
---|
2775 |
|
---|
2776 | def exp(self, context=None):
|
---|
2777 | """Returns e ** self."""
|
---|
2778 |
|
---|
2779 | if context is None:
|
---|
2780 | context = getcontext()
|
---|
2781 |
|
---|
2782 | # exp(NaN) = NaN
|
---|
2783 | ans = self._check_nans(context=context)
|
---|
2784 | if ans:
|
---|
2785 | return ans
|
---|
2786 |
|
---|
2787 | # exp(-Infinity) = 0
|
---|
2788 | if self._isinfinity() == -1:
|
---|
2789 | return _Zero
|
---|
2790 |
|
---|
2791 | # exp(0) = 1
|
---|
2792 | if not self:
|
---|
2793 | return _One
|
---|
2794 |
|
---|
2795 | # exp(Infinity) = Infinity
|
---|
2796 | if self._isinfinity() == 1:
|
---|
2797 | return Decimal(self)
|
---|
2798 |
|
---|
2799 | # the result is now guaranteed to be inexact (the true
|
---|
2800 | # mathematical result is transcendental). There's no need to
|
---|
2801 | # raise Rounded and Inexact here---they'll always be raised as
|
---|
2802 | # a result of the call to _fix.
|
---|
2803 | p = context.prec
|
---|
2804 | adj = self.adjusted()
|
---|
2805 |
|
---|
2806 | # we only need to do any computation for quite a small range
|
---|
2807 | # of adjusted exponents---for example, -29 <= adj <= 10 for
|
---|
2808 | # the default context. For smaller exponent the result is
|
---|
2809 | # indistinguishable from 1 at the given precision, while for
|
---|
2810 | # larger exponent the result either overflows or underflows.
|
---|
2811 | if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
|
---|
2812 | # overflow
|
---|
2813 | ans = _dec_from_triple(0, '1', context.Emax+1)
|
---|
2814 | elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
|
---|
2815 | # underflow to 0
|
---|
2816 | ans = _dec_from_triple(0, '1', context.Etiny()-1)
|
---|
2817 | elif self._sign == 0 and adj < -p:
|
---|
2818 | # p+1 digits; final round will raise correct flags
|
---|
2819 | ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
|
---|
2820 | elif self._sign == 1 and adj < -p-1:
|
---|
2821 | # p+1 digits; final round will raise correct flags
|
---|
2822 | ans = _dec_from_triple(0, '9'*(p+1), -p-1)
|
---|
2823 | # general case
|
---|
2824 | else:
|
---|
2825 | op = _WorkRep(self)
|
---|
2826 | c, e = op.int, op.exp
|
---|
2827 | if op.sign == 1:
|
---|
2828 | c = -c
|
---|
2829 |
|
---|
2830 | # compute correctly rounded result: increase precision by
|
---|
2831 | # 3 digits at a time until we get an unambiguously
|
---|
2832 | # roundable result
|
---|
2833 | extra = 3
|
---|
2834 | while True:
|
---|
2835 | coeff, exp = _dexp(c, e, p+extra)
|
---|
2836 | if coeff % (5*10**(len(str(coeff))-p-1)):
|
---|
2837 | break
|
---|
2838 | extra += 3
|
---|
2839 |
|
---|
2840 | ans = _dec_from_triple(0, str(coeff), exp)
|
---|
2841 |
|
---|
2842 | # at this stage, ans should round correctly with *any*
|
---|
2843 | # rounding mode, not just with ROUND_HALF_EVEN
|
---|
2844 | context = context._shallow_copy()
|
---|
2845 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
2846 | ans = ans._fix(context)
|
---|
2847 | context.rounding = rounding
|
---|
2848 |
|
---|
2849 | return ans
|
---|
2850 |
|
---|
2851 | def is_canonical(self):
|
---|
2852 | """Return True if self is canonical; otherwise return False.
|
---|
2853 |
|
---|
2854 | Currently, the encoding of a Decimal instance is always
|
---|
2855 | canonical, so this method returns True for any Decimal.
|
---|
2856 | """
|
---|
2857 | return True
|
---|
2858 |
|
---|
2859 | def is_finite(self):
|
---|
2860 | """Return True if self is finite; otherwise return False.
|
---|
2861 |
|
---|
2862 | A Decimal instance is considered finite if it is neither
|
---|
2863 | infinite nor a NaN.
|
---|
2864 | """
|
---|
2865 | return not self._is_special
|
---|
2866 |
|
---|
2867 | def is_infinite(self):
|
---|
2868 | """Return True if self is infinite; otherwise return False."""
|
---|
2869 | return self._exp == 'F'
|
---|
2870 |
|
---|
2871 | def is_nan(self):
|
---|
2872 | """Return True if self is a qNaN or sNaN; otherwise return False."""
|
---|
2873 | return self._exp in ('n', 'N')
|
---|
2874 |
|
---|
2875 | def is_normal(self, context=None):
|
---|
2876 | """Return True if self is a normal number; otherwise return False."""
|
---|
2877 | if self._is_special or not self:
|
---|
2878 | return False
|
---|
2879 | if context is None:
|
---|
2880 | context = getcontext()
|
---|
2881 | return context.Emin <= self.adjusted()
|
---|
2882 |
|
---|
2883 | def is_qnan(self):
|
---|
2884 | """Return True if self is a quiet NaN; otherwise return False."""
|
---|
2885 | return self._exp == 'n'
|
---|
2886 |
|
---|
2887 | def is_signed(self):
|
---|
2888 | """Return True if self is negative; otherwise return False."""
|
---|
2889 | return self._sign == 1
|
---|
2890 |
|
---|
2891 | def is_snan(self):
|
---|
2892 | """Return True if self is a signaling NaN; otherwise return False."""
|
---|
2893 | return self._exp == 'N'
|
---|
2894 |
|
---|
2895 | def is_subnormal(self, context=None):
|
---|
2896 | """Return True if self is subnormal; otherwise return False."""
|
---|
2897 | if self._is_special or not self:
|
---|
2898 | return False
|
---|
2899 | if context is None:
|
---|
2900 | context = getcontext()
|
---|
2901 | return self.adjusted() < context.Emin
|
---|
2902 |
|
---|
2903 | def is_zero(self):
|
---|
2904 | """Return True if self is a zero; otherwise return False."""
|
---|
2905 | return not self._is_special and self._int == '0'
|
---|
2906 |
|
---|
2907 | def _ln_exp_bound(self):
|
---|
2908 | """Compute a lower bound for the adjusted exponent of self.ln().
|
---|
2909 | In other words, compute r such that self.ln() >= 10**r. Assumes
|
---|
2910 | that self is finite and positive and that self != 1.
|
---|
2911 | """
|
---|
2912 |
|
---|
2913 | # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
|
---|
2914 | adj = self._exp + len(self._int) - 1
|
---|
2915 | if adj >= 1:
|
---|
2916 | # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
|
---|
2917 | return len(str(adj*23//10)) - 1
|
---|
2918 | if adj <= -2:
|
---|
2919 | # argument <= 0.1
|
---|
2920 | return len(str((-1-adj)*23//10)) - 1
|
---|
2921 | op = _WorkRep(self)
|
---|
2922 | c, e = op.int, op.exp
|
---|
2923 | if adj == 0:
|
---|
2924 | # 1 < self < 10
|
---|
2925 | num = str(c-10**-e)
|
---|
2926 | den = str(c)
|
---|
2927 | return len(num) - len(den) - (num < den)
|
---|
2928 | # adj == -1, 0.1 <= self < 1
|
---|
2929 | return e + len(str(10**-e - c)) - 1
|
---|
2930 |
|
---|
2931 |
|
---|
2932 | def ln(self, context=None):
|
---|
2933 | """Returns the natural (base e) logarithm of self."""
|
---|
2934 |
|
---|
2935 | if context is None:
|
---|
2936 | context = getcontext()
|
---|
2937 |
|
---|
2938 | # ln(NaN) = NaN
|
---|
2939 | ans = self._check_nans(context=context)
|
---|
2940 | if ans:
|
---|
2941 | return ans
|
---|
2942 |
|
---|
2943 | # ln(0.0) == -Infinity
|
---|
2944 | if not self:
|
---|
2945 | return _NegativeInfinity
|
---|
2946 |
|
---|
2947 | # ln(Infinity) = Infinity
|
---|
2948 | if self._isinfinity() == 1:
|
---|
2949 | return _Infinity
|
---|
2950 |
|
---|
2951 | # ln(1.0) == 0.0
|
---|
2952 | if self == _One:
|
---|
2953 | return _Zero
|
---|
2954 |
|
---|
2955 | # ln(negative) raises InvalidOperation
|
---|
2956 | if self._sign == 1:
|
---|
2957 | return context._raise_error(InvalidOperation,
|
---|
2958 | 'ln of a negative value')
|
---|
2959 |
|
---|
2960 | # result is irrational, so necessarily inexact
|
---|
2961 | op = _WorkRep(self)
|
---|
2962 | c, e = op.int, op.exp
|
---|
2963 | p = context.prec
|
---|
2964 |
|
---|
2965 | # correctly rounded result: repeatedly increase precision by 3
|
---|
2966 | # until we get an unambiguously roundable result
|
---|
2967 | places = p - self._ln_exp_bound() + 2 # at least p+3 places
|
---|
2968 | while True:
|
---|
2969 | coeff = _dlog(c, e, places)
|
---|
2970 | # assert len(str(abs(coeff)))-p >= 1
|
---|
2971 | if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
|
---|
2972 | break
|
---|
2973 | places += 3
|
---|
2974 | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
|
---|
2975 |
|
---|
2976 | context = context._shallow_copy()
|
---|
2977 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
2978 | ans = ans._fix(context)
|
---|
2979 | context.rounding = rounding
|
---|
2980 | return ans
|
---|
2981 |
|
---|
2982 | def _log10_exp_bound(self):
|
---|
2983 | """Compute a lower bound for the adjusted exponent of self.log10().
|
---|
2984 | In other words, find r such that self.log10() >= 10**r.
|
---|
2985 | Assumes that self is finite and positive and that self != 1.
|
---|
2986 | """
|
---|
2987 |
|
---|
2988 | # For x >= 10 or x < 0.1 we only need a bound on the integer
|
---|
2989 | # part of log10(self), and this comes directly from the
|
---|
2990 | # exponent of x. For 0.1 <= x <= 10 we use the inequalities
|
---|
2991 | # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
|
---|
2992 | # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
|
---|
2993 |
|
---|
2994 | adj = self._exp + len(self._int) - 1
|
---|
2995 | if adj >= 1:
|
---|
2996 | # self >= 10
|
---|
2997 | return len(str(adj))-1
|
---|
2998 | if adj <= -2:
|
---|
2999 | # self < 0.1
|
---|
3000 | return len(str(-1-adj))-1
|
---|
3001 | op = _WorkRep(self)
|
---|
3002 | c, e = op.int, op.exp
|
---|
3003 | if adj == 0:
|
---|
3004 | # 1 < self < 10
|
---|
3005 | num = str(c-10**-e)
|
---|
3006 | den = str(231*c)
|
---|
3007 | return len(num) - len(den) - (num < den) + 2
|
---|
3008 | # adj == -1, 0.1 <= self < 1
|
---|
3009 | num = str(10**-e-c)
|
---|
3010 | return len(num) + e - (num < "231") - 1
|
---|
3011 |
|
---|
3012 | def log10(self, context=None):
|
---|
3013 | """Returns the base 10 logarithm of self."""
|
---|
3014 |
|
---|
3015 | if context is None:
|
---|
3016 | context = getcontext()
|
---|
3017 |
|
---|
3018 | # log10(NaN) = NaN
|
---|
3019 | ans = self._check_nans(context=context)
|
---|
3020 | if ans:
|
---|
3021 | return ans
|
---|
3022 |
|
---|
3023 | # log10(0.0) == -Infinity
|
---|
3024 | if not self:
|
---|
3025 | return _NegativeInfinity
|
---|
3026 |
|
---|
3027 | # log10(Infinity) = Infinity
|
---|
3028 | if self._isinfinity() == 1:
|
---|
3029 | return _Infinity
|
---|
3030 |
|
---|
3031 | # log10(negative or -Infinity) raises InvalidOperation
|
---|
3032 | if self._sign == 1:
|
---|
3033 | return context._raise_error(InvalidOperation,
|
---|
3034 | 'log10 of a negative value')
|
---|
3035 |
|
---|
3036 | # log10(10**n) = n
|
---|
3037 | if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
|
---|
3038 | # answer may need rounding
|
---|
3039 | ans = Decimal(self._exp + len(self._int) - 1)
|
---|
3040 | else:
|
---|
3041 | # result is irrational, so necessarily inexact
|
---|
3042 | op = _WorkRep(self)
|
---|
3043 | c, e = op.int, op.exp
|
---|
3044 | p = context.prec
|
---|
3045 |
|
---|
3046 | # correctly rounded result: repeatedly increase precision
|
---|
3047 | # until result is unambiguously roundable
|
---|
3048 | places = p-self._log10_exp_bound()+2
|
---|
3049 | while True:
|
---|
3050 | coeff = _dlog10(c, e, places)
|
---|
3051 | # assert len(str(abs(coeff)))-p >= 1
|
---|
3052 | if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
|
---|
3053 | break
|
---|
3054 | places += 3
|
---|
3055 | ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
|
---|
3056 |
|
---|
3057 | context = context._shallow_copy()
|
---|
3058 | rounding = context._set_rounding(ROUND_HALF_EVEN)
|
---|
3059 | ans = ans._fix(context)
|
---|
3060 | context.rounding = rounding
|
---|
3061 | return ans
|
---|
3062 |
|
---|
3063 | def logb(self, context=None):
|
---|
3064 | """ Returns the exponent of the magnitude of self's MSD.
|
---|
3065 |
|
---|
3066 | The result is the integer which is the exponent of the magnitude
|
---|
3067 | of the most significant digit of self (as though it were truncated
|
---|
3068 | to a single digit while maintaining the value of that digit and
|
---|
3069 | without limiting the resulting exponent).
|
---|
3070 | """
|
---|
3071 | # logb(NaN) = NaN
|
---|
3072 | ans = self._check_nans(context=context)
|
---|
3073 | if ans:
|
---|
3074 | return ans
|
---|
3075 |
|
---|
3076 | if context is None:
|
---|
3077 | context = getcontext()
|
---|
3078 |
|
---|
3079 | # logb(+/-Inf) = +Inf
|
---|
3080 | if self._isinfinity():
|
---|
3081 | return _Infinity
|
---|
3082 |
|
---|
3083 | # logb(0) = -Inf, DivisionByZero
|
---|
3084 | if not self:
|
---|
3085 | return context._raise_error(DivisionByZero, 'logb(0)', 1)
|
---|
3086 |
|
---|
3087 | # otherwise, simply return the adjusted exponent of self, as a
|
---|
3088 | # Decimal. Note that no attempt is made to fit the result
|
---|
3089 | # into the current context.
|
---|
3090 | ans = Decimal(self.adjusted())
|
---|
3091 | return ans._fix(context)
|
---|
3092 |
|
---|
3093 | def _islogical(self):
|
---|
3094 | """Return True if self is a logical operand.
|
---|
3095 |
|
---|
3096 | For being logical, it must be a finite number with a sign of 0,
|
---|
3097 | an exponent of 0, and a coefficient whose digits must all be
|
---|
3098 | either 0 or 1.
|
---|
3099 | """
|
---|
3100 | if self._sign != 0 or self._exp != 0:
|
---|
3101 | return False
|
---|
3102 | for dig in self._int:
|
---|
3103 | if dig not in '01':
|
---|
3104 | return False
|
---|
3105 | return True
|
---|
3106 |
|
---|
3107 | def _fill_logical(self, context, opa, opb):
|
---|
3108 | dif = context.prec - len(opa)
|
---|
3109 | if dif > 0:
|
---|
3110 | opa = '0'*dif + opa
|
---|
3111 | elif dif < 0:
|
---|
3112 | opa = opa[-context.prec:]
|
---|
3113 | dif = context.prec - len(opb)
|
---|
3114 | if dif > 0:
|
---|
3115 | opb = '0'*dif + opb
|
---|
3116 | elif dif < 0:
|
---|
3117 | opb = opb[-context.prec:]
|
---|
3118 | return opa, opb
|
---|
3119 |
|
---|
3120 | def logical_and(self, other, context=None):
|
---|
3121 | """Applies an 'and' operation between self and other's digits."""
