source: python/vendor/Python-2.6.5/Lib/decimal.py

Last change on this file was 2, checked in by Yuri Dario, 15 years ago

Initial import for vendor code.

  • Property svn:eol-style set to native
File size: 192.5 KB
Line 
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
3
4# Written by Eric Price <eprice at tjhsst.edu>
5# and Facundo Batista <facundo at taniquetil.com.ar>
6# and Raymond Hettinger <python at rcn.com>
7# and Aahz <aahz at pobox.com>
8# and Tim Peters
9
10# This module is currently Py2.3 compatible and should be kept that way
11# unless a major compelling advantage arises. IOW, 2.3 compatibility is
12# strongly preferred, but not guaranteed.
13
14# Also, this module should be kept in sync with the latest updates of
15# the IBM specification as it evolves. Those updates will be treated
16# as bug fixes (deviation from the spec is a compatibility, usability
17# bug) and will be backported. At this point the spec is stabilizing
18# and the updates are becoming fewer, smaller, and less significant.
19
20"""
21This is a Py2.3 implementation of decimal floating point arithmetic based on
22the General Decimal Arithmetic Specification:
23
24 www2.hursley.ibm.com/decimal/decarith.html
25
26and IEEE standard 854-1987:
27
28 www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
29
30Decimal floating point has finite precision with arbitrarily large bounds.
31
32The purpose of this module is to support arithmetic using familiar
33"schoolhouse" rules and to avoid some of the tricky representation
34issues associated with binary floating point. The package is especially
35useful for financial applications or for contexts where users have
36expectations that are at odds with binary floating point (for instance,
37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38of the expected Decimal('0.00') returned by decimal floating point).
39
40Here are some examples of using the decimal module:
41
42>>> from decimal import *
43>>> setcontext(ExtendedContext)
44>>> Decimal(0)
45Decimal('0')
46>>> Decimal('1')
47Decimal('1')
48>>> Decimal('-.0123')
49Decimal('-0.0123')
50>>> Decimal(123456)
51Decimal('123456')
52>>> Decimal('123.45e12345678901234567890')
53Decimal('1.2345E+12345678901234567892')
54>>> Decimal('1.33') + Decimal('1.27')
55Decimal('2.60')
56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57Decimal('-2.20')
58>>> dig = Decimal(1)
59>>> print dig / Decimal(3)
600.333333333
61>>> getcontext().prec = 18
62>>> print dig / Decimal(3)
630.333333333333333333
64>>> print dig.sqrt()
651
66>>> print Decimal(3).sqrt()
671.73205080756887729
68>>> print Decimal(3) ** 123
694.85192780976896427E+58
70>>> inf = Decimal(1) / Decimal(0)
71>>> print inf
72Infinity
73>>> neginf = Decimal(-1) / Decimal(0)
74>>> print neginf
75-Infinity
76>>> print neginf + inf
77NaN
78>>> print neginf * inf
79-Infinity
80>>> print dig / 0
81Infinity
82>>> getcontext().traps[DivisionByZero] = 1
83>>> print dig / 0
84Traceback (most recent call last):
85 ...
86 ...
87 ...
88DivisionByZero: x / 0
89>>> c = Context()
90>>> c.traps[InvalidOperation] = 0
91>>> print c.flags[InvalidOperation]
920
93>>> c.divide(Decimal(0), Decimal(0))
94Decimal('NaN')
95>>> c.traps[InvalidOperation] = 1
96>>> print c.flags[InvalidOperation]
971
98>>> c.flags[InvalidOperation] = 0
99>>> print c.flags[InvalidOperation]
1000
101>>> print c.divide(Decimal(0), Decimal(0))
102Traceback (most recent call last):
103 ...
104 ...
105 ...
106InvalidOperation: 0 / 0
107>>> print c.flags[InvalidOperation]
1081
109>>> c.flags[InvalidOperation] = 0
110>>> c.traps[InvalidOperation] = 0
111>>> print c.divide(Decimal(0), Decimal(0))
112NaN
113>>> print c.flags[InvalidOperation]
1141
115>>>
116"""
117
118__all__ = [
119 # Two major classes
120 'Decimal', 'Context',
121
122 # Contexts
123 'DefaultContext', 'BasicContext', 'ExtendedContext',
124
125 # Exceptions
126 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128
129 # Constants for use in setting up contexts
130 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
132
133 # Functions for manipulating contexts
134 'setcontext', 'getcontext', 'localcontext'
135]
136
137import copy as _copy
138import numbers as _numbers
139
140try:
141 from collections import namedtuple as _namedtuple
142 DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
143except ImportError:
144 DecimalTuple = lambda *args: args
145
146# Rounding
147ROUND_DOWN = 'ROUND_DOWN'
148ROUND_HALF_UP = 'ROUND_HALF_UP'
149ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
150ROUND_CEILING = 'ROUND_CEILING'
151ROUND_FLOOR = 'ROUND_FLOOR'
152ROUND_UP = 'ROUND_UP'
153ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
154ROUND_05UP = 'ROUND_05UP'
155
156# Errors
157
158class DecimalException(ArithmeticError):
159 """Base exception class.
160
161 Used exceptions derive from this.
162 If an exception derives from another exception besides this (such as
163 Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
164 called if the others are present. This isn't actually used for
165 anything, though.
166
167 handle -- Called when context._raise_error is called and the
168 trap_enabler is set. First argument is self, second is the
169 context. More arguments can be given, those being after
170 the explanation in _raise_error (For example,
171 context._raise_error(NewError, '(-x)!', self._sign) would
172 call NewError().handle(context, self._sign).)
173
174 To define a new exception, it should be sufficient to have it derive
175 from DecimalException.
176 """
177 def handle(self, context, *args):
178 pass
179
180
181class Clamped(DecimalException):
182 """Exponent of a 0 changed to fit bounds.
183
184 This occurs and signals clamped if the exponent of a result has been
185 altered in order to fit the constraints of a specific concrete
186 representation. This may occur when the exponent of a zero result would
187 be outside the bounds of a representation, or when a large normal
188 number would have an encoded exponent that cannot be represented. In
189 this latter case, the exponent is reduced to fit and the corresponding
190 number of zero digits are appended to the coefficient ("fold-down").
191 """
192
193class InvalidOperation(DecimalException):
194 """An invalid operation was performed.
195
196 Various bad things cause this:
197
198 Something creates a signaling NaN
199 -INF + INF
200 0 * (+-)INF
201 (+-)INF / (+-)INF
202 x % 0
203 (+-)INF % x
204 x._rescale( non-integer )
205 sqrt(-x) , x > 0
206 0 ** 0
207 x ** (non-integer)
208 x ** (+-)INF
209 An operand is invalid
210
211 The result of the operation after these is a quiet positive NaN,
212 except when the cause is a signaling NaN, in which case the result is
213 also a quiet NaN, but with the original sign, and an optional
214 diagnostic information.
215 """
216 def handle(self, context, *args):
217 if args:
218 ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
219 return ans._fix_nan(context)
220 return _NaN
221
222class ConversionSyntax(InvalidOperation):
223 """Trying to convert badly formed string.
224
225 This occurs and signals invalid-operation if an string is being
226 converted to a number and it does not conform to the numeric string
227 syntax. The result is [0,qNaN].
228 """
229 def handle(self, context, *args):
230 return _NaN
231
232class DivisionByZero(DecimalException, ZeroDivisionError):
233 """Division by 0.
234
235 This occurs and signals division-by-zero if division of a finite number
236 by zero was attempted (during a divide-integer or divide operation, or a
237 power operation with negative right-hand operand), and the dividend was
238 not zero.
239
240 The result of the operation is [sign,inf], where sign is the exclusive
241 or of the signs of the operands for divide, or is 1 for an odd power of
242 -0, for power.
243 """
244
245 def handle(self, context, sign, *args):
246 return _SignedInfinity[sign]
247
248class DivisionImpossible(InvalidOperation):
249 """Cannot perform the division adequately.
250
251 This occurs and signals invalid-operation if the integer result of a
252 divide-integer or remainder operation had too many digits (would be
253 longer than precision). The result is [0,qNaN].
254 """
255
256 def handle(self, context, *args):
257 return _NaN
258
259class DivisionUndefined(InvalidOperation, ZeroDivisionError):
260 """Undefined result of division.
261
262 This occurs and signals invalid-operation if division by zero was
263 attempted (during a divide-integer, divide, or remainder operation), and
264 the dividend is also zero. The result is [0,qNaN].
265 """
266
267 def handle(self, context, *args):
268 return _NaN
269
270class Inexact(DecimalException):
271 """Had to round, losing information.
272
273 This occurs and signals inexact whenever the result of an operation is
274 not exact (that is, it needed to be rounded and any discarded digits
275 were non-zero), or if an overflow or underflow condition occurs. The
276 result in all cases is unchanged.
277
278 The inexact signal may be tested (or trapped) to determine if a given
279 operation (or sequence of operations) was inexact.
280 """
281
282class InvalidContext(InvalidOperation):
283 """Invalid context. Unknown rounding, for example.
284
285 This occurs and signals invalid-operation if an invalid context was
286 detected during an operation. This can occur if contexts are not checked
287 on creation and either the precision exceeds the capability of the
288 underlying concrete representation or an unknown or unsupported rounding
289 was specified. These aspects of the context need only be checked when
290 the values are required to be used. The result is [0,qNaN].
291 """
292
293 def handle(self, context, *args):
294 return _NaN
295
296class Rounded(DecimalException):
297 """Number got rounded (not necessarily changed during rounding).
298
299 This occurs and signals rounded whenever the result of an operation is
300 rounded (that is, some zero or non-zero digits were discarded from the
301 coefficient), or if an overflow or underflow condition occurs. The
302 result in all cases is unchanged.
303
304 The rounded signal may be tested (or trapped) to determine if a given
305 operation (or sequence of operations) caused a loss of precision.
306 """
307
308class Subnormal(DecimalException):
309 """Exponent < Emin before rounding.
310
311 This occurs and signals subnormal whenever the result of a conversion or
312 operation is subnormal (that is, its adjusted exponent is less than
313 Emin, before any rounding). The result in all cases is unchanged.
314
315 The subnormal signal may be tested (or trapped) to determine if a given
316 or operation (or sequence of operations) yielded a subnormal result.
317 """
318
319class Overflow(Inexact, Rounded):
320 """Numerical overflow.
321
322 This occurs and signals overflow if the adjusted exponent of a result
323 (from a conversion or from an operation that is not an attempt to divide
324 by zero), after rounding, would be greater than the largest value that
325 can be handled by the implementation (the value Emax).
326
327 The result depends on the rounding mode:
328
329 For round-half-up and round-half-even (and for round-half-down and
330 round-up, if implemented), the result of the operation is [sign,inf],
331 where sign is the sign of the intermediate result. For round-down, the
332 result is the largest finite number that can be represented in the
333 current precision, with the sign of the intermediate result. For
334 round-ceiling, the result is the same as for round-down if the sign of
335 the intermediate result is 1, or is [0,inf] otherwise. For round-floor,
336 the result is the same as for round-down if the sign of the intermediate
337 result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded
338 will also be raised.
339 """
340
341 def handle(self, context, sign, *args):
342 if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
343 ROUND_HALF_DOWN, ROUND_UP):
344 return _SignedInfinity[sign]
345 if sign == 0:
346 if context.rounding == ROUND_CEILING:
347 return _SignedInfinity[sign]
348 return _dec_from_triple(sign, '9'*context.prec,
349 context.Emax-context.prec+1)
350 if sign == 1:
351 if context.rounding == ROUND_FLOOR:
352 return _SignedInfinity[sign]
353 return _dec_from_triple(sign, '9'*context.prec,
354 context.Emax-context.prec+1)
355
356
357class Underflow(Inexact, Rounded, Subnormal):
358 """Numerical underflow with result rounded to 0.
359
360 This occurs and signals underflow if a result is inexact and the
361 adjusted exponent of the result would be smaller (more negative) than
362 the smallest value that can be handled by the implementation (the value
363 Emin). That is, the result is both inexact and subnormal.
364
365 The result after an underflow will be a subnormal number rounded, if
366 necessary, so that its exponent is not less than Etiny. This may result
367 in 0 with the sign of the intermediate result and an exponent of Etiny.
368
369 In all cases, Inexact, Rounded, and Subnormal will also be raised.
370 """
371
372# List of public traps and flags
373_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
374 Underflow, InvalidOperation, Subnormal]
375
376# Map conditions (per the spec) to signals
377_condition_map = {ConversionSyntax:InvalidOperation,
378 DivisionImpossible:InvalidOperation,
379 DivisionUndefined:InvalidOperation,
380 InvalidContext:InvalidOperation}
381
382##### Context Functions ##################################################
383
384# The getcontext() and setcontext() function manage access to a thread-local
385# current context. Py2.4 offers direct support for thread locals. If that
386# is not available, use threading.currentThread() which is slower but will
387# work for older Pythons. If threads are not part of the build, create a
388# mock threading object with threading.local() returning the module namespace.
389
390try:
391 import threading
392except ImportError:
393 # Python was compiled without threads; create a mock object instead
394 import sys
395 class MockThreading(object):
396 def local(self, sys=sys):
397 return sys.modules[__name__]
398 threading = MockThreading()
399 del sys, MockThreading
400
401try:
402 threading.local
403
404except AttributeError:
405
406 # To fix reloading, force it to create a new context
407 # Old contexts have different exceptions in their dicts, making problems.
408 if hasattr(threading.currentThread(), '__decimal_context__'):
409 del threading.currentThread().__decimal_context__
410
411 def setcontext(context):
412 """Set this thread's context to context."""
413 if context in (DefaultContext, BasicContext, ExtendedContext):
414 context = context.copy()
415 context.clear_flags()
416 threading.currentThread().__decimal_context__ = context
417
418 def getcontext():
419 """Returns this thread's context.
420
421 If this thread does not yet have a context, returns
422 a new context and sets this thread's context.
423 New contexts are copies of DefaultContext.
424 """
425 try:
426 return threading.currentThread().__decimal_context__
427 except AttributeError:
428 context = Context()
429 threading.currentThread().__decimal_context__ = context
430 return context
431
432else:
433
434 local = threading.local()
435 if hasattr(local, '__decimal_context__'):
436 del local.__decimal_context__
437
438 def getcontext(_local=local):
439 """Returns this thread's context.
440
441 If this thread does not yet have a context, returns
442 a new context and sets this thread's context.
443 New contexts are copies of DefaultContext.
444 """
445 try:
446 return _local.__decimal_context__
447 except AttributeError:
448 context = Context()
449 _local.__decimal_context__ = context
450 return context
451
452 def setcontext(context, _local=local):
453 """Set this thread's context to context."""
454 if context in (DefaultContext, BasicContext, ExtendedContext):
455 context = context.copy()
456 context.clear_flags()
457 _local.__decimal_context__ = context
458
459 del threading, local # Don't contaminate the namespace
460
461def localcontext(ctx=None):
462 """Return a context manager for a copy of the supplied context
463
464 Uses a copy of the current context if no context is specified
465 The returned context manager creates a local decimal context
466 in a with statement:
467 def sin(x):
468 with localcontext() as ctx:
469 ctx.prec += 2
470 # Rest of sin calculation algorithm
471 # uses a precision 2 greater than normal
472 return +s # Convert result to normal precision
473
474 def sin(x):
475 with localcontext(ExtendedContext):
476 # Rest of sin calculation algorithm
477 # uses the Extended Context from the
478 # General Decimal Arithmetic Specification
479 return +s # Convert result to normal context
480
481 >>> setcontext(DefaultContext)
482 >>> print getcontext().prec
483 28
484 >>> with localcontext():
485 ... ctx = getcontext()
486 ... ctx.prec += 2
487 ... print ctx.prec
488 ...
489 30
490 >>> with localcontext(ExtendedContext):
491 ... print getcontext().prec
492 ...
493 9
494 >>> print getcontext().prec
495 28
496 """
497 if ctx is None: ctx = getcontext()
498 return _ContextManager(ctx)
499
500
501##### Decimal class #######################################################
502
503class Decimal(object):
504 """Floating point class for decimal arithmetic."""
505
506 __slots__ = ('_exp','_int','_sign', '_is_special')
507 # Generally, the value of the Decimal instance is given by
508 # (-1)**_sign * _int * 10**_exp
509 # Special values are signified by _is_special == True
510
511 # We're immutable, so use __new__ not __init__
512 def __new__(cls, value="0", context=None):
513 """Create a decimal point instance.
514
515 >>> Decimal('3.14') # string input
516 Decimal('3.14')
517 >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent)
518 Decimal('3.14')
519 >>> Decimal(314) # int or long
520 Decimal('314')
521 >>> Decimal(Decimal(314)) # another decimal instance
522 Decimal('314')
523 >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay
524 Decimal('3.14')
525 """
526
527 # Note that the coefficient, self._int, is actually stored as
528 # a string rather than as a tuple of digits. This speeds up
529 # the "digits to integer" and "integer to digits" conversions
530 # that are used in almost every arithmetic operation on
531 # Decimals. This is an internal detail: the as_tuple function
532 # and the Decimal constructor still deal with tuples of
533 # digits.
534
535 self = object.__new__(cls)
536
537 # From a string
538 # REs insist on real strings, so we can too.
539 if isinstance(value, basestring):
540 m = _parser(value.strip())
541 if m is None:
542 if context is None:
543 context = getcontext()
544 return context._raise_error(ConversionSyntax,
545 "Invalid literal for Decimal: %r" % value)
546
547 if m.group('sign') == "-":
548 self._sign = 1
549 else:
550 self._sign = 0
551 intpart = m.group('int')
552 if intpart is not None:
553 # finite number
554 fracpart = m.group('frac') or ''
555 exp = int(m.group('exp') or '0')
556 self._int = str(int(intpart+fracpart))
557 self._exp = exp - len(fracpart)
558 self._is_special = False
559 else:
560 diag = m.group('diag')
561 if diag is not None:
562 # NaN
563 self._int = str(int(diag or '0')).lstrip('0')
564 if m.group('signal'):
565 self._exp = 'N'
566 else:
567 self._exp = 'n'
568 else:
569 # infinity
570 self._int = '0'
571 self._exp = 'F'
572 self._is_special = True
573 return self
574
575 # From an integer
576 if isinstance(value, (int,long)):
577 if value >= 0:
578 self._sign = 0
579 else:
580 self._sign = 1
581 self._exp = 0
582 self._int = str(abs(value))
583 self._is_special = False
584 return self
585
586 # From another decimal
587 if isinstance(value, Decimal):
588 self._exp = value._exp
589 self._sign = value._sign
590 self._int = value._int
591 self._is_special = value._is_special
592 return self
593
594 # From an internal working value
595 if isinstance(value, _WorkRep):
596 self._sign = value.sign
597 self._int = str(value.int)
598 self._exp = int(value.exp)
599 self._is_special = False
600 return self
601
602 # tuple/list conversion (possibly from as_tuple())
603 if isinstance(value, (list,tuple)):
604 if len(value) != 3:
605 raise ValueError('Invalid tuple size in creation of Decimal '
606 'from list or tuple. The list or tuple '
607 'should have exactly three elements.')
608 # process sign. The isinstance test rejects floats
609 if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
610 raise ValueError("Invalid sign. The first value in the tuple "
611 "should be an integer; either 0 for a "
612 "positive number or 1 for a negative number.")
613 self._sign = value[0]
614 if value[2] == 'F':
615 # infinity: value[1] is ignored
616 self._int = '0'
617 self._exp = value[2]
618 self._is_special = True
619 else:
620 # process and validate the digits in value[1]
621 digits = []
622 for digit in value[1]:
623 if isinstance(digit, (int, long)) and 0 <= digit <= 9:
624 # skip leading zeros
625 if digits or digit != 0:
626 digits.append(digit)
627 else:
628 raise ValueError("The second value in the tuple must "
629 "be composed of integers in the range "
630 "0 through 9.")
631 if value[2] in ('n', 'N'):
632 # NaN: digits form the diagnostic
633 self._int = ''.join(map(str, digits))
634 self._exp = value[2]
635 self._is_special = True
636 elif isinstance(value[2], (int, long)):
637 # finite number: digits give the coefficient
638 self._int = ''.join(map(str, digits or [0]))
639 self._exp = value[2]
640 self._is_special = False
641 else:
642 raise ValueError("The third value in the tuple must "
643 "be an integer, or one of the "
644 "strings 'F', 'n', 'N'.")
645 return self
646
647 if isinstance(value, float):
648 raise TypeError("Cannot convert float to Decimal. " +
649 "First convert the float to a string")
650
651 raise TypeError("Cannot convert %r to Decimal" % value)
652
653 def _isnan(self):
654 """Returns whether the number is not actually one.
655
656 0 if a number
657 1 if NaN
658 2 if sNaN
659 """
660 if self._is_special:
661 exp = self._exp
662 if exp == 'n':
663 return 1
664 elif exp == 'N':
665 return 2
666 return 0
667
668 def _isinfinity(self):
669 """Returns whether the number is infinite
670
671 0 if finite or not a number
672 1 if +INF
673 -1 if -INF
674 """
675 if self._exp == 'F':
676 if self._sign:
677 return -1
678 return 1
679 return 0
680
681 def _check_nans(self, other=None, context=None):
682 """Returns whether the number is not actually one.
683
684 if self, other are sNaN, signal
685 if self, other are NaN return nan
686 return 0
687
688 Done before operations.
689 """
690
691 self_is_nan = self._isnan()
692 if other is None:
693 other_is_nan = False
694 else:
695 other_is_nan = other._isnan()
696
697 if self_is_nan or other_is_nan:
698 if context is None:
699 context = getcontext()
700
701 if self_is_nan == 2:
702 return context._raise_error(InvalidOperation, 'sNaN',
703 self)
704 if other_is_nan == 2:
705 return context._raise_error(InvalidOperation, 'sNaN',
706 other)
707 if self_is_nan:
708 return self._fix_nan(context)
709
710 return other._fix_nan(context)
711 return 0
712
713 def _compare_check_nans(self, other, context):
714 """Version of _check_nans used for the signaling comparisons
715 compare_signal, __le__, __lt__, __ge__, __gt__.
716
717 Signal InvalidOperation if either self or other is a (quiet
718 or signaling) NaN. Signaling NaNs take precedence over quiet
719 NaNs.
720
721 Return 0 if neither operand is a NaN.
722
723 """
724 if context is None:
725 context = getcontext()
726
727 if self._is_special or other._is_special:
728 if self.is_snan():
729 return context._raise_error(InvalidOperation,
730 'comparison involving sNaN',
731 self)
732 elif other.is_snan():
733 return context._raise_error(InvalidOperation,
734 'comparison involving sNaN',
735 other)
736 elif self.is_qnan():
737 return context._raise_error(InvalidOperation,
738 'comparison involving NaN',
739 self)
740 elif other.is_qnan():
741 return context._raise_error(InvalidOperation,
742 'comparison involving NaN',
743 other)
744 return 0
745
746 def __nonzero__(self):
747 """Return True if self is nonzero; otherwise return False.
748
749 NaNs and infinities are considered nonzero.
750 """
751 return self._is_special or self._int != '0'
752
753 def _cmp(self, other):
754 """Compare the two non-NaN decimal instances self and other.
755
756 Returns -1 if self < other, 0 if self == other and 1
757 if self > other. This routine is for internal use only."""
758
759 if self._is_special or other._is_special:
760 self_inf = self._isinfinity()
761 other_inf = other._isinfinity()
762 if self_inf == other_inf:
763 return 0
764 elif self_inf < other_inf:
765 return -1
766 else:
767 return 1
768
769 # check for zeros; Decimal('0') == Decimal('-0')
770 if not self:
771 if not other:
772 return 0
773 else:
774 return -((-1)**other._sign)
775 if not other:
776 return (-1)**self._sign
777
778 # If different signs, neg one is less
779 if other._sign < self._sign:
780 return -1
781 if self._sign < other._sign:
782 return 1
783
784 self_adjusted = self.adjusted()
785 other_adjusted = other.adjusted()
786 if self_adjusted == other_adjusted:
787 self_padded = self._int + '0'*(self._exp - other._exp)
788 other_padded = other._int + '0'*(other._exp - self._exp)
789 if self_padded == other_padded:
790 return 0
791 elif self_padded < other_padded:
792 return -(-1)**self._sign
793 else:
794 return (-1)**self._sign
795 elif self_adjusted > other_adjusted:
796 return (-1)**self._sign
797 else: # self_adjusted < other_adjusted
798 return -((-1)**self._sign)
799
800 # Note: The Decimal standard doesn't cover rich comparisons for
801 # Decimals. In particular, the specification is silent on the
802 # subject of what should happen for a comparison involving a NaN.
803 # We take the following approach:
804 #
805 # == comparisons involving a NaN always return False
806 # != comparisons involving a NaN always return True
807 # <, >, <= and >= comparisons involving a (quiet or signaling)
808 # NaN signal InvalidOperation, and return False if the
809 # InvalidOperation is not trapped.
810 #
811 # This behavior is designed to conform as closely as possible to
812 # that specified by IEEE 754.
813
814 def __eq__(self, other):
815 other = _convert_other(other)
816 if other is NotImplemented:
817 return other
818 if self.is_nan() or other.is_nan():
819 return False
820 return self._cmp(other) == 0
821
822 def __ne__(self, other):
823 other = _convert_other(other)
824 if other is NotImplemented:
825 return other
826 if self.is_nan() or other.is_nan():
827 return True
828 return self._cmp(other) != 0
829
830 def __lt__(self, other, context=None):
831 other = _convert_other(other)
832 if other is NotImplemented:
833 return other
834 ans = self._compare_check_nans(other, context)
835 if ans:
836 return False
837 return self._cmp(other) < 0
838
839 def __le__(self, other, context=None):
840 other = _convert_other(other)
841 if other is NotImplemented:
842 return other
843 ans = self._compare_check_nans(other, context)
844 if ans:
845 return False
846 return self._cmp(other) <= 0
847
848 def __gt__(self, other, context=None):
849 other = _convert_other(other)
850 if other is NotImplemented:
851 return other
852 ans = self._compare_check_nans(other, context)
853 if ans:
854 return False
855 return self._cmp(other) > 0
856
857 def __ge__(self, other, context=None):
858 other = _convert_other(other)
859 if other is NotImplemented:
860 return other
861 ans = self._compare_check_nans(other, context)
862 if ans:
863 return False
864 return self._cmp(other) >= 0
865
866 def compare(self, other, context=None):
867 """Compares one to another.
868
869 -1 => a < b
870 0 => a = b
871 1 => a > b
872 NaN => one is NaN
873 Like __cmp__, but returns Decimal instances.
874 """
875 other = _convert_other(other, raiseit=True)
876
877 # Compare(NaN, NaN) = NaN
878 if (self._is_special or other and other._is_special):
879 ans = self._check_nans(other, context)
880 if ans:
881 return ans
882
883 return Decimal(self._cmp(other))
884
885 def __hash__(self):
886 """x.__hash__() <==> hash(x)"""
887 # Decimal integers must hash the same as the ints
888 #
889 # The hash of a nonspecial noninteger Decimal must depend only
890 # on the value of that Decimal, and not on its representation.
891 # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
892 if self._is_special:
893 if self._isnan():
894 raise TypeError('Cannot hash a NaN value.')
895 return hash(str(self))
896 if not self:
897 return 0
898 if self._isinteger():
899 op = _WorkRep(self.to_integral_value())
900 # to make computation feasible for Decimals with large
901 # exponent, we use the fact that hash(n) == hash(m) for
902 # any two nonzero integers n and m such that (i) n and m
903 # have the same sign, and (ii) n is congruent to m modulo
904 # 2**64-1. So we can replace hash((-1)**s*c*10**e) with
905 # hash((-1)**s*c*pow(10, e, 2**64-1).
906 return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
907 # The value of a nonzero nonspecial Decimal instance is
908 # faithfully represented by the triple consisting of its sign,
909 # its adjusted exponent, and its coefficient with trailing
910 # zeros removed.
911 return hash((self._sign,
912 self._exp+len(self._int),
913 self._int.rstrip('0')))
914
915 def as_tuple(self):
916 """Represents the number as a triple tuple.
917
918 To show the internals exactly as they are.
919 """
920 return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
921
922 def __repr__(self):
923 """Represents the number as an instance of Decimal."""
924 # Invariant: eval(repr(d)) == d
925 return "Decimal('%s')" % str(self)
926
927 def __str__(self, eng=False, context=None):
928 """Return string representation of the number in scientific notation.
929
930 Captures all of the information in the underlying representation.
931 """
932
933 sign = ['', '-'][self._sign]
934 if self._is_special:
935 if self._exp == 'F':
936 return sign + 'Infinity'
937 elif self._exp == 'n':
938 return sign + 'NaN' + self._int
939 else: # self._exp == 'N'
940 return sign + 'sNaN' + self._int
941
942 # number of digits of self._int to left of decimal point
943 leftdigits = self._exp + len(self._int)
944
945 # dotplace is number of digits of self._int to the left of the
946 # decimal point in the mantissa of the output string (that is,
947 # after adjusting the exponent)
948 if self._exp <= 0 and leftdigits > -6:
949 # no exponent required
950 dotplace = leftdigits
951 elif not eng:
952 # usual scientific notation: 1 digit on left of the point
953 dotplace = 1
954 elif self._int == '0':
955 # engineering notation, zero
956 dotplace = (leftdigits + 1) % 3 - 1
957 else:
958 # engineering notation, nonzero
959 dotplace = (leftdigits - 1) % 3 + 1
960
961 if dotplace <= 0:
962 intpart = '0'
963 fracpart = '.' + '0'*(-dotplace) + self._int
964 elif dotplace >= len(self._int):
965 intpart = self._int+'0'*(dotplace-len(self._int))
966 fracpart = ''
967 else:
968 intpart = self._int[:dotplace]
969 fracpart = '.' + self._int[dotplace:]
970 if leftdigits == dotplace:
971 exp = ''
972 else:
973 if context is None:
974 context = getcontext()
975 exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
976
977 return sign + intpart + fracpart + exp
978
979 def to_eng_string(self, context=None):
980 """Convert to engineering-type string.
981
982 Engineering notation has an exponent which is a multiple of 3, so there
983 are up to 3 digits left of the decimal place.
984
985 Same rules for when in exponential and when as a value as in __str__.
986 """
987 return self.__str__(eng=True, context=context)
988
989 def __neg__(self, context=None):
990 """Returns a copy with the sign switched.
991
992 Rounds, if it has reason.
993 """
994 if self._is_special:
995 ans = self._check_nans(context=context)
996 if ans:
997 return ans
998
999 if not self:
1000 # -Decimal('0') is Decimal('0'), not Decimal('-0')
1001 ans = self.copy_abs()
1002 else:
1003 ans = self.copy_negate()
1004
1005 if context is None:
1006 context = getcontext()
1007 return ans._fix(context)
1008
1009 def __pos__(self, context=None):
1010 """Returns a copy, unless it is a sNaN.
1011
1012 Rounds the number (if more then precision digits)
1013 """
1014 if self._is_special:
1015 ans = self._check_nans(context=context)
1016 if ans:
1017 return ans
1018
1019 if not self:
1020 # + (-0) = 0
1021 ans = self.copy_abs()
1022 else:
1023 ans = Decimal(self)
1024
1025 if context is None:
1026 context = getcontext()
1027 return ans._fix(context)
1028
1029 def __abs__(self, round=True, context=None):
1030 """Returns the absolute value of self.
1031
1032 If the keyword argument 'round' is false, do not round. The
1033 expression self.__abs__(round=False) is equivalent to
1034 self.copy_abs().
1035 """
1036 if not round:
1037 return self.copy_abs()
1038
1039 if self._is_special:
1040 ans = self._check_nans(context=context)
1041 if ans:
1042 return ans
1043
1044 if self._sign:
1045 ans = self.__neg__(context=context)
1046 else:
1047 ans = self.__pos__(context=context)
1048
1049 return ans
1050
1051 def __add__(self, other, context=None):
1052 """Returns self + other.
1053
1054 -INF + INF (or the reverse) cause InvalidOperation errors.
1055 """
1056 other = _convert_other(other)
1057 if other is NotImplemented:
1058 return other
1059
1060 if context is None:
1061 context = getcontext()
1062
1063 if self._is_special or other._is_special:
1064 ans = self._check_nans(other, context)
1065 if ans:
1066 return ans
1067
1068 if self._isinfinity():
1069 # If both INF, same sign => same as both, opposite => error.
1070 if self._sign != other._sign and other._isinfinity():
1071 return context._raise_error(InvalidOperation, '-INF + INF')
1072 return Decimal(self)
1073 if other._isinfinity():
1074 return Decimal(other) # Can't both be infinity here
1075
1076 exp = min(self._exp, other._exp)
1077 negativezero = 0
1078 if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1079 # If the answer is 0, the sign should be negative, in this case.
1080 negativezero = 1
1081
1082 if not self and not other:
1083 sign = min(self._sign, other._sign)
1084 if negativezero:
1085 sign = 1
1086 ans = _dec_from_triple(sign, '0', exp)
1087 ans = ans._fix(context)
1088 return ans
1089 if not self:
1090 exp = max(exp, other._exp - context.prec-1)
1091 ans = other._rescale(exp, context.rounding)
1092 ans = ans._fix(context)
1093 return ans
1094 if not other:
1095 exp = max(exp, self._exp - context.prec-1)
1096 ans = self._rescale(exp, context.rounding)
1097 ans = ans._fix(context)
1098 return ans
1099
1100 op1 = _WorkRep(self)
1101 op2 = _WorkRep(other)
1102 op1, op2 = _normalize(op1, op2, context.prec)
1103
1104 result = _WorkRep()
1105 if op1.sign != op2.sign:
1106 # Equal and opposite
1107 if op1.int == op2.int:
1108 ans = _dec_from_triple(negativezero, '0', exp)
1109 ans = ans._fix(context)
1110 return ans
1111 if op1.int < op2.int:
1112 op1, op2 = op2, op1
1113 # OK, now abs(op1) > abs(op2)
1114 if op1.sign == 1:
1115 result.sign = 1
1116 op1.sign, op2.sign = op2.sign, op1.sign
1117 else:
1118 result.sign = 0
1119 # So we know the sign, and op1 > 0.
1120 elif op1.sign == 1:
1121 result.sign = 1
1122 op1.sign, op2.sign = (0, 0)
1123 else:
1124 result.sign = 0
1125 # Now, op1 > abs(op2) > 0
1126
1127 if op2.sign == 0:
1128 result.int = op1.int + op2.int
1129 else:
1130 result.int = op1.int - op2.int
1131
1132 result.exp = op1.exp
1133 ans = Decimal(result)
1134 ans = ans._fix(context)
1135 return ans
1136
1137 __radd__ = __add__
1138
1139 def __sub__(self, other, context=None):
1140 """Return self - other"""
1141 other = _convert_other(other)
1142 if other is NotImplemented:
1143 return other
1144
1145 if self._is_special or other._is_special:
1146 ans = self._check_nans(other, context=context)
1147 if ans:
1148 return ans
1149
1150 # self - other is computed as self + other.copy_negate()
1151 return self.__add__(other.copy_negate(), context=context)
1152
1153 def __rsub__(self, other, context=None):
1154 """Return other - self"""
1155 other = _convert_other(other)
1156 if other is NotImplemented:
1157 return other
1158
1159 return other.__sub__(self, context=context)
1160
1161 def __mul__(self, other, context=None):
1162 """Return self * other.
1163
1164 (+-) INF * 0 (or its reverse) raise InvalidOperation.
1165 """
1166 other = _convert_other(other)
1167 if other is NotImplemented:
1168 return other
1169
1170 if context is None:
1171 context = getcontext()
1172
1173 resultsign = self._sign ^ other._sign
1174
1175 if self._is_special or other._is_special:
1176 ans = self._check_nans(other, context)
1177 if ans:
1178 return ans
1179
1180 if self._isinfinity():
1181 if not other:
1182 return context._raise_error(InvalidOperation, '(+-)INF * 0')
1183 return _SignedInfinity[resultsign]
1184
1185 if other._isinfinity():
1186 if not self:
1187 return context._raise_error(InvalidOperation, '0 * (+-)INF')
1188 return _SignedInfinity[resultsign]
1189
1190 resultexp = self._exp + other._exp
1191
1192 # Special case for multiplying by zero
1193 if not self or not other:
1194 ans = _dec_from_triple(resultsign, '0', resultexp)
1195 # Fixing in case the exponent is out of bounds
1196 ans = ans._fix(context)
1197 return ans
1198
1199 # Special case for multiplying by power of 10
1200 if self._int == '1':
1201 ans = _dec_from_triple(resultsign, other._int, resultexp)
1202 ans = ans._fix(context)
1203 return ans
1204 if other._int == '1':
1205 ans = _dec_from_triple(resultsign, self._int, resultexp)
1206 ans = ans._fix(context)
1207 return ans
1208
1209 op1 = _WorkRep(self)
1210 op2 = _WorkRep(other)
1211
1212 ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1213 ans = ans._fix(context)
1214
1215 return ans
1216 __rmul__ = __mul__
1217
1218 def __truediv__(self, other, context=None):
1219 """Return self / other."""
1220 other = _convert_other(other)
1221 if other is NotImplemented:
1222 return NotImplemented
1223
1224 if context is None:
1225 context = getcontext()
1226
1227 sign = self._sign ^ other._sign
1228
1229 if self._is_special or other._is_special:
1230 ans = self._check_nans(other, context)
1231 if ans:
1232 return ans
1233
1234 if self._isinfinity() and other._isinfinity():
1235 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1236
1237 if self._isinfinity():
1238 return _SignedInfinity[sign]
1239
1240 if other._isinfinity():
1241 context._raise_error(Clamped, 'Division by infinity')
1242 return _dec_from_triple(sign, '0', context.Etiny())
1243
1244 # Special cases for zeroes
1245 if not other:
1246 if not self:
1247 return context._raise_error(DivisionUndefined, '0 / 0')
1248 return context._raise_error(DivisionByZero, 'x / 0', sign)
1249
1250 if not self:
1251 exp = self._exp - other._exp
1252 coeff = 0
1253 else:
1254 # OK, so neither = 0, INF or NaN
1255 shift = len(other._int) - len(self._int) + context.prec + 1
1256 exp = self._exp - other._exp - shift
1257 op1 = _WorkRep(self)
1258 op2 = _WorkRep(other)
1259 if shift >= 0:
1260 coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1261 else:
1262 coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1263 if remainder:
1264 # result is not exact; adjust to ensure correct rounding
1265 if coeff % 5 == 0:
1266 coeff += 1
1267 else:
1268 # result is exact; get as close to ideal exponent as possible
1269 ideal_exp = self._exp - other._exp
1270 while exp < ideal_exp and coeff % 10 == 0:
1271 coeff //= 10
1272 exp += 1
1273
1274 ans = _dec_from_triple(sign, str(coeff), exp)
1275 return ans._fix(context)
1276
1277 def _divide(self, other, context):
1278 """Return (self // other, self % other), to context.prec precision.
1279
1280 Assumes that neither self nor other is a NaN, that self is not
1281 infinite and that other is nonzero.
1282 """
1283 sign = self._sign ^ other._sign
1284 if other._isinfinity():
1285 ideal_exp = self._exp
1286 else:
1287 ideal_exp = min(self._exp, other._exp)
1288
1289 expdiff = self.adjusted() - other.adjusted()
1290 if not self or other._isinfinity() or expdiff <= -2:
1291 return (_dec_from_triple(sign, '0', 0),
1292 self._rescale(ideal_exp, context.rounding))
1293 if expdiff <= context.prec:
1294 op1 = _WorkRep(self)
1295 op2 = _WorkRep(other)
1296 if op1.exp >= op2.exp:
1297 op1.int *= 10**(op1.exp - op2.exp)
1298 else:
1299 op2.int *= 10**(op2.exp - op1.exp)
1300 q, r = divmod(op1.int, op2.int)
1301 if q < 10**context.prec:
1302 return (_dec_from_triple(sign, str(q), 0),
1303 _dec_from_triple(self._sign, str(r), ideal_exp))
1304
1305 # Here the quotient is too large to be representable
1306 ans = context._raise_error(DivisionImpossible,
1307 'quotient too large in //, % or divmod')
1308 return ans, ans
1309
1310 def __rtruediv__(self, other, context=None):
1311 """Swaps self/other and returns __truediv__."""
1312 other = _convert_other(other)
1313 if other is NotImplemented:
1314 return other
1315 return other.__truediv__(self, context=context)
1316
1317 __div__ = __truediv__
1318 __rdiv__ = __rtruediv__
1319
1320 def __divmod__(self, other, context=None):
1321 """
1322 Return (self // other, self % other)
1323 """
1324 other = _convert_other(other)
1325 if other is NotImplemented:
1326 return other
1327
1328 if context is None:
1329 context = getcontext()
1330
1331 ans = self._check_nans(other, context)
1332 if ans:
1333 return (ans, ans)
1334
1335 sign = self._sign ^ other._sign
1336 if self._isinfinity():
1337 if other._isinfinity():
1338 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1339 return ans, ans
1340 else:
1341 return (_SignedInfinity[sign],
1342 context._raise_error(InvalidOperation, 'INF % x'))
1343
1344 if not other:
1345 if not self:
1346 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1347 return ans, ans
1348 else:
1349 return (context._raise_error(DivisionByZero, 'x // 0', sign),
1350 context._raise_error(InvalidOperation, 'x % 0'))
1351
1352 quotient, remainder = self._divide(other, context)
1353 remainder = remainder._fix(context)
1354 return quotient, remainder
1355
1356 def __rdivmod__(self, other, context=None):
1357 """Swaps self/other and returns __divmod__."""
1358 other = _convert_other(other)
1359 if other is NotImplemented:
1360 return other
1361 return other.__divmod__(self, context=context)
1362
1363 def __mod__(self, other, context=None):
1364 """
1365 self % other
1366 """
1367 other = _convert_other(other)
1368 if other is NotImplemented:
1369 return other
1370
1371 if context is None:
1372 context = getcontext()
1373
1374 ans = self._check_nans(other, context)
1375 if ans:
1376 return ans
1377
1378 if self._isinfinity():
1379 return context._raise_error(InvalidOperation, 'INF % x')
1380 elif not other:
1381 if self:
1382 return context._raise_error(InvalidOperation, 'x % 0')
1383 else:
1384 return context._raise_error(DivisionUndefined, '0 % 0')
1385
1386 remainder = self._divide(other, context)[1]
1387 remainder = remainder._fix(context)
1388 return remainder
1389
1390 def __rmod__(self, other, context=None):
1391 """Swaps self/other and returns __mod__."""
1392 other = _convert_other(other)
1393 if other is NotImplemented:
1394 return other
1395 return other.__mod__(self, context=context)
1396
1397 def remainder_near(self, other, context=None):
1398 """
1399 Remainder nearest to 0- abs(remainder-near) <= other/2
1400 """
1401 if context is None:
1402 context = getcontext()
1403
1404 other = _convert_other(other, raiseit=True)
1405
1406 ans = self._check_nans(other, context)
1407 if ans:
1408 return ans
1409
1410 # self == +/-infinity -> InvalidOperation
1411 if self._isinfinity():
1412 return context._raise_error(InvalidOperation,
1413 'remainder_near(infinity, x)')
1414
1415 # other == 0 -> either InvalidOperation or DivisionUndefined
1416 if not other:
1417 if self:
1418 return context._raise_error(InvalidOperation,
1419 'remainder_near(x, 0)')
1420 else:
1421 return context._raise_error(DivisionUndefined,
1422 'remainder_near(0, 0)')
1423
1424 # other = +/-infinity -> remainder = self
1425 if other._isinfinity():
1426 ans = Decimal(self)
1427 return ans._fix(context)
1428
1429 # self = 0 -> remainder = self, with ideal exponent
1430 ideal_exponent = min(self._exp, other._exp)
1431 if not self:
1432 ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1433 return ans._fix(context)
1434
1435 # catch most cases of large or small quotient
1436 expdiff = self.adjusted() - other.adjusted()
1437 if expdiff >= context.prec + 1:
1438 # expdiff >= prec+1 => abs(self/other) > 10**prec
1439 return context._raise_error(DivisionImpossible)
1440 if expdiff <= -2:
1441 # expdiff <= -2 => abs(self/other) < 0.1
1442 ans = self._rescale(ideal_exponent, context.rounding)
1443 return ans._fix(context)
1444
1445 # adjust both arguments to have the same exponent, then divide
1446 op1 = _WorkRep(self)
1447 op2 = _WorkRep(other)
1448 if op1.exp >= op2.exp:
1449 op1.int *= 10**(op1.exp - op2.exp)
1450 else:
1451 op2.int *= 10**(op2.exp - op1.exp)
1452 q, r = divmod(op1.int, op2.int)
1453 # remainder is r*10**ideal_exponent; other is +/-op2.int *
1454 # 10**ideal_exponent. Apply correction to ensure that
1455 # abs(remainder) <= abs(other)/2
1456 if 2*r + (q&1) > op2.int:
1457 r -= op2.int
1458 q += 1
1459
1460 if q >= 10**context.prec:
1461 return context._raise_error(DivisionImpossible)
1462
1463 # result has same sign as self unless r is negative
1464 sign = self._sign
1465 if r < 0:
1466 sign = 1-sign
1467 r = -r
1468
1469 ans = _dec_from_triple(sign, str(r), ideal_exponent)
1470 return ans._fix(context)
1471
1472 def __floordiv__(self, other, context=None):
1473 """self // other"""
1474 other = _convert_other(other)
1475 if other is NotImplemented:
1476 return other
1477
1478 if context is None:
1479 context = getcontext()
1480
1481 ans = self._check_nans(other, context)
1482 if ans:
1483 return ans
1484
1485 if self._isinfinity():
1486 if other._isinfinity():
1487 return context._raise_error(InvalidOperation, 'INF // INF')
1488 else:
1489 return _SignedInfinity[self._sign ^ other._sign]
1490
1491 if not other:
1492 if self:
1493 return context._raise_error(DivisionByZero, 'x // 0',
1494 self._sign ^ other._sign)
1495 else:
1496 return context._raise_error(DivisionUndefined, '0 // 0')
1497
1498 return self._divide(other, context)[0]
1499
1500 def __rfloordiv__(self, other, context=None):
1501 """Swaps self/other and returns __floordiv__."""