|
---|
3122 | if context is None:
|
---|
3123 | context = getcontext()
|
---|
3124 |
|
---|
3125 | other = _convert_other(other, raiseit=True)
|
---|
3126 |
|
---|
3127 | if not self._islogical() or not other._islogical():
|
---|
3128 | return context._raise_error(InvalidOperation)
|
---|
3129 |
|
---|
3130 | # fill to context.prec
|
---|
3131 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
---|
3132 |
|
---|
3133 | # make the operation, and clean starting zeroes
|
---|
3134 | result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
|
---|
3135 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
---|
3136 |
|
---|
3137 | def logical_invert(self, context=None):
|
---|
3138 | """Invert all its digits."""
|
---|
3139 | if context is None:
|
---|
3140 | context = getcontext()
|
---|
3141 | return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
|
---|
3142 | context)
|
---|
3143 |
|
---|
3144 | def logical_or(self, other, context=None):
|
---|
3145 | """Applies an 'or' operation between self and other's digits."""
|
---|
3146 | if context is None:
|
---|
3147 | context = getcontext()
|
---|
3148 |
|
---|
3149 | other = _convert_other(other, raiseit=True)
|
---|
3150 |
|
---|
3151 | if not self._islogical() or not other._islogical():
|
---|
3152 | return context._raise_error(InvalidOperation)
|
---|
3153 |
|
---|
3154 | # fill to context.prec
|
---|
3155 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
---|
3156 |
|
---|
3157 | # make the operation, and clean starting zeroes
|
---|
3158 | result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
|
---|
3159 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
---|
3160 |
|
---|
3161 | def logical_xor(self, other, context=None):
|
---|
3162 | """Applies an 'xor' operation between self and other's digits."""
|
---|
3163 | if context is None:
|
---|
3164 | context = getcontext()
|
---|
3165 |
|
---|
3166 | other = _convert_other(other, raiseit=True)
|
---|
3167 |
|
---|
3168 | if not self._islogical() or not other._islogical():
|
---|
3169 | return context._raise_error(InvalidOperation)
|
---|
3170 |
|
---|
3171 | # fill to context.prec
|
---|
3172 | (opa, opb) = self._fill_logical(context, self._int, other._int)
|
---|
3173 |
|
---|
3174 | # make the operation, and clean starting zeroes
|
---|
3175 | result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
|
---|
3176 | return _dec_from_triple(0, result.lstrip('0') or '0', 0)
|
---|
3177 |
|
---|
3178 | def max_mag(self, other, context=None):
|
---|
3179 | """Compares the values numerically with their sign ignored."""
|
---|
3180 | other = _convert_other(other, raiseit=True)
|
---|
3181 |
|
---|
3182 | if context is None:
|
---|
3183 | context = getcontext()
|
---|
3184 |
|
---|
3185 | if self._is_special or other._is_special:
|
---|
3186 | # If one operand is a quiet NaN and the other is number, then the
|
---|
3187 | # number is always returned
|
---|
3188 | sn = self._isnan()
|
---|
3189 | on = other._isnan()
|
---|
3190 | if sn or on:
|
---|
3191 | if on == 1 and sn == 0:
|
---|
3192 | return self._fix(context)
|
---|
3193 | if sn == 1 and on == 0:
|
---|
3194 | return other._fix(context)
|
---|
3195 | return self._check_nans(other, context)
|
---|
3196 |
|
---|
3197 | c = self.copy_abs()._cmp(other.copy_abs())
|
---|
3198 | if c == 0:
|
---|
3199 | c = self.compare_total(other)
|
---|
3200 |
|
---|
3201 | if c == -1:
|
---|
3202 | ans = other
|
---|
3203 | else:
|
---|
3204 | ans = self
|
---|
3205 |
|
---|
3206 | return ans._fix(context)
|
---|
3207 |
|
---|
3208 | def min_mag(self, other, context=None):
|
---|
3209 | """Compares the values numerically with their sign ignored."""
|
---|
3210 | other = _convert_other(other, raiseit=True)
|
---|
3211 |
|
---|
3212 | if context is None:
|
---|
3213 | context = getcontext()
|
---|
3214 |
|
---|
3215 | if self._is_special or other._is_special:
|
---|
3216 | # If one operand is a quiet NaN and the other is number, then the
|
---|
3217 | # number is always returned
|
---|
3218 | sn = self._isnan()
|
---|
3219 | on = other._isnan()
|
---|
3220 | if sn or on:
|
---|
3221 | if on == 1 and sn == 0:
|
---|
3222 | return self._fix(context)
|
---|
3223 | if sn == 1 and on == 0:
|
---|
3224 | return other._fix(context)
|
---|
3225 | return self._check_nans(other, context)
|
---|
3226 |
|
---|
3227 | c = self.copy_abs()._cmp(other.copy_abs())
|
---|
3228 | if c == 0:
|
---|
3229 | c = self.compare_total(other)
|
---|
3230 |
|
---|
3231 | if c == -1:
|
---|
3232 | ans = self
|
---|
3233 | else:
|
---|
3234 | ans = other
|
---|
3235 |
|
---|
3236 | return ans._fix(context)
|
---|
3237 |
|
---|
3238 | def next_minus(self, context=None):
|
---|
3239 | """Returns the largest representable number smaller than itself."""
|
---|
3240 | if context is None:
|
---|
3241 | context = getcontext()
|
---|
3242 |
|
---|
3243 | ans = self._check_nans(context=context)
|
---|
3244 | if ans:
|
---|
3245 | return ans
|
---|
3246 |
|
---|
3247 | if self._isinfinity() == -1:
|
---|
3248 | return _NegativeInfinity
|
---|
3249 | if self._isinfinity() == 1:
|
---|
3250 | return _dec_from_triple(0, '9'*context.prec, context.Etop())
|
---|
3251 |
|
---|
3252 | context = context.copy()
|
---|
3253 | context._set_rounding(ROUND_FLOOR)
|
---|
3254 | context._ignore_all_flags()
|
---|
3255 | new_self = self._fix(context)
|
---|
3256 | if new_self != self:
|
---|
3257 | return new_self
|
---|
3258 | return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
|
---|
3259 | context)
|
---|
3260 |
|
---|
3261 | def next_plus(self, context=None):
|
---|
3262 | """Returns the smallest representable number larger than itself."""
|
---|
3263 | if context is None:
|
---|
3264 | context = getcontext()
|
---|
3265 |
|
---|
3266 | ans = self._check_nans(context=context)
|
---|
3267 | if ans:
|
---|
3268 | return ans
|
---|
3269 |
|
---|
3270 | if self._isinfinity() == 1:
|
---|
3271 | return _Infinity
|
---|
3272 | if self._isinfinity() == -1:
|
---|
3273 | return _dec_from_triple(1, '9'*context.prec, context.Etop())
|
---|
3274 |
|
---|
3275 | context = context.copy()
|
---|
3276 | context._set_rounding(ROUND_CEILING)
|
---|
3277 | context._ignore_all_flags()
|
---|
3278 | new_self = self._fix(context)
|
---|
3279 | if new_self != self:
|
---|
3280 | return new_self
|
---|
3281 | return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
|
---|
3282 | context)
|
---|
3283 |
|
---|
3284 | def next_toward(self, other, context=None):
|
---|
3285 | """Returns the number closest to self, in the direction towards other.
|
---|
3286 |
|
---|
3287 | The result is the closest representable number to self
|
---|
3288 | (excluding self) that is in the direction towards other,
|
---|
3289 | unless both have the same value. If the two operands are
|
---|
3290 | numerically equal, then the result is a copy of self with the
|
---|
3291 | sign set to be the same as the sign of other.
|
---|
3292 | """
|
---|
3293 | other = _convert_other(other, raiseit=True)
|
---|
3294 |
|
---|
3295 | if context is None:
|
---|
3296 | context = getcontext()
|
---|
3297 |
|
---|
3298 | ans = self._check_nans(other, context)
|
---|
3299 | if ans:
|
---|
3300 | return ans
|
---|
3301 |
|
---|
3302 | comparison = self._cmp(other)
|
---|
3303 | if comparison == 0:
|
---|
3304 | return self.copy_sign(other)
|
---|
3305 |
|
---|
3306 | if comparison == -1:
|
---|
3307 | ans = self.next_plus(context)
|
---|
3308 | else: # comparison == 1
|
---|
3309 | ans = self.next_minus(context)
|
---|
3310 |
|
---|
3311 | # decide which flags to raise using value of ans
|
---|
3312 | if ans._isinfinity():
|
---|
3313 | context._raise_error(Overflow,
|
---|
3314 | 'Infinite result from next_toward',
|
---|
3315 | ans._sign)
|
---|
3316 | context._raise_error(Rounded)
|
---|
3317 | context._raise_error(Inexact)
|
---|
3318 | elif ans.adjusted() < context.Emin:
|
---|
3319 | context._raise_error(Underflow)
|
---|
3320 | context._raise_error(Subnormal)
|
---|
3321 | context._raise_error(Rounded)
|
---|
3322 | context._raise_error(Inexact)
|
---|
3323 | # if precision == 1 then we don't raise Clamped for a
|
---|
3324 | # result 0E-Etiny.
|
---|
3325 | if not ans:
|
---|
3326 | context._raise_error(Clamped)
|
---|
3327 |
|
---|
3328 | return ans
|
---|
3329 |
|
---|
3330 | def number_class(self, context=None):
|
---|
3331 | """Returns an indication of the class of self.
|
---|
3332 |
|
---|
3333 | The class is one of the following strings:
|
---|
3334 | sNaN
|
---|
3335 | NaN
|
---|
3336 | -Infinity
|
---|
3337 | -Normal
|
---|
3338 | -Subnormal
|
---|
3339 | -Zero
|
---|
3340 | +Zero
|
---|
3341 | +Subnormal
|
---|
3342 | +Normal
|
---|
3343 | +Infinity
|
---|
3344 | """
|
---|
3345 | if self.is_snan():
|
---|
3346 | return "sNaN"
|
---|
3347 | if self.is_qnan():
|
---|
3348 | return "NaN"
|
---|
3349 | inf = self._isinfinity()
|
---|
3350 | if inf == 1:
|
---|
3351 | return "+Infinity"
|
---|
3352 | if inf == -1:
|
---|
3353 | return "-Infinity"
|
---|
3354 | if self.is_zero():
|
---|
3355 | if self._sign:
|
---|
3356 | return "-Zero"
|
---|
3357 | else:
|
---|
3358 | return "+Zero"
|
---|
3359 | if context is None:
|
---|
3360 | context = getcontext()
|
---|
3361 | if self.is_subnormal(context=context):
|
---|
3362 | if self._sign:
|
---|
3363 | return "-Subnormal"
|
---|
3364 | else:
|
---|
3365 | return "+Subnormal"
|
---|
3366 | # just a normal, regular, boring number, :)
|
---|
3367 | if self._sign:
|
---|
3368 | return "-Normal"
|
---|
3369 | else:
|
---|
3370 | return "+Normal"
|
---|
3371 |
|
---|
3372 | def radix(self):
|
---|
3373 | """Just returns 10, as this is Decimal, :)"""
|
---|
3374 | return Decimal(10)
|
---|
3375 |
|
---|
3376 | def rotate(self, other, context=None):
|
---|
3377 | """Returns a rotated copy of self, value-of-other times."""
|
---|
3378 | if context is None:
|
---|
3379 | context = getcontext()
|
---|
3380 |
|
---|
3381 | other = _convert_other(other, raiseit=True)
|
---|
3382 |
|
---|
3383 | ans = self._check_nans(other, context)
|
---|
3384 | if ans:
|
---|
3385 | return ans
|
---|
3386 |
|
---|
3387 | if other._exp != 0:
|
---|
3388 | return context._raise_error(InvalidOperation)
|
---|
3389 | if not (-context.prec <= int(other) <= context.prec):
|
---|
3390 | return context._raise_error(InvalidOperation)
|
---|
3391 |
|
---|
3392 | if self._isinfinity():
|
---|
3393 | return Decimal(self)
|
---|
3394 |
|
---|
3395 | # get values, pad if necessary
|
---|
3396 | torot = int(other)
|
---|
3397 | rotdig = self._int
|
---|
3398 | topad = context.prec - len(rotdig)
|
---|
3399 | if topad > 0:
|
---|
3400 | rotdig = '0'*topad + rotdig
|
---|
3401 | elif topad < 0:
|
---|
3402 | rotdig = rotdig[-topad:]
|
---|
3403 |
|
---|
3404 | # let's rotate!
|
---|
3405 | rotated = rotdig[torot:] + rotdig[:torot]
|
---|
3406 | return _dec_from_triple(self._sign,
|
---|
3407 | rotated.lstrip('0') or '0', self._exp)
|
---|
3408 |
|
---|
3409 | def scaleb(self, other, context=None):
|
---|
3410 | """Returns self operand after adding the second value to its exp."""
|
---|
3411 | if context is None:
|
---|
3412 | context = getcontext()
|
---|
3413 |
|
---|
3414 | other = _convert_other(other, raiseit=True)
|
---|
3415 |
|
---|
3416 | ans = self._check_nans(other, context)
|
---|
3417 | if ans:
|
---|
3418 | return ans
|
---|
3419 |
|
---|
3420 | if other._exp != 0:
|
---|
3421 | return context._raise_error(InvalidOperation)
|
---|
3422 | liminf = -2 * (context.Emax + context.prec)
|
---|
3423 | limsup = 2 * (context.Emax + context.prec)
|
---|
3424 | if not (liminf <= int(other) <= limsup):
|
---|
3425 | return context._raise_error(InvalidOperation)
|
---|
3426 |
|
---|
3427 | if self._isinfinity():
|
---|
3428 | return Decimal(self)
|
---|
3429 |
|
---|
3430 | d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
|
---|
3431 | d = d._fix(context)
|
---|
3432 | return d
|
---|
3433 |
|
---|
3434 | def shift(self, other, context=None):
|
---|
3435 | """Returns a shifted copy of self, value-of-other times."""
|
---|
3436 | if context is None:
|
---|
3437 | context = getcontext()
|
---|
3438 |
|
---|
3439 | other = _convert_other(other, raiseit=True)
|
---|
3440 |
|
---|
3441 | ans = self._check_nans(other, context)
|
---|
3442 | if ans:
|
---|
3443 | return ans
|
---|
3444 |
|
---|
3445 | if other._exp != 0:
|
---|
3446 | return context._raise_error(InvalidOperation)
|
---|
3447 | if not (-context.prec <= int(other) <= context.prec):
|
---|
3448 | return context._raise_error(InvalidOperation)
|
---|
3449 |
|
---|
3450 | if self._isinfinity():
|
---|
3451 | return Decimal(self)
|
---|
3452 |
|
---|
3453 | # get values, pad if necessary
|
---|
3454 | torot = int(other)
|
---|
3455 | rotdig = self._int
|
---|
3456 | topad = context.prec - len(rotdig)
|
---|
3457 | if topad > 0:
|
---|
3458 | rotdig = '0'*topad + rotdig
|
---|
3459 | elif topad < 0:
|
---|
3460 | rotdig = rotdig[-topad:]
|
---|
3461 |
|
---|
3462 | # let's shift!
|
---|
3463 | if torot < 0:
|
---|
3464 | shifted = rotdig[:torot]
|
---|
3465 | else:
|
---|
3466 | shifted = rotdig + '0'*torot
|
---|
3467 | shifted = shifted[-context.prec:]
|
---|
3468 |
|
---|
3469 | return _dec_from_triple(self._sign,
|
---|
3470 | shifted.lstrip('0') or '0', self._exp)
|
---|
3471 |
|
---|
3472 | # Support for pickling, copy, and deepcopy
|
---|
3473 | def __reduce__(self):
|
---|
3474 | return (self.__class__, (str(self),))
|
---|
3475 |
|
---|
3476 | def __copy__(self):
|
---|
3477 | if type(self) == Decimal:
|
---|
3478 | return self # I'm immutable; therefore I am my own clone
|
---|
3479 | return self.__class__(str(self))
|
---|
3480 |
|
---|
3481 | def __deepcopy__(self, memo):
|
---|
3482 | if type(self) == Decimal:
|
---|
3483 | return self # My components are also immutable
|
---|
3484 | return self.__class__(str(self))
|
---|
3485 |
|
---|
3486 | # PEP 3101 support. See also _parse_format_specifier and _format_align
|
---|
3487 | def __format__(self, specifier, context=None):
|
---|
3488 | """Format a Decimal instance according to the given specifier.
|
---|
3489 |
|
---|
3490 | The specifier should be a standard format specifier, with the
|
---|
3491 | form described in PEP 3101. Formatting types 'e', 'E', 'f',
|
---|
3492 | 'F', 'g', 'G', and '%' are supported. If the formatting type
|
---|
3493 | is omitted it defaults to 'g' or 'G', depending on the value
|
---|
3494 | of context.capitals.