1502 other = _convert_other(other)
1503 if other is NotImplemented:
1504 return other
1505 return other.__floordiv__(self, context=context)
1506
1507 def __float__(self):
1508 """Float representation."""
1509 return float(str(self))
1510
1511 def __int__(self):
1512 """Converts self to an int, truncating if necessary."""
1513 if self._is_special:
1514 if self._isnan():
1515 raise ValueError("Cannot convert NaN to integer")
1516 elif self._isinfinity():
1517 raise OverflowError("Cannot convert infinity to integer")
1518 s = (-1)**self._sign
1519 if self._exp >= 0:
1520 return s*int(self._int)*10**self._exp
1521 else:
1522 return s*int(self._int[:self._exp] or '0')
1523
1524 __trunc__ = __int__
1525
1526 def real(self):
1527 return self
1528 real = property(real)
1529
1530 def imag(self):
1531 return Decimal(0)
1532 imag = property(imag)
1533
1534 def conjugate(self):
1535 return self
1536
1537 def __complex__(self):
1538 return complex(float(self))
1539
1540 def __long__(self):
1541 """Converts to a long.
1542
1543 Equivalent to long(int(self))
1544 """
1545 return long(self.__int__())
1546
1547 def _fix_nan(self, context):
1548 """Decapitate the payload of a NaN to fit the context"""
1549 payload = self._int
1550
1551 # maximum length of payload is precision if _clamp=0,
1552 # precision-1 if _clamp=1.
1553 max_payload_len = context.prec - context._clamp
1554 if len(payload) > max_payload_len:
1555 payload = payload[len(payload)-max_payload_len:].lstrip('0')
1556 return _dec_from_triple(self._sign, payload, self._exp, True)
1557 return Decimal(self)
1558
1559 def _fix(self, context):
1560 """Round if it is necessary to keep self within prec precision.
1561
1562 Rounds and fixes the exponent. Does not raise on a sNaN.
1563
1564 Arguments:
1565 self - Decimal instance
1566 context - context used.
1567 """
1568
1569 if self._is_special:
1570 if self._isnan():
1571 # decapitate payload if necessary
1572 return self._fix_nan(context)
1573 else:
1574 # self is +/-Infinity; return unaltered
1575 return Decimal(self)
1576
1577 # if self is zero then exponent should be between Etiny and
1578 # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1579 Etiny = context.Etiny()
1580 Etop = context.Etop()
1581 if not self:
1582 exp_max = [context.Emax, Etop][context._clamp]
1583 new_exp = min(max(self._exp, Etiny), exp_max)
1584 if new_exp != self._exp:
1585 context._raise_error(Clamped)
1586 return _dec_from_triple(self._sign, '0', new_exp)
1587 else:
1588 return Decimal(self)
1589
1590 # exp_min is the smallest allowable exponent of the result,
1591 # equal to max(self.adjusted()-context.prec+1, Etiny)
1592 exp_min = len(self._int) + self._exp - context.prec
1593 if exp_min > Etop:
1594 # overflow: exp_min > Etop iff self.adjusted() > Emax
1595 context._raise_error(Inexact)
1596 context._raise_error(Rounded)
1597 return context._raise_error(Overflow, 'above Emax', self._sign)
1598 self_is_subnormal = exp_min < Etiny
1599 if self_is_subnormal:
1600 context._raise_error(Subnormal)
1601 exp_min = Etiny
1602
1603 # round if self has too many digits
1604 if self._exp < exp_min:
1605 context._raise_error(Rounded)
1606 digits = len(self._int) + self._exp - exp_min
1607 if digits < 0:
1608 self = _dec_from_triple(self._sign, '1', exp_min-1)
1609 digits = 0
1610 this_function = getattr(self, self._pick_rounding_function[context.rounding])
1611 changed = this_function(digits)
1612 coeff = self._int[:digits] or '0'
1613 if changed == 1:
1614 coeff = str(int(coeff)+1)
1615 ans = _dec_from_triple(self._sign, coeff, exp_min)
1616
1617 if changed:
1618 context._raise_error(Inexact)
1619 if self_is_subnormal:
1620 context._raise_error(Underflow)
1621 if not ans:
1622 # raise Clamped on underflow to 0
1623 context._raise_error(Clamped)
1624 elif len(ans._int) == context.prec+1:
1625 # we get here only if rescaling rounds the
1626 # cofficient up to exactly 10**context.prec
1627 if ans._exp < Etop:
1628 ans = _dec_from_triple(ans._sign,
1629 ans._int[:-1], ans._exp+1)
1630 else:
1631 # Inexact and Rounded have already been raised
1632 ans = context._raise_error(Overflow, 'above Emax',
1633 self._sign)
1634 return ans
1635
1636 # fold down if _clamp == 1 and self has too few digits
1637 if context._clamp == 1 and self._exp > Etop:
1638 context._raise_error(Clamped)
1639 self_padded = self._int + '0'*(self._exp - Etop)
1640 return _dec_from_triple(self._sign, self_padded, Etop)
1641
1642 # here self was representable to begin with; return unchanged
1643 return Decimal(self)
1644
1645 _pick_rounding_function = {}
1646
1647 # for each of the rounding functions below:
1648 # self is a finite, nonzero Decimal
1649 # prec is an integer satisfying 0 <= prec < len(self._int)
1650 #
1651 # each function returns either -1, 0, or 1, as follows:
1652 # 1 indicates that self should be rounded up (away from zero)
1653 # 0 indicates that self should be truncated, and that all the
1654 # digits to be truncated are zeros (so the value is unchanged)
1655 # -1 indicates that there are nonzero digits to be truncated
1656
1657 def _round_down(self, prec):
1658 """Also known as round-towards-0, truncate."""
1659 if _all_zeros(self._int, prec):
1660 return 0
1661 else:
1662 return -1
1663
1664 def _round_up(self, prec):
1665 """Rounds away from 0."""
1666 return -self._round_down(prec)
1667
1668 def _round_half_up(self, prec):
1669 """Rounds 5 up (away from 0)"""
1670 if self._int[prec] in '56789':
1671 return 1
1672 elif _all_zeros(self._int, prec):
1673 return 0
1674 else:
1675 return -1
1676
1677 def _round_half_down(self, prec):
1678 """Round 5 down"""
1679 if _exact_half(self._int, prec):
1680 return -1
1681 else:
1682 return self._round_half_up(prec)
1683
1684 def _round_half_even(self, prec):
1685 """Round 5 to even, rest to nearest."""
1686 if _exact_half(self._int, prec) and \
1687 (prec == 0 or self._int[prec-1] in '02468'):
1688 return -1
1689 else:
1690 return self._round_half_up(prec)
1691
1692 def _round_ceiling(self, prec):
1693 """Rounds up (not away from 0 if negative.)"""
1694 if self._sign:
1695 return self._round_down(prec)
1696 else:
1697 return -self._round_down(prec)
1698
1699 def _round_floor(self, prec):
1700 """Rounds down (not towards 0 if negative)"""
1701 if not self._sign:
1702 return self._round_down(prec)
1703 else:
1704 return -self._round_down(prec)
1705
1706 def _round_05up(self, prec):
1707 """Round down unless digit prec-1 is 0 or 5."""
1708 if prec and self._int[prec-1] not in '05':
1709 return self._round_down(prec)
1710 else:
1711 return -self._round_down(prec)
1712
1713 def fma(self, other, third, context=None):
1714 """Fused multiply-add.
1715
1716 Returns self*other+third with no rounding of the intermediate
1717 product self*other.
1718
1719 self and other are multiplied together, with no rounding of
1720 the result. The third operand is then added to the result,
1721 and a single final rounding is performed.
1722 """
1723
1724 other = _convert_other(other, raiseit=True)
1725
1726 # compute product; raise InvalidOperation if either operand is
1727 # a signaling NaN or if the product is zero times infinity.
1728 if self._is_special or other._is_special:
1729 if context is None:
1730 context = getcontext()
1731 if self._exp == 'N':
1732 return context._raise_error(InvalidOperation, 'sNaN', self)
1733 if other._exp == 'N':
1734 return context._raise_error(InvalidOperation, 'sNaN', other)
1735 if self._exp == 'n':
1736 product = self
1737 elif other._exp == 'n':
1738 product = other
1739 elif self._exp == 'F':
1740 if not other:
1741 return context._raise_error(InvalidOperation,
1742 'INF * 0 in fma')
1743 product = _SignedInfinity[self._sign ^ other._sign]
1744 elif other._exp == 'F':
1745 if not self:
1746 return context._raise_error(InvalidOperation,
1747 '0 * INF in fma')
1748 product = _SignedInfinity[self._sign ^ other._sign]
1749 else:
1750 product = _dec_from_triple(self._sign ^ other._sign,
1751 str(int(self._int) * int(other._int)),
1752 self._exp + other._exp)
1753
1754 third = _convert_other(third, raiseit=True)
1755 return product.__add__(third, context)
1756
1757 def _power_modulo(self, other, modulo, context=None):
1758 """Three argument version of __pow__"""
1759
1760 # if can't convert other and modulo to Decimal, raise
1761 # TypeError; there's no point returning NotImplemented (no
1762 # equivalent of __rpow__ for three argument pow)
1763 other = _convert_other(other, raiseit=True)
1764 modulo = _convert_other(modulo, raiseit=True)
1765
1766 if context is None:
1767 context = getcontext()
1768
1769 # deal with NaNs: if there are any sNaNs then first one wins,
1770 # (i.e. behaviour for NaNs is identical to that of fma)
1771 self_is_nan = self._isnan()
1772 other_is_nan = other._isnan()
1773 modulo_is_nan = modulo._isnan()
1774 if self_is_nan or other_is_nan or modulo_is_nan:
1775 if self_is_nan == 2:
1776 return context._raise_error(InvalidOperation, 'sNaN',
1777 self)
1778 if other_is_nan == 2:
1779 return context._raise_error(InvalidOperation, 'sNaN',
1780 other)
1781 if modulo_is_nan == 2:
1782 return context._raise_error(InvalidOperation, 'sNaN',
1783 modulo)
1784 if self_is_nan:
1785 return self._fix_nan(context)
1786 if other_is_nan:
1787 return other._fix_nan(context)
1788 return modulo._fix_nan(context)
1789
1790 # check inputs: we apply same restrictions as Python's pow()
1791 if not (self._isinteger() and
1792 other._isinteger() and
1793 modulo._isinteger()):
1794 return context._raise_error(InvalidOperation,
1795 'pow() 3rd argument not allowed '
1796 'unless all arguments are integers')
1797 if other < 0:
1798 return context._raise_error(InvalidOperation,
1799 'pow() 2nd argument cannot be '
1800 'negative when 3rd argument specified')
1801 if not modulo:
1802 return context._raise_error(InvalidOperation,
1803 'pow() 3rd argument cannot be 0')
1804
1805 # additional restriction for decimal: the modulus must be less
1806 # than 10**prec in absolute value
1807 if modulo.adjusted() >= context.prec:
1808 return context._raise_error(InvalidOperation,
1809 'insufficient precision: pow() 3rd '
1810 'argument must not have more than '
1811 'precision digits')
1812
1813 # define 0**0 == NaN, for consistency with two-argument pow
1814 # (even though it hurts!)
1815 if not other and not self:
1816 return context._raise_error(InvalidOperation,
1817 'at least one of pow() 1st argument '
1818 'and 2nd argument must be nonzero ;'
1819 '0**0 is not defined')
1820
1821 # compute sign of result
1822 if other._iseven():
1823 sign = 0
1824 else:
1825 sign = self._sign
1826
1827 # convert modulo to a Python integer, and self and other to
1828 # Decimal integers (i.e. force their exponents to be >= 0)
1829 modulo = abs(int(modulo))
1830 base = _WorkRep(self.to_integral_value())
1831 exponent = _WorkRep(other.to_integral_value())
1832
1833 # compute result using integer pow()
1834 base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1835 for i in xrange(exponent.exp):
1836 base = pow(base, 10, modulo)
1837 base = pow(base, exponent.int, modulo)
1838
1839 return _dec_from_triple(sign, str(base), 0)
1840
1841 def _power_exact(self, other, p):
1842 """Attempt to compute self**other exactly.
1843
1844 Given Decimals self and other and an integer p, attempt to
1845 compute an exact result for the power self**other, with p
1846 digits of precision. Return None if self**other is not
1847 exactly representable in p digits.
1848
1849 Assumes that elimination of special cases has already been
1850 performed: self and other must both be nonspecial; self must
1851 be positive and not numerically equal to 1; other must be
1852 nonzero. For efficiency, other._exp should not be too large,
1853 so that 10**abs(other._exp) is a feasible calculation."""
1854
1855 # In the comments below, we write x for the value of self and
1856 # y for the value of other. Write x = xc*10**xe and y =
1857 # yc*10**ye.
1858
1859 # The main purpose of this method is to identify the *failure*
1860 # of x**y to be exactly representable with as little effort as
1861 # possible. So we look for cheap and easy tests that
1862 # eliminate the possibility of x**y being exact. Only if all
1863 # these tests are passed do we go on to actually compute x**y.
1864
1865 # Here's the main idea. First normalize both x and y. We
1866 # express y as a rational m/n, with m and n relatively prime
1867 # and n>0. Then for x**y to be exactly representable (at
1868 # *any* precision), xc must be the nth power of a positive
1869 # integer and xe must be divisible by n. If m is negative
1870 # then additionally xc must be a power of either 2 or 5, hence
1871 # a power of 2**n or 5**n.
1872 #
1873 # There's a limit to how small |y| can be: if y=m/n as above
1874 # then:
1875 #
1876 # (1) if xc != 1 then for the result to be representable we
1877 # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
1878 # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1879 # 2**(1/|y|), hence xc**|y| < 2 and the result is not
1880 # representable.
1881 #
1882 # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
1883 # |y| < 1/|xe| then the result is not representable.
1884 #
1885 # Note that since x is not equal to 1, at least one of (1) and
1886 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1887 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1888 #
1889 # There's also a limit to how large y can be, at least if it's
1890 # positive: the normalized result will have coefficient xc**y,
1891 # so if it's representable then xc**y < 10**p, and y <
1892 # p/log10(xc). Hence if y*log10(xc) >= p then the result is
1893 # not exactly representable.
1894
1895 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1896 # so |y| < 1/xe and the result is not representable.
1897 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1898 # < 1/nbits(xc).
1899
1900 x = _WorkRep(self)
1901 xc, xe = x.int, x.exp
1902 while xc % 10 == 0:
1903 xc //= 10
1904 xe += 1
1905
1906 y = _WorkRep(other)
1907 yc, ye = y.int, y.exp
1908 while yc % 10 == 0:
1909 yc //= 10
1910 ye += 1
1911
1912 # case where xc == 1: result is 10**(xe*y), with xe*y
1913 # required to be an integer
1914 if xc == 1:
1915 if ye >= 0:
1916 exponent = xe*yc*10**ye
1917 else:
1918 exponent, remainder = divmod(xe*yc, 10**-ye)
1919 if remainder:
1920 return None
1921 if y.sign == 1:
1922 exponent = -exponent
1923 # if other is a nonnegative integer, use ideal exponent
1924 if other._isinteger() and other._sign == 0:
1925 ideal_exponent = self._exp*int(other)
1926 zeros = min(exponent-ideal_exponent, p-1)
1927 else:
1928 zeros = 0
1929 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
1930
1931 # case where y is negative: xc must be either a power
1932 # of 2 or a power of 5.
1933 if y.sign == 1:
1934 last_digit = xc % 10
1935 if last_digit in (2,4,6,8):
1936 # quick test for power of 2
1937 if xc & -xc != xc:
1938 return None
1939 # now xc is a power of 2; e is its exponent
1940 e = _nbits(xc)-1
1941 # find e*y and xe*y; both must be integers
1942 if ye >= 0:
1943 y_as_int = yc*10**ye
1944 e = e*y_as_int
1945 xe = xe*y_as_int
1946 else:
1947 ten_pow = 10**-ye
1948 e, remainder = divmod(e*yc, ten_pow)
1949 if remainder:
1950 return None
1951 xe, remainder = divmod(xe*yc, ten_pow)
1952 if remainder:
1953 return None
1954
1955 if e*65 >= p*93: # 93/65 > log(10)/log(5)
1956 return None
1957 xc = 5**e
1958
1959 elif last_digit == 5:
1960 # e >= log_5(xc) if xc is a power of 5; we have
1961 # equality all the way up to xc=5**2658
1962 e = _nbits(xc)*28//65
1963 xc, remainder = divmod(5**e, xc)
1964 if remainder:
1965 return None
1966 while xc % 5 == 0:
1967 xc //= 5
1968 e -= 1
1969 if ye >= 0:
1970 y_as_integer = yc*10**ye
1971 e = e*y_as_integer
1972 xe = xe*y_as_integer
1973 else:
1974 ten_pow = 10**-ye
1975 e, remainder = divmod(e*yc, ten_pow)
1976 if remainder:
1977 return None
1978 xe, remainder = divmod(xe*yc, ten_pow)
1979 if remainder:
1980 return None
1981 if e*3 >= p*10: # 10/3 > log(10)/log(2)
1982 return None
1983 xc = 2**e
1984 else:
1985 return None
1986
1987 if xc >= 10**p:
1988 return None
1989 xe = -e-xe
1990 return _dec_from_triple(0, str(xc), xe)
1991
1992 # now y is positive; find m and n such that y = m/n
1993 if ye >= 0:
1994 m, n = yc*10**ye, 1
1995 else:
1996 if xe != 0 and len(str(abs(yc*xe))) <= -ye:
1997 return None
1998 xc_bits = _nbits(xc)
1999 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2000 return None
2001 m, n = yc, 10**(-ye)
2002 while m % 2 == n % 2 == 0:
2003 m //= 2
2004 n //= 2
2005 while m % 5 == n % 5 == 0:
2006 m //= 5
2007 n //= 5
2008
2009 # compute nth root of xc*10**xe
2010 if n > 1:
2011 # if 1 < xc < 2**n then xc isn't an nth power
2012 if xc != 1 and xc_bits <= n:
2013 return None
2014
2015 xe, rem = divmod(xe, n)
2016 if rem != 0:
2017 return None
2018
2019 # compute nth root of xc using Newton's method
2020 a = 1L << -(-_nbits(xc)//n) # initial estimate
2021 while True:
2022 q, r = divmod(xc, a**(n-1))
2023 if a <= q:
2024 break
2025 else:
2026 a = (a*(n-1) + q)//n
2027 if not (a == q and r == 0):
2028 return None
2029 xc = a
2030
2031 # now xc*10**xe is the nth root of the original xc*10**xe
2032 # compute mth power of xc*10**xe
2033
2034 # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2035 # 10**p and the result is not representable.
2036 if xc > 1 and m > p*100//_log10_lb(xc):
2037 return None
2038 xc = xc**m
2039 xe *= m
2040 if xc > 10**p:
2041 return None
2042
2043 # by this point the result *is* exactly representable
2044 # adjust the exponent to get as close as possible to the ideal
2045 # exponent, if necessary
2046 str_xc = str(xc)
2047 if other._isinteger() and other._sign == 0:
2048 ideal_exponent = self._exp*int(other)
2049 zeros = min(xe-ideal_exponent, p-len(str_xc))
2050 else:
2051 zeros = 0
2052 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2053
2054 def __pow__(self, other, modulo=None, context=None):
2055 """Return self ** other [ % modulo].
2056
2057 With two arguments, compute self**other.
2058
2059 With three arguments, compute (self**other) % modulo. For the
2060 three argument form, the following restrictions on the
2061 arguments hold:
2062
2063 - all three arguments must be integral
2064 - other must be nonnegative
2065 - either self or other (or both) must be nonzero
2066 - modulo must be nonzero and must have at most p digits,
2067 where p is the context precision.
2068
2069 If any of these restrictions is violated the InvalidOperation
2070 flag is raised.
2071
2072 The result of pow(self, other, modulo) is identical to the
2073 result that would be obtained by computing (self**other) %
2074 modulo with unbounded precision, but is computed more
2075 efficiently. It is always exact.