|
---|
3495 |
|
---|
3496 | At this time the 'n' format specifier type (which is supposed
|
---|
3497 | to use the current locale) is not supported.
|
---|
3498 | """
|
---|
3499 |
|
---|
3500 | # Note: PEP 3101 says that if the type is not present then
|
---|
3501 | # there should be at least one digit after the decimal point.
|
---|
3502 | # We take the liberty of ignoring this requirement for
|
---|
3503 | # Decimal---it's presumably there to make sure that
|
---|
3504 | # format(float, '') behaves similarly to str(float).
|
---|
3505 | if context is None:
|
---|
3506 | context = getcontext()
|
---|
3507 |
|
---|
3508 | spec = _parse_format_specifier(specifier)
|
---|
3509 |
|
---|
3510 | # special values don't care about the type or precision...
|
---|
3511 | if self._is_special:
|
---|
3512 | return _format_align(str(self), spec)
|
---|
3513 |
|
---|
3514 | # a type of None defaults to 'g' or 'G', depending on context
|
---|
3515 | # if type is '%', adjust exponent of self accordingly
|
---|
3516 | if spec['type'] is None:
|
---|
3517 | spec['type'] = ['g', 'G'][context.capitals]
|
---|
3518 | elif spec['type'] == '%':
|
---|
3519 | self = _dec_from_triple(self._sign, self._int, self._exp+2)
|
---|
3520 |
|
---|
3521 | # round if necessary, taking rounding mode from the context
|
---|
3522 | rounding = context.rounding
|
---|
3523 | precision = spec['precision']
|
---|
3524 | if precision is not None:
|
---|
3525 | if spec['type'] in 'eE':
|
---|
3526 | self = self._round(precision+1, rounding)
|
---|
3527 | elif spec['type'] in 'gG':
|
---|
3528 | if len(self._int) > precision:
|
---|
3529 | self = self._round(precision, rounding)
|
---|
3530 | elif spec['type'] in 'fF%':
|
---|
3531 | self = self._rescale(-precision, rounding)
|
---|
3532 | # special case: zeros with a positive exponent can't be
|
---|
3533 | # represented in fixed point; rescale them to 0e0.
|
---|
3534 | elif not self and self._exp > 0 and spec['type'] in 'fF%':
|
---|
3535 | self = self._rescale(0, rounding)
|
---|
3536 |
|
---|
3537 | # figure out placement of the decimal point
|
---|
3538 | leftdigits = self._exp + len(self._int)
|
---|
3539 | if spec['type'] in 'fF%':
|
---|
3540 | dotplace = leftdigits
|
---|
3541 | elif spec['type'] in 'eE':
|
---|
3542 | if not self and precision is not None:
|
---|
3543 | dotplace = 1 - precision
|
---|
3544 | else:
|
---|
3545 | dotplace = 1
|
---|
3546 | elif spec['type'] in 'gG':
|
---|
3547 | if self._exp <= 0 and leftdigits > -6:
|
---|
3548 | dotplace = leftdigits
|
---|
3549 | else:
|
---|
3550 | dotplace = 1
|
---|
3551 |
|
---|
3552 | # figure out main part of numeric string...
|
---|
3553 | if dotplace <= 0:
|
---|
3554 | num = '0.' + '0'*(-dotplace) + self._int
|
---|
3555 | elif dotplace >= len(self._int):
|
---|
3556 | # make sure we're not padding a '0' with extra zeros on the right
|
---|
3557 | assert dotplace==len(self._int) or self._int != '0'
|
---|
3558 | num = self._int + '0'*(dotplace-len(self._int))
|
---|
3559 | else:
|
---|
3560 | num = self._int[:dotplace] + '.' + self._int[dotplace:]
|
---|
3561 |
|
---|
3562 | # ...then the trailing exponent, or trailing '%'
|
---|
3563 | if leftdigits != dotplace or spec['type'] in 'eE':
|
---|
3564 | echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
|
---|
3565 | num = num + "{0}{1:+}".format(echar, leftdigits-dotplace)
|
---|
3566 | elif spec['type'] == '%':
|
---|
3567 | num = num + '%'
|
---|
3568 |
|
---|
3569 | # add sign
|
---|
3570 | if self._sign == 1:
|
---|
3571 | num = '-' + num
|
---|
3572 | return _format_align(num, spec)
|
---|
3573 |
|
---|
3574 |
|
---|
3575 | def _dec_from_triple(sign, coefficient, exponent, special=False):
|
---|
3576 | """Create a decimal instance directly, without any validation,
|
---|
3577 | normalization (e.g. removal of leading zeros) or argument
|
---|
3578 | conversion.
|
---|
3579 |
|
---|
3580 | This function is for *internal use only*.
|
---|
3581 | """
|
---|
3582 |
|
---|
3583 | self = object.__new__(Decimal)
|
---|
3584 | self._sign = sign
|
---|
3585 | self._int = coefficient
|
---|
3586 | self._exp = exponent
|
---|
3587 | self._is_special = special
|
---|
3588 |
|
---|
3589 | return self
|
---|
3590 |
|
---|
3591 | # Register Decimal as a kind of Number (an abstract base class).
|
---|
3592 | # However, do not register it as Real (because Decimals are not
|
---|
3593 | # interoperable with floats).
|
---|
3594 | _numbers.Number.register(Decimal)
|
---|
3595 |
|
---|
3596 |
|
---|
3597 | ##### Context class #######################################################
|
---|
3598 |
|
---|
3599 |
|
---|
3600 | # get rounding method function:
|
---|
3601 | rounding_functions = [name for name in Decimal.__dict__.keys()
|
---|
3602 | if name.startswith('_round_')]
|
---|
3603 | for name in rounding_functions:
|
---|
3604 | # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
|
---|
3605 | globalname = name[1:].upper()
|
---|
3606 | val = globals()[globalname]
|
---|
3607 | Decimal._pick_rounding_function[val] = name
|
---|
3608 |
|
---|
3609 | del name, val, globalname, rounding_functions
|
---|
3610 |
|
---|
3611 | class _ContextManager(object):
|
---|
3612 | """Context manager class to support localcontext().
|
---|
3613 |
|
---|
3614 | Sets a copy of the supplied context in __enter__() and restores
|
---|
3615 | the previous decimal context in __exit__()
|
---|
3616 | """
|
---|
3617 | def __init__(self, new_context):
|
---|
3618 | self.new_context = new_context.copy()
|
---|
3619 | def __enter__(self):
|
---|
3620 | self.saved_context = getcontext()
|
---|
3621 | setcontext(self.new_context)
|
---|
3622 | return self.new_context
|
---|
3623 | def __exit__(self, t, v, tb):
|
---|
3624 | setcontext(self.saved_context)
|
---|
3625 |
|
---|
3626 | class Context(object):
|
---|
3627 | """Contains the context for a Decimal instance.
|
---|
3628 |
|
---|
3629 | Contains:
|
---|
3630 | prec - precision (for use in rounding, division, square roots..)
|
---|
3631 | rounding - rounding type (how you round)
|
---|
3632 | traps - If traps[exception] = 1, then the exception is
|
---|
3633 | raised when it is caused. Otherwise, a value is
|
---|
3634 | substituted in.
|
---|
3635 | flags - When an exception is caused, flags[exception] is set.
|
---|
3636 | (Whether or not the trap_enabler is set)
|
---|
3637 | Should be reset by user of Decimal instance.
|
---|
3638 | Emin - Minimum exponent
|
---|
3639 | Emax - Maximum exponent
|
---|
3640 | capitals - If 1, 1*10^1 is printed as 1E+1.
|
---|
3641 | If 0, printed as 1e1
|
---|
3642 | _clamp - If 1, change exponents if too high (Default 0)
|
---|
3643 | """
|
---|
3644 |
|
---|
3645 | def __init__(self, prec=None, rounding=None,
|
---|
3646 | traps=None, flags=None,
|
---|
3647 | Emin=None, Emax=None,
|
---|
3648 | capitals=None, _clamp=0,
|
---|
3649 | _ignored_flags=None):
|
---|
3650 | if flags is None:
|
---|
3651 | flags = []
|
---|
3652 | if _ignored_flags is None:
|
---|
3653 | _ignored_flags = []
|
---|
3654 | if not isinstance(flags, dict):
|
---|
3655 | flags = dict([(s, int(s in flags)) for s in _signals])
|
---|
3656 | del s
|
---|
3657 | if traps is not None and not isinstance(traps, dict):
|
---|
3658 | traps = dict([(s, int(s in traps)) for s in _signals])
|
---|
3659 | del s
|
---|
3660 | for name, val in locals().items():
|
---|
3661 | if val is None:
|
---|
3662 | setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
|
---|
3663 | else:
|
---|
3664 | setattr(self, name, val)
|
---|
3665 | del self.self
|
---|
3666 |
|
---|
3667 | def __repr__(self):
|
---|
3668 | """Show the current context."""
|
---|
3669 | s = []
|
---|
3670 | s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
|
---|
3671 | 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
|
---|
3672 | % vars(self))
|
---|
3673 | names = [f.__name__ for f, v in self.flags.items() if v]
|
---|
3674 | s.append('flags=[' + ', '.join(names) + ']')
|
---|
3675 | names = [t.__name__ for t, v in self.traps.items() if v]
|
---|
3676 | s.append('traps=[' + ', '.join(names) + ']')
|
---|
3677 | return ', '.join(s) + ')'
|
---|
3678 |
|
---|
3679 | def clear_flags(self):
|
---|
3680 | """Reset all flags to zero"""
|
---|
3681 | for flag in self.flags:
|
---|
3682 | self.flags[flag] = 0
|
---|
3683 |
|
---|
3684 | def _shallow_copy(self):
|
---|
3685 | """Returns a shallow copy from self."""
|
---|
3686 | nc = Context(self.prec, self.rounding, self.traps,
|
---|
3687 | self.flags, self.Emin, self.Emax,
|
---|
3688 | self.capitals, self._clamp, self._ignored_flags)
|
---|
3689 | return nc
|
---|
3690 |
|
---|
3691 | def copy(self):
|
---|
3692 | """Returns a deep copy from self."""
|
---|
3693 | nc = Context(self.prec, self.rounding, self.traps.copy(),
|
---|
3694 | self.flags.copy(), self.Emin, self.Emax,
|
---|
3695 | self.capitals, self._clamp, self._ignored_flags)
|
---|
3696 | return nc
|
---|
3697 | __copy__ = copy
|
---|
3698 |
|
---|
3699 | def _raise_error(self, condition, explanation = None, *args):
|
---|
3700 | """Handles an error
|
---|
3701 |
|
---|
3702 | If the flag is in _ignored_flags, returns the default response.
|
---|
3703 | Otherwise, it sets the flag, then, if the corresponding
|
---|
3704 | trap_enabler is set, it reaises the exception. Otherwise, it returns
|
---|
3705 | the default value after setting the flag.
|
---|
3706 | """
|
---|
3707 | error = _condition_map.get(condition, condition)
|
---|
3708 | if error in self._ignored_flags:
|
---|
3709 | # Don't touch the flag
|
---|
3710 | return error().handle(self, *args)
|
---|
3711 |
|
---|
3712 | self.flags[error] = 1
|
---|
3713 | if not self.traps[error]:
|
---|
3714 | # The errors define how to handle themselves.
|
---|
3715 | return condition().handle(self, *args)
|
---|
3716 |
|
---|
3717 | # Errors should only be risked on copies of the context
|
---|
3718 | # self._ignored_flags = []
|
---|
3719 | raise error(explanation)
|
---|
3720 |
|
---|
3721 | def _ignore_all_flags(self):
|
---|
3722 | """Ignore all flags, if they are raised"""
|
---|
3723 | return self._ignore_flags(*_signals)
|
---|
3724 |
|
---|
3725 | def _ignore_flags(self, *flags):
|
---|
3726 | """Ignore the flags, if they are raised"""
|
---|
3727 | # Do not mutate-- This way, copies of a context leave the original
|
---|
3728 | # alone.
|
---|
3729 | self._ignored_flags = (self._ignored_flags + list(flags))
|
---|
3730 | return list(flags)
|
---|
3731 |
|
---|
3732 | def _regard_flags(self, *flags):
|
---|
3733 | """Stop ignoring the flags, if they are raised"""
|
---|
3734 | if flags and isinstance(flags[0], (tuple,list)):
|
---|
3735 | flags = flags[0]
|
---|
3736 | for flag in flags:
|
---|
3737 | self._ignored_flags.remove(flag)
|
---|
3738 |
|
---|
3739 | # We inherit object.__hash__, so we must deny this explicitly
|
---|
3740 | __hash__ = None
|
---|
3741 |
|
---|
3742 | def Etiny(self):
|
---|
3743 | """Returns Etiny (= Emin - prec + 1)"""
|
---|
3744 | return int(self.Emin - self.prec + 1)
|
---|
3745 |
|
---|
3746 | def Etop(self):
|
---|
3747 | """Returns maximum exponent (= Emax - prec + 1)"""
|
---|
3748 | return int(self.Emax - self.prec + 1)
|
---|
3749 |
|
---|
3750 | def _set_rounding(self, type):
|
---|
3751 | """Sets the rounding type.
|
---|
3752 |
|
---|
3753 | Sets the rounding type, and returns the current (previous)
|
---|
3754 | rounding type. Often used like:
|
---|
3755 |
|
---|
3756 | context = context.copy()
|
---|
3757 | # so you don't change the calling context
|
---|
3758 | # if an error occurs in the middle.
|
---|
3759 | rounding = context._set_rounding(ROUND_UP)
|
---|
3760 | val = self.__sub__(other, context=context)
|
---|
3761 | context._set_rounding(rounding)
|
---|
3762 |
|
---|
3763 | This will make it round up for that operation.
|
---|
3764 | """
|
---|
3765 | rounding = self.rounding
|
---|
3766 | self.rounding= type
|
---|
3767 | return rounding
|
---|
3768 |
|
---|
3769 | def create_decimal(self, num='0'):
|
---|
3770 | """Creates a new Decimal instance but using self as context.
|
---|
3771 |
|
---|
3772 | This method implements the to-number operation of the
|
---|
3773 | IBM Decimal specification."""
|
---|
3774 |
|
---|
3775 | if isinstance(num, basestring) and num != num.strip():
|
---|
3776 | return self._raise_error(ConversionSyntax,
|
---|
3777 | "no trailing or leading whitespace is "
|
---|
3778 | "permitted.")
|
---|
3779 |
|
---|
3780 | d = Decimal(num, context=self)
|
---|
3781 | if d._isnan() and len(d._int) > self.prec - self._clamp:
|
---|
3782 | return self._raise_error(ConversionSyntax,
|
---|
3783 | "diagnostic info too long in NaN")
|
---|
3784 | return d._fix(self)
|
---|
3785 |
|
---|
3786 | # Methods
|
---|
3787 | def abs(self, a):
|
---|
3788 | """Returns the absolute value of the operand.
|
---|
3789 |
|
---|
3790 | If the operand is negative, the result is the same as using the minus
|
---|
3791 | operation on the operand. Otherwise, the result is the same as using
|
---|
3792 | the plus operation on the operand.
|
---|
3793 |
|
---|
3794 | >>> ExtendedContext.abs(Decimal('2.1'))
|
---|
3795 | Decimal('2.1')
|
---|
3796 | >>> ExtendedContext.abs(Decimal('-100'))
|
---|
3797 | Decimal('100')
|
---|
3798 | >>> ExtendedContext.abs(Decimal('101.5'))
|
---|
3799 | Decimal('101.5')
|
---|
3800 | >>> ExtendedContext.abs(Decimal('-101.5'))
|
---|
3801 | Decimal('101.5')
|
---|
3802 | """
|
---|
3803 | return a.__abs__(context=self)
|
---|
3804 |
|
---|
3805 | def add(self, a, b):
|
---|
3806 | """Return the sum of the two operands.
|
---|
3807 |
|
---|
3808 | >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
|
---|
3809 | Decimal('19.00')
|
---|
3810 | >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
|
---|
3811 | Decimal('1.02E+4')
|
---|
3812 | """
|
---|
3813 | return a.__add__(b, context=self)
|
---|
3814 |
|
---|
3815 | def _apply(self, a):
|
---|
3816 | return str(a._fix(self))
|
---|
3817 |
|
---|
3818 | def canonical(self, a):
|
---|
3819 | """Returns the same Decimal object.
|
---|
3820 |
|
---|
3821 | As we do not have different encodings for the same number, the
|
---|
3822 | received object already is in its canonical form.
|
---|
3823 |
|
---|
3824 | >>> ExtendedContext.canonical(Decimal('2.50'))
|
---|
3825 | Decimal('2.50')
|
---|
3826 | """
|
---|
3827 | return a.canonical(context=self)
|
---|
3828 |
|
---|
3829 | def compare(self, a, b):
|
---|
3830 | """Compares values numerically.
|
---|
3831 |
|
---|
3832 | If the signs of the operands differ, a value representing each operand
|
---|
3833 | ('-1' if the operand is less than zero, '0' if the operand is zero or
|
---|
3834 | negative zero, or '1' if the operand is greater than zero) is used in
|
---|
3835 | place of that operand for the comparison instead of the actual
|
---|
3836 | operand.
|
---|
3837 |
|
---|
3838 | The comparison is then effected by subtracting the second operand from
|
---|
3839 | the first and then returning a value according to the result of the
|
---|
3840 | subtraction: '-1' if the result is less than zero, '0' if the result is
|
---|
3841 | zero or negative zero, or '1' if the result is greater than zero.
|
---|
3842 |
|
---|
3843 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
|
---|
3844 | Decimal('-1')
|
---|
3845 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
|
---|
3846 | Decimal('0')
|
---|
3847 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
|
---|
3848 | Decimal('0')
|
---|
3849 | >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
|
---|
3850 | Decimal('1')
|
---|
3851 | >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
|
---|
3852 | Decimal('1')
|
---|
3853 | >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
|
---|
3854 | Decimal('-1')
|
---|
3855 | """
|
---|
3856 | return a.compare(b, context=self)
|
---|
3857 |
|
---|
3858 | def compare_signal(self, a, b):
|
---|
3859 | """Compares the values of the two operands numerically.
|
---|
3860 |
|
---|
3861 | It's pretty much like compare(), but all NaNs signal, with signaling
|
---|
3862 | NaNs taking precedence over quiet NaNs.
|
---|
3863 |
|
---|
3864 | >>> c = ExtendedContext
|
---|
3865 | >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
|
---|
3866 | Decimal('-1')
|
---|
3867 | >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
|
---|
3868 | Decimal('0')
|
---|
3869 | >>> c.flags[InvalidOperation] = 0
|
---|
3870 | >>> print c.flags[InvalidOperation]
|
---|
3871 | 0
|
---|
3872 | >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
|
---|
3873 | Decimal('NaN')
|
---|
3874 | >>> print c.flags[InvalidOperation]
|
---|
3875 | 1
|
---|
3876 | >>> c.flags[InvalidOperation] = 0
|
---|
3877 | >>> print c.flags[InvalidOperation]
|
---|
3878 | 0
|
---|
3879 | >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
|
---|
3880 | Decimal('NaN')
|
---|
3881 | >>> print c.flags[InvalidOperation]
|
---|
3882 | 1
|
---|
3883 | """
|
---|
3884 | return a.compare_signal(b, context=self)
|
---|
3885 |
|
---|
3886 | def compare_total(self, a, b):
|
---|
3887 | """Compares two operands using their abstract representation.
|
---|
3888 |
|
---|
3889 | This is not like the standard compare, which use their numerical
|
---|
3890 | value. Note that a total ordering is defined for all possible abstract
|
---|
3891 | representations.
|
---|
3892 |
|
---|
3893 | >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
|
---|
3894 | Decimal('-1')
|
---|
3895 | >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
|
---|
3896 | Decimal('-1')
|
---|
3897 | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
|
---|
3898 | Decimal('-1')
|
---|
3899 | >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
|
---|
3900 | Decimal('0')
|
---|
3901 | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
|
---|
3902 | Decimal('1')
|
---|
3903 | >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
|
---|
3904 | Decimal('-1')
|
---|
3905 | """
|
---|
3906 | return a.compare_total(b)
|
---|
3907 |
|
---|
3908 | def compare_total_mag(self, a, b):
|
---|
3909 | """Compares two operands using their abstract representation ignoring sign.
|
---|
3910 |
|
---|
3911 | Like compare_total, but with operand's sign ignored and assumed to be 0.
|
---|
3912 | """
|
---|
3913 | return a.compare_total_mag(b)
|
---|
3914 |
|
---|
3915 | def copy_abs(self, a):
|
---|
3916 | """Returns a copy of the operand with the sign set to 0.
|
---|
3917 |
|
---|
3918 | >>> ExtendedContext.copy_abs(Decimal('2.1'))
|
---|
3919 | Decimal('2.1')
|
---|
3920 | >>> ExtendedContext.copy_abs(Decimal('-100'))
|
---|
3921 | Decimal('100')
|
---|
3922 | """
|
---|
3923 | return a.copy_abs()
|
---|
3924 |
|
---|
3925 | def copy_decimal(self, a):
|
---|
3926 | """Returns a copy of the decimal objet.
|
---|
3927 |
|
---|
3928 | >>> ExtendedContext.copy_decimal(Decimal('2.1'))
|
---|
3929 | Decimal('2.1')
|
---|
3930 | >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
|
---|
3931 | Decimal('-1.00')
|
---|
3932 | """
|
---|
3933 | return Decimal(a)
|
---|
3934 |
|
---|
3935 | def copy_negate(self, a):
|
---|
3936 | """Returns a copy of the operand with the sign inverted.
|
---|
3937 |
|
---|
3938 | >>> ExtendedContext.copy_negate(Decimal('101.5'))
|
---|
3939 | Decimal('-101.5')
|
---|
3940 | >>> ExtendedContext.copy_negate(Decimal('-101.5'))
|
---|
3941 | Decimal('101.5')
|
---|
3942 | """
|
---|
3943 | return a.copy_negate()
|
---|
3944 |
|
---|
3945 | def copy_sign(self, a, b):
|
---|
3946 | """Copies the second operand's sign to the first one.
|
---|
3947 |
|
---|
3948 | In detail, it returns a copy of the first operand with the sign
|
---|
3949 | equal to the sign of the second operand.
|
---|
3950 |
|
---|
3951 | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
|
---|
3952 | Decimal('1.50')
|
---|
3953 | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
|
---|
3954 | Decimal('1.50')
|
---|
3955 | >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
|
---|
3956 | Decimal('-1.50')
|
---|
3957 | >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
|
---|
3958 | Decimal('-1.50')
|
---|
3959 | """
|
---|
3960 | return a.copy_sign(b)
|
---|
3961 |
|
---|
3962 | def divide(self, a, b):
|
---|
3963 | """Decimal division in a specified context.
|
---|
3964 |
|
---|
3965 | >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
|
---|
3966 | Decimal('0.333333333')
|
---|
3967 | >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
|
---|
3968 | Decimal('0.666666667')
|
---|
3969 | >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
|
---|
3970 | Decimal('2.5')
|
---|
3971 | >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
|
---|
3972 | Decimal('0.1')
|
---|
3973 | >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
|
---|
3974 | Decimal('1')
|
---|
3975 | >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
|
---|
3976 | Decimal('4.00')
|
---|
3977 | >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
|
---|
3978 | Decimal('1.20')
|
---|
3979 | >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
|
---|
3980 | Decimal('10')
|
---|
3981 | >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
|
---|
3982 | Decimal('1000')
|
---|
3983 | >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
|
---|
3984 | Decimal('1.20E+6')
|
---|
3985 | """
|
---|
3986 | return a.__div__(b, context=self)
|
---|
3987 |
|
---|
3988 | def divide_int(self, a, b):
|
---|
3989 | """Divides two numbers and returns the integer part of the result.
|
---|
3990 |
|
---|
3991 | >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
|
---|
3992 | Decimal('0')
|
---|
3993 | >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
|
---|
3994 | Decimal('3')
|
---|
3995 | >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
|
---|
3996 | Decimal('3')
|
---|
3997 | """
|
---|
3998 | return a.__floordiv__(b, context=self)
|
---|
3999 |
|
---|
4000 | def divmod(self, a, b):
|
---|
4001 | """Return (a // b, a % b)
|
---|
4002 |
|
---|
4003 | >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
|
---|
4004 | (Decimal('2'), Decimal('2'))
|
---|
4005 | >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
|
---|
4006 | (Decimal('2'), Decimal('0'))
|
---|
4007 | """
|
---|
4008 | return a.__divmod__(b, context=self)
|
---|
4009 |
|
---|
4010 | def exp(self, a):
|
---|
4011 | """Returns e ** a.
|
---|
4012 |
|
---|
4013 | >>> c = ExtendedContext.copy()
|
---|
4014 | >>> c.Emin = -999
|
---|
4015 | >>> c.Emax = 999
|
---|
4016 | >>> c.exp(Decimal('-Infinity'))
|
---|
4017 | Decimal('0')
|
---|
4018 | >>> c.exp(Decimal('-1'))
|
---|
4019 | Decimal('0.367879441')
|
---|
4020 | >>> c.exp(Decimal('0'))
|
---|
4021 | Decimal('1')
|
---|
4022 | >>> c.exp(Decimal('1'))
|
---|
4023 | Decimal('2.71828183')
|
---|
4024 | >>> c.exp(Decimal('0.693147181'))
|
---|
4025 | Decimal('2.00000000')
|
---|
4026 | >>> c.exp(Decimal('+Infinity'))
|
---|
4027 | Decimal('Infinity')
|
---|
4028 | """
|
---|
4029 | return a.exp(context=self)
|
---|
4030 |
|
---|
4031 | def fma(self, a, b, c):
|
---|
4032 | """Returns a multiplied by b, plus c.
|
---|
4033 |
|
---|
4034 | The first two operands are multiplied together, using multiply,
|
---|
4035 | the third operand is then added to the result of that
|
---|
4036 | multiplication, using add, all with only one final rounding.
|
---|
4037 |
|
---|
4038 | >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
|
---|
4039 | Decimal('22')
|
---|
4040 | >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
|
---|
4041 | Decimal('-8')
|
---|
4042 | >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
|
---|
4043 | Decimal('1.38435736E+12')
|
---|
4044 | """
|
---|
4045 | return a.fma(b, c, context=self)
|
---|
4046 |
|
---|
4047 | def is_canonical(self, a):
|
---|
4048 | """Return True if the operand is canonical; otherwise return False.
|
---|
4049 |
|
---|
4050 | Currently, the encoding of a Decimal instance is always
|
---|
4051 | canonical, so this method returns True for any Decimal.
|
---|
4052 |
|
---|
4053 | >>> ExtendedContext.is_canonical(Decimal('2.50'))
|
---|
4054 | True
|
---|
4055 | """
|
---|
4056 | return a.is_canonical()
|
---|
4057 |
|
---|
4058 | def is_finite(self, a):
|
---|
4059 | """Return True if the operand is finite; otherwise return False.
|
---|
4060 |
|
---|
4061 | A Decimal instance is considered finite if it is neither
|
---|
4062 | infinite nor a NaN.
|
---|
4063 |
|
---|
4064 | >>> ExtendedContext.is_finite(Decimal('2.50'))
|
---|
4065 | True
|
---|
4066 | >>> ExtendedContext.is_finite(Decimal('-0.3'))
|
---|
4067 | True
|
---|
4068 | >>> ExtendedContext.is_finite(Decimal('0'))
|
---|
4069 | True
|
---|
4070 | >>> ExtendedContext.is_finite(Decimal('Inf'))
|
---|
4071 | False
|
---|
4072 | >>> ExtendedContext.is_finite(Decimal('NaN'))
|
---|
4073 | False
|
---|
4074 | """
|
---|
4075 | return a.is_finite()
|
---|
4076 |
|
---|
4077 | def is_infinite(self, a):
|
---|
4078 | """Return True if the operand is infinite; otherwise return False.
|
---|
4079 |
|
---|
4080 | >>> ExtendedContext.is_infinite(Decimal('2.50'))
|
---|
4081 | False
|
---|
4082 | >>> ExtendedContext.is_infinite(Decimal('-Inf'))
|
---|
4083 | True
|
---|
4084 | >>> ExtendedContext.is_infinite(Decimal('NaN'))
|
---|
4085 | False
|
---|
4086 | """
|
---|
4087 | return a.is_infinite()
|
---|
4088 |
|
---|
4089 | def is_nan(self, a):
|
---|
4090 | """Return True if the operand is a qNaN or sNaN;
|
---|
4091 | otherwise return False.
|
---|
4092 |
|
---|
4093 | >>> ExtendedContext.is_nan(Decimal('2.50'))
|
---|
4094 | False
|
---|
4095 | >>> ExtendedContext.is_nan(Decimal('NaN'))
|
---|
4096 | True
|
---|
4097 | >>> ExtendedContext.is_nan(Decimal('-sNaN'))
|
---|
4098 | True
|
---|
4099 | """
|
---|
4100 | return a.is_nan()
|
---|
4101 |
|
---|
4102 | def is_normal(self, a):
|
---|
4103 | """Return True if the operand is a normal number;
|
---|
4104 | otherwise return False.
|
---|
4105 |
|
---|
4106 | >>> c = ExtendedContext.copy()
|
---|
4107 | >>> c.Emin = -999
|
---|
4108 | >>> c.Emax = 999
|
---|
4109 | >>> c.is_normal(Decimal('2.50'))
|
---|
4110 | True
|
---|
4111 | >>> c.is_normal(Decimal('0.1E-999'))
|
---|
4112 | False
|
---|
4113 | >>> c.is_normal(Decimal('0.00'))
|
---|
4114 | False
|
---|
4115 | >>> c.is_normal(Decimal('-Inf'))
|
---|
4116 | False
|
---|
4117 | >>> c.is_normal(Decimal('NaN'))
|
---|
4118 | False
|
---|
4119 | """
|
---|
4120 | return a.is_normal(context=self)
|
---|
4121 |
|
---|
4122 | def is_qnan(self, a):
|
---|
4123 | """Return True if the operand is a quiet NaN; otherwise return False.
|
---|
4124 |
|
---|
4125 | >>> ExtendedContext.is_qnan(Decimal('2.50'))
|
---|
4126 | False
|
---|
4127 | >>> ExtendedContext.is_qnan(Decimal('NaN'))
|
---|
4128 | True
|
---|
4129 | >>> ExtendedContext.is_qnan(Decimal('sNaN'))
|
---|
4130 | False
|
---|
4131 | """
|
---|
4132 | return a.is_qnan()
|
---|
4133 |
|
---|
4134 | def is_signed(self, a):
|
---|
4135 | """Return True if the operand is negative; otherwise return False.
|
---|
4136 |
|
---|
4137 | >>> ExtendedContext.is_signed(Decimal('2.50'))
|
---|
4138 | False
|
---|
4139 | >>> ExtendedContext.is_signed(Decimal('-12'))
|
---|
4140 | True
|
---|
4141 | >>> ExtendedContext.is_signed(Decimal('-0'))
|
---|
4142 | True
|
---|
4143 | """
|
---|
4144 | return a.is_signed()
|
---|
4145 |
|
---|
4146 | def is_snan(self, a):
|
---|
4147 | """Return True if the operand is a signaling NaN;
|
---|
4148 | otherwise return False.
|
---|
4149 |
|
---|
4150 | >>> ExtendedContext.is_snan(Decimal('2.50'))
|
---|
4151 | False
|
---|
4152 | >>> ExtendedContext.is_snan(Decimal('NaN'))
|
---|
4153 | False
|
---|
4154 | >>> ExtendedContext.is_snan(Decimal('sNaN'))
|
---|
4155 | True
|
---|
4156 | """
|
---|
4157 | return a.is_snan()
|
---|
4158 |
|
---|
4159 | def is_subnormal(self, a):
|
---|
4160 | """Return True if the operand is subnormal; otherwise return False.
|
---|
4161 |
|
---|
4162 | >>> c = ExtendedContext.copy()
|
---|
4163 | >>> c.Emin = -999
|
---|
4164 | >>> c.Emax = 999
|
---|
4165 | >>> c.is_subnormal(Decimal('2.50'))
|
---|
4166 | False
|
---|
4167 | >>> c.is_subnormal(Decimal('0.1E-999'))
|
---|
4168 | True
|
---|
4169 | >>> c.is_subnormal(Decimal('0.00'))
|
---|
4170 | False
|
---|
4171 | >>> c.is_subnormal(Decimal('-Inf'))
|
---|
4172 | False
|
---|
4173 | >>> c.is_subnormal(Decimal('NaN'))
|
---|
4174 | False
|
---|
4175 | """
|
---|
4176 | return a.is_subnormal(context=self)
|
---|
4177 |
|
---|
4178 | def is_zero(self, a):
|
---|
4179 | """Return True if the operand is a zero; otherwise return False.