2076 """
2077
2078 if modulo is not None:
2079 return self._power_modulo(other, modulo, context)
2080
2081 other = _convert_other(other)
2082 if other is NotImplemented:
2083 return other
2084
2085 if context is None:
2086 context = getcontext()
2087
2088 # either argument is a NaN => result is NaN
2089 ans = self._check_nans(other, context)
2090 if ans:
2091 return ans
2092
2093 # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2094 if not other:
2095 if not self:
2096 return context._raise_error(InvalidOperation, '0 ** 0')
2097 else:
2098 return _One
2099
2100 # result has sign 1 iff self._sign is 1 and other is an odd integer
2101 result_sign = 0
2102 if self._sign == 1:
2103 if other._isinteger():
2104 if not other._iseven():
2105 result_sign = 1
2106 else:
2107 # -ve**noninteger = NaN
2108 # (-0)**noninteger = 0**noninteger
2109 if self:
2110 return context._raise_error(InvalidOperation,
2111 'x ** y with x negative and y not an integer')
2112 # negate self, without doing any unwanted rounding
2113 self = self.copy_negate()
2114
2115 # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2116 if not self:
2117 if other._sign == 0:
2118 return _dec_from_triple(result_sign, '0', 0)
2119 else:
2120 return _SignedInfinity[result_sign]
2121
2122 # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2123 if self._isinfinity():
2124 if other._sign == 0:
2125 return _SignedInfinity[result_sign]
2126 else:
2127 return _dec_from_triple(result_sign, '0', 0)
2128
2129 # 1**other = 1, but the choice of exponent and the flags
2130 # depend on the exponent of self, and on whether other is a
2131 # positive integer, a negative integer, or neither
2132 if self == _One:
2133 if other._isinteger():
2134 # exp = max(self._exp*max(int(other), 0),
2135 # 1-context.prec) but evaluating int(other) directly
2136 # is dangerous until we know other is small (other
2137 # could be 1e999999999)
2138 if other._sign == 1:
2139 multiplier = 0
2140 elif other > context.prec:
2141 multiplier = context.prec
2142 else:
2143 multiplier = int(other)
2144
2145 exp = self._exp * multiplier
2146 if exp < 1-context.prec:
2147 exp = 1-context.prec
2148 context._raise_error(Rounded)
2149 else:
2150 context._raise_error(Inexact)
2151 context._raise_error(Rounded)
2152 exp = 1-context.prec
2153
2154 return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2155
2156 # compute adjusted exponent of self
2157 self_adj = self.adjusted()
2158
2159 # self ** infinity is infinity if self > 1, 0 if self < 1
2160 # self ** -infinity is infinity if self < 1, 0 if self > 1
2161 if other._isinfinity():
2162 if (other._sign == 0) == (self_adj < 0):
2163 return _dec_from_triple(result_sign, '0', 0)
2164 else:
2165 return _SignedInfinity[result_sign]
2166
2167 # from here on, the result always goes through the call
2168 # to _fix at the end of this function.
2169 ans = None
2170
2171 # crude test to catch cases of extreme overflow/underflow. If
2172 # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2173 # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2174 # self**other >= 10**(Emax+1), so overflow occurs. The test
2175 # for underflow is similar.
2176 bound = self._log10_exp_bound() + other.adjusted()
2177 if (self_adj >= 0) == (other._sign == 0):
2178 # self > 1 and other +ve, or self < 1 and other -ve
2179 # possibility of overflow
2180 if bound >= len(str(context.Emax)):
2181 ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2182 else:
2183 # self > 1 and other -ve, or self < 1 and other +ve
2184 # possibility of underflow to 0
2185 Etiny = context.Etiny()
2186 if bound >= len(str(-Etiny)):
2187 ans = _dec_from_triple(result_sign, '1', Etiny-1)
2188
2189 # try for an exact result with precision +1
2190 if ans is None:
2191 ans = self._power_exact(other, context.prec + 1)
2192 if ans is not None and result_sign == 1:
2193 ans = _dec_from_triple(1, ans._int, ans._exp)
2194
2195 # usual case: inexact result, x**y computed directly as exp(y*log(x))
2196 if ans is None:
2197 p = context.prec
2198 x = _WorkRep(self)
2199 xc, xe = x.int, x.exp
2200 y = _WorkRep(other)
2201 yc, ye = y.int, y.exp
2202 if y.sign == 1:
2203 yc = -yc
2204
2205 # compute correctly rounded result: start with precision +3,
2206 # then increase precision until result is unambiguously roundable
2207 extra = 3
2208 while True:
2209 coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2210 if coeff % (5*10**(len(str(coeff))-p-1)):
2211 break
2212 extra += 3
2213
2214 ans = _dec_from_triple(result_sign, str(coeff), exp)
2215
2216 # the specification says that for non-integer other we need to
2217 # raise Inexact, even when the result is actually exact. In
2218 # the same way, we need to raise Underflow here if the result
2219 # is subnormal. (The call to _fix will take care of raising
2220 # Rounded and Subnormal, as usual.)
2221 if not other._isinteger():
2222 context._raise_error(Inexact)
2223 # pad with zeros up to length context.prec+1 if necessary
2224 if len(ans._int) <= context.prec:
2225 expdiff = context.prec+1 - len(ans._int)
2226 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2227 ans._exp-expdiff)
2228 if ans.adjusted() < context.Emin:
2229 context._raise_error(Underflow)
2230
2231 # unlike exp, ln and log10, the power function respects the
2232 # rounding mode; no need to use ROUND_HALF_EVEN here
2233 ans = ans._fix(context)
2234 return ans
2235
2236 def __rpow__(self, other, context=None):
2237 """Swaps self/other and returns __pow__."""
2238 other = _convert_other(other)
2239 if other is NotImplemented:
2240 return other
2241 return other.__pow__(self, context=context)
2242
2243 def normalize(self, context=None):
2244 """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2245
2246 if context is None:
2247 context = getcontext()
2248
2249 if self._is_special:
2250 ans = self._check_nans(context=context)
2251 if ans:
2252 return ans
2253
2254 dup = self._fix(context)
2255 if dup._isinfinity():
2256 return dup
2257
2258 if not dup:
2259 return _dec_from_triple(dup._sign, '0', 0)
2260 exp_max = [context.Emax, context.Etop()][context._clamp]
2261 end = len(dup._int)
2262 exp = dup._exp
2263 while dup._int[end-1] == '0' and exp < exp_max:
2264 exp += 1
2265 end -= 1
2266 return _dec_from_triple(dup._sign, dup._int[:end], exp)
2267
2268 def quantize(self, exp, rounding=None, context=None, watchexp=True):
2269 """Quantize self so its exponent is the same as that of exp.
2270
2271 Similar to self._rescale(exp._exp) but with error checking.
2272 """
2273 exp = _convert_other(exp, raiseit=True)
2274
2275 if context is None:
2276 context = getcontext()
2277 if rounding is None:
2278 rounding = context.rounding
2279
2280 if self._is_special or exp._is_special:
2281 ans = self._check_nans(exp, context)
2282 if ans:
2283 return ans
2284
2285 if exp._isinfinity() or self._isinfinity():
2286 if exp._isinfinity() and self._isinfinity():
2287 return Decimal(self) # if both are inf, it is OK
2288 return context._raise_error(InvalidOperation,
2289 'quantize with one INF')
2290
2291 # if we're not watching exponents, do a simple rescale
2292 if not watchexp:
2293 ans = self._rescale(exp._exp, rounding)
2294 # raise Inexact and Rounded where appropriate
2295 if ans._exp > self._exp:
2296 context._raise_error(Rounded)
2297 if ans != self:
2298 context._raise_error(Inexact)
2299 return ans
2300
2301 # exp._exp should be between Etiny and Emax
2302 if not (context.Etiny() <= exp._exp <= context.Emax):
2303 return context._raise_error(InvalidOperation,
2304 'target exponent out of bounds in quantize')
2305
2306 if not self:
2307 ans = _dec_from_triple(self._sign, '0', exp._exp)
2308 return ans._fix(context)
2309
2310 self_adjusted = self.adjusted()
2311 if self_adjusted > context.Emax:
2312 return context._raise_error(InvalidOperation,
2313 'exponent of quantize result too large for current context')
2314 if self_adjusted - exp._exp + 1 > context.prec:
2315 return context._raise_error(InvalidOperation,
2316 'quantize result has too many digits for current context')
2317
2318 ans = self._rescale(exp._exp, rounding)
2319 if ans.adjusted() > context.Emax:
2320 return context._raise_error(InvalidOperation,
2321 'exponent of quantize result too large for current context')
2322 if len(ans._int) > context.prec:
2323 return context._raise_error(InvalidOperation,
2324 'quantize result has too many digits for current context')
2325
2326 # raise appropriate flags
2327 if ans._exp > self._exp:
2328 context._raise_error(Rounded)
2329 if ans != self:
2330 context._raise_error(Inexact)
2331 if ans and ans.adjusted() < context.Emin:
2332 context._raise_error(Subnormal)
2333
2334 # call to fix takes care of any necessary folddown
2335 ans = ans._fix(context)
2336 return ans
2337
2338 def same_quantum(self, other):
2339 """Return True if self and other have the same exponent; otherwise
2340 return False.
2341
2342 If either operand is a special value, the following rules are used:
2343 * return True if both operands are infinities
2344 * return True if both operands are NaNs
2345 * otherwise, return False.
2346 """
2347 other = _convert_other(other, raiseit=True)
2348 if self._is_special or other._is_special:
2349 return (self.is_nan() and other.is_nan() or
2350 self.is_infinite() and other.is_infinite())
2351 return self._exp == other._exp
2352
2353 def _rescale(self, exp, rounding):
2354 """Rescale self so that the exponent is exp, either by padding with zeros
2355 or by truncating digits, using the given rounding mode.
2356
2357 Specials are returned without change. This operation is
2358 quiet: it raises no flags, and uses no information from the
2359 context.
2360
2361 exp = exp to scale to (an integer)
2362 rounding = rounding mode
2363 """
2364 if self._is_special:
2365 return Decimal(self)
2366 if not self:
2367 return _dec_from_triple(self._sign, '0', exp)
2368
2369 if self._exp >= exp:
2370 # pad answer with zeros if necessary
2371 return _dec_from_triple(self._sign,
2372 self._int + '0'*(self._exp - exp), exp)
2373
2374 # too many digits; round and lose data. If self.adjusted() <
2375 # exp-1, replace self by 10**(exp-1) before rounding
2376 digits = len(self._int) + self._exp - exp
2377 if digits < 0:
2378 self = _dec_from_triple(self._sign, '1', exp-1)
2379 digits = 0
2380 this_function = getattr(self, self._pick_rounding_function[rounding])
2381 changed = this_function(digits)
2382 coeff = self._int[:digits] or '0'
2383 if changed == 1:
2384 coeff = str(int(coeff)+1)
2385 return _dec_from_triple(self._sign, coeff, exp)
2386
2387 def _round(self, places, rounding):
2388 """Round a nonzero, nonspecial Decimal to a fixed number of
2389 significant figures, using the given rounding mode.
2390
2391 Infinities, NaNs and zeros are returned unaltered.
2392
2393 This operation is quiet: it raises no flags, and uses no
2394 information from the context.
2395
2396 """
2397 if places <= 0:
2398 raise ValueError("argument should be at least 1 in _round")
2399 if self._is_special or not self:
2400 return Decimal(self)
2401 ans = self._rescale(self.adjusted()+1-places, rounding)
2402 # it can happen that the rescale alters the adjusted exponent;
2403 # for example when rounding 99.97 to 3 significant figures.
2404 # When this happens we end up with an extra 0 at the end of
2405 # the number; a second rescale fixes this.
2406 if ans.adjusted() != self.adjusted():
2407 ans = ans._rescale(ans.adjusted()+1-places, rounding)
2408 return ans
2409
2410 def to_integral_exact(self, rounding=None, context=None):
2411 """Rounds to a nearby integer.
2412
2413 If no rounding mode is specified, take the rounding mode from
2414 the context. This method raises the Rounded and Inexact flags
2415 when appropriate.
2416
2417 See also: to_integral_value, which does exactly the same as
2418 this method except that it doesn't raise Inexact or Rounded.
2419 """
2420 if self._is_special:
2421 ans = self._check_nans(context=context)
2422 if ans:
2423 return ans
2424 return Decimal(self)
2425 if self._exp >= 0:
2426 return Decimal(self)
2427 if not self:
2428 return _dec_from_triple(self._sign, '0', 0)
2429 if context is None:
2430 context = getcontext()
2431 if rounding is None:
2432 rounding = context.rounding
2433 context._raise_error(Rounded)
2434 ans = self._rescale(0, rounding)
2435 if ans != self:
2436 context._raise_error(Inexact)
2437 return ans
2438
2439 def to_integral_value(self, rounding=None, context=None):
2440 """Rounds to the nearest integer, without raising inexact, rounded."""
2441 if context is None:
2442 context = getcontext()
2443 if rounding is None:
2444 rounding = context.rounding
2445 if self._is_special:
2446 ans = self._check_nans(context=context)
2447 if ans:
2448 return ans
2449 return Decimal(self)
2450 if self._exp >= 0:
2451 return Decimal(self)
2452 else:
2453 return self._rescale(0, rounding)
2454
2455 # the method name changed, but we provide also the old one, for compatibility
2456 to_integral = to_integral_value
2457
2458 def sqrt(self, context=None):
2459 """Return the square root of self."""
2460 if context is None:
2461 context = getcontext()
2462
2463 if self._is_special:
2464 ans = self._check_nans(context=context)
2465 if ans:
2466 return ans
2467
2468 if self._isinfinity() and self._sign == 0:
2469 return Decimal(self)
2470
2471 if not self:
2472 # exponent = self._exp // 2. sqrt(-0) = -0
2473 ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2474 return ans._fix(context)
2475
2476 if self._sign == 1:
2477 return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2478
2479 # At this point self represents a positive number. Let p be
2480 # the desired precision and express self in the form c*100**e
2481 # with c a positive real number and e an integer, c and e
2482 # being chosen so that 100**(p-1) <= c < 100**p. Then the
2483 # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2484 # <= sqrt(c) < 10**p, so the closest representable Decimal at
2485 # precision p is n*10**e where n = round_half_even(sqrt(c)),
2486 # the closest integer to sqrt(c) with the even integer chosen
2487 # in the case of a tie.
2488 #
2489 # To ensure correct rounding in all cases, we use the
2490 # following trick: we compute the square root to an extra
2491 # place (precision p+1 instead of precision p), rounding down.
2492 # Then, if the result is inexact and its last digit is 0 or 5,
2493 # we increase the last digit to 1 or 6 respectively; if it's
2494 # exact we leave the last digit alone. Now the final round to
2495 # p places (or fewer in the case of underflow) will round
2496 # correctly and raise the appropriate flags.
2497
2498 # use an extra digit of precision
2499 prec = context.prec+1
2500
2501 # write argument in the form c*100**e where e = self._exp//2
2502 # is the 'ideal' exponent, to be used if the square root is
2503 # exactly representable. l is the number of 'digits' of c in
2504 # base 100, so that 100**(l-1) <= c < 100**l.
2505 op = _WorkRep(self)
2506 e = op.exp >> 1
2507 if op.exp & 1:
2508 c = op.int * 10
2509 l = (len(self._int) >> 1) + 1
2510 else:
2511 c = op.int
2512 l = len(self._int)+1 >> 1
2513
2514 # rescale so that c has exactly prec base 100 'digits'
2515 shift = prec-l
2516 if shift >= 0:
2517 c *= 100**shift
2518 exact = True
2519 else:
2520 c, remainder = divmod(c, 100**-shift)
2521 exact = not remainder
2522 e -= shift
2523
2524 # find n = floor(sqrt(c)) using Newton's method
2525 n = 10**prec
2526 while True:
2527 q = c//n
2528 if n <= q:
2529 break
2530 else:
2531 n = n + q >> 1
2532 exact = exact and n*n == c
2533
2534 if exact:
2535 # result is exact; rescale to use ideal exponent e
2536 if shift >= 0:
2537 # assert n % 10**shift == 0
2538 n //= 10**shift
2539 else:
2540 n *= 10**-shift
2541 e += shift
2542 else:
2543 # result is not exact; fix last digit as described above
2544 if n % 5 == 0:
2545 n += 1
2546
2547 ans = _dec_from_triple(0, str(n), e)
2548
2549 # round, and fit to current context
2550 context = context._shallow_copy()
2551 rounding = context._set_rounding(ROUND_HALF_EVEN)
2552 ans = ans._fix(context)
2553 context.rounding = rounding
2554
2555 return ans
2556
2557 def max(self, other, context=None):
2558 """Returns the larger value.
2559
2560 Like max(self, other) except if one is not a number, returns
2561 NaN (and signals if one is sNaN). Also rounds.
2562 """
2563 other = _convert_other(other, raiseit=True)
2564
2565 if context is None:
2566 context = getcontext()
2567
2568 if self._is_special or other._is_special:
2569 # If one operand is a quiet NaN and the other is number, then the
2570 # number is always returned
2571 sn = self._isnan()
2572 on = other._isnan()
2573 if sn or on:
2574 if on == 1 and sn == 0:
2575 return self._fix(context)
2576 if sn == 1 and on == 0:
2577 return other._fix(context)
2578 return self._check_nans(other, context)
2579
2580 c = self._cmp(other)
2581 if c == 0:
2582 # If both operands are finite and equal in numerical value
2583 # then an ordering is applied:
2584 #
2585 # If the signs differ then max returns the operand with the
2586 # positive sign and min returns the operand with the negative sign
2587 #
2588 # If the signs are the same then the exponent is used to select
2589 # the result. This is exactly the ordering used in compare_total.
2590 c = self.compare_total(other)
2591
2592 if c == -1:
2593 ans = other
2594 else:
2595 ans = self
2596
2597 return ans._fix(context)
2598
2599 def min(self, other, context=None):
2600 """Returns the smaller value.
2601
2602 Like min(self, other) except if one is not a number, returns
2603 NaN (and signals if one is sNaN). Also rounds.
2604 """
2605 other = _convert_other(other, raiseit=True)
2606
2607 if context is None:
2608 context = getcontext()
2609
2610 if self._is_special or other._is_special:
2611 # If one operand is a quiet NaN and the other is number, then the
2612 # number is always returned
2613 sn = self._isnan()
2614 on = other._isnan()
2615 if sn or on:
2616 if on == 1 and sn == 0:
2617 return self._fix(context)
2618 if sn == 1 and on == 0:
2619 return other._fix(context)
2620 return self._check_nans(other, context)
2621
2622 c = self._cmp(other)
2623 if c == 0:
2624 c = self.compare_total(other)
2625
2626 if c == -1:
2627 ans = self
2628 else:
2629 ans = other
2630
2631 return ans._fix(context)
2632
2633 def _isinteger(self):
2634 """Returns whether self is an integer"""
2635 if self._is_special:
2636 return False
2637 if self._exp >= 0:
2638 return True
2639 rest = self._int[self._exp:]
2640 return rest == '0'*len(rest)
2641
2642 def _iseven(self):
2643 """Returns True if self is even. Assumes self is an integer."""
2644 if not self or self._exp > 0:
2645 return True
2646 return self._int[-1+self._exp] in '02468'
2647
2648 def adjusted(self):
2649 """Return the adjusted exponent of self"""
2650 try:
2651 return self._exp + len(self._int) - 1
2652 # If NaN or Infinity, self._exp is string
2653 except TypeError:
2654 return 0
2655
2656 def canonical(self, context=None):
2657 """Returns the same Decimal object.
2658
2659 As we do not have different encodings for the same number, the
2660 received object already is in its canonical form.
2661 """
2662 return self
2663
2664 def compare_signal(self, other, context=None):
2665 """Compares self to the other operand numerically.
2666
2667 It's pretty much like compare(), but all NaNs signal, with signaling
2668 NaNs taking precedence over quiet NaNs.
2669 """
2670 other = _convert_other(other, raiseit = True)
2671 ans = self._compare_check_nans(other, context)
2672 if ans:
2673 return ans
2674 return self.compare(other, context=context)
2675
2676 def compare_total(self, other):
2677 """Compares self to other using the abstract representations.
2678
2679 This is not like the standard compare, which use their numerical
2680 value. Note that a total ordering is defined for all possible abstract
2681 representations.
2682 """
2683 other = _convert_other(other, raiseit=True)
2684
2685 # if one is negative and the other is positive, it's easy
2686 if self._sign and not other._sign:
2687 return _NegativeOne
2688 if not self._sign and other._sign:
2689 return _One
2690 sign = self._sign
2691
2692 # let's handle both NaN types
2693 self_nan = self._isnan()
2694 other_nan = other._isnan()
2695 if self_nan or other_nan:
2696 if self_nan == other_nan:
2697 # compare payloads as though they're integers
2698 self_key = len(self._int), self._int
2699 other_key = len(other._int), other._int
2700 if self_key < other_key:
2701 if sign:
2702 return _One
2703 else:
2704 return _NegativeOne
2705 if self_key > other_key:
2706 if sign:
2707 return _NegativeOne
2708 else:
2709 return _One
2710 return _Zero
2711
2712 if sign:
2713 if self_nan == 1:
2714 return _NegativeOne
2715 if other_nan == 1:
2716 return _One
2717 if self_nan == 2:
2718 return _NegativeOne
2719 if other_nan == 2:
2720 return _One
2721 else:
2722 if self_nan == 1:
2723 return _One
2724 if other_nan == 1:
2725 return _NegativeOne
2726 if self_nan == 2:
2727 return _One
2728 if other_nan == 2:
2729 return _NegativeOne
2730
2731 if self < other:
2732 return _NegativeOne
2733 if self > other:
2734 return _One
2735
2736 if self._exp < other._exp:
2737 if sign:
2738 return _One
2739 else:
2740 return _NegativeOne
2741 if self._exp > other._exp:
2742 if sign:
2743 return _NegativeOne
2744 else:
2745 return _One
2746 return _Zero
2747
2748
2749 def compare_total_mag(self, other):
2750 """Compares self to other using abstract repr., ignoring sign.
2751
2752 Like compare_total, but with operand's sign ignored and assumed to be 0.
2753 """
2754 other = _convert_other(other, raiseit=True)
2755
2756 s = self.copy_abs()
2757 o = other.copy_abs()
2758 return s.compare_total(o)
2759
2760 def copy_abs(self):
2761 """Returns a copy with the sign set to 0. """
2762 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2763
2764 def copy_negate(self):
2765 """Returns a copy with the sign inverted."""
2766 if self._sign:
2767 return _dec_from_triple(0, self._int, self._exp, self._is_special)
2768 else:
2769 return _dec_from_triple(1, self._int, self._exp, self._is_special)
2770
2771 def copy_sign(self, other):
2772 """Returns self with the sign of other."""
2773 return _dec_from_triple(other._sign, self._int,
2774 self._exp, self._is_special)
2775
2776 def exp(self, context=None):
2777 """Returns e ** self."""
2778
2779 if context is None:
2780 context = getcontext()
2781
2782 # exp(NaN) = NaN
2783 ans = self._check_nans(context=context)
2784 if ans:
2785 return ans
2786
2787 # exp(-Infinity) = 0
2788 if self._isinfinity() == -1:
2789 return _Zero
2790
2791 # exp(0) = 1
2792 if not self:
2793 return _One
2794
2795 # exp(Infinity) = Infinity
2796 if self._isinfinity() == 1:
2797 return Decimal(self)
2798
2799 # the result is now guaranteed to be inexact (the true
2800 # mathematical result is transcendental). There's no need to
2801 # raise Rounded and Inexact here---they'll always be raised as
2802 # a result of the call to _fix.
2803 p = context.prec
2804 adj = self.adjusted()
2805
2806 # we only need to do any computation for quite a small range
2807 # of adjusted exponents---for example, -29 <= adj <= 10 for
2808 # the default context. For smaller exponent the result is
2809 # indistinguishable from 1 at the given precision, while for
2810 # larger exponent the result either overflows or underflows.
2811 if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2812 # overflow
2813 ans = _dec_from_triple(0, '1', context.Emax+1)
2814 elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2815 # underflow to 0
2816 ans = _dec_from_triple(0, '1', context.Etiny()-1)
2817 elif self._sign == 0 and adj < -p:
2818 # p+1 digits; final round will raise correct flags
2819 ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2820 elif self._sign == 1 and adj < -p-1:
2821 # p+1 digits; final round will raise correct flags
2822 ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2823 # general case
2824 else:
2825 op = _WorkRep(self)
2826 c, e = op.int, op.exp
2827 if op.sign == 1:
2828 c = -c
2829
2830 # compute correctly rounded result: increase precision by
2831 # 3 digits at a time until we get an unambiguously
2832 # roundable result
2833 extra = 3
2834 while True:
2835 coeff, exp = _dexp(c, e, p+extra)
2836 if coeff % (5*10**(len(str(coeff))-p-1)):
2837 break
2838 extra += 3
2839
2840 ans = _dec_from_triple(0, str(coeff), exp)
2841
2842 # at this stage, ans should round correctly with *any*
2843 # rounding mode, not just with ROUND_HALF_EVEN
2844 context = context._shallow_copy()
2845 rounding = context._set_rounding(ROUND_HALF_EVEN)
2846 ans = ans._fix(context)
2847 context.rounding = rounding
2848
2849 return ans
2850
2851 def is_canonical(self):
2852 """Return True if self is canonical; otherwise return False.
2853
2854 Currently, the encoding of a Decimal instance is always
2855 canonical, so this method returns True for any Decimal.
2856 """
2857 return True
2858
2859 def is_finite(self):
2860 """Return True if self is finite; otherwise return False.
2861
2862 A Decimal instance is considered finite if it is neither
2863 infinite nor a NaN.
2864 """
2865 return not self._is_special
2866
2867 def is_infinite(self):
2868 """Return True if self is infinite; otherwise return False."""
2869 return self._exp == 'F'
2870
2871 def is_nan(self):
2872 """Return True if self is a qNaN or sNaN; otherwise return False."""
2873 return self._exp in ('n', 'N')
2874
2875 def is_normal(self, context=None):
2876 """Return True if self is a normal number; otherwise return False."""
2877 if self._is_special or not self:
2878 return False
2879 if context is None:
2880 context = getcontext()
2881 return context.Emin <= self.adjusted()
2882
2883 def is_qnan(self):
2884 """Return True if self is a quiet NaN; otherwise return False."""
2885 return self._exp == 'n'
2886
2887 def is_signed(self):
2888 """Return True if self is negative; otherwise return False."""
2889 return self._sign == 1
2890
2891 def is_snan(self):
2892 """Return True if self is a signaling NaN; otherwise return False."""
2893 return self._exp == 'N'
2894
2895 def is_subnormal(self, context=None):
2896 """Return True if self is subnormal; otherwise return False."""
2897 if self._is_special or not self:
2898 return False
2899 if context is None:
2900 context = getcontext()
2901 return self.adjusted() < context.Emin
2902
2903 def is_zero(self):
2904 """Return True if self is a zero; otherwise return False."""
2905 return not self._is_special and self._int == '0'
2906
2907 def _ln_exp_bound(self):
2908 """Compute a lower bound for the adjusted exponent of self.ln().
2909 In other words, compute r such that self.ln() >= 10**r. Assumes
2910 that self is finite and positive and that self != 1.
2911 """
2912
2913 # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
2914 adj = self._exp + len(self._int) - 1
2915 if adj >= 1:
2916 # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
2917 return len(str(adj*23//10)) - 1
2918 if adj <= -2:
2919 # argument <= 0.1
2920 return len(str((-1-adj)*23//10)) - 1
2921 op = _WorkRep(self)
2922 c, e = op.int, op.exp
2923 if adj == 0:
2924 # 1 < self < 10
2925 num = str(c-10**-e)
2926 den = str(c)
2927 return len(num) - len(den) - (num < den)
2928 # adj == -1, 0.1 <= self < 1
2929 return e + len(str(10**-e - c)) - 1
2930
2931
2932 def ln(self, context=None):
2933 """Returns the natural (base e) logarithm of self."""
2934
2935 if context is None:
2936 context = getcontext()
2937
2938 # ln(NaN) = NaN
2939 ans = self._check_nans(context=context)
2940 if ans:
2941 return ans
2942
2943 # ln(0.0) == -Infinity
2944 if not self:
2945 return _NegativeInfinity
2946
2947 # ln(Infinity) = Infinity
2948 if self._isinfinity() == 1:
2949 return _Infinity
2950
2951 # ln(1.0) == 0.0
2952 if self == _One:
2953 return _Zero
2954
2955 # ln(negative) raises InvalidOperation
2956 if self._sign == 1:
2957 return context._raise_error(InvalidOperation,
2958 'ln of a negative value')
2959
2960 # result is irrational, so necessarily inexact
2961 op = _WorkRep(self)
2962 c, e = op.int, op.exp
2963 p = context.prec
2964
2965 # correctly rounded result: repeatedly increase precision by 3
2966 # until we get an unambiguously roundable result
2967 places = p - self._ln_exp_bound() + 2 # at least p+3 places
2968 while True:
2969 coeff = _dlog(c, e, places)
2970 # assert len(str(abs(coeff)))-p >= 1
2971 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
2972 break
2973 places += 3
2974 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
2975
2976 context = context._shallow_copy()
2977 rounding = context._set_rounding(ROUND_HALF_EVEN)
2978 ans = ans._fix(context)
2979 context.rounding = rounding
2980 return ans
2981
2982 def _log10_exp_bound(self):
2983 """Compute a lower bound for the adjusted exponent of self.log10().
2984 In other words, find r such that self.log10() >= 10**r.
2985 Assumes that self is finite and positive and that self != 1.
2986 """
2987
2988 # For x >= 10 or x < 0.1 we only need a bound on the integer
2989 # part of log10(self), and this comes directly from the
2990 # exponent of x. For 0.1 <= x <= 10 we use the inequalities
2991 # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
2992 # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
2993
2994 adj = self._exp + len(self._int) - 1
2995 if adj >= 1:
2996 # self >= 10
2997 return len(str(adj))-1
2998 if adj <= -2:
2999 # self < 0.1
3000 return len(str(-1-adj))-1
3001 op = _WorkRep(self)
3002 c, e = op.int, op.exp
3003 if adj == 0:
3004 # 1 < self < 10
3005 num = str(c-10**-e)
3006 den = str(231*c)
3007 return len(num) - len(den) - (num < den) + 2
3008 # adj == -1, 0.1 <= self < 1
3009 num = str(10**-e-c)
3010 return len(num) + e - (num < "231") - 1
3011
3012 def log10(self, context=None):
3013 """Returns the base 10 logarithm of self."""
3014
3015 if context is None:
3016 context = getcontext()
3017
3018 # log10(NaN) = NaN
3019 ans = self._check_nans(context=context)
3020 if ans:
3021 return ans
3022
3023 # log10(0.0) == -Infinity
3024 if not self:
3025 return _NegativeInfinity
3026
3027 # log10(Infinity) = Infinity
3028 if self._isinfinity() == 1:
3029 return _Infinity
3030
3031 # log10(negative or -Infinity) raises InvalidOperation
3032 if self._sign == 1:
3033 return context._raise_error(InvalidOperation,
3034 'log10 of a negative value')
3035
3036 # log10(10**n) = n
3037 if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3038 # answer may need rounding
3039 ans = Decimal(self._exp + len(self._int) - 1)
3040 else:
3041 # result is irrational, so necessarily inexact
3042 op = _WorkRep(self)
3043 c, e = op.int, op.exp
3044 p = context.prec
3045
3046 # correctly rounded result: repeatedly increase precision
3047 # until result is unambiguously roundable
3048 places = p-self._log10_exp_bound()+2
3049 while True:
3050 coeff = _dlog10(c, e, places)
3051 # assert len(str(abs(coeff)))-p >= 1
3052 if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3053 break
3054 places += 3
3055 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3056
3057 context = context._shallow_copy()
3058 rounding = context._set_rounding(ROUND_HALF_EVEN)
3059 ans = ans._fix(context)
3060 context.rounding = rounding
3061 return ans
3062
3063 def logb(self, context=None):
3064 """ Returns the exponent of the magnitude of self's MSD.
3065
3066 The result is the integer which is the exponent of the magnitude
3067 of the most significant digit of self (as though it were truncated
3068 to a single digit while maintaining the value of that digit and
3069 without limiting the resulting exponent).
3070 """
3071 # logb(NaN) = NaN
3072 ans = self._check_nans(context=context)
3073 if ans:
3074 return ans
3075
3076 if context is None:
3077 context = getcontext()
3078
3079 # logb(+/-Inf) = +Inf
3080 if self._isinfinity():
3081 return _Infinity
3082
3083 # logb(0) = -Inf, DivisionByZero
3084 if not self:
3085 return context._raise_error(DivisionByZero, 'logb(0)', 1)
3086
3087 # otherwise, simply return the adjusted exponent of self, as a
3088 # Decimal. Note that no attempt is made to fit the result
3089 # into the current context.
3090 ans = Decimal(self.adjusted())
3091 return ans._fix(context)
3092
3093 def _islogical(self):
3094 """Return True if self is a logical operand.
3095
3096 For being logical, it must be a finite number with a sign of 0,
3097 an exponent of 0, and a coefficient whose digits must all be
3098 either 0 or 1.
3099 """
3100 if self._sign != 0 or self._exp != 0:
3101 return False
3102 for dig in self._int:
3103 if dig not in '01':
3104 return False
3105 return True
3106
3107 def _fill_logical(self, context, opa, opb):
3108 dif = context.prec - len(opa)
3109 if dif > 0:
3110 opa = '0'*dif + opa
3111 elif dif < 0:
3112 opa = opa[-context.prec:]
3113 dif = context.prec - len(opb)
3114 if dif > 0:
3115 opb = '0'*dif + opb
3116 elif dif < 0:
3117 opb = opb[-context.prec:]
3118 return opa, opb
3119
3120 def logical_and(self, other, context=None):
3121 """Applies an 'and' operation between self and other's digits."""
3122 if context is None:
3123 context = getcontext()
3124
3125 other = _convert_other(other, raiseit=True)
3126
3127 if not self._islogical() or not other._islogical():
3128 return context._raise_error(InvalidOperation)
3129
3130 # fill to context.prec
3131 (opa, opb) = self._fill_logical(context, self._int, other._int)
3132
3133 # make the operation, and clean starting zeroes
3134 result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3135 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3136
3137 def logical_invert(self, context=None):
3138 """Invert all its digits."""
3139 if context is None:
3140 context = getcontext()
3141 return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3142 context)
3143
3144 def logical_or(self, other, context=None):
3145 """Applies an 'or' operation between self and other's digits."""
3146 if context is None:
3147 context = getcontext()
3148
3149 other = _convert_other(other, raiseit=True)
3150
3151 if not self._islogical() or not other._islogical():
3152 return context._raise_error(InvalidOperation)
3153
3154 # fill to context.prec
3155 (opa, opb) = self._fill_logical(context, self._int, other._int)
3156
3157 # make the operation, and clean starting zeroes
3158 result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3159 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3160
3161 def logical_xor(self, other, context=None):
3162 """Applies an 'xor' operation between self and other's digits."""
3163 if context is None:
3164 context = getcontext()
3165
3166 other = _convert_other(other, raiseit=True)
3167
3168 if not self._islogical() or not other._islogical():
3169 return context._raise_error(InvalidOperation)
3170
3171 # fill to context.prec
3172 (opa, opb) = self._fill_logical(context, self._int, other._int)
3173
3174 # make the operation, and clean starting zeroes
3175 result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3176 return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3177
3178 def max_mag(self, other, context=None):
3179 """Compares the values numerically with their sign ignored."""
3180 other = _convert_other(other, raiseit=True)
3181
3182 if context is None:
3183 context = getcontext()
3184
3185 if self._is_special or other._is_special:
3186 # If one operand is a quiet NaN and the other is number, then the
3187 # number is always returned
3188 sn = self._isnan()
3189 on = other._isnan()
3190 if sn or on:
3191 if on == 1 and sn == 0:
3192 return self._fix(context)
3193 if sn == 1 and on == 0:
3194 return other._fix(context)
3195 return self._check_nans(other, context)
3196
3197 c = self.copy_abs()._cmp(other.copy_abs())
3198 if c == 0:
3199 c = self.compare_total(other)
3200
3201 if c == -1:
3202 ans = other
3203 else:
3204 ans = self
3205
3206 return ans._fix(context)
3207
3208 def min_mag(self, other, context=None):
3209 """Compares the values numerically with their sign ignored."""
3210 other = _convert_other(other, raiseit=True)
3211
3212 if context is None:
3213 context = getcontext()
3214
3215 if self._is_special or other._is_special:
3216 # If one operand is a quiet NaN and the other is number, then the
3217 # number is always returned
3218 sn = self._isnan()
3219 on = other._isnan()
3220 if sn or on:
3221 if on == 1 and sn == 0:
3222 return self._fix(context)
3223 if sn == 1 and on == 0:
3224 return other._fix(context)
3225 return self._check_nans(other, context)
3226
3227 c = self.copy_abs()._cmp(other.copy_abs())
3228 if c == 0:
3229 c = self.compare_total(other)
3230
3231 if c == -1:
3232 ans = self
3233 else:
3234 ans = other
3235
3236 return ans._fix(context)
3237
3238 def next_minus(self, context=None):
3239 """Returns the largest representable number smaller than itself."""
3240 if context is None:
3241 context = getcontext()
3242
3243 ans = self._check_nans(context=context)
3244 if ans:
3245 return ans
3246
3247 if self._isinfinity() == -1:
3248 return _NegativeInfinity
3249 if self._isinfinity() == 1:
3250 return _dec_from_triple(0, '9'*context.prec, context.Etop())
3251
3252 context = context.copy()
3253 context._set_rounding(ROUND_FLOOR)
3254 context._ignore_all_flags()
3255 new_self = self._fix(context)
3256 if new_self != self:
3257 return new_self
3258 return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3259 context)
3260
3261 def next_plus(self, context=None):
3262 """Returns the smallest representable number larger than itself."""
3263 if context is None:
3264 context = getcontext()
3265
3266 ans = self._check_nans(context=context)
3267 if ans:
3268 return ans
3269
3270 if self._isinfinity() == 1:
3271 return _Infinity
3272 if self._isinfinity() == -1:
3273 return _dec_from_triple(1, '9'*context.prec, context.Etop())
3274
3275 context = context.copy()
3276 context._set_rounding(ROUND_CEILING)
3277 context._ignore_all_flags()
3278 new_self = self._fix(context)
3279 if new_self != self:
3280 return new_self
3281 return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3282 context)
3283
3284 def next_toward(self, other, context=None):
3285 """Returns the number closest to self, in the direction towards other.
3286
3287 The result is the closest representable number to self
3288 (excluding self) that is in the direction towards other,
3289 unless both have the same value. If the two operands are
3290 numerically equal, then the result is a copy of self with the
3291 sign set to be the same as the sign of other.
3292 """
3293 other = _convert_other(other, raiseit=True)
3294
3295 if context is None:
3296 context = getcontext()
3297
3298 ans = self._check_nans(other, context)
3299 if ans:
3300 return ans
3301
3302 comparison = self._cmp(other)
3303 if comparison == 0:
3304 return self.copy_sign(other)
3305
3306 if comparison == -1:
3307 ans = self.next_plus(context)
3308 else: # comparison == 1
3309 ans = self.next_minus(context)
3310
3311 # decide which flags to raise using value of ans
3312 if ans._isinfinity():
3313 context._raise_error(Overflow,
3314 'Infinite result from next_toward',
3315 ans._sign)
3316 context._raise_error(Rounded)
3317 context._raise_error(Inexact)
3318 elif ans.adjusted() < context.Emin:
3319 context._raise_error(Underflow)
3320 context._raise_error(Subnormal)
3321 context._raise_error(Rounded)
3322 context._raise_error(Inexact)
3323 # if precision == 1 then we don't raise Clamped for a
3324 # result 0E-Etiny.
3325 if not ans:
3326 context._raise_error(Clamped)
3327
3328 return ans
3329
3330 def number_class(self, context=None):
3331 """Returns an indication of the class of self.
3332
3333 The class is one of the following strings:
3334 sNaN
3335 NaN
3336 -Infinity
3337 -Normal
3338 -Subnormal
3339 -Zero
3340 +Zero
3341 +Subnormal
3342 +Normal
3343 +Infinity
3344 """
3345 if self.is_snan():
3346 return "sNaN"
3347 if self.is_qnan():
3348 return "NaN"
3349 inf = self._isinfinity()
3350 if inf == 1:
3351 return "+Infinity"
3352 if inf == -1:
3353 return "-Infinity"
3354 if self.is_zero():
3355 if self._sign:
3356 return "-Zero"
3357 else:
3358 return "+Zero"
3359 if context is None:
3360 context = getcontext()
3361 if self.is_subnormal(context=context):
3362 if self._sign:
3363 return "-Subnormal"
3364 else:
3365 return "+Subnormal"
3366 # just a normal, regular, boring number, :)
3367 if self._sign:
3368 return "-Normal"
3369 else:
3370 return "+Normal"
3371
3372 def radix(self):
3373 """Just returns 10, as this is Decimal, :)"""
3374 return Decimal(10)
3375
3376 def rotate(self, other, context=None):
3377 """Returns a rotated copy of self, value-of-other times."""
3378 if context is None:
3379 context = getcontext()
3380
3381 other = _convert_other(other, raiseit=True)
3382
3383 ans = self._check_nans(other, context)
3384 if ans:
3385 return ans
3386
3387 if other._exp != 0:
3388 return context._raise_error(InvalidOperation)
3389 if not (-context.prec <= int(other) <= context.prec):
3390 return context._raise_error(InvalidOperation)
3391
3392 if self._isinfinity():
3393 return Decimal(self)
3394
3395 # get values, pad if necessary
3396 torot = int(other)
3397 rotdig = self._int
3398 topad = context.prec - len(rotdig)
3399 if topad > 0:
3400 rotdig = '0'*topad + rotdig
3401 elif topad < 0:
3402 rotdig = rotdig[-topad:]
3403
3404 # let's rotate!
3405 rotated = rotdig[torot:] + rotdig[:torot]
3406 return _dec_from_triple(self._sign,
3407 rotated.lstrip('0') or '0', self._exp)
3408
3409 def scaleb(self, other, context=None):
3410 """Returns self operand after adding the second value to its exp."""
3411 if context is None:
3412 context = getcontext()
3413
3414 other = _convert_other(other, raiseit=True)
3415
3416 ans = self._check_nans(other, context)
3417 if ans:
3418 return ans
3419
3420 if other._exp != 0:
3421 return context._raise_error(InvalidOperation)
3422 liminf = -2 * (context.Emax + context.prec)
3423 limsup = 2 * (context.Emax + context.prec)
3424 if not (liminf <= int(other) <= limsup):
3425 return context._raise_error(InvalidOperation)
3426
3427 if self._isinfinity():
3428 return Decimal(self)
3429
3430 d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3431 d = d._fix(context)
3432 return d
3433
3434 def shift(self, other, context=None):
3435 """Returns a shifted copy of self, value-of-other times."""
3436 if context is None:
3437 context = getcontext()
3438
3439 other = _convert_other(other, raiseit=True)
3440
3441 ans = self._check_nans(other, context)
3442 if ans:
3443 return ans
3444
3445 if other._exp != 0:
3446 return context._raise_error(InvalidOperation)
3447 if not (-context.prec <= int(other) <= context.prec):
3448 return context._raise_error(InvalidOperation)
3449
3450 if self._isinfinity():
3451 return Decimal(self)
3452
3453 # get values, pad if necessary
3454 torot = int(other)
3455 rotdig = self._int
3456 topad = context.prec - len(rotdig)
3457 if topad > 0:
3458 rotdig = '0'*topad + rotdig
3459 elif topad < 0:
3460 rotdig = rotdig[-topad:]
3461
3462 # let's shift!
3463 if torot < 0:
3464 shifted = rotdig[:torot]
3465 else:
3466 shifted = rotdig + '0'*torot
3467 shifted = shifted[-context.prec:]
3468
3469 return _dec_from_triple(self._sign,
3470 shifted.lstrip('0') or '0', self._exp)
3471
3472 # Support for pickling, copy, and deepcopy
3473 def __reduce__(self):
3474 return (self.__class__, (str(self),))
3475
3476 def __copy__(self):
3477 if type(self) == Decimal:
3478 return self # I'm immutable; therefore I am my own clone
3479 return self.__class__(str(self))
3480
3481 def __deepcopy__(self, memo):
3482 if type(self) == Decimal:
3483 return self # My components are also immutable
3484 return self.__class__(str(self))
3485
3486 # PEP 3101 support. See also _parse_format_specifier and _format_align
3487 def __format__(self, specifier, context=None):
3488 """Format a Decimal instance according to the given specifier.
3489
3490 The specifier should be a standard format specifier, with the
3491 form described in PEP 3101. Formatting types 'e', 'E', 'f',
3492 'F', 'g', 'G', and '%' are supported. If the formatting type
3493 is omitted it defaults to 'g' or 'G', depending on the value
3494 of context.capitals.
3495
3496 At this time the 'n' format specifier type (which is supposed
3497 to use the current locale) is not supported.
3498 """
3499
3500 # Note: PEP 3101 says that if the type is not present then
3501 # there should be at least one digit after the decimal point.
3502 # We take the liberty of ignoring this requirement for
3503 # Decimal---it's presumably there to make sure that
3504 # format(float, '') behaves similarly to str(float).