|
---|
4180 |
|
---|
4181 | >>> ExtendedContext.is_zero(Decimal('0'))
|
---|
4182 | True
|
---|
4183 | >>> ExtendedContext.is_zero(Decimal('2.50'))
|
---|
4184 | False
|
---|
4185 | >>> ExtendedContext.is_zero(Decimal('-0E+2'))
|
---|
4186 | True
|
---|
4187 | """
|
---|
4188 | return a.is_zero()
|
---|
4189 |
|
---|
4190 | def ln(self, a):
|
---|
4191 | """Returns the natural (base e) logarithm of the operand.
|
---|
4192 |
|
---|
4193 | >>> c = ExtendedContext.copy()
|
---|
4194 | >>> c.Emin = -999
|
---|
4195 | >>> c.Emax = 999
|
---|
4196 | >>> c.ln(Decimal('0'))
|
---|
4197 | Decimal('-Infinity')
|
---|
4198 | >>> c.ln(Decimal('1.000'))
|
---|
4199 | Decimal('0')
|
---|
4200 | >>> c.ln(Decimal('2.71828183'))
|
---|
4201 | Decimal('1.00000000')
|
---|
4202 | >>> c.ln(Decimal('10'))
|
---|
4203 | Decimal('2.30258509')
|
---|
4204 | >>> c.ln(Decimal('+Infinity'))
|
---|
4205 | Decimal('Infinity')
|
---|
4206 | """
|
---|
4207 | return a.ln(context=self)
|
---|
4208 |
|
---|
4209 | def log10(self, a):
|
---|
4210 | """Returns the base 10 logarithm of the operand.
|
---|
4211 |
|
---|
4212 | >>> c = ExtendedContext.copy()
|
---|
4213 | >>> c.Emin = -999
|
---|
4214 | >>> c.Emax = 999
|
---|
4215 | >>> c.log10(Decimal('0'))
|
---|
4216 | Decimal('-Infinity')
|
---|
4217 | >>> c.log10(Decimal('0.001'))
|
---|
4218 | Decimal('-3')
|
---|
4219 | >>> c.log10(Decimal('1.000'))
|
---|
4220 | Decimal('0')
|
---|
4221 | >>> c.log10(Decimal('2'))
|
---|
4222 | Decimal('0.301029996')
|
---|
4223 | >>> c.log10(Decimal('10'))
|
---|
4224 | Decimal('1')
|
---|
4225 | >>> c.log10(Decimal('70'))
|
---|
4226 | Decimal('1.84509804')
|
---|
4227 | >>> c.log10(Decimal('+Infinity'))
|
---|
4228 | Decimal('Infinity')
|
---|
4229 | """
|
---|
4230 | return a.log10(context=self)
|
---|
4231 |
|
---|
4232 | def logb(self, a):
|
---|
4233 | """ Returns the exponent of the magnitude of the operand's MSD.
|
---|
4234 |
|
---|
4235 | The result is the integer which is the exponent of the magnitude
|
---|
4236 | of the most significant digit of the operand (as though the
|
---|
4237 | operand were truncated to a single digit while maintaining the
|
---|
4238 | value of that digit and without limiting the resulting exponent).
|
---|
4239 |
|
---|
4240 | >>> ExtendedContext.logb(Decimal('250'))
|
---|
4241 | Decimal('2')
|
---|
4242 | >>> ExtendedContext.logb(Decimal('2.50'))
|
---|
4243 | Decimal('0')
|
---|
4244 | >>> ExtendedContext.logb(Decimal('0.03'))
|
---|
4245 | Decimal('-2')
|
---|
4246 | >>> ExtendedContext.logb(Decimal('0'))
|
---|
4247 | Decimal('-Infinity')
|
---|
4248 | """
|
---|
4249 | return a.logb(context=self)
|
---|
4250 |
|
---|
4251 | def logical_and(self, a, b):
|
---|
4252 | """Applies the logical operation 'and' between each operand's digits.
|
---|
4253 |
|
---|
4254 | The operands must be both logical numbers.
|
---|
4255 |
|
---|
4256 | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
|
---|
4257 | Decimal('0')
|
---|
4258 | >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
|
---|
4259 | Decimal('0')
|
---|
4260 | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
|
---|
4261 | Decimal('0')
|
---|
4262 | >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
|
---|
4263 | Decimal('1')
|
---|
4264 | >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
|
---|
4265 | Decimal('1000')
|
---|
4266 | >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
|
---|
4267 | Decimal('10')
|
---|
4268 | """
|
---|
4269 | return a.logical_and(b, context=self)
|
---|
4270 |
|
---|
4271 | def logical_invert(self, a):
|
---|
4272 | """Invert all the digits in the operand.
|
---|
4273 |
|
---|
4274 | The operand must be a logical number.
|
---|
4275 |
|
---|
4276 | >>> ExtendedContext.logical_invert(Decimal('0'))
|
---|
4277 | Decimal('111111111')
|
---|
4278 | >>> ExtendedContext.logical_invert(Decimal('1'))
|
---|
4279 | Decimal('111111110')
|
---|
4280 | >>> ExtendedContext.logical_invert(Decimal('111111111'))
|
---|
4281 | Decimal('0')
|
---|
4282 | >>> ExtendedContext.logical_invert(Decimal('101010101'))
|
---|
4283 | Decimal('10101010')
|
---|
4284 | """
|
---|
4285 | return a.logical_invert(context=self)
|
---|
4286 |
|
---|
4287 | def logical_or(self, a, b):
|
---|
4288 | """Applies the logical operation 'or' between each operand's digits.
|
---|
4289 |
|
---|
4290 | The operands must be both logical numbers.
|
---|
4291 |
|
---|
4292 | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
|
---|
4293 | Decimal('0')
|
---|
4294 | >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
|
---|
4295 | Decimal('1')
|
---|
4296 | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
|
---|
4297 | Decimal('1')
|
---|
4298 | >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
|
---|
4299 | Decimal('1')
|
---|
4300 | >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
|
---|
4301 | Decimal('1110')
|
---|
4302 | >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
|
---|
4303 | Decimal('1110')
|
---|
4304 | """
|
---|
4305 | return a.logical_or(b, context=self)
|
---|
4306 |
|
---|
4307 | def logical_xor(self, a, b):
|
---|
4308 | """Applies the logical operation 'xor' between each operand's digits.
|
---|
4309 |
|
---|
4310 | The operands must be both logical numbers.
|
---|
4311 |
|
---|
4312 | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
|
---|
4313 | Decimal('0')
|
---|
4314 | >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
|
---|
4315 | Decimal('1')
|
---|
4316 | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
|
---|
4317 | Decimal('1')
|
---|
4318 | >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
|
---|
4319 | Decimal('0')
|
---|
4320 | >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
|
---|
4321 | Decimal('110')
|
---|
4322 | >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
|
---|
4323 | Decimal('1101')
|
---|
4324 | """
|
---|
4325 | return a.logical_xor(b, context=self)
|
---|
4326 |
|
---|
4327 | def max(self, a,b):
|
---|
4328 | """max compares two values numerically and returns the maximum.
|
---|
4329 |
|
---|
4330 | If either operand is a NaN then the general rules apply.
|
---|
4331 | Otherwise, the operands are compared as though by the compare
|
---|
4332 | operation. If they are numerically equal then the left-hand operand
|
---|
4333 | is chosen as the result. Otherwise the maximum (closer to positive
|
---|
4334 | infinity) of the two operands is chosen as the result.
|
---|
4335 |
|
---|
4336 | >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
|
---|
4337 | Decimal('3')
|
---|
4338 | >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
|
---|
4339 | Decimal('3')
|
---|
4340 | >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
|
---|
4341 | Decimal('1')
|
---|
4342 | >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
|
---|
4343 | Decimal('7')
|
---|
4344 | """
|
---|
4345 | return a.max(b, context=self)
|
---|
4346 |
|
---|
4347 | def max_mag(self, a, b):
|
---|
4348 | """Compares the values numerically with their sign ignored."""
|
---|
4349 | return a.max_mag(b, context=self)
|
---|
4350 |
|
---|
4351 | def min(self, a,b):
|
---|
4352 | """min compares two values numerically and returns the minimum.
|
---|
4353 |
|
---|
4354 | If either operand is a NaN then the general rules apply.
|
---|
4355 | Otherwise, the operands are compared as though by the compare
|
---|
4356 | operation. If they are numerically equal then the left-hand operand
|
---|
4357 | is chosen as the result. Otherwise the minimum (closer to negative
|
---|
4358 | infinity) of the two operands is chosen as the result.
|
---|
4359 |
|
---|
4360 | >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
|
---|
4361 | Decimal('2')
|
---|
4362 | >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
|
---|
4363 | Decimal('-10')
|
---|
4364 | >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
|
---|
4365 | Decimal('1.0')
|
---|
4366 | >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
|
---|
4367 | Decimal('7')
|
---|
4368 | """
|
---|
4369 | return a.min(b, context=self)
|
---|
4370 |
|
---|
4371 | def min_mag(self, a, b):
|
---|
4372 | """Compares the values numerically with their sign ignored."""
|
---|
4373 | return a.min_mag(b, context=self)
|
---|
4374 |
|
---|
4375 | def minus(self, a):
|
---|
4376 | """Minus corresponds to unary prefix minus in Python.
|
---|
4377 |
|
---|
4378 | The operation is evaluated using the same rules as subtract; the
|
---|
4379 | operation minus(a) is calculated as subtract('0', a) where the '0'
|
---|
4380 | has the same exponent as the operand.
|
---|
4381 |
|
---|
4382 | >>> ExtendedContext.minus(Decimal('1.3'))
|
---|
4383 | Decimal('-1.3')
|
---|
4384 | >>> ExtendedContext.minus(Decimal('-1.3'))
|
---|
4385 | Decimal('1.3')
|
---|
4386 | """
|
---|
4387 | return a.__neg__(context=self)
|
---|
4388 |
|
---|
4389 | def multiply(self, a, b):
|
---|
4390 | """multiply multiplies two operands.
|
---|
4391 |
|
---|
4392 | If either operand is a special value then the general rules apply.
|
---|
4393 | Otherwise, the operands are multiplied together ('long multiplication'),
|
---|
4394 | resulting in a number which may be as long as the sum of the lengths
|
---|
4395 | of the two operands.
|
---|
4396 |
|
---|
4397 | >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
|
---|
4398 | Decimal('3.60')
|
---|
4399 | >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
|
---|
4400 | Decimal('21')
|
---|
4401 | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
|
---|
4402 | Decimal('0.72')
|
---|
4403 | >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
|
---|
4404 | Decimal('-0.0')
|
---|
4405 | >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
|
---|
4406 | Decimal('4.28135971E+11')
|
---|
4407 | """
|
---|
4408 | return a.__mul__(b, context=self)
|
---|
4409 |
|
---|
4410 | def next_minus(self, a):
|
---|
4411 | """Returns the largest representable number smaller than a.
|
---|
4412 |
|
---|
4413 | >>> c = ExtendedContext.copy()
|
---|
4414 | >>> c.Emin = -999
|
---|
4415 | >>> c.Emax = 999
|
---|
4416 | >>> ExtendedContext.next_minus(Decimal('1'))
|
---|
4417 | Decimal('0.999999999')
|
---|
4418 | >>> c.next_minus(Decimal('1E-1007'))
|
---|
4419 | Decimal('0E-1007')
|
---|
4420 | >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
|
---|
4421 | Decimal('-1.00000004')
|
---|
4422 | >>> c.next_minus(Decimal('Infinity'))
|
---|
4423 | Decimal('9.99999999E+999')
|
---|
4424 | """
|
---|
4425 | return a.next_minus(context=self)
|
---|
4426 |
|
---|
4427 | def next_plus(self, a):
|
---|
4428 | """Returns the smallest representable number larger than a.
|
---|
4429 |
|
---|
4430 | >>> c = ExtendedContext.copy()
|
---|
4431 | >>> c.Emin = -999
|
---|
4432 | >>> c.Emax = 999
|
---|
4433 | >>> ExtendedContext.next_plus(Decimal('1'))
|
---|
4434 | Decimal('1.00000001')
|
---|
4435 | >>> c.next_plus(Decimal('-1E-1007'))
|
---|
4436 | Decimal('-0E-1007')
|
---|
4437 | >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
|
---|
4438 | Decimal('-1.00000002')
|
---|
4439 | >>> c.next_plus(Decimal('-Infinity'))
|
---|
4440 | Decimal('-9.99999999E+999')
|
---|
4441 | """
|
---|
4442 | return a.next_plus(context=self)
|
---|
4443 |
|
---|
4444 | def next_toward(self, a, b):
|
---|
4445 | """Returns the number closest to a, in direction towards b.
|
---|
4446 |
|
---|
4447 | The result is the closest representable number from the first
|
---|
4448 | operand (but not the first operand) that is in the direction
|
---|
4449 | towards the second operand, unless the operands have the same
|
---|
4450 | value.
|
---|
4451 |
|
---|
4452 | >>> c = ExtendedContext.copy()
|
---|
4453 | >>> c.Emin = -999
|
---|
4454 | >>> c.Emax = 999
|
---|
4455 | >>> c.next_toward(Decimal('1'), Decimal('2'))
|
---|
4456 | Decimal('1.00000001')
|
---|
4457 | >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
|
---|
4458 | Decimal('-0E-1007')
|
---|
4459 | >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
|
---|
4460 | Decimal('-1.00000002')
|
---|
4461 | >>> c.next_toward(Decimal('1'), Decimal('0'))
|
---|
4462 | Decimal('0.999999999')
|
---|
4463 | >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
|
---|
4464 | Decimal('0E-1007')
|
---|
4465 | >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
|
---|
4466 | Decimal('-1.00000004')
|
---|
4467 | >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
|
---|
4468 | Decimal('-0.00')
|
---|
4469 | """
|
---|
4470 | return a.next_toward(b, context=self)
|
---|
4471 |
|
---|
4472 | def normalize(self, a):
|
---|
4473 | """normalize reduces an operand to its simplest form.
|
---|
4474 |
|
---|
4475 | Essentially a plus operation with all trailing zeros removed from the
|
---|
4476 | result.
|
---|
4477 |
|
---|
4478 | >>> ExtendedContext.normalize(Decimal('2.1'))
|
---|
4479 | Decimal('2.1')
|
---|
4480 | >>> ExtendedContext.normalize(Decimal('-2.0'))
|
---|
4481 | Decimal('-2')
|
---|
4482 | >>> ExtendedContext.normalize(Decimal('1.200'))
|
---|
4483 | Decimal('1.2')
|
---|
4484 | >>> ExtendedContext.normalize(Decimal('-120'))
|
---|
4485 | Decimal('-1.2E+2')
|
---|
4486 | >>> ExtendedContext.normalize(Decimal('120.00'))
|
---|
4487 | Decimal('1.2E+2')
|
---|
4488 | >>> ExtendedContext.normalize(Decimal('0.00'))
|
---|
4489 | Decimal('0')
|
---|
4490 | """
|
---|
4491 | return a.normalize(context=self)
|
---|
4492 |
|
---|
4493 | def number_class(self, a):
|
---|
4494 | """Returns an indication of the class of the operand.
|
---|
4495 |
|
---|
4496 | The class is one of the following strings:
|
---|
4497 | -sNaN
|
---|
4498 | -NaN
|
---|
4499 | -Infinity
|
---|
4500 | -Normal
|
---|
4501 | -Subnormal
|
---|
4502 | -Zero
|
---|
4503 | +Zero
|
---|
4504 | +Subnormal
|
---|
4505 | +Normal
|
---|
4506 | +Infinity
|
---|
4507 |
|
---|
4508 | >>> c = Context(ExtendedContext)
|
---|
4509 | >>> c.Emin = -999
|
---|
4510 | >>> c.Emax = 999
|
---|
4511 | >>> c.number_class(Decimal('Infinity'))
|
---|
4512 | '+Infinity'
|
---|
4513 | >>> c.number_class(Decimal('1E-10'))
|
---|
4514 | '+Normal'
|
---|
4515 | >>> c.number_class(Decimal('2.50'))
|
---|
4516 | '+Normal'
|
---|
4517 | >>> c.number_class(Decimal('0.1E-999'))
|
---|
4518 | '+Subnormal'
|
---|
4519 | >>> c.number_class(Decimal('0'))
|
---|
4520 | '+Zero'
|
---|
4521 | >>> c.number_class(Decimal('-0'))
|
---|
4522 | '-Zero'
|
---|
4523 | >>> c.number_class(Decimal('-0.1E-999'))
|
---|
4524 | '-Subnormal'
|
---|
4525 | >>> c.number_class(Decimal('-1E-10'))
|
---|
4526 | '-Normal'
|
---|
4527 | >>> c.number_class(Decimal('-2.50'))
|
---|
4528 | '-Normal'
|
---|
4529 | >>> c.number_class(Decimal('-Infinity'))
|
---|
4530 | '-Infinity'
|
---|
4531 | >>> c.number_class(Decimal('NaN'))
|
---|
4532 | 'NaN'
|
---|
4533 | >>> c.number_class(Decimal('-NaN'))
|
---|
4534 | 'NaN'
|
---|
4535 | >>> c.number_class(Decimal('sNaN'))
|
---|
4536 | 'sNaN'
|
---|
4537 | """
|
---|
4538 | return a.number_class(context=self)
|
---|
4539 |
|
---|
4540 | def plus(self, a):
|
---|
4541 | """Plus corresponds to unary prefix plus in Python.