3505 if context is None:
3506 context = getcontext()
3507
3508 spec = _parse_format_specifier(specifier)
3509
3510 # special values don't care about the type or precision...
3511 if self._is_special:
3512 return _format_align(str(self), spec)
3513
3514 # a type of None defaults to 'g' or 'G', depending on context
3515 # if type is '%', adjust exponent of self accordingly
3516 if spec['type'] is None:
3517 spec['type'] = ['g', 'G'][context.capitals]
3518 elif spec['type'] == '%':
3519 self = _dec_from_triple(self._sign, self._int, self._exp+2)
3520
3521 # round if necessary, taking rounding mode from the context
3522 rounding = context.rounding
3523 precision = spec['precision']
3524 if precision is not None:
3525 if spec['type'] in 'eE':
3526 self = self._round(precision+1, rounding)
3527 elif spec['type'] in 'gG':
3528 if len(self._int) > precision:
3529 self = self._round(precision, rounding)
3530 elif spec['type'] in 'fF%':
3531 self = self._rescale(-precision, rounding)
3532 # special case: zeros with a positive exponent can't be
3533 # represented in fixed point; rescale them to 0e0.
3534 elif not self and self._exp > 0 and spec['type'] in 'fF%':
3535 self = self._rescale(0, rounding)
3536
3537 # figure out placement of the decimal point
3538 leftdigits = self._exp + len(self._int)
3539 if spec['type'] in 'fF%':
3540 dotplace = leftdigits
3541 elif spec['type'] in 'eE':
3542 if not self and precision is not None:
3543 dotplace = 1 - precision
3544 else:
3545 dotplace = 1
3546 elif spec['type'] in 'gG':
3547 if self._exp <= 0 and leftdigits > -6:
3548 dotplace = leftdigits
3549 else:
3550 dotplace = 1
3551
3552 # figure out main part of numeric string...
3553 if dotplace <= 0:
3554 num = '0.' + '0'*(-dotplace) + self._int
3555 elif dotplace >= len(self._int):
3556 # make sure we're not padding a '0' with extra zeros on the right
3557 assert dotplace==len(self._int) or self._int != '0'
3558 num = self._int + '0'*(dotplace-len(self._int))
3559 else:
3560 num = self._int[:dotplace] + '.' + self._int[dotplace:]
3561
3562 # ...then the trailing exponent, or trailing '%'
3563 if leftdigits != dotplace or spec['type'] in 'eE':
3564 echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
3565 num = num + "{0}{1:+}".format(echar, leftdigits-dotplace)
3566 elif spec['type'] == '%':
3567 num = num + '%'
3568
3569 # add sign
3570 if self._sign == 1:
3571 num = '-' + num
3572 return _format_align(num, spec)
3573
3574
3575def _dec_from_triple(sign, coefficient, exponent, special=False):
3576 """Create a decimal instance directly, without any validation,
3577 normalization (e.g. removal of leading zeros) or argument
3578 conversion.
3579
3580 This function is for *internal use only*.
3581 """
3582
3583 self = object.__new__(Decimal)
3584 self._sign = sign
3585 self._int = coefficient
3586 self._exp = exponent
3587 self._is_special = special
3588
3589 return self
3590
3591# Register Decimal as a kind of Number (an abstract base class).
3592# However, do not register it as Real (because Decimals are not
3593# interoperable with floats).
3594_numbers.Number.register(Decimal)
3595
3596
3597##### Context class #######################################################
3598
3599
3600# get rounding method function:
3601rounding_functions = [name for name in Decimal.__dict__.keys()
3602 if name.startswith('_round_')]
3603for name in rounding_functions:
3604 # name is like _round_half_even, goes to the global ROUND_HALF_EVEN value.
3605 globalname = name[1:].upper()
3606 val = globals()[globalname]
3607 Decimal._pick_rounding_function[val] = name
3608
3609del name, val, globalname, rounding_functions
3610
3611class _ContextManager(object):
3612 """Context manager class to support localcontext().
3613
3614 Sets a copy of the supplied context in __enter__() and restores
3615 the previous decimal context in __exit__()
3616 """
3617 def __init__(self, new_context):
3618 self.new_context = new_context.copy()
3619 def __enter__(self):
3620 self.saved_context = getcontext()
3621 setcontext(self.new_context)
3622 return self.new_context
3623 def __exit__(self, t, v, tb):
3624 setcontext(self.saved_context)
3625
3626class Context(object):
3627 """Contains the context for a Decimal instance.
3628
3629 Contains:
3630 prec - precision (for use in rounding, division, square roots..)
3631 rounding - rounding type (how you round)
3632 traps - If traps[exception] = 1, then the exception is
3633 raised when it is caused. Otherwise, a value is
3634 substituted in.
3635 flags - When an exception is caused, flags[exception] is set.
3636 (Whether or not the trap_enabler is set)
3637 Should be reset by user of Decimal instance.
3638 Emin - Minimum exponent
3639 Emax - Maximum exponent
3640 capitals - If 1, 1*10^1 is printed as 1E+1.
3641 If 0, printed as 1e1
3642 _clamp - If 1, change exponents if too high (Default 0)
3643 """
3644
3645 def __init__(self, prec=None, rounding=None,
3646 traps=None, flags=None,
3647 Emin=None, Emax=None,
3648 capitals=None, _clamp=0,
3649 _ignored_flags=None):
3650 if flags is None:
3651 flags = []
3652 if _ignored_flags is None:
3653 _ignored_flags = []
3654 if not isinstance(flags, dict):
3655 flags = dict([(s, int(s in flags)) for s in _signals])
3656 del s
3657 if traps is not None and not isinstance(traps, dict):
3658 traps = dict([(s, int(s in traps)) for s in _signals])
3659 del s
3660 for name, val in locals().items():
3661 if val is None:
3662 setattr(self, name, _copy.copy(getattr(DefaultContext, name)))
3663 else:
3664 setattr(self, name, val)
3665 del self.self
3666
3667 def __repr__(self):
3668 """Show the current context."""
3669 s = []
3670 s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3671 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3672 % vars(self))
3673 names = [f.__name__ for f, v in self.flags.items() if v]
3674 s.append('flags=[' + ', '.join(names) + ']')
3675 names = [t.__name__ for t, v in self.traps.items() if v]
3676 s.append('traps=[' + ', '.join(names) + ']')
3677 return ', '.join(s) + ')'
3678
3679 def clear_flags(self):
3680 """Reset all flags to zero"""
3681 for flag in self.flags:
3682 self.flags[flag] = 0
3683
3684 def _shallow_copy(self):
3685 """Returns a shallow copy from self."""
3686 nc = Context(self.prec, self.rounding, self.traps,
3687 self.flags, self.Emin, self.Emax,
3688 self.capitals, self._clamp, self._ignored_flags)
3689 return nc
3690
3691 def copy(self):
3692 """Returns a deep copy from self."""
3693 nc = Context(self.prec, self.rounding, self.traps.copy(),
3694 self.flags.copy(), self.Emin, self.Emax,
3695 self.capitals, self._clamp, self._ignored_flags)
3696 return nc
3697 __copy__ = copy
3698
3699 def _raise_error(self, condition, explanation = None, *args):
3700 """Handles an error
3701
3702 If the flag is in _ignored_flags, returns the default response.
3703 Otherwise, it sets the flag, then, if the corresponding
3704 trap_enabler is set, it reaises the exception. Otherwise, it returns
3705 the default value after setting the flag.
3706 """
3707 error = _condition_map.get(condition, condition)
3708 if error in self._ignored_flags:
3709 # Don't touch the flag
3710 return error().handle(self, *args)
3711
3712 self.flags[error] = 1
3713 if not self.traps[error]:
3714 # The errors define how to handle themselves.
3715 return condition().handle(self, *args)
3716
3717 # Errors should only be risked on copies of the context
3718 # self._ignored_flags = []
3719 raise error(explanation)
3720
3721 def _ignore_all_flags(self):
3722 """Ignore all flags, if they are raised"""
3723 return self._ignore_flags(*_signals)
3724
3725 def _ignore_flags(self, *flags):
3726 """Ignore the flags, if they are raised"""
3727 # Do not mutate-- This way, copies of a context leave the original
3728 # alone.
3729 self._ignored_flags = (self._ignored_flags + list(flags))
3730 return list(flags)
3731
3732 def _regard_flags(self, *flags):
3733 """Stop ignoring the flags, if they are raised"""
3734 if flags and isinstance(flags[0], (tuple,list)):
3735 flags = flags[0]
3736 for flag in flags:
3737 self._ignored_flags.remove(flag)
3738
3739 # We inherit object.__hash__, so we must deny this explicitly
3740 __hash__ = None
3741
3742 def Etiny(self):
3743 """Returns Etiny (= Emin - prec + 1)"""
3744 return int(self.Emin - self.prec + 1)
3745
3746 def Etop(self):
3747 """Returns maximum exponent (= Emax - prec + 1)"""
3748 return int(self.Emax - self.prec + 1)
3749
3750 def _set_rounding(self, type):
3751 """Sets the rounding type.
3752
3753 Sets the rounding type, and returns the current (previous)
3754 rounding type. Often used like:
3755
3756 context = context.copy()
3757 # so you don't change the calling context
3758 # if an error occurs in the middle.
3759 rounding = context._set_rounding(ROUND_UP)
3760 val = self.__sub__(other, context=context)
3761 context._set_rounding(rounding)
3762
3763 This will make it round up for that operation.
3764 """
3765 rounding = self.rounding
3766 self.rounding= type
3767 return rounding
3768
3769 def create_decimal(self, num='0'):
3770 """Creates a new Decimal instance but using self as context.
3771
3772 This method implements the to-number operation of the
3773 IBM Decimal specification."""
3774
3775 if isinstance(num, basestring) and num != num.strip():
3776 return self._raise_error(ConversionSyntax,
3777 "no trailing or leading whitespace is "
3778 "permitted.")
3779
3780 d = Decimal(num, context=self)
3781 if d._isnan() and len(d._int) > self.prec - self._clamp:
3782 return self._raise_error(ConversionSyntax,
3783 "diagnostic info too long in NaN")
3784 return d._fix(self)
3785
3786 # Methods
3787 def abs(self, a):
3788 """Returns the absolute value of the operand.
3789
3790 If the operand is negative, the result is the same as using the minus
3791 operation on the operand. Otherwise, the result is the same as using
3792 the plus operation on the operand.
3793
3794 >>> ExtendedContext.abs(Decimal('2.1'))
3795 Decimal('2.1')
3796 >>> ExtendedContext.abs(Decimal('-100'))
3797 Decimal('100')
3798 >>> ExtendedContext.abs(Decimal('101.5'))
3799 Decimal('101.5')
3800 >>> ExtendedContext.abs(Decimal('-101.5'))
3801 Decimal('101.5')
3802 """
3803 return a.__abs__(context=self)
3804
3805 def add(self, a, b):
3806 """Return the sum of the two operands.
3807
3808 >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3809 Decimal('19.00')
3810 >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3811 Decimal('1.02E+4')
3812 """
3813 return a.__add__(b, context=self)
3814
3815 def _apply(self, a):
3816 return str(a._fix(self))
3817
3818 def canonical(self, a):
3819 """Returns the same Decimal object.
3820
3821 As we do not have different encodings for the same number, the
3822 received object already is in its canonical form.
3823
3824 >>> ExtendedContext.canonical(Decimal('2.50'))
3825 Decimal('2.50')
3826 """
3827 return a.canonical(context=self)
3828
3829 def compare(self, a, b):
3830 """Compares values numerically.
3831
3832 If the signs of the operands differ, a value representing each operand
3833 ('-1' if the operand is less than zero, '0' if the operand is zero or
3834 negative zero, or '1' if the operand is greater than zero) is used in
3835 place of that operand for the comparison instead of the actual
3836 operand.
3837
3838 The comparison is then effected by subtracting the second operand from
3839 the first and then returning a value according to the result of the
3840 subtraction: '-1' if the result is less than zero, '0' if the result is
3841 zero or negative zero, or '1' if the result is greater than zero.
3842
3843 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
3844 Decimal('-1')
3845 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
3846 Decimal('0')
3847 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
3848 Decimal('0')
3849 >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
3850 Decimal('1')
3851 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
3852 Decimal('1')
3853 >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
3854 Decimal('-1')
3855 """
3856 return a.compare(b, context=self)
3857
3858 def compare_signal(self, a, b):
3859 """Compares the values of the two operands numerically.
3860
3861 It's pretty much like compare(), but all NaNs signal, with signaling
3862 NaNs taking precedence over quiet NaNs.
3863
3864 >>> c = ExtendedContext
3865 >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
3866 Decimal('-1')
3867 >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
3868 Decimal('0')
3869 >>> c.flags[InvalidOperation] = 0
3870 >>> print c.flags[InvalidOperation]
3871 0
3872 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
3873 Decimal('NaN')
3874 >>> print c.flags[InvalidOperation]
3875 1
3876 >>> c.flags[InvalidOperation] = 0
3877 >>> print c.flags[InvalidOperation]
3878 0
3879 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
3880 Decimal('NaN')
3881 >>> print c.flags[InvalidOperation]
3882 1
3883 """
3884 return a.compare_signal(b, context=self)
3885
3886 def compare_total(self, a, b):
3887 """Compares two operands using their abstract representation.
3888
3889 This is not like the standard compare, which use their numerical
3890 value. Note that a total ordering is defined for all possible abstract
3891 representations.
3892
3893 >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
3894 Decimal('-1')
3895 >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
3896 Decimal('-1')
3897 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
3898 Decimal('-1')
3899 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
3900 Decimal('0')
3901 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
3902 Decimal('1')
3903 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
3904 Decimal('-1')
3905 """
3906 return a.compare_total(b)
3907
3908 def compare_total_mag(self, a, b):
3909 """Compares two operands using their abstract representation ignoring sign.
3910
3911 Like compare_total, but with operand's sign ignored and assumed to be 0.
3912 """
3913 return a.compare_total_mag(b)
3914
3915 def copy_abs(self, a):
3916 """Returns a copy of the operand with the sign set to 0.
3917
3918 >>> ExtendedContext.copy_abs(Decimal('2.1'))
3919 Decimal('2.1')
3920 >>> ExtendedContext.copy_abs(Decimal('-100'))
3921 Decimal('100')
3922 """
3923 return a.copy_abs()
3924
3925 def copy_decimal(self, a):
3926 """Returns a copy of the decimal objet.
3927
3928 >>> ExtendedContext.copy_decimal(Decimal('2.1'))
3929 Decimal('2.1')
3930 >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
3931 Decimal('-1.00')
3932 """
3933 return Decimal(a)
3934
3935 def copy_negate(self, a):
3936 """Returns a copy of the operand with the sign inverted.
3937
3938 >>> ExtendedContext.copy_negate(Decimal('101.5'))
3939 Decimal('-101.5')
3940 >>> ExtendedContext.copy_negate(Decimal('-101.5'))
3941 Decimal('101.5')
3942 """
3943 return a.copy_negate()
3944
3945 def copy_sign(self, a, b):
3946 """Copies the second operand's sign to the first one.
3947
3948 In detail, it returns a copy of the first operand with the sign
3949 equal to the sign of the second operand.
3950
3951 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
3952 Decimal('1.50')
3953 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
3954 Decimal('1.50')
3955 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
3956 Decimal('-1.50')
3957 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
3958 Decimal('-1.50')
3959 """
3960 return a.copy_sign(b)
3961
3962 def divide(self, a, b):
3963 """Decimal division in a specified context.
3964
3965 >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
3966 Decimal('0.333333333')
3967 >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
3968 Decimal('0.666666667')
3969 >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
3970 Decimal('2.5')
3971 >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
3972 Decimal('0.1')
3973 >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
3974 Decimal('1')
3975 >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
3976 Decimal('4.00')
3977 >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
3978 Decimal('1.20')
3979 >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
3980 Decimal('10')
3981 >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
3982 Decimal('1000')
3983 >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
3984 Decimal('1.20E+6')
3985 """
3986 return a.__div__(b, context=self)
3987
3988 def divide_int(self, a, b):
3989 """Divides two numbers and returns the integer part of the result.
3990
3991 >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
3992 Decimal('0')
3993 >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
3994 Decimal('3')
3995 >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
3996 Decimal('3')
3997 """
3998 return a.__floordiv__(b, context=self)
3999
4000 def divmod(self, a, b):
4001 """Return (a // b, a % b)
4002
4003 >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
4004 (Decimal('2'), Decimal('2'))
4005 >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
4006 (Decimal('2'), Decimal('0'))
4007 """
4008 return a.__divmod__(b, context=self)
4009
4010 def exp(self, a):
4011 """Returns e ** a.
4012
4013 >>> c = ExtendedContext.copy()
4014 >>> c.Emin = -999
4015 >>> c.Emax = 999
4016 >>> c.exp(Decimal('-Infinity'))
4017 Decimal('0')
4018 >>> c.exp(Decimal('-1'))
4019 Decimal('0.367879441')
4020 >>> c.exp(Decimal('0'))
4021 Decimal('1')
4022 >>> c.exp(Decimal('1'))
4023 Decimal('2.71828183')
4024 >>> c.exp(Decimal('0.693147181'))
4025 Decimal('2.00000000')
4026 >>> c.exp(Decimal('+Infinity'))
4027 Decimal('Infinity')
4028 """
4029 return a.exp(context=self)
4030
4031 def fma(self, a, b, c):
4032 """Returns a multiplied by b, plus c.
4033
4034 The first two operands are multiplied together, using multiply,
4035 the third operand is then added to the result of that
4036 multiplication, using add, all with only one final rounding.
4037
4038 >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4039 Decimal('22')
4040 >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4041 Decimal('-8')
4042 >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4043 Decimal('1.38435736E+12')
4044 """
4045 return a.fma(b, c, context=self)
4046
4047 def is_canonical(self, a):
4048 """Return True if the operand is canonical; otherwise return False.
4049
4050 Currently, the encoding of a Decimal instance is always
4051 canonical, so this method returns True for any Decimal.
4052
4053 >>> ExtendedContext.is_canonical(Decimal('2.50'))
4054 True
4055 """
4056 return a.is_canonical()
4057
4058 def is_finite(self, a):
4059 """Return True if the operand is finite; otherwise return False.
4060
4061 A Decimal instance is considered finite if it is neither
4062 infinite nor a NaN.
4063
4064 >>> ExtendedContext.is_finite(Decimal('2.50'))
4065 True
4066 >>> ExtendedContext.is_finite(Decimal('-0.3'))
4067 True
4068 >>> ExtendedContext.is_finite(Decimal('0'))
4069 True
4070 >>> ExtendedContext.is_finite(Decimal('Inf'))
4071 False
4072 >>> ExtendedContext.is_finite(Decimal('NaN'))
4073 False
4074 """
4075 return a.is_finite()
4076
4077 def is_infinite(self, a):
4078 """Return True if the operand is infinite; otherwise return False.
4079
4080 >>> ExtendedContext.is_infinite(Decimal('2.50'))
4081 False
4082 >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4083 True
4084 >>> ExtendedContext.is_infinite(Decimal('NaN'))
4085 False
4086 """
4087 return a.is_infinite()
4088
4089 def is_nan(self, a):
4090 """Return True if the operand is a qNaN or sNaN;
4091 otherwise return False.
4092
4093 >>> ExtendedContext.is_nan(Decimal('2.50'))
4094 False
4095 >>> ExtendedContext.is_nan(Decimal('NaN'))
4096 True
4097 >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4098 True
4099 """
4100 return a.is_nan()
4101
4102 def is_normal(self, a):
4103 """Return True if the operand is a normal number;
4104 otherwise return False.
4105
4106 >>> c = ExtendedContext.copy()
4107 >>> c.Emin = -999
4108 >>> c.Emax = 999
4109 >>> c.is_normal(Decimal('2.50'))
4110 True
4111 >>> c.is_normal(Decimal('0.1E-999'))
4112 False
4113 >>> c.is_normal(Decimal('0.00'))
4114 False
4115 >>> c.is_normal(Decimal('-Inf'))
4116 False
4117 >>> c.is_normal(Decimal('NaN'))
4118 False
4119 """
4120 return a.is_normal(context=self)
4121
4122 def is_qnan(self, a):
4123 """Return True if the operand is a quiet NaN; otherwise return False.
4124
4125 >>> ExtendedContext.is_qnan(Decimal('2.50'))
4126 False
4127 >>> ExtendedContext.is_qnan(Decimal('NaN'))
4128 True
4129 >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4130 False
4131 """
4132 return a.is_qnan()
4133
4134 def is_signed(self, a):
4135 """Return True if the operand is negative; otherwise return False.
4136
4137 >>> ExtendedContext.is_signed(Decimal('2.50'))
4138 False
4139 >>> ExtendedContext.is_signed(Decimal('-12'))
4140 True
4141 >>> ExtendedContext.is_signed(Decimal('-0'))
4142 True
4143 """
4144 return a.is_signed()
4145
4146 def is_snan(self, a):
4147 """Return True if the operand is a signaling NaN;
4148 otherwise return False.
4149
4150 >>> ExtendedContext.is_snan(Decimal('2.50'))
4151 False
4152 >>> ExtendedContext.is_snan(Decimal('NaN'))
4153 False
4154 >>> ExtendedContext.is_snan(Decimal('sNaN'))
4155 True
4156 """
4157 return a.is_snan()
4158
4159 def is_subnormal(self, a):
4160 """Return True if the operand is subnormal; otherwise return False.
4161
4162 >>> c = ExtendedContext.copy()
4163 >>> c.Emin = -999
4164 >>> c.Emax = 999
4165 >>> c.is_subnormal(Decimal('2.50'))
4166 False
4167 >>> c.is_subnormal(Decimal('0.1E-999'))
4168 True
4169 >>> c.is_subnormal(Decimal('0.00'))
4170 False
4171 >>> c.is_subnormal(Decimal('-Inf'))
4172 False
4173 >>> c.is_subnormal(Decimal('NaN'))
4174 False
4175 """
4176 return a.is_subnormal(context=self)
4177
4178 def is_zero(self, a):
4179 """Return True if the operand is a zero; otherwise return False.
4180
4181 >>> ExtendedContext.is_zero(Decimal('0'))
4182 True
4183 >>> ExtendedContext.is_zero(Decimal('2.50'))
4184 False
4185 >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4186 True
4187 """
4188 return a.is_zero()
4189
4190 def ln(self, a):
4191 """Returns the natural (base e) logarithm of the operand.
4192
4193 >>> c = ExtendedContext.copy()
4194 >>> c.Emin = -999
4195 >>> c.Emax = 999
4196 >>> c.ln(Decimal('0'))
4197 Decimal('-Infinity')
4198 >>> c.ln(Decimal('1.000'))
4199 Decimal('0')
4200 >>> c.ln(Decimal('2.71828183'))
4201 Decimal('1.00000000')
4202 >>> c.ln(Decimal('10'))
4203 Decimal('2.30258509')
4204 >>> c.ln(Decimal('+Infinity'))
4205 Decimal('Infinity')
4206 """
4207 return a.ln(context=self)
4208
4209 def log10(self, a):
4210 """Returns the base 10 logarithm of the operand.
4211
4212 >>> c = ExtendedContext.copy()
4213 >>> c.Emin = -999
4214 >>> c.Emax = 999
4215 >>> c.log10(Decimal('0'))
4216 Decimal('-Infinity')
4217 >>> c.log10(Decimal('0.001'))
4218 Decimal('-3')
4219 >>> c.log10(Decimal('1.000'))
4220 Decimal('0')
4221 >>> c.log10(Decimal('2'))
4222 Decimal('0.301029996')
4223 >>> c.log10(Decimal('10'))
4224 Decimal('1')
4225 >>> c.log10(Decimal('70'))
4226 Decimal('1.84509804')
4227 >>> c.log10(Decimal('+Infinity'))
4228 Decimal('Infinity')
4229 """
4230 return a.log10(context=self)
4231
4232 def logb(self, a):
4233 """ Returns the exponent of the magnitude of the operand's MSD.
4234
4235 The result is the integer which is the exponent of the magnitude
4236 of the most significant digit of the operand (as though the
4237 operand were truncated to a single digit while maintaining the
4238 value of that digit and without limiting the resulting exponent).
4239
4240 >>> ExtendedContext.logb(Decimal('250'))
4241 Decimal('2')
4242 >>> ExtendedContext.logb(Decimal('2.50'))
4243 Decimal('0')
4244 >>> ExtendedContext.logb(Decimal('0.03'))
4245 Decimal('-2')
4246 >>> ExtendedContext.logb(Decimal('0'))
4247 Decimal('-Infinity')
4248 """
4249 return a.logb(context=self)
4250
4251 def logical_and(self, a, b):
4252 """Applies the logical operation 'and' between each operand's digits.
4253
4254 The operands must be both logical numbers.
4255
4256 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4257 Decimal('0')
4258 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4259 Decimal('0')
4260 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4261 Decimal('0')
4262 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4263 Decimal('1')
4264 >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4265 Decimal('1000')
4266 >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4267 Decimal('10')
4268 """
4269 return a.logical_and(b, context=self)
4270
4271 def logical_invert(self, a):
4272 """Invert all the digits in the operand.
4273
4274 The operand must be a logical number.
4275
4276 >>> ExtendedContext.logical_invert(Decimal('0'))
4277 Decimal('111111111')
4278 >>> ExtendedContext.logical_invert(Decimal('1'))
4279 Decimal('111111110')
4280 >>> ExtendedContext.logical_invert(Decimal('111111111'))
4281 Decimal('0')
4282 >>> ExtendedContext.logical_invert(Decimal('101010101'))
4283 Decimal('10101010')
4284 """
4285 return a.logical_invert(context=self)
4286
4287 def logical_or(self, a, b):
4288 """Applies the logical operation 'or' between each operand's digits.
4289
4290 The operands must be both logical numbers.
4291
4292 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4293 Decimal('0')
4294 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4295 Decimal('1')
4296 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4297 Decimal('1')
4298 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4299 Decimal('1')
4300 >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4301 Decimal('1110')
4302 >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4303 Decimal('1110')
4304 """
4305 return a.logical_or(b, context=self)
4306
4307 def logical_xor(self, a, b):
4308 """Applies the logical operation 'xor' between each operand's digits.
4309
4310 The operands must be both logical numbers.
4311
4312 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4313 Decimal('0')
4314 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4315 Decimal('1')
4316 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4317 Decimal('1')
4318 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4319 Decimal('0')
4320 >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4321 Decimal('110')
4322 >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4323 Decimal('1101')
4324 """
4325 return a.logical_xor(b, context=self)
4326
4327 def max(self, a,b):
4328 """max compares two values numerically and returns the maximum.
4329
4330 If either operand is a NaN then the general rules apply.
4331 Otherwise, the operands are compared as though by the compare
4332 operation. If they are numerically equal then the left-hand operand
4333 is chosen as the result. Otherwise the maximum (closer to positive
4334 infinity) of the two operands is chosen as the result.
4335
4336 >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4337 Decimal('3')
4338 >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4339 Decimal('3')
4340 >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4341 Decimal('1')
4342 >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4343 Decimal('7')
4344 """
4345 return a.max(b, context=self)
4346
4347 def max_mag(self, a, b):
4348 """Compares the values numerically with their sign ignored."""
4349 return a.max_mag(b, context=self)
4350
4351 def min(self, a,b):
4352 """min compares two values numerically and returns the minimum.
4353
4354 If either operand is a NaN then the general rules apply.
4355 Otherwise, the operands are compared as though by the compare
4356 operation. If they are numerically equal then the left-hand operand
4357 is chosen as the result. Otherwise the minimum (closer to negative
4358 infinity) of the two operands is chosen as the result.
4359
4360 >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4361 Decimal('2')
4362 >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4363 Decimal('-10')
4364 >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4365 Decimal('1.0')
4366 >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4367 Decimal('7')
4368 """
4369 return a.min(b, context=self)
4370
4371 def min_mag(self, a, b):
4372 """Compares the values numerically with their sign ignored."""
4373 return a.min_mag(b, context=self)
4374
4375 def minus(self, a):
4376 """Minus corresponds to unary prefix minus in Python.
4377
4378 The operation is evaluated using the same rules as subtract; the
4379 operation minus(a) is calculated as subtract('0', a) where the '0'
4380 has the same exponent as the operand.
4381
4382 >>> ExtendedContext.minus(Decimal('1.3'))
4383 Decimal('-1.3')
4384 >>> ExtendedContext.minus(Decimal('-1.3'))
4385 Decimal('1.3')
4386 """
4387 return a.__neg__(context=self)
4388
4389 def multiply(self, a, b):
4390 """multiply multiplies two operands.
4391
4392 If either operand is a special value then the general rules apply.
4393 Otherwise, the operands are multiplied together ('long multiplication'),
4394 resulting in a number which may be as long as the sum of the lengths
4395 of the two operands.
4396
4397 >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4398 Decimal('3.60')
4399 >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4400 Decimal('21')
4401 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4402 Decimal('0.72')
4403 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4404 Decimal('-0.0')
4405 >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4406 Decimal('4.28135971E+11')
4407 """
4408 return a.__mul__(b, context=self)
4409
4410 def next_minus(self, a):
4411 """Returns the largest representable number smaller than a.
4412
4413 >>> c = ExtendedContext.copy()
4414 >>> c.Emin = -999
4415 >>> c.Emax = 999
4416 >>> ExtendedContext.next_minus(Decimal('1'))
4417 Decimal('0.999999999')
4418 >>> c.next_minus(Decimal('1E-1007'))
4419 Decimal('0E-1007')
4420 >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4421 Decimal('-1.00000004')
4422 >>> c.next_minus(Decimal('Infinity'))
4423 Decimal('9.99999999E+999')
4424 """
4425 return a.next_minus(context=self)
4426
4427 def next_plus(self, a):
4428 """Returns the smallest representable number larger than a.
4429
4430 >>> c = ExtendedContext.copy()
4431 >>> c.Emin = -999
4432 >>> c.Emax = 999
4433 >>> ExtendedContext.next_plus(Decimal('1'))
4434 Decimal('1.00000001')
4435 >>> c.next_plus(Decimal('-1E-1007'))
4436 Decimal('-0E-1007')
4437 >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4438 Decimal('-1.00000002')
4439 >>> c.next_plus(Decimal('-Infinity'))
4440 Decimal('-9.99999999E+999')
4441 """
4442 return a.next_plus(context=self)
4443
4444 def next_toward(self, a, b):
4445 """Returns the number closest to a, in direction towards b.
4446
4447 The result is the closest representable number from the first
4448 operand (but not the first operand) that is in the direction
4449 towards the second operand, unless the operands have the same
4450 value.
4451
4452 >>> c = ExtendedContext.copy()
4453 >>> c.Emin = -999
4454 >>> c.Emax = 999
4455 >>> c.next_toward(Decimal('1'), Decimal('2'))
4456 Decimal('1.00000001')
4457 >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4458 Decimal('-0E-1007')
4459 >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4460 Decimal('-1.00000002')
4461 >>> c.next_toward(Decimal('1'), Decimal('0'))
4462 Decimal('0.999999999')
4463 >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4464 Decimal('0E-1007')
4465 >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4466 Decimal('-1.00000004')
4467 >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4468 Decimal('-0.00')
4469 """
4470 return a.next_toward(b, context=self)
4471
4472 def normalize(self, a):
4473 """normalize reduces an operand to its simplest form.
4474
4475 Essentially a plus operation with all trailing zeros removed from the
4476 result.
4477
4478 >>> ExtendedContext.normalize(Decimal('2.1'))
4479 Decimal('2.1')
4480 >>> ExtendedContext.normalize(Decimal('-2.0'))
4481 Decimal('-2')
4482 >>> ExtendedContext.normalize(Decimal('1.200'))
4483 Decimal('1.2')
4484 >>> ExtendedContext.normalize(Decimal('-120'))
4485 Decimal('-1.2E+2')
4486 >>> ExtendedContext.normalize(Decimal('120.00'))
4487 Decimal('1.2E+2')
4488 >>> ExtendedContext.normalize(Decimal('0.00'))
4489 Decimal('0')
4490 """
4491 return a.normalize(context=self)
4492
4493 def number_class(self, a):
4494 """Returns an indication of the class of the operand.
4495
4496 The class is one of the following strings:
4497 -sNaN
4498 -NaN
4499 -Infinity
4500 -Normal
4501 -Subnormal
4502 -Zero
4503 +Zero
4504 +Subnormal
4505 +Normal
4506 +Infinity
4507
4508 >>> c = Context(ExtendedContext)
4509 >>> c.Emin = -999
4510 >>> c.Emax = 999
4511 >>> c.number_class(Decimal('Infinity'))
4512 '+Infinity'
4513 >>> c.number_class(Decimal('1E-10'))
4514 '+Normal'
4515 >>> c.number_class(Decimal('2.50'))
4516 '+Normal'
4517 >>> c.number_class(Decimal('0.1E-999'))
4518 '+Subnormal'
4519 >>> c.number_class(Decimal('0'))
4520 '+Zero'
4521 >>> c.number_class(Decimal('-0'))
4522 '-Zero'
4523 >>> c.number_class(Decimal('-0.1E-999'))
4524 '-Subnormal'
4525 >>> c.number_class(Decimal('-1E-10'))
4526 '-Normal'
4527 >>> c.number_class(Decimal('-2.50'))
4528 '-Normal'
4529 >>> c.number_class(Decimal('-Infinity'))
4530 '-Infinity'
4531 >>> c.number_class(Decimal('NaN'))
4532 'NaN'
4533 >>> c.number_class(Decimal('-NaN'))
4534 'NaN'
4535 >>> c.number_class(Decimal('sNaN'))
4536 'sNaN'
4537 """
4538 return a.number_class(context=self)
4539
4540 def plus(self, a):
4541 """Plus corresponds to unary prefix plus in Python.
4542
4543 The operation is evaluated using the same rules as add; the
4544 operation plus(a) is calculated as add('0', a) where the '0'
4545 has the same exponent as the operand.
4546
4547 >>> ExtendedContext.plus(Decimal('1.3'))
4548 Decimal('1.3')
4549 >>> ExtendedContext.plus(Decimal('-1.3'))
4550 Decimal('-1.3')
4551 """
4552 return a.__pos__(context=self)
4553
4554 def power(self, a, b, modulo=None):
4555 """Raises a to the power of b, to modulo if given.
4556
4557 With two arguments, compute a**b. If a is negative then b
4558 must be integral. The result will be inexact unless b is
4559 integral and the result is finite and can be expressed exactly
4560 in 'precision' digits.
4561
4562 With three arguments, compute (a**b) % modulo. For the
4563 three argument form, the following restrictions on the
4564 arguments hold:
4565
4566 - all three arguments must be integral
4567 - b must be nonnegative
4568 - at least one of a or b must be nonzero
4569 - modulo must be nonzero and have at most 'precision' digits
4570
4571 The result of pow(a, b, modulo) is identical to the result
4572 that would be obtained by computing (a**b) % modulo with
4573 unbounded precision, but is computed more efficiently. It is
4574 always exact.
4575
4576 >>> c = ExtendedContext.copy()
4577 >>> c.Emin = -999
4578 >>> c.Emax = 999
4579 >>> c.power(Decimal('2'), Decimal('3'))
4580 Decimal('8')
4581 >>> c.power(Decimal('-2'), Decimal('3'))
4582 Decimal('-8')
4583 >>> c.power(Decimal('2'), Decimal('-3'))
4584 Decimal('0.125')
4585 >>> c.power(Decimal('1.7'), Decimal('8'))
4586 Decimal('69.7575744')
4587 >>> c.power(Decimal('10'), Decimal('0.301029996'))
4588 Decimal('2.00000000')
4589 >>> c.power(Decimal('Infinity'), Decimal('-1'))
4590 Decimal('0')
4591 >>> c.power(Decimal('Infinity'), Decimal('0'))
4592 Decimal('1')
4593 >>> c.power(Decimal('Infinity'), Decimal('1'))
4594 Decimal('Infinity')
4595 >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4596 Decimal('-0')
4597 >>> c.power(Decimal('-Infinity'), Decimal('0'))
4598 Decimal('1')
4599 >>> c.power(Decimal('-Infinity'), Decimal('1'))
4600 Decimal('-Infinity')
4601 >>> c.power(Decimal('-Infinity'), Decimal('2'))
4602 Decimal('Infinity')
4603 >>> c.power(Decimal('0'), Decimal('0'))
4604 Decimal('NaN')
4605
4606 >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4607 Decimal('11')
4608 >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4609 Decimal('-11')
4610 >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4611 Decimal('1')
4612 >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4613 Decimal('11')
4614 >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4615 Decimal('11729830')
4616 >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
4617 Decimal('-0')
4618 >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
4619 Decimal('1')
4620 """
4621 return a.__pow__(b, modulo, context=self)
4622
4623 def quantize(self, a, b):
4624 """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
4625
4626 The coefficient of the result is derived from that of the left-hand
4627 operand. It may be rounded using the current rounding setting (if the
4628 exponent is being increased), multiplied by a positive power of ten (if
4629 the exponent is being decreased), or is unchanged (if the exponent is
4630 already equal to that of the right-hand operand).
4631
4632 Unlike other operations, if the length of the coefficient after the
4633 quantize operation would be greater than precision then an Invalid
4634 operation condition is raised. This guarantees that, unless there is
4635 an error condition, the exponent of the result of a quantize is always
4636 equal to that of the right-hand operand.
4637
4638 Also unlike other operations, quantize will never raise Underflow, even
4639 if the result is subnormal and inexact.
4640
4641 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
4642 Decimal('2.170')
4643 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
4644 Decimal('2.17')
4645 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
4646 Decimal('2.2')
4647 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
4648 Decimal('2')
4649 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
4650 Decimal('0E+1')
4651 >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
4652 Decimal('-Infinity')
4653 >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
4654 Decimal('NaN')
4655 >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
4656 Decimal('-0')
4657 >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
4658 Decimal('-0E+5')
4659 >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
4660 Decimal('NaN')
4661 >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
4662 Decimal('NaN')
4663 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
4664 Decimal('217.0')
4665 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
4666 Decimal('217')
4667 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
4668 Decimal('2.2E+2')
4669 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
4670 Decimal('2E+2')
4671 """
4672 return a.quantize(b, context=self)
4673
4674 def radix(self):
4675 """Just returns 10, as this is Decimal, :)
4676
4677 >>> ExtendedContext.radix()
4678 Decimal('10')
4679 """
4680 return Decimal(10)
4681
4682 def remainder(self, a, b):
4683 """Returns the remainder from integer division.
4684
4685 The result is the residue of the dividend after the operation of
4686 calculating integer division as described for divide-integer, rounded
4687 to precision digits if necessary. The sign of the result, if
4688 non-zero, is the same as that of the original dividend.
4689
4690 This operation will fail under the same conditions as integer division
4691 (that is, if integer division on the same two operands would fail, the
4692 remainder cannot be calculated).
4693
4694 >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
4695 Decimal('2.1')
4696 >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
4697 Decimal('1')
4698 >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
4699 Decimal('-1')
4700 >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
4701 Decimal('0.2')
4702 >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
4703 Decimal('0.1')
4704 >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
4705 Decimal('1.0')
4706 """
4707 return a.__mod__(b, context=self)
4708
4709 def remainder_near(self, a, b):
4710 """Returns to be "a - b * n", where n is the integer nearest the exact
4711 value of "x / b" (if two integers are equally near then the even one
4712 is chosen). If the result is equal to 0 then its sign will be the
4713 sign of a.
4714
4715 This operation will fail under the same conditions as integer division
4716 (that is, if integer division on the same two operands would fail, the
4717 remainder cannot be calculated).
4718
4719 >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
4720 Decimal('-0.9')
4721 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
4722 Decimal('-2')
4723 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
4724 Decimal('1')
4725 >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
4726 Decimal('-1')
4727 >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
4728 Decimal('0.2')
4729 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
4730 Decimal('0.1')
4731 >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
4732 Decimal('-0.3')
4733 """
4734 return a.remainder_near(b, context=self)
4735
4736 def rotate(self, a, b):
4737 """Returns a rotated copy of a, b times.
4738
4739 The coefficient of the result is a rotated copy of the digits in
4740 the coefficient of the first operand. The number of places of
4741 rotation is taken from the absolute value of the second operand,
4742 with the rotation being to the left if the second operand is
4743 positive or to the right otherwise.
4744
4745 >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
4746 Decimal('400000003')
4747 >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
4748 Decimal('12')
4749 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
4750 Decimal('891234567')
4751 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
4752 Decimal('123456789')
4753 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
4754 Decimal('345678912')
4755 """
4756 return a.rotate(b, context=self)
4757
4758 def same_quantum(self, a, b):
4759 """Returns True if the two operands have the same exponent.
4760
4761 The result is never affected by either the sign or the coefficient of
4762 either operand.
4763
4764 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
4765 False
4766 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
4767 True
4768 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
4769 False
4770 >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
4771 True
4772 """
4773 return a.same_quantum(b)
4774
4775 def scaleb (self, a, b):
4776 """Returns the first operand after adding the second value its exp.
4777
4778 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
4779 Decimal('0.0750')
4780 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
4781 Decimal('7.50')
4782 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
4783 Decimal('7.50E+3')
4784 """
4785 return a.scaleb (b, context=self)
4786
4787 def shift(self, a, b):
4788 """Returns a shifted copy of a, b times.
4789
4790 The coefficient of the result is a shifted copy of the digits
4791 in the coefficient of the first operand. The number of places
4792 to shift is taken from the absolute value of the second operand,
4793 with the shift being to the left if the second operand is
4794 positive or to the right otherwise. Digits shifted into the
4795 coefficient are zeros.
4796
4797 >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
4798 Decimal('400000000')
4799 >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
4800 Decimal('0')
4801 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
4802 Decimal('1234567')
4803 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
4804 Decimal('123456789')
4805 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
4806 Decimal('345678900')
4807 """
4808 return a.shift(b, context=self)
4809
4810 def sqrt(self, a):
4811 """Square root of a non-negative number to context precision.
4812
4813 If the result must be inexact, it is rounded using the round-half-even
4814 algorithm.
4815
4816 >>> ExtendedContext.sqrt(Decimal('0'))
4817 Decimal('0')
4818 >>> ExtendedContext.sqrt(Decimal('-0'))
4819 Decimal('-0')
4820 >>> ExtendedContext.sqrt(Decimal('0.39'))
4821 Decimal('0.624499800')
4822 >>> ExtendedContext.sqrt(Decimal('100'))
4823 Decimal('10')
4824 >>> ExtendedContext.sqrt(Decimal('1'))
4825 Decimal('1')
4826 >>> ExtendedContext.sqrt(Decimal('1.0'))
4827 Decimal('1.0')
4828 >>> ExtendedContext.sqrt(Decimal('1.00'))
4829 Decimal('1.0')
4830 >>> ExtendedContext.sqrt(Decimal('7'))
4831 Decimal('2.64575131')
4832 >>> ExtendedContext.sqrt(Decimal('10'))
4833 Decimal('3.16227766')
4834 >>> ExtendedContext.prec
4835 9
4836 """
4837 return a.sqrt(context=self)
4838
4839 def subtract(self, a, b):
4840 """Return the difference between the two operands.
4841
4842 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
4843 Decimal('0.23')
4844 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
4845 Decimal('0.00')
4846 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
4847 Decimal('-0.77')
4848 """
4849 return a.__sub__(b, context=self)
4850
4851 def to_eng_string(self, a):
4852 """Converts a number to a string, using scientific notation.
4853
4854 The operation is not affected by the context.
4855 """
4856 return a.to_eng_string(context=self)
4857
4858 def to_sci_string(self, a):
4859 """Converts a number to a string, using scientific notation.
4860
4861 The operation is not affected by the context.
4862 """
4863 return a.__str__(context=self)
4864
4865 def to_integral_exact(self, a):
4866 """Rounds to an integer.
4867
4868 When the operand has a negative exponent, the result is the same
4869 as using the quantize() operation using the given operand as the
4870 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4871 of the operand as the precision setting; Inexact and Rounded flags
4872 are allowed in this operation. The rounding mode is taken from the
4873 context.
4874
4875 >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
4876 Decimal('2')
4877 >>> ExtendedContext.to_integral_exact(Decimal('100'))
4878 Decimal('100')
4879 >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
4880 Decimal('100')
4881 >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
4882 Decimal('102')
4883 >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
4884 Decimal('-102')
4885 >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
4886 Decimal('1.0E+6')
4887 >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
4888 Decimal('7.89E+77')
4889 >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
4890 Decimal('-Infinity')
4891 """
4892 return a.to_integral_exact(context=self)
4893
4894 def to_integral_value(self, a):
4895 """Rounds to an integer.