|
---|
4542 |
|
---|
4543 | The operation is evaluated using the same rules as add; the
|
---|
4544 | operation plus(a) is calculated as add('0', a) where the '0'
|
---|
4545 | has the same exponent as the operand.
|
---|
4546 |
|
---|
4547 | >>> ExtendedContext.plus(Decimal('1.3'))
|
---|
4548 | Decimal('1.3')
|
---|
4549 | >>> ExtendedContext.plus(Decimal('-1.3'))
|
---|
4550 | Decimal('-1.3')
|
---|
4551 | """
|
---|
4552 | return a.__pos__(context=self)
|
---|
4553 |
|
---|
4554 | def power(self, a, b, modulo=None):
|
---|
4555 | """Raises a to the power of b, to modulo if given.
|
---|
4556 |
|
---|
4557 | With two arguments, compute a**b. If a is negative then b
|
---|
4558 | must be integral. The result will be inexact unless b is
|
---|
4559 | integral and the result is finite and can be expressed exactly
|
---|
4560 | in 'precision' digits.
|
---|
4561 |
|
---|
4562 | With three arguments, compute (a**b) % modulo. For the
|
---|
4563 | three argument form, the following restrictions on the
|
---|
4564 | arguments hold:
|
---|
4565 |
|
---|
4566 | - all three arguments must be integral
|
---|
4567 | - b must be nonnegative
|
---|
4568 | - at least one of a or b must be nonzero
|
---|
4569 | - modulo must be nonzero and have at most 'precision' digits
|
---|
4570 |
|
---|
4571 | The result of pow(a, b, modulo) is identical to the result
|
---|
4572 | that would be obtained by computing (a**b) % modulo with
|
---|
4573 | unbounded precision, but is computed more efficiently. It is
|
---|
4574 | always exact.
|
---|
4575 |
|
---|
4576 | >>> c = ExtendedContext.copy()
|
---|
4577 | >>> c.Emin = -999
|
---|
4578 | >>> c.Emax = 999
|
---|
4579 | >>> c.power(Decimal('2'), Decimal('3'))
|
---|
4580 | Decimal('8')
|
---|
4581 | >>> c.power(Decimal('-2'), Decimal('3'))
|
---|
4582 | Decimal('-8')
|
---|
4583 | >>> c.power(Decimal('2'), Decimal('-3'))
|
---|
4584 | Decimal('0.125')
|
---|
4585 | >>> c.power(Decimal('1.7'), Decimal('8'))
|
---|
4586 | Decimal('69.7575744')
|
---|
4587 | >>> c.power(Decimal('10'), Decimal('0.301029996'))
|
---|
4588 | Decimal('2.00000000')
|
---|
4589 | >>> c.power(Decimal('Infinity'), Decimal('-1'))
|
---|
4590 | Decimal('0')
|
---|
4591 | >>> c.power(Decimal('Infinity'), Decimal('0'))
|
---|
4592 | Decimal('1')
|
---|
4593 | >>> c.power(Decimal('Infinity'), Decimal('1'))
|
---|
4594 | Decimal('Infinity')
|
---|
4595 | >>> c.power(Decimal('-Infinity'), Decimal('-1'))
|
---|
4596 | Decimal('-0')
|
---|
4597 | >>> c.power(Decimal('-Infinity'), Decimal('0'))
|
---|
4598 | Decimal('1')
|
---|
4599 | >>> c.power(Decimal('-Infinity'), Decimal('1'))
|
---|
4600 | Decimal('-Infinity')
|
---|
4601 | >>> c.power(Decimal('-Infinity'), Decimal('2'))
|
---|
4602 | Decimal('Infinity')
|
---|
4603 | >>> c.power(Decimal('0'), Decimal('0'))
|
---|
4604 | Decimal('NaN')
|
---|
4605 |
|
---|
4606 | >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
|
---|
4607 | Decimal('11')
|
---|
4608 | >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
|
---|
4609 | Decimal('-11')
|
---|
4610 | >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
|
---|
4611 | Decimal('1')
|
---|
4612 | >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
|
---|
4613 | Decimal('11')
|
---|
4614 | >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
|
---|
4615 | Decimal('11729830')
|
---|
4616 | >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
|
---|
4617 | Decimal('-0')
|
---|
4618 | >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
|
---|
4619 | Decimal('1')
|
---|
4620 | """
|
---|
4621 | return a.__pow__(b, modulo, context=self)
|
---|
4622 |
|
---|
4623 | def quantize(self, a, b):
|
---|
4624 | """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
|
---|
4625 |
|
---|
4626 | The coefficient of the result is derived from that of the left-hand
|
---|
4627 | operand. It may be rounded using the current rounding setting (if the
|
---|
4628 | exponent is being increased), multiplied by a positive power of ten (if
|
---|
4629 | the exponent is being decreased), or is unchanged (if the exponent is
|
---|
4630 | already equal to that of the right-hand operand).
|
---|
4631 |
|
---|
4632 | Unlike other operations, if the length of the coefficient after the
|
---|
4633 | quantize operation would be greater than precision then an Invalid
|
---|
4634 | operation condition is raised. This guarantees that, unless there is
|
---|
4635 | an error condition, the exponent of the result of a quantize is always
|
---|
4636 | equal to that of the right-hand operand.
|
---|
4637 |
|
---|
4638 | Also unlike other operations, quantize will never raise Underflow, even
|
---|
4639 | if the result is subnormal and inexact.
|
---|
4640 |
|
---|
4641 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
|
---|
4642 | Decimal('2.170')
|
---|
4643 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
|
---|
4644 | Decimal('2.17')
|
---|
4645 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
|
---|
4646 | Decimal('2.2')
|
---|
4647 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
|
---|
4648 | Decimal('2')
|
---|
4649 | >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
|
---|
4650 | Decimal('0E+1')
|
---|
4651 | >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
|
---|
4652 | Decimal('-Infinity')
|
---|
4653 | >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
|
---|
4654 | Decimal('NaN')
|
---|
4655 | >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
|
---|
4656 | Decimal('-0')
|
---|
4657 | >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
|
---|
4658 | Decimal('-0E+5')
|
---|
4659 | >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
|
---|
4660 | Decimal('NaN')
|
---|
4661 | >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
|
---|
4662 | Decimal('NaN')
|
---|
4663 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
|
---|
4664 | Decimal('217.0')
|
---|
4665 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
|
---|
4666 | Decimal('217')
|
---|
4667 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
|
---|
4668 | Decimal('2.2E+2')
|
---|
4669 | >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
|
---|
4670 | Decimal('2E+2')
|
---|
4671 | """
|
---|
4672 | return a.quantize(b, context=self)
|
---|
4673 |
|
---|
4674 | def radix(self):
|
---|
4675 | """Just returns 10, as this is Decimal, :)
|
---|
4676 |
|
---|
4677 | >>> ExtendedContext.radix()
|
---|
4678 | Decimal('10')
|
---|
4679 | """
|
---|
4680 | return Decimal(10)
|
---|
4681 |
|
---|
4682 | def remainder(self, a, b):
|
---|
4683 | """Returns the remainder from integer division.
|
---|
4684 |
|
---|
4685 | The result is the residue of the dividend after the operation of
|
---|
4686 | calculating integer division as described for divide-integer, rounded
|
---|
4687 | to precision digits if necessary. The sign of the result, if
|
---|
4688 | non-zero, is the same as that of the original dividend.
|
---|
4689 |
|
---|
4690 | This operation will fail under the same conditions as integer division
|
---|
4691 | (that is, if integer division on the same two operands would fail, the
|
---|
4692 | remainder cannot be calculated).
|
---|
4693 |
|
---|
4694 | >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
|
---|
4695 | Decimal('2.1')
|
---|
4696 | >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
|
---|
4697 | Decimal('1')
|
---|
4698 | >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
|
---|
4699 | Decimal('-1')
|
---|
4700 | >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
|
---|
4701 | Decimal('0.2')
|
---|
4702 | >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
|
---|
4703 | Decimal('0.1')
|
---|
4704 | >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
|
---|
4705 | Decimal('1.0')
|
---|
4706 | """
|
---|
4707 | return a.__mod__(b, context=self)
|
---|
4708 |
|
---|
4709 | def remainder_near(self, a, b):
|
---|
4710 | """Returns to be "a - b * n", where n is the integer nearest the exact
|
---|
4711 | value of "x / b" (if two integers are equally near then the even one
|
---|
4712 | is chosen). If the result is equal to 0 then its sign will be the
|
---|
4713 | sign of a.
|
---|
4714 |
|
---|
4715 | This operation will fail under the same conditions as integer division
|
---|
4716 | (that is, if integer division on the same two operands would fail, the
|
---|
4717 | remainder cannot be calculated).
|
---|
4718 |
|
---|
4719 | >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
|
---|
4720 | Decimal('-0.9')
|
---|
4721 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
|
---|
4722 | Decimal('-2')
|
---|
4723 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
|
---|
4724 | Decimal('1')
|
---|
4725 | >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
|
---|
4726 | Decimal('-1')
|
---|
4727 | >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
|
---|
4728 | Decimal('0.2')
|
---|
4729 | >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
|
---|
4730 | Decimal('0.1')
|
---|
4731 | >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
|
---|
4732 | Decimal('-0.3')
|
---|
4733 | """
|
---|
4734 | return a.remainder_near(b, context=self)
|
---|
4735 |
|
---|
4736 | def rotate(self, a, b):
|
---|
4737 | """Returns a rotated copy of a, b times.
|
---|
4738 |
|
---|
4739 | The coefficient of the result is a rotated copy of the digits in
|
---|
4740 | the coefficient of the first operand. The number of places of
|
---|
4741 | rotation is taken from the absolute value of the second operand,
|
---|
4742 | with the rotation being to the left if the second operand is
|
---|
4743 | positive or to the right otherwise.
|
---|
4744 |
|
---|
4745 | >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
|
---|
4746 | Decimal('400000003')
|
---|
4747 | >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
|
---|
4748 | Decimal('12')
|
---|
4749 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
|
---|
4750 | Decimal('891234567')
|
---|
4751 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
|
---|
4752 | Decimal('123456789')
|
---|
4753 | >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
|
---|
4754 | Decimal('345678912')
|
---|
4755 | """
|
---|
4756 | return a.rotate(b, context=self)
|
---|
4757 |
|
---|
4758 | def same_quantum(self, a, b):
|
---|
4759 | """Returns True if the two operands have the same exponent.
|
---|
4760 |
|
---|
4761 | The result is never affected by either the sign or the coefficient of
|
---|
4762 | either operand.
|
---|
4763 |
|
---|
4764 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
|
---|
4765 | False
|
---|
4766 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
|
---|
4767 | True
|
---|
4768 | >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
|
---|
4769 | False
|
---|
4770 | >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
|
---|
4771 | True
|
---|
4772 | """
|
---|
4773 | return a.same_quantum(b)
|
---|
4774 |
|
---|
4775 | def scaleb (self, a, b):
|
---|
4776 | """Returns the first operand after adding the second value its exp.
|
---|
4777 |
|
---|
4778 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
|
---|
4779 | Decimal('0.0750')
|
---|
4780 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
|
---|
4781 | Decimal('7.50')
|
---|
4782 | >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
|
---|
4783 | Decimal('7.50E+3')
|
---|
4784 | """
|
---|
4785 | return a.scaleb (b, context=self)
|
---|
4786 |
|
---|
4787 | def shift(self, a, b):
|
---|
4788 | """Returns a shifted copy of a, b times.
|
---|
4789 |
|
---|
4790 | The coefficient of the result is a shifted copy of the digits
|
---|
4791 | in the coefficient of the first operand. The number of places
|
---|
4792 | to shift is taken from the absolute value of the second operand,
|
---|
4793 | with the shift being to the left if the second operand is
|
---|
4794 | positive or to the right otherwise. Digits shifted into the
|
---|
4795 | coefficient are zeros.
|
---|
4796 |
|
---|
4797 | >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
|
---|
4798 | Decimal('400000000')
|
---|
4799 | >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
|
---|
4800 | Decimal('0')
|
---|
4801 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
|
---|
4802 | Decimal('1234567')
|
---|
4803 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
|
---|
4804 | Decimal('123456789')
|
---|
4805 | >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
|
---|
4806 | Decimal('345678900')
|
---|
4807 | """
|
---|
4808 | return a.shift(b, context=self)
|
---|
4809 |
|
---|
4810 | def sqrt(self, a):
|
---|
4811 | """Square root of a non-negative number to context precision.
|
---|
4812 |
|
---|
4813 | If the result must be inexact, it is rounded using the round-half-even
|
---|
4814 | algorithm.
|
---|
4815 |
|
---|
4816 | >>> ExtendedContext.sqrt(Decimal('0'))
|
---|
4817 | Decimal('0')
|
---|
4818 | >>> ExtendedContext.sqrt(Decimal('-0'))
|
---|
4819 | Decimal('-0')
|
---|
4820 | >>> ExtendedContext.sqrt(Decimal('0.39'))
|
---|
4821 | Decimal('0.624499800')
|
---|
4822 | >>> ExtendedContext.sqrt(Decimal('100'))
|
---|
4823 | Decimal('10')
|
---|
4824 | >>> ExtendedContext.sqrt(Decimal('1'))
|
---|
4825 | Decimal('1')
|
---|
4826 | >>> ExtendedContext.sqrt(Decimal('1.0'))
|
---|
4827 | Decimal('1.0')
|
---|
4828 | >>> ExtendedContext.sqrt(Decimal('1.00'))
|
---|
4829 | Decimal('1.0')
|
---|
4830 | >>> ExtendedContext.sqrt(Decimal('7'))
|
---|
4831 | Decimal('2.64575131')
|
---|
4832 | >>> ExtendedContext.sqrt(Decimal('10'))
|
---|
4833 | Decimal('3.16227766')
|
---|
4834 | >>> ExtendedContext.prec
|
---|
4835 | 9
|
---|
4836 | """
|
---|
4837 | return a.sqrt(context=self)
|
---|
4838 |
|
---|
4839 | def subtract(self, a, b):
|
---|
4840 | """Return the difference between the two operands.
|
---|
4841 |
|
---|
4842 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
|
---|
4843 | Decimal('0.23')
|
---|
4844 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
|
---|
4845 | Decimal('0.00')
|
---|
4846 | >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
|
---|
4847 | Decimal('-0.77')
|
---|
4848 | """
|
---|
4849 | return a.__sub__(b, context=self)
|
---|
4850 |
|
---|
4851 | def to_eng_string(self, a):
|
---|
4852 | """Converts a number to a string, using scientific notation.
|
---|
4853 |
|
---|
4854 | The operation is not affected by the context.
|
---|
4855 | """
|
---|
4856 | return a.to_eng_string(context=self)
|
---|
4857 |
|
---|
4858 | def to_sci_string(self, a):
|
---|
4859 | """Converts a number to a string, using scientific notation.
|
---|
4860 |
|
---|
4861 | The operation is not affected by the context.
|
---|
4862 | """
|
---|
4863 | return a.__str__(context=self)
|
---|
4864 |
|
---|
4865 | def to_integral_exact(self, a):
|
---|
4866 | """Rounds to an integer.
|
---|
4867 |
|
---|
4868 | When the operand has a negative exponent, the result is the same
|
---|
4869 | as using the quantize() operation using the given operand as the
|
---|
4870 | left-hand-operand, 1E+0 as the right-hand-operand, and the precision
|
---|
4871 | of the operand as the precision setting; Inexact and Rounded flags
|
---|
4872 | are allowed in this operation. The rounding mode is taken from the
|
---|
4873 | context.
|
---|
4874 |
|
---|
4875 | >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
|
---|
4876 | Decimal('2')
|
---|
4877 | >>> ExtendedContext.to_integral_exact(Decimal('100'))
|
---|
4878 | Decimal('100')
|
---|
4879 | >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
|
---|
4880 | Decimal('100')
|
---|
4881 | >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
|
---|
4882 | Decimal('102')
|
---|
4883 | >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
|
---|
4884 | Decimal('-102')
|
---|
4885 | >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
|
---|
4886 | Decimal('1.0E+6')
|
---|
4887 | >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
|
---|
4888 | Decimal('7.89E+77')
|
---|
4889 | >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
|
---|
4890 | Decimal('-Infinity')
|
---|
4891 | """
|
---|
4892 | return a.to_integral_exact(context=self)
|
---|
4893 |
|
---|
4894 | def to_integral_value(self, a):
|
---|
4895 | """Rounds to an integer.