4896
4897 When the operand has a negative exponent, the result is the same
4898 as using the quantize() operation using the given operand as the
4899 left-hand-operand, 1E+0 as the right-hand-operand, and the precision
4900 of the operand as the precision setting, except that no flags will
4901 be set. The rounding mode is taken from the context.
4902
4903 >>> ExtendedContext.to_integral_value(Decimal('2.1'))
4904 Decimal('2')
4905 >>> ExtendedContext.to_integral_value(Decimal('100'))
4906 Decimal('100')
4907 >>> ExtendedContext.to_integral_value(Decimal('100.0'))
4908 Decimal('100')
4909 >>> ExtendedContext.to_integral_value(Decimal('101.5'))
4910 Decimal('102')
4911 >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
4912 Decimal('-102')
4913 >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
4914 Decimal('1.0E+6')
4915 >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
4916 Decimal('7.89E+77')
4917 >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
4918 Decimal('-Infinity')
4919 """
4920 return a.to_integral_value(context=self)
4921
4922 # the method name changed, but we provide also the old one, for compatibility
4923 to_integral = to_integral_value
4924
4925class _WorkRep(object):
4926 __slots__ = ('sign','int','exp')
4927 # sign: 0 or 1
4928 # int: int or long
4929 # exp: None, int, or string
4930
4931 def __init__(self, value=None):
4932 if value is None:
4933 self.sign = None
4934 self.int = 0
4935 self.exp = None
4936 elif isinstance(value, Decimal):
4937 self.sign = value._sign
4938 self.int = int(value._int)
4939 self.exp = value._exp
4940 else:
4941 # assert isinstance(value, tuple)
4942 self.sign = value[0]
4943 self.int = value[1]
4944 self.exp = value[2]
4945
4946 def __repr__(self):
4947 return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
4948
4949 __str__ = __repr__
4950
4951
4952
4953def _normalize(op1, op2, prec = 0):
4954 """Normalizes op1, op2 to have the same exp and length of coefficient.
4955
4956 Done during addition.
4957 """
4958 if op1.exp < op2.exp:
4959 tmp = op2
4960 other = op1
4961 else:
4962 tmp = op1
4963 other = op2
4964
4965 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
4966 # Then adding 10**exp to tmp has the same effect (after rounding)
4967 # as adding any positive quantity smaller than 10**exp; similarly
4968 # for subtraction. So if other is smaller than 10**exp we replace
4969 # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
4970 tmp_len = len(str(tmp.int))
4971 other_len = len(str(other.int))
4972 exp = tmp.exp + min(-1, tmp_len - prec - 2)
4973 if other_len + other.exp - 1 < exp:
4974 other.int = 1
4975 other.exp = exp
4976
4977 tmp.int *= 10 ** (tmp.exp - other.exp)
4978 tmp.exp = other.exp
4979 return op1, op2
4980
4981##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
4982
4983# This function from Tim Peters was taken from here:
4984# http://mail.python.org/pipermail/python-list/1999-July/007758.html
4985# The correction being in the function definition is for speed, and
4986# the whole function is not resolved with math.log because of avoiding
4987# the use of floats.
4988def _nbits(n, correction = {
4989 '0': 4, '1': 3, '2': 2, '3': 2,
4990 '4': 1, '5': 1, '6': 1, '7': 1,
4991 '8': 0, '9': 0, 'a': 0, 'b': 0,
4992 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
4993 """Number of bits in binary representation of the positive integer n,
4994 or 0 if n == 0.
4995 """
4996 if n < 0:
4997 raise ValueError("The argument to _nbits should be nonnegative.")
4998 hex_n = "%x" % n
4999 return 4*len(hex_n) - correction[hex_n[0]]
5000
5001def _sqrt_nearest(n, a):
5002 """Closest integer to the square root of the positive integer n. a is
5003 an initial approximation to the square root. Any positive integer
5004 will do for a, but the closer a is to the square root of n the
5005 faster convergence will be.
5006
5007 """
5008 if n <= 0 or a <= 0:
5009 raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5010
5011 b=0
5012 while a != b:
5013 b, a = a, a--n//a>>1
5014 return a
5015
5016def _rshift_nearest(x, shift):
5017 """Given an integer x and a nonnegative integer shift, return closest
5018 integer to x / 2**shift; use round-to-even in case of a tie.
5019
5020 """
5021 b, q = 1L << shift, x >> shift
5022 return q + (2*(x & (b-1)) + (q&1) > b)
5023
5024def _div_nearest(a, b):
5025 """Closest integer to a/b, a and b positive integers; rounds to even
5026 in the case of a tie.
5027
5028 """
5029 q, r = divmod(a, b)
5030 return q + (2*r + (q&1) > b)
5031
5032def _ilog(x, M, L = 8):
5033 """Integer approximation to M*log(x/M), with absolute error boundable
5034 in terms only of x/M.
5035
5036 Given positive integers x and M, return an integer approximation to
5037 M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
5038 between the approximation and the exact result is at most 22. For
5039 L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
5040 both cases these are upper bounds on the error; it will usually be
5041 much smaller."""
5042
5043 # The basic algorithm is the following: let log1p be the function
5044 # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
5045 # the reduction
5046 #
5047 # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5048 #
5049 # repeatedly until the argument to log1p is small (< 2**-L in
5050 # absolute value). For small y we can use the Taylor series
5051 # expansion
5052 #
5053 # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5054 #
5055 # truncating at T such that y**T is small enough. The whole
5056 # computation is carried out in a form of fixed-point arithmetic,
5057 # with a real number z being represented by an integer
5058 # approximation to z*M. To avoid loss of precision, the y below
5059 # is actually an integer approximation to 2**R*y*M, where R is the
5060 # number of reductions performed so far.
5061
5062 y = x-M
5063 # argument reduction; R = number of reductions performed
5064 R = 0
5065 while (R <= L and long(abs(y)) << L-R >= M or
5066 R > L and abs(y) >> R-L >= M):
5067 y = _div_nearest(long(M*y) << 1,
5068 M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5069 R += 1
5070
5071 # Taylor series with T terms
5072 T = -int(-10*len(str(M))//(3*L))
5073 yshift = _rshift_nearest(y, R)
5074 w = _div_nearest(M, T)
5075 for k in xrange(T-1, 0, -1):
5076 w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5077
5078 return _div_nearest(w*y, M)
5079
5080def _dlog10(c, e, p):
5081 """Given integers c, e and p with c > 0, p >= 0, compute an integer
5082 approximation to 10**p * log10(c*10**e), with an absolute error of
5083 at most 1. Assumes that c*10**e is not exactly 1."""
5084
5085 # increase precision by 2; compensate for this by dividing
5086 # final result by 100
5087 p += 2
5088
5089 # write c*10**e as d*10**f with either:
5090 # f >= 0 and 1 <= d <= 10, or
5091 # f <= 0 and 0.1 <= d <= 1.
5092 # Thus for c*10**e close to 1, f = 0
5093 l = len(str(c))
5094 f = e+l - (e+l >= 1)
5095
5096 if p > 0:
5097 M = 10**p
5098 k = e+p-f
5099 if k >= 0:
5100 c *= 10**k
5101 else:
5102 c = _div_nearest(c, 10**-k)
5103
5104 log_d = _ilog(c, M) # error < 5 + 22 = 27
5105 log_10 = _log10_digits(p) # error < 1
5106 log_d = _div_nearest(log_d*M, log_10)
5107 log_tenpower = f*M # exact
5108 else:
5109 log_d = 0 # error < 2.31
5110 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5111
5112 return _div_nearest(log_tenpower+log_d, 100)
5113
5114def _dlog(c, e, p):
5115 """Given integers c, e and p with c > 0, compute an integer
5116 approximation to 10**p * log(c*10**e), with an absolute error of
5117 at most 1. Assumes that c*10**e is not exactly 1."""
5118
5119 # Increase precision by 2. The precision increase is compensated
5120 # for at the end with a division by 100.
5121 p += 2
5122
5123 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5124 # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
5125 # as 10**p * log(d) + 10**p*f * log(10).
5126 l = len(str(c))
5127 f = e+l - (e+l >= 1)
5128
5129 # compute approximation to 10**p*log(d), with error < 27
5130 if p > 0:
5131 k = e+p-f
5132 if k >= 0:
5133 c *= 10**k
5134 else:
5135 c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
5136
5137 # _ilog magnifies existing error in c by a factor of at most 10
5138 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5139 else:
5140 # p <= 0: just approximate the whole thing by 0; error < 2.31
5141 log_d = 0
5142
5143 # compute approximation to f*10**p*log(10), with error < 11.
5144 if f:
5145 extra = len(str(abs(f)))-1
5146 if p + extra >= 0:
5147 # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5148 # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5149 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5150 else:
5151 f_log_ten = 0
5152 else:
5153 f_log_ten = 0
5154
5155 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5156 return _div_nearest(f_log_ten + log_d, 100)
5157
5158class _Log10Memoize(object):
5159 """Class to compute, store, and allow retrieval of, digits of the
5160 constant log(10) = 2.302585.... This constant is needed by
5161 Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5162 def __init__(self):
5163 self.digits = "23025850929940456840179914546843642076011014886"
5164
5165 def getdigits(self, p):
5166 """Given an integer p >= 0, return floor(10**p)*log(10).
5167
5168 For example, self.getdigits(3) returns 2302.
5169 """
5170 # digits are stored as a string, for quick conversion to
5171 # integer in the case that we've already computed enough
5172 # digits; the stored digits should always be correct
5173 # (truncated, not rounded to nearest).
5174 if p < 0:
5175 raise ValueError("p should be nonnegative")
5176
5177 if p >= len(self.digits):
5178 # compute p+3, p+6, p+9, ... digits; continue until at
5179 # least one of the extra digits is nonzero
5180 extra = 3
5181 while True:
5182 # compute p+extra digits, correct to within 1ulp
5183 M = 10**(p+extra+2)
5184 digits = str(_div_nearest(_ilog(10*M, M), 100))
5185 if digits[-extra:] != '0'*extra:
5186 break
5187 extra += 3
5188 # keep all reliable digits so far; remove trailing zeros
5189 # and next nonzero digit
5190 self.digits = digits.rstrip('0')[:-1]
5191 return int(self.digits[:p+1])
5192
5193_log10_digits = _Log10Memoize().getdigits
5194
5195def _iexp(x, M, L=8):
5196 """Given integers x and M, M > 0, such that x/M is small in absolute
5197 value, compute an integer approximation to M*exp(x/M). For 0 <=
5198 x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5199 is usually much smaller)."""
5200
5201 # Algorithm: to compute exp(z) for a real number z, first divide z
5202 # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
5203 # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5204 # series
5205 #
5206 # expm1(x) = x + x**2/2! + x**3/3! + ...
5207 #
5208 # Now use the identity
5209 #
5210 # expm1(2x) = expm1(x)*(expm1(x)+2)
5211 #
5212 # R times to compute the sequence expm1(z/2**R),
5213 # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5214
5215 # Find R such that x/2**R/M <= 2**-L
5216 R = _nbits((long(x)<<L)//M)
5217
5218 # Taylor series. (2**L)**T > M
5219 T = -int(-10*len(str(M))//(3*L))
5220 y = _div_nearest(x, T)
5221 Mshift = long(M)<<R
5222 for i in xrange(T-1, 0, -1):
5223 y = _div_nearest(x*(Mshift + y), Mshift * i)
5224
5225 # Expansion
5226 for k in xrange(R-1, -1, -1):
5227 Mshift = long(M)<<(k+2)
5228 y = _div_nearest(y*(y+Mshift), Mshift)
5229
5230 return M+y
5231
5232def _dexp(c, e, p):
5233 """Compute an approximation to exp(c*10**e), with p decimal places of
5234 precision.
5235
5236 Returns integers d, f such that:
5237
5238 10**(p-1) <= d <= 10**p, and
5239 (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5240
5241 In other words, d*10**f is an approximation to exp(c*10**e) with p
5242 digits of precision, and with an error in d of at most 1. This is
5243 almost, but not quite, the same as the error being < 1ulp: when d
5244 = 10**(p-1) the error could be up to 10 ulp."""
5245
5246 # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5247 p += 2
5248
5249 # compute log(10) with extra precision = adjusted exponent of c*10**e
5250 extra = max(0, e + len(str(c)) - 1)
5251 q = p + extra
5252
5253 # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5254 # rounding down
5255 shift = e+q
5256 if shift >= 0:
5257 cshift = c*10**shift
5258 else:
5259 cshift = c//10**-shift
5260 quot, rem = divmod(cshift, _log10_digits(q))
5261
5262 # reduce remainder back to original precision
5263 rem = _div_nearest(rem, 10**extra)
5264
5265 # error in result of _iexp < 120; error after division < 0.62
5266 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5267
5268def _dpower(xc, xe, yc, ye, p):
5269 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5270 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
5271
5272 10**(p-1) <= c <= 10**p, and
5273 (c-1)*10**e < x**y < (c+1)*10**e
5274
5275 in other words, c*10**e is an approximation to x**y with p digits
5276 of precision, and with an error in c of at most 1. (This is
5277 almost, but not quite, the same as the error being < 1ulp: when c
5278 == 10**(p-1) we can only guarantee error < 10ulp.)
5279
5280 We assume that: x is positive and not equal to 1, and y is nonzero.
5281 """
5282
5283 # Find b such that 10**(b-1) <= |y| <= 10**b
5284 b = len(str(abs(yc))) + ye
5285
5286 # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5287 lxc = _dlog(xc, xe, p+b+1)
5288
5289 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5290 shift = ye-b
5291 if shift >= 0:
5292 pc = lxc*yc*10**shift
5293 else:
5294 pc = _div_nearest(lxc*yc, 10**-shift)
5295
5296 if pc == 0:
5297 # we prefer a result that isn't exactly 1; this makes it
5298 # easier to compute a correctly rounded result in __pow__
5299 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5300 coeff, exp = 10**(p-1)+1, 1-p
5301 else:
5302 coeff, exp = 10**p-1, -p
5303 else:
5304 coeff, exp = _dexp(pc, -(p+1), p+1)
5305 coeff = _div_nearest(coeff, 10)
5306 exp += 1
5307
5308 return coeff, exp
5309
5310def _log10_lb(c, correction = {
5311 '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5312 '6': 23, '7': 16, '8': 10, '9': 5}):
5313 """Compute a lower bound for 100*log10(c) for a positive integer c."""
5314 if c <= 0:
5315 raise ValueError("The argument to _log10_lb should be nonnegative.")
5316 str_c = str(c)
5317 return 100*len(str_c) - correction[str_c[0]]
5318
5319##### Helper Functions ####################################################
5320
5321def _convert_other(other, raiseit=False):
5322 """Convert other to Decimal.
5323
5324 Verifies that it's ok to use in an implicit construction.
5325 """
5326 if isinstance(other, Decimal):
5327 return other
5328 if isinstance(other, (int, long)):
5329 return Decimal(other)
5330 if raiseit:
5331 raise TypeError("Unable to convert %s to Decimal" % other)
5332 return NotImplemented
5333
5334##### Setup Specific Contexts ############################################
5335
5336# The default context prototype used by Context()
5337# Is mutable, so that new contexts can have different default values
5338
5339DefaultContext = Context(
5340 prec=28, rounding=ROUND_HALF_EVEN,
5341 traps=[DivisionByZero, Overflow, InvalidOperation],
5342 flags=[],
5343 Emax=999999999,
5344 Emin=-999999999,
5345 capitals=1
5346)
5347
5348# Pre-made alternate contexts offered by the specification
5349# Don't change these; the user should be able to select these
5350# contexts and be able to reproduce results from other implementations
5351# of the spec.
5352
5353BasicContext = Context(
5354 prec=9, rounding=ROUND_HALF_UP,
5355 traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5356 flags=[],
5357)
5358
5359ExtendedContext = Context(
5360 prec=9, rounding=ROUND_HALF_EVEN,
5361 traps=[],
5362 flags=[],
5363)
5364
5365
5366##### crud for parsing strings #############################################
5367#
5368# Regular expression used for parsing numeric strings. Additional
5369# comments:
5370#
5371# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5372# whitespace. But note that the specification disallows whitespace in
5373# a numeric string.
5374#
5375# 2. For finite numbers (not infinities and NaNs) the body of the
5376# number between the optional sign and the optional exponent must have
5377# at least one decimal digit, possibly after the decimal point. The
5378# lookahead expression '(?=\d|\.\d)' checks this.
5379
5380import re
5381_parser = re.compile(r""" # A numeric string consists of:
5382# \s*
5383 (?P<sign>[-+])? # an optional sign, followed by either...
5384 (
5385 (?=\d|\.\d) # ...a number (with at least one digit)
5386 (?P<int>\d*) # having a (possibly empty) integer part
5387 (\.(?P<frac>\d*))? # followed by an optional fractional part
5388 (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or...
5389 |
5390 Inf(inity)? # ...an infinity, or...
5391 |
5392 (?P<signal>s)? # ...an (optionally signaling)
5393 NaN # NaN
5394 (?P<diag>\d*) # with (possibly empty) diagnostic info.
5395 )
5396# \s*
5397 \Z
5398""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match
5399
5400_all_zeros = re.compile('0*$').match
5401_exact_half = re.compile('50*$').match
5402
5403##### PEP3101 support functions ##############################################
5404# The functions parse_format_specifier and format_align have little to do
5405# with the Decimal class, and could potentially be reused for other pure
5406# Python numeric classes that want to implement __format__
5407#
5408# A format specifier for Decimal looks like:
5409#
5410# [[fill]align][sign][0][minimumwidth][.precision][type]
5411#
5412
5413_parse_format_specifier_regex = re.compile(r"""\A
5414(?:
5415 (?P<fill>.)?
5416 (?P<align>[<>=^])
5417)?
5418(?P<sign>[-+ ])?
5419(?P<zeropad>0)?
5420(?P<minimumwidth>(?!0)\d+)?
5421(?:\.(?P<precision>0|(?!0)\d+))?
5422(?P<type>[eEfFgG%])?
5423\Z
5424""", re.VERBOSE)
5425
5426del re
5427
5428def _parse_format_specifier(format_spec):
5429 """Parse and validate a format specifier.
5430
5431 Turns a standard numeric format specifier into a dict, with the
5432 following entries:
5433
5434 fill: fill character to pad field to minimum width
5435 align: alignment type, either '<', '>', '=' or '^'
5436 sign: either '+', '-' or ' '
5437 minimumwidth: nonnegative integer giving minimum width
5438 precision: nonnegative integer giving precision, or None
5439 type: one of the characters 'eEfFgG%', or None
5440 unicode: either True or False (always True for Python 3.x)
5441
5442 """
5443 m = _parse_format_specifier_regex.match(format_spec)
5444 if m is None:
5445 raise ValueError("Invalid format specifier: " + format_spec)
5446
5447 # get the dictionary
5448 format_dict = m.groupdict()
5449
5450 # defaults for fill and alignment
5451 fill = format_dict['fill']
5452 align = format_dict['align']
5453 if format_dict.pop('zeropad') is not None:
5454 # in the face of conflict, refuse the temptation to guess
5455 if fill is not None and fill != '0':
5456 raise ValueError("Fill character conflicts with '0'"
5457 " in format specifier: " + format_spec)
5458 if align is not None and align != '=':
5459 raise ValueError("Alignment conflicts with '0' in "
5460 "format specifier: " + format_spec)
5461 fill = '0'
5462 align = '='
5463 format_dict['fill'] = fill or ' '
5464 format_dict['align'] = align or '<'
5465
5466 if format_dict['sign'] is None:
5467 format_dict['sign'] = '-'
5468
5469 # turn minimumwidth and precision entries into integers.
5470 # minimumwidth defaults to 0; precision remains None if not given
5471 format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5472 if format_dict['precision'] is not None:
5473 format_dict['precision'] = int(format_dict['precision'])
5474
5475 # if format type is 'g' or 'G' then a precision of 0 makes little
5476 # sense; convert it to 1. Same if format type is unspecified.
5477 if format_dict['precision'] == 0:
5478 if format_dict['type'] is None or format_dict['type'] in 'gG':
5479 format_dict['precision'] = 1
5480
5481 # record whether return type should be str or unicode
5482 format_dict['unicode'] = isinstance(format_spec, unicode)
5483
5484 return format_dict
5485
5486def _format_align(body, spec_dict):
5487 """Given an unpadded, non-aligned numeric string, add padding and
5488 aligment to conform with the given format specifier dictionary (as
5489 output from parse_format_specifier).
5490
5491 It's assumed that if body is negative then it starts with '-'.
5492 Any leading sign ('-' or '+') is stripped from the body before
5493 applying the alignment and padding rules, and replaced in the
5494 appropriate position.
5495
5496 """
5497 # figure out the sign; we only examine the first character, so if
5498 # body has leading whitespace the results may be surprising.
5499 if len(body) > 0 and body[0] in '-+':
5500 sign = body[0]
5501 body = body[1:]
5502 else:
5503 sign = ''
5504
5505 if sign != '-':
5506 if spec_dict['sign'] in ' +':
5507 sign = spec_dict['sign']
5508 else:
5509 sign = ''
5510
5511 # how much extra space do we have to play with?
5512 minimumwidth = spec_dict['minimumwidth']
5513 fill = spec_dict['fill']
5514 padding = fill*(max(minimumwidth - (len(sign+body)), 0))
5515
5516 align = spec_dict['align']
5517 if align == '<':
5518 result = sign + body + padding
5519 elif align == '>':
5520 result = padding + sign + body
5521 elif align == '=':
5522 result = sign + padding + body
5523 else: #align == '^'
5524 half = len(padding)//2
5525 result = padding[:half] + sign + body + padding[half:]
5526
5527 # make sure that result is unicode if necessary
5528 if spec_dict['unicode']:
5529 result = unicode(result)
5530
5531 return result
5532
5533##### Useful Constants (internal use only) ################################
5534
5535# Reusable defaults
5536_Infinity = Decimal('Inf')
5537_NegativeInfinity = Decimal('-Inf')
5538_NaN = Decimal('NaN')
5539_Zero = Decimal(0)
5540_One = Decimal(1)
5541_NegativeOne = Decimal(-1)
5542
5543# _SignedInfinity[sign] is infinity w/ that sign
5544_SignedInfinity = (_Infinity, _NegativeInfinity)
5545
5546
5547
5548if __name__ == '__main__':
5549 import doctest, sys
5550 doctest.testmod(sys.modules[__name__])
Note: See TracBrowser for help on using the repository browser.