|
---|
4896 |
|
---|
4897 | When the operand has a negative exponent, the result is the same
|
---|
4898 | as using the quantize() operation using the given operand as the
|
---|
4899 | left-hand-operand, 1E+0 as the right-hand-operand, and the precision
|
---|
4900 | of the operand as the precision setting, except that no flags will
|
---|
4901 | be set. The rounding mode is taken from the context.
|
---|
4902 |
|
---|
4903 | >>> ExtendedContext.to_integral_value(Decimal('2.1'))
|
---|
4904 | Decimal('2')
|
---|
4905 | >>> ExtendedContext.to_integral_value(Decimal('100'))
|
---|
4906 | Decimal('100')
|
---|
4907 | >>> ExtendedContext.to_integral_value(Decimal('100.0'))
|
---|
4908 | Decimal('100')
|
---|
4909 | >>> ExtendedContext.to_integral_value(Decimal('101.5'))
|
---|
4910 | Decimal('102')
|
---|
4911 | >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
|
---|
4912 | Decimal('-102')
|
---|
4913 | >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
|
---|
4914 | Decimal('1.0E+6')
|
---|
4915 | >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
|
---|
4916 | Decimal('7.89E+77')
|
---|
4917 | >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
|
---|
4918 | Decimal('-Infinity')
|
---|
4919 | """
|
---|
4920 | return a.to_integral_value(context=self)
|
---|
4921 |
|
---|
4922 | # the method name changed, but we provide also the old one, for compatibility
|
---|
4923 | to_integral = to_integral_value
|
---|
4924 |
|
---|
4925 | class _WorkRep(object):
|
---|
4926 | __slots__ = ('sign','int','exp')
|
---|
4927 | # sign: 0 or 1
|
---|
4928 | # int: int or long
|
---|
4929 | # exp: None, int, or string
|
---|
4930 |
|
---|
4931 | def __init__(self, value=None):
|
---|
4932 | if value is None:
|
---|
4933 | self.sign = None
|
---|
4934 | self.int = 0
|
---|
4935 | self.exp = None
|
---|
4936 | elif isinstance(value, Decimal):
|
---|
4937 | self.sign = value._sign
|
---|
4938 | self.int = int(value._int)
|
---|
4939 | self.exp = value._exp
|
---|
4940 | else:
|
---|
4941 | # assert isinstance(value, tuple)
|
---|
4942 | self.sign = value[0]
|
---|
4943 | self.int = value[1]
|
---|
4944 | self.exp = value[2]
|
---|
4945 |
|
---|
4946 | def __repr__(self):
|
---|
4947 | return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
|
---|
4948 |
|
---|
4949 | __str__ = __repr__
|
---|
4950 |
|
---|
4951 |
|
---|
4952 |
|
---|
4953 | def _normalize(op1, op2, prec = 0):
|
---|
4954 | """Normalizes op1, op2 to have the same exp and length of coefficient.
|
---|
4955 |
|
---|
4956 | Done during addition.
|
---|
4957 | """
|
---|
4958 | if op1.exp < op2.exp:
|
---|
4959 | tmp = op2
|
---|
4960 | other = op1
|
---|
4961 | else:
|
---|
4962 | tmp = op1
|
---|
4963 | other = op2
|
---|
4964 |
|
---|
4965 | # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
|
---|
4966 | # Then adding 10**exp to tmp has the same effect (after rounding)
|
---|
4967 | # as adding any positive quantity smaller than 10**exp; similarly
|
---|
4968 | # for subtraction. So if other is smaller than 10**exp we replace
|
---|
4969 | # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
|
---|
4970 | tmp_len = len(str(tmp.int))
|
---|
4971 | other_len = len(str(other.int))
|
---|
4972 | exp = tmp.exp + min(-1, tmp_len - prec - 2)
|
---|
4973 | if other_len + other.exp - 1 < exp:
|
---|
4974 | other.int = 1
|
---|
4975 | other.exp = exp
|
---|
4976 |
|
---|
4977 | tmp.int *= 10 ** (tmp.exp - other.exp)
|
---|
4978 | tmp.exp = other.exp
|
---|
4979 | return op1, op2
|
---|
4980 |
|
---|
4981 | ##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
|
---|
4982 |
|
---|
4983 | # This function from Tim Peters was taken from here:
|
---|
4984 | # http://mail.python.org/pipermail/python-list/1999-July/007758.html
|
---|
4985 | # The correction being in the function definition is for speed, and
|
---|
4986 | # the whole function is not resolved with math.log because of avoiding
|
---|
4987 | # the use of floats.
|
---|
4988 | def _nbits(n, correction = {
|
---|
4989 | '0': 4, '1': 3, '2': 2, '3': 2,
|
---|
4990 | '4': 1, '5': 1, '6': 1, '7': 1,
|
---|
4991 | '8': 0, '9': 0, 'a': 0, 'b': 0,
|
---|
4992 | 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
|
---|
4993 | """Number of bits in binary representation of the positive integer n,
|
---|
4994 | or 0 if n == 0.
|
---|
4995 | """
|
---|
4996 | if n < 0:
|
---|
4997 | raise ValueError("The argument to _nbits should be nonnegative.")
|
---|
4998 | hex_n = "%x" % n
|
---|
4999 | return 4*len(hex_n) - correction[hex_n[0]]
|
---|
5000 |
|
---|
5001 | def _sqrt_nearest(n, a):
|
---|
5002 | """Closest integer to the square root of the positive integer n. a is
|
---|
5003 | an initial approximation to the square root. Any positive integer
|
---|
5004 | will do for a, but the closer a is to the square root of n the
|
---|
5005 | faster convergence will be.
|
---|
5006 |
|
---|
5007 | """
|
---|
5008 | if n <= 0 or a <= 0:
|
---|
5009 | raise ValueError("Both arguments to _sqrt_nearest should be positive.")
|
---|
5010 |
|
---|
5011 | b=0
|
---|
5012 | while a != b:
|
---|
5013 | b, a = a, a--n//a>>1
|
---|
5014 | return a
|
---|
5015 |
|
---|
5016 | def _rshift_nearest(x, shift):
|
---|
5017 | """Given an integer x and a nonnegative integer shift, return closest
|
---|
5018 | integer to x / 2**shift; use round-to-even in case of a tie.
|
---|
5019 |
|
---|
5020 | """
|
---|
5021 | b, q = 1L << shift, x >> shift
|
---|
5022 | return q + (2*(x & (b-1)) + (q&1) > b)
|
---|
5023 |
|
---|
5024 | def _div_nearest(a, b):
|
---|
5025 | """Closest integer to a/b, a and b positive integers; rounds to even
|
---|
5026 | in the case of a tie.
|
---|
5027 |
|
---|
5028 | """
|
---|
5029 | q, r = divmod(a, b)
|
---|
5030 | return q + (2*r + (q&1) > b)
|
---|
5031 |
|
---|
5032 | def _ilog(x, M, L = 8):
|
---|
5033 | """Integer approximation to M*log(x/M), with absolute error boundable
|
---|
5034 | in terms only of x/M.
|
---|
5035 |
|
---|
5036 | Given positive integers x and M, return an integer approximation to
|
---|
5037 | M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
|
---|
5038 | between the approximation and the exact result is at most 22. For
|
---|
5039 | L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
|
---|
5040 | both cases these are upper bounds on the error; it will usually be
|
---|
5041 | much smaller."""
|
---|
5042 |
|
---|
5043 | # The basic algorithm is the following: let log1p be the function
|
---|
5044 | # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
|
---|
5045 | # the reduction
|
---|
5046 | #
|
---|
5047 | # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
|
---|
5048 | #
|
---|
5049 | # repeatedly until the argument to log1p is small (< 2**-L in
|
---|
5050 | # absolute value). For small y we can use the Taylor series
|
---|
5051 | # expansion
|
---|
5052 | #
|
---|
5053 | # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
|
---|
5054 | #
|
---|
5055 | # truncating at T such that y**T is small enough. The whole
|
---|
5056 | # computation is carried out in a form of fixed-point arithmetic,
|
---|
5057 | # with a real number z being represented by an integer
|
---|
5058 | # approximation to z*M. To avoid loss of precision, the y below
|
---|
5059 | # is actually an integer approximation to 2**R*y*M, where R is the
|
---|
5060 | # number of reductions performed so far.
|
---|
5061 |
|
---|
5062 | y = x-M
|
---|
5063 | # argument reduction; R = number of reductions performed
|
---|
5064 | R = 0
|
---|
5065 | while (R <= L and long(abs(y)) << L-R >= M or
|
---|
5066 | R > L and abs(y) >> R-L >= M):
|
---|
5067 | y = _div_nearest(long(M*y) << 1,
|
---|
5068 | M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
|
---|
5069 | R += 1
|
---|
5070 |
|
---|
5071 | # Taylor series with T terms
|
---|
5072 | T = -int(-10*len(str(M))//(3*L))
|
---|
5073 | yshift = _rshift_nearest(y, R)
|
---|
5074 | w = _div_nearest(M, T)
|
---|
5075 | for k in xrange(T-1, 0, -1):
|
---|
5076 | w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
|
---|
5077 |
|
---|
5078 | return _div_nearest(w*y, M)
|
---|
5079 |
|
---|
5080 | def _dlog10(c, e, p):
|
---|
5081 | """Given integers c, e and p with c > 0, p >= 0, compute an integer
|
---|
5082 | approximation to 10**p * log10(c*10**e), with an absolute error of
|
---|
5083 | at most 1. Assumes that c*10**e is not exactly 1."""
|
---|
5084 |
|
---|
5085 | # increase precision by 2; compensate for this by dividing
|
---|
5086 | # final result by 100
|
---|
5087 | p += 2
|
---|
5088 |
|
---|
5089 | # write c*10**e as d*10**f with either:
|
---|
5090 | # f >= 0 and 1 <= d <= 10, or
|
---|
5091 | # f <= 0 and 0.1 <= d <= 1.
|
---|
5092 | # Thus for c*10**e close to 1, f = 0
|
---|
5093 | l = len(str(c))
|
---|
5094 | f = e+l - (e+l >= 1)
|
---|
5095 |
|
---|
5096 | if p > 0:
|
---|
5097 | M = 10**p
|
---|
5098 | k = e+p-f
|
---|
5099 | if k >= 0:
|
---|
5100 | c *= 10**k
|
---|
5101 | else:
|
---|
5102 | c = _div_nearest(c, 10**-k)
|
---|
5103 |
|
---|
5104 | log_d = _ilog(c, M) # error < 5 + 22 = 27
|
---|
5105 | log_10 = _log10_digits(p) # error < 1
|
---|
5106 | log_d = _div_nearest(log_d*M, log_10)
|
---|
5107 | log_tenpower = f*M # exact
|
---|
5108 | else:
|
---|
5109 | log_d = 0 # error < 2.31
|
---|
5110 | log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
|
---|
5111 |
|
---|
5112 | return _div_nearest(log_tenpower+log_d, 100)
|
---|
5113 |
|
---|
5114 | def _dlog(c, e, p):
|
---|
5115 | """Given integers c, e and p with c > 0, compute an integer
|
---|
5116 | approximation to 10**p * log(c*10**e), with an absolute error of
|
---|
5117 | at most 1. Assumes that c*10**e is not exactly 1."""
|
---|
5118 |
|
---|
5119 | # Increase precision by 2. The precision increase is compensated
|
---|
5120 | # for at the end with a division by 100.
|
---|
5121 | p += 2
|
---|
5122 |
|
---|
5123 | # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
|
---|
5124 | # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
|
---|
5125 | # as 10**p * log(d) + 10**p*f * log(10).
|
---|
5126 | l = len(str(c))
|
---|
5127 | f = e+l - (e+l >= 1)
|
---|
5128 |
|
---|
5129 | # compute approximation to 10**p*log(d), with error < 27
|
---|
5130 | if p > 0:
|
---|
5131 | k = e+p-f
|
---|
5132 | if k >= 0:
|
---|
5133 | c *= 10**k
|
---|
5134 | else:
|
---|
5135 | c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
|
---|
5136 |
|
---|
5137 | # _ilog magnifies existing error in c by a factor of at most 10
|
---|
5138 | log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
|
---|
5139 | else:
|
---|
5140 | # p <= 0: just approximate the whole thing by 0; error < 2.31
|
---|
5141 | log_d = 0
|
---|
5142 |
|
---|
5143 | # compute approximation to f*10**p*log(10), with error < 11.
|
---|
5144 | if f:
|
---|
5145 | extra = len(str(abs(f)))-1
|
---|
5146 | if p + extra >= 0:
|
---|
5147 | # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
|
---|
5148 | # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
|
---|
5149 | f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
|
---|
5150 | else:
|
---|
5151 | f_log_ten = 0
|
---|
5152 | else:
|
---|
5153 | f_log_ten = 0
|
---|
5154 |
|
---|
5155 | # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
|
---|
5156 | return _div_nearest(f_log_ten + log_d, 100)
|
---|
5157 |
|
---|
5158 | class _Log10Memoize(object):
|
---|
5159 | """Class to compute, store, and allow retrieval of, digits of the
|
---|
5160 | constant log(10) = 2.302585.... This constant is needed by
|
---|
5161 | Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
|
---|
5162 | def __init__(self):
|
---|
5163 | self.digits = "23025850929940456840179914546843642076011014886"
|
---|
5164 |
|
---|
5165 | def getdigits(self, p):
|
---|
5166 | """Given an integer p >= 0, return floor(10**p)*log(10).
|
---|
5167 |
|
---|
5168 | For example, self.getdigits(3) returns 2302.
|
---|
5169 | """
|
---|
5170 | # digits are stored as a string, for quick conversion to
|
---|
5171 | # integer in the case that we've already computed enough
|
---|
5172 | # digits; the stored digits should always be correct
|
---|
5173 | # (truncated, not rounded to nearest).
|
---|
5174 | if p < 0:
|
---|
5175 | raise ValueError("p should be nonnegative")
|
---|
5176 |
|
---|
5177 | if p >= len(self.digits):
|
---|
5178 | # compute p+3, p+6, p+9, ... digits; continue until at
|
---|
5179 | # least one of the extra digits is nonzero
|
---|
5180 | extra = 3
|
---|
5181 | while True:
|
---|
5182 | # compute p+extra digits, correct to within 1ulp
|
---|
5183 | M = 10**(p+extra+2)
|
---|
5184 | digits = str(_div_nearest(_ilog(10*M, M), 100))
|
---|
5185 | if digits[-extra:] != '0'*extra:
|
---|
5186 | break
|
---|
5187 | extra += 3
|
---|
5188 | # keep all reliable digits so far; remove trailing zeros
|
---|
5189 | # and next nonzero digit
|
---|
5190 | self.digits = digits.rstrip('0')[:-1]
|
---|
5191 | return int(self.digits[:p+1])
|
---|
5192 |
|
---|
5193 | _log10_digits = _Log10Memoize().getdigits
|
---|
5194 |
|
---|
5195 | def _iexp(x, M, L=8):
|
---|
5196 | """Given integers x and M, M > 0, such that x/M is small in absolute
|
---|
5197 | value, compute an integer approximation to M*exp(x/M). For 0 <=
|
---|
5198 | x/M <= 2.4, the absolute error in the result is bounded by 60 (and
|
---|
5199 | is usually much smaller)."""
|
---|
5200 |
|
---|
5201 | # Algorithm: to compute exp(z) for a real number z, first divide z
|
---|
5202 | # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
|
---|
5203 | # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
|
---|
5204 | # series
|
---|
5205 | #
|
---|
5206 | # expm1(x) = x + x**2/2! + x**3/3! + ...
|
---|
5207 | #
|
---|
5208 | # Now use the identity
|
---|
5209 | #
|
---|
5210 | # expm1(2x) = expm1(x)*(expm1(x)+2)
|
---|
5211 | #
|
---|
5212 | # R times to compute the sequence expm1(z/2**R),
|
---|
5213 | # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
|
---|
5214 |
|
---|
5215 | # Find R such that x/2**R/M <= 2**-L
|
---|
5216 | R = _nbits((long(x)<<L)//M)
|
---|
5217 |
|
---|
5218 | # Taylor series. (2**L)**T > M
|
---|
5219 | T = -int(-10*len(str(M))//(3*L))
|
---|
5220 | y = _div_nearest(x, T)
|
---|
5221 | Mshift = long(M)<<R
|
---|
5222 | for i in xrange(T-1, 0, -1):
|
---|
5223 | y = _div_nearest(x*(Mshift + y), Mshift * i)
|
---|
5224 |
|
---|
5225 | # Expansion
|
---|
5226 | for k in xrange(R-1, -1, -1):
|
---|
5227 | Mshift = long(M)<<(k+2)
|
---|
5228 | y = _div_nearest(y*(y+Mshift), Mshift)
|
---|
5229 |
|
---|
5230 | return M+y
|
---|
5231 |
|
---|
5232 | def _dexp(c, e, p):
|
---|
5233 | """Compute an approximation to exp(c*10**e), with p decimal places of
|
---|
5234 | precision.
|
---|
5235 |
|
---|
5236 | Returns integers d, f such that:
|
---|
5237 |
|
---|
5238 | 10**(p-1) <= d <= 10**p, and
|
---|
5239 | (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
---|
5240 |
|
---|
5241 | In other words, d*10**f is an approximation to exp(c*10**e) with p
|
---|
5242 | digits of precision, and with an error in d of at most 1. This is
|
---|
5243 | almost, but not quite, the same as the error being < 1ulp: when d
|
---|
5244 | = 10**(p-1) the error could be up to 10 ulp."""
|
---|
5245 |
|
---|
5246 | # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
---|
5247 | p += 2
|
---|
5248 |
|
---|
5249 | # compute log(10) with extra precision = adjusted exponent of c*10**e
|
---|
5250 | extra = max(0, e + len(str(c)) - 1)
|
---|
5251 | q = p + extra
|
---|
5252 |
|
---|
5253 | # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
---|
5254 | # rounding down
|
---|
5255 | shift = e+q
|
---|
5256 | if shift >= 0:
|
---|
5257 | cshift = c*10**shift
|
---|
5258 | else:
|
---|
5259 | cshift = c//10**-shift
|
---|
5260 | quot, rem = divmod(cshift, _log10_digits(q))
|
---|
5261 |
|
---|
5262 | # reduce remainder back to original precision
|
---|
5263 | rem = _div_nearest(rem, 10**extra)
|
---|
5264 |
|
---|
5265 | # error in result of _iexp < 120; error after division < 0.62
|
---|
5266 | return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
---|
5267 |
|
---|
5268 | def _dpower(xc, xe, yc, ye, p):
|
---|
5269 | """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
|
---|
5270 | y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
|
---|
5271 |
|
---|
5272 | 10**(p-1) <= c <= 10**p, and
|
---|
5273 | (c-1)*10**e < x**y < (c+1)*10**e
|
---|
5274 |
|
---|
5275 | in other words, c*10**e is an approximation to x**y with p digits
|
---|
5276 | of precision, and with an error in c of at most 1. (This is
|
---|
5277 | almost, but not quite, the same as the error being < 1ulp: when c
|
---|
5278 | == 10**(p-1) we can only guarantee error < 10ulp.)
|
---|
5279 |
|
---|
5280 | We assume that: x is positive and not equal to 1, and y is nonzero.
|
---|
5281 | """
|
---|
5282 |
|
---|
5283 | # Find b such that 10**(b-1) <= |y| <= 10**b
|
---|
5284 | b = len(str(abs(yc))) + ye
|
---|
5285 |
|
---|
5286 | # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
|
---|
5287 | lxc = _dlog(xc, xe, p+b+1)
|
---|
5288 |
|
---|
5289 | # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
|
---|
5290 | shift = ye-b
|
---|
5291 | if shift >= 0:
|
---|
5292 | pc = lxc*yc*10**shift
|
---|
5293 | else:
|
---|
5294 | pc = _div_nearest(lxc*yc, 10**-shift)
|
---|
5295 |
|
---|
5296 | if pc == 0:
|
---|
5297 | # we prefer a result that isn't exactly 1; this makes it
|
---|
5298 | # easier to compute a correctly rounded result in __pow__
|
---|
5299 | if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
|
---|
5300 | coeff, exp = 10**(p-1)+1, 1-p
|
---|
5301 | else:
|
---|
5302 | coeff, exp = 10**p-1, -p
|
---|
5303 | else:
|
---|
5304 | coeff, exp = _dexp(pc, -(p+1), p+1)
|
---|
5305 | coeff = _div_nearest(coeff, 10)
|
---|
5306 | exp += 1
|
---|
5307 |
|
---|
5308 | return coeff, exp
|
---|
5309 |
|
---|
5310 | def _log10_lb(c, correction = {
|
---|
5311 | '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
|
---|
5312 | '6': 23, '7': 16, '8': 10, '9': 5}):
|
---|
5313 | """Compute a lower bound for 100*log10(c) for a positive integer c."""
|
---|
5314 | if c <= 0:
|
---|
5315 | raise ValueError("The argument to _log10_lb should be nonnegative.")
|
---|
5316 | str_c = str(c)
|
---|
5317 | return 100*len(str_c) - correction[str_c[0]]
|
---|
5318 |
|
---|
5319 | ##### Helper Functions ####################################################
|
---|
5320 |
|
---|
5321 | def _convert_other(other, raiseit=False):
|
---|
5322 | """Convert other to Decimal.
|
---|
5323 |
|
---|
5324 | Verifies that it's ok to use in an implicit construction.
|
---|
5325 | """
|
---|
5326 | if isinstance(other, Decimal):
|
---|
5327 | return other
|
---|
5328 | if isinstance(other, (int, long)):
|
---|
5329 | return Decimal(other)
|
---|
5330 | if raiseit:
|
---|
5331 | raise TypeError("Unable to convert %s to Decimal" % other)
|
---|
5332 | return NotImplemented
|
---|
5333 |
|
---|
5334 | ##### Setup Specific Contexts ############################################
|
---|
5335 |
|
---|
5336 | # The default context prototype used by Context()
|
---|
5337 | # Is mutable, so that new contexts can have different default values
|
---|
5338 |
|
---|
5339 | DefaultContext = Context(
|
---|
5340 | prec=28, rounding=ROUND_HALF_EVEN,
|
---|
5341 | traps=[DivisionByZero, Overflow, InvalidOperation],
|
---|
5342 | flags=[],
|
---|
5343 | Emax=999999999,
|
---|
5344 | Emin=-999999999,
|
---|
5345 | capitals=1
|
---|
5346 | )
|
---|
5347 |
|
---|
5348 | # Pre-made alternate contexts offered by the specification
|
---|
5349 | # Don't change these; the user should be able to select these
|
---|
5350 | # contexts and be able to reproduce results from other implementations
|
---|
5351 | # of the spec.
|
---|
5352 |
|
---|
5353 | BasicContext = Context(
|
---|
5354 | prec=9, rounding=ROUND_HALF_UP,
|
---|
5355 | traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
|
---|
5356 | flags=[],
|
---|
5357 | )
|
---|
5358 |
|
---|
5359 | ExtendedContext = Context(
|
---|
5360 | prec=9, rounding=ROUND_HALF_EVEN,
|
---|
5361 | traps=[],
|
---|
5362 | flags=[],
|
---|
5363 | )
|
---|
5364 |
|
---|
5365 |
|
---|
5366 | ##### crud for parsing strings #############################################
|
---|
5367 | #
|
---|
5368 | # Regular expression used for parsing numeric strings. Additional
|
---|
5369 | # comments:
|
---|
5370 | #
|
---|
5371 | # 1. Uncomment the two '\s*' lines to allow leading and/or trailing
|
---|
5372 | # whitespace. But note that the specification disallows whitespace in
|
---|
5373 | # a numeric string.
|
---|
5374 | #
|
---|
5375 | # 2. For finite numbers (not infinities and NaNs) the body of the
|
---|
5376 | # number between the optional sign and the optional exponent must have
|
---|
5377 | # at least one decimal digit, possibly after the decimal point. The
|
---|
5378 | # lookahead expression '(?=\d|\.\d)' checks this.
|
---|
5379 |
|
---|
5380 | import re
|
---|
5381 | _parser = re.compile(r""" # A numeric string consists of:
|
---|
5382 | # \s*
|
---|
5383 | (?P<sign>[-+])? # an optional sign, followed by either...
|
---|
5384 | (
|
---|
5385 | (?=\d|\.\d) # ...a number (with at least one digit)
|
---|
5386 | (?P<int>\d*) # having a (possibly empty) integer part
|
---|
5387 | (\.(?P<frac>\d*))? # followed by an optional fractional part
|
---|
5388 | (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
|
---|
5389 | |
|
---|
5390 | Inf(inity)? # ...an infinity, or...
|
---|
5391 | |
|
---|
5392 | (?P<signal>s)? # ...an (optionally signaling)
|
---|
5393 | NaN # NaN
|
---|
5394 | (?P<diag>\d*) # with (possibly empty) diagnostic info.
|
---|
5395 | )
|
---|
5396 | # \s*
|
---|
5397 | \Z
|
---|
5398 | """, re.VERBOSE | re.IGNORECASE | re.UNICODE).match
|
---|
5399 |
|
---|
5400 | _all_zeros = re.compile('0*$').match
|
---|
5401 | _exact_half = re.compile('50*$').match
|
---|
5402 |
|
---|
5403 | ##### PEP3101 support functions ##############################################
|
---|
5404 | # The functions parse_format_specifier and format_align have little to do
|
---|
5405 | # with the Decimal class, and could potentially be reused for other pure
|
---|
5406 | # Python numeric classes that want to implement __format__
|
---|
5407 | #
|
---|
5408 | # A format specifier for Decimal looks like:
|
---|
5409 | #
|
---|
5410 | # [[fill]align][sign][0][minimumwidth][.precision][type]
|
---|
5411 | #
|
---|
5412 |
|
---|
5413 | _parse_format_specifier_regex = re.compile(r"""\A
|
---|
5414 | (?:
|
---|
5415 | (?P<fill>.)?
|
---|
5416 | (?P<align>[<>=^])
|
---|
5417 | )?
|
---|
5418 | (?P<sign>[-+ ])?
|
---|
5419 | (?P<zeropad>0)?
|
---|
5420 | (?P<minimumwidth>(?!0)\d+)?
|
---|
5421 | (?:\.(?P<precision>0|(?!0)\d+))?
|
---|
5422 | (?P<type>[eEfFgG%])?
|
---|
5423 | \Z
|
---|
5424 | """, re.VERBOSE)
|
---|
5425 |
|
---|
5426 | del re
|
---|
5427 |
|
---|
5428 | def _parse_format_specifier(format_spec):
|
---|
5429 | """Parse and validate a format specifier.
|
---|
5430 |
|
---|
5431 | Turns a standard numeric format specifier into a dict, with the
|
---|
5432 | following entries:
|
---|
5433 |
|
---|
5434 | fill: fill character to pad field to minimum width
|
---|
5435 | align: alignment type, either '<', '>', '=' or '^'
|
---|
5436 | sign: either '+', '-' or ' '
|
---|
5437 | minimumwidth: nonnegative integer giving minimum width
|
---|
5438 | precision: nonnegative integer giving precision, or None
|
---|
5439 | type: one of the characters 'eEfFgG%', or None
|
---|
5440 | unicode: either True or False (always True for Python 3.x)
|
---|
5441 |
|
---|
5442 | """
|
---|
5443 | m = _parse_format_specifier_regex.match(format_spec)
|
---|
5444 | if m is None:
|
---|
5445 | raise ValueError("Invalid format specifier: " + format_spec)
|
---|
5446 |
|
---|
5447 | # get the dictionary
|
---|
5448 | format_dict = m.groupdict()
|
---|
5449 |
|
---|
5450 | # defaults for fill and alignment
|
---|
5451 | fill = format_dict['fill']
|
---|
5452 | align = format_dict['align']
|
---|
5453 | if format_dict.pop('zeropad') is not None:
|
---|
5454 | # in the face of conflict, refuse the temptation to guess
|
---|
5455 | if fill is not None and fill != '0':
|
---|
5456 | raise ValueError("Fill character conflicts with '0'"
|
---|
5457 | " in format specifier: " + format_spec)
|
---|
5458 | if align is not None and align != '=':
|
---|
5459 | raise ValueError("Alignment conflicts with '0' in "
|
---|
5460 | "format specifier: " + format_spec)
|
---|
5461 | fill = '0'
|
---|
5462 | align = '='
|
---|
5463 | format_dict['fill'] = fill or ' '
|
---|
5464 | format_dict['align'] = align or '<'
|
---|
5465 |
|
---|
5466 | if format_dict['sign'] is None:
|
---|
5467 | format_dict['sign'] = '-'
|
---|
5468 |
|
---|
5469 | # turn minimumwidth and precision entries into integers.
|
---|
5470 | # minimumwidth defaults to 0; precision remains None if not given
|
---|
5471 | format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
|
---|
5472 | if format_dict['precision'] is not None:
|
---|
5473 | format_dict['precision'] = int(format_dict['precision'])
|
---|
5474 |
|
---|
5475 | # if format type is 'g' or 'G' then a precision of 0 makes little
|
---|
5476 | # sense; convert it to 1. Same if format type is unspecified.
|
---|
5477 | if format_dict['precision'] == 0:
|
---|
5478 | if format_dict['type'] is None or format_dict['type'] in 'gG':
|
---|
5479 | format_dict['precision'] = 1
|
---|
5480 |
|
---|
5481 | # record whether return type should be str or unicode
|
---|
5482 | format_dict['unicode'] = isinstance(format_spec, unicode)
|
---|
5483 |
|
---|
5484 | return format_dict
|
---|
5485 |
|
---|
5486 | def _format_align(body, spec_dict):
|
---|
5487 | """Given an unpadded, non-aligned numeric string, add padding and
|
---|
5488 | aligment to conform with the given format specifier dictionary (as
|
---|
5489 | output from parse_format_specifier).
|
---|
5490 |
|
---|
5491 | It's assumed that if body is negative then it starts with '-'.
|
---|
5492 | Any leading sign ('-' or '+') is stripped from the body before
|
---|
5493 | applying the alignment and padding rules, and replaced in the
|
---|
5494 | appropriate position.
|
---|
5495 |
|
---|
5496 | """
|
---|
5497 | # figure out the sign; we only examine the first character, so if
|
---|
5498 | # body has leading whitespace the results may be surprising.
|
---|
5499 | if len(body) > 0 and body[0] in '-+':
|
---|
5500 | sign = body[0]
|
---|
5501 | body = body[1:]
|
---|
5502 | else:
|
---|
5503 | sign = ''
|
---|
5504 |
|
---|
5505 | if sign != '-':
|
---|
5506 | if spec_dict['sign'] in ' +':
|
---|
5507 | sign = spec_dict['sign']
|
---|
5508 | else:
|
---|
5509 | sign = ''
|
---|
5510 |
|
---|
5511 | # how much extra space do we have to play with?
|
---|
5512 | minimumwidth = spec_dict['minimumwidth']
|
---|
5513 | fill = spec_dict['fill']
|
---|
5514 | padding = fill*(max(minimumwidth - (len(sign+body)), 0))
|
---|
5515 |
|
---|
5516 | align = spec_dict['align']
|
---|
5517 | if align == '<':
|
---|
5518 | result = sign + body + padding
|
---|
5519 | elif align == '>':
|
---|
5520 | result = padding + sign + body
|
---|
5521 | elif align == '=':
|
---|
5522 | result = sign + padding + body
|
---|
5523 | else: #align == '^'
|
---|
5524 | half = len(padding)//2
|
---|
5525 | result = padding[:half] + sign + body + padding[half:]
|
---|
5526 |
|
---|
5527 | # make sure that result is unicode if necessary
|
---|
5528 | if spec_dict['unicode']:
|
---|
5529 | result = unicode(result)
|
---|
5530 |
|
---|
5531 | return result
|
---|
5532 |
|
---|
5533 | ##### Useful Constants (internal use only) ################################
|
---|
5534 |
|
---|
5535 | # Reusable defaults
|
---|
5536 | _Infinity = Decimal('Inf')
|
---|
5537 | _NegativeInfinity = Decimal('-Inf')
|
---|
5538 | _NaN = Decimal('NaN')
|
---|
5539 | _Zero = Decimal(0)
|
---|
5540 | _One = Decimal(1)
|
---|
5541 | _NegativeOne = Decimal(-1)
|
---|
5542 |
|
---|
5543 | # _SignedInfinity[sign] is infinity w/ that sign
|
---|
5544 | _SignedInfinity = (_Infinity, _NegativeInfinity)
|
---|
5545 |
|
---|
5546 |
|
---|
5547 |
|
---|
5548 | if __name__ == '__main__':
|
---|
5549 | import doctest, sys
|
---|
5550 | doctest.testmod(sys.modules[__name__])
|
---|