[205] | 1 | /*
|
---|
| 2 | ** 2001 September 15
|
---|
| 3 | **
|
---|
| 4 | ** The author disclaims copyright to this source code. In place of
|
---|
| 5 | ** a legal notice, here is a blessing:
|
---|
| 6 | **
|
---|
| 7 | ** May you do good and not evil.
|
---|
| 8 | ** May you find forgiveness for yourself and forgive others.
|
---|
| 9 | ** May you share freely, never taking more than you give.
|
---|
| 10 | **
|
---|
| 11 | *************************************************************************
|
---|
| 12 | ** This module contains C code that generates VDBE code used to process
|
---|
| 13 | ** the WHERE clause of SQL statements.
|
---|
| 14 | **
|
---|
| 15 | ** $Id: where.c,v 1.89.2.2 2004/07/19 19:30:50 drh Exp $
|
---|
| 16 | */
|
---|
| 17 | #include "sqliteInt.h"
|
---|
| 18 |
|
---|
| 19 | /*
|
---|
| 20 | ** The query generator uses an array of instances of this structure to
|
---|
| 21 | ** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
---|
| 22 | ** clause subexpression is separated from the others by an AND operator.
|
---|
| 23 | */
|
---|
| 24 | typedef struct ExprInfo ExprInfo;
|
---|
| 25 | struct ExprInfo {
|
---|
| 26 | Expr *p; /* Pointer to the subexpression */
|
---|
| 27 | u8 indexable; /* True if this subexprssion is usable by an index */
|
---|
| 28 | short int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
---|
| 29 | ** p->pLeft is not the column of any table */
|
---|
| 30 | short int idxRight; /* p->pRight is a column in this table number. -1 if
|
---|
| 31 | ** p->pRight is not the column of any table */
|
---|
| 32 | unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
|
---|
| 33 | unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
|
---|
| 34 | unsigned prereqAll; /* Bitmask of tables referenced by p */
|
---|
| 35 | };
|
---|
| 36 |
|
---|
| 37 | /*
|
---|
| 38 | ** An instance of the following structure keeps track of a mapping
|
---|
| 39 | ** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
|
---|
| 40 | ** are small integers contained in SrcList_item.iCursor and Expr.iTable
|
---|
| 41 | ** fields. For any given WHERE clause, we want to track which cursors
|
---|
| 42 | ** are being used, so we assign a single bit in a 32-bit word to track
|
---|
| 43 | ** that cursor. Then a 32-bit integer is able to show the set of all
|
---|
| 44 | ** cursors being used.
|
---|
| 45 | */
|
---|
| 46 | typedef struct ExprMaskSet ExprMaskSet;
|
---|
| 47 | struct ExprMaskSet {
|
---|
| 48 | int n; /* Number of assigned cursor values */
|
---|
| 49 | int ix[31]; /* Cursor assigned to each bit */
|
---|
| 50 | };
|
---|
| 51 |
|
---|
| 52 | /*
|
---|
| 53 | ** Determine the number of elements in an array.
|
---|
| 54 | */
|
---|
| 55 | #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
---|
| 56 |
|
---|
| 57 | /*
|
---|
| 58 | ** This routine is used to divide the WHERE expression into subexpressions
|
---|
| 59 | ** separated by the AND operator.
|
---|
| 60 | **
|
---|
| 61 | ** aSlot[] is an array of subexpressions structures.
|
---|
| 62 | ** There are nSlot spaces left in this array. This routine attempts to
|
---|
| 63 | ** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
|
---|
| 64 | ** The return value is the number of slots filled.
|
---|
| 65 | */
|
---|
| 66 | static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
---|
| 67 | int cnt = 0;
|
---|
| 68 | if( pExpr==0 || nSlot<1 ) return 0;
|
---|
| 69 | if( nSlot==1 || pExpr->op!=TK_AND ){
|
---|
| 70 | aSlot[0].p = pExpr;
|
---|
| 71 | return 1;
|
---|
| 72 | }
|
---|
| 73 | if( pExpr->pLeft->op!=TK_AND ){
|
---|
| 74 | aSlot[0].p = pExpr->pLeft;
|
---|
| 75 | cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
---|
| 76 | }else{
|
---|
| 77 | cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
|
---|
| 78 | cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
|
---|
| 79 | }
|
---|
| 80 | return cnt;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | /*
|
---|
| 84 | ** Initialize an expression mask set
|
---|
| 85 | */
|
---|
| 86 | #define initMaskSet(P) memset(P, 0, sizeof(*P))
|
---|
| 87 |
|
---|
| 88 | /*
|
---|
| 89 | ** Return the bitmask for the given cursor. Assign a new bitmask
|
---|
| 90 | ** if this is the first time the cursor has been seen.
|
---|
| 91 | */
|
---|
| 92 | static int getMask(ExprMaskSet *pMaskSet, int iCursor){
|
---|
| 93 | int i;
|
---|
| 94 | for(i=0; i<pMaskSet->n; i++){
|
---|
| 95 | if( pMaskSet->ix[i]==iCursor ) return 1<<i;
|
---|
| 96 | }
|
---|
| 97 | if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
|
---|
| 98 | pMaskSet->n++;
|
---|
| 99 | pMaskSet->ix[i] = iCursor;
|
---|
| 100 | return 1<<i;
|
---|
| 101 | }
|
---|
| 102 | return 0;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | /*
|
---|
| 106 | ** Destroy an expression mask set
|
---|
| 107 | */
|
---|
| 108 | #define freeMaskSet(P) /* NO-OP */
|
---|
| 109 |
|
---|
| 110 | /*
|
---|
| 111 | ** This routine walks (recursively) an expression tree and generates
|
---|
| 112 | ** a bitmask indicating which tables are used in that expression
|
---|
| 113 | ** tree.
|
---|
| 114 | **
|
---|
| 115 | ** In order for this routine to work, the calling function must have
|
---|
| 116 | ** previously invoked sqliteExprResolveIds() on the expression. See
|
---|
| 117 | ** the header comment on that routine for additional information.
|
---|
| 118 | ** The sqliteExprResolveIds() routines looks for column names and
|
---|
| 119 | ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
|
---|
| 120 | ** the VDBE cursor number of the table.
|
---|
| 121 | */
|
---|
| 122 | static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
|
---|
| 123 | unsigned int mask = 0;
|
---|
| 124 | if( p==0 ) return 0;
|
---|
| 125 | if( p->op==TK_COLUMN ){
|
---|
| 126 | mask = getMask(pMaskSet, p->iTable);
|
---|
| 127 | if( mask==0 ) mask = -1;
|
---|
| 128 | return mask;
|
---|
| 129 | }
|
---|
| 130 | if( p->pRight ){
|
---|
| 131 | mask = exprTableUsage(pMaskSet, p->pRight);
|
---|
| 132 | }
|
---|
| 133 | if( p->pLeft ){
|
---|
| 134 | mask |= exprTableUsage(pMaskSet, p->pLeft);
|
---|
| 135 | }
|
---|
| 136 | if( p->pList ){
|
---|
| 137 | int i;
|
---|
| 138 | for(i=0; i<p->pList->nExpr; i++){
|
---|
| 139 | mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 | return mask;
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | /*
|
---|
| 146 | ** Return TRUE if the given operator is one of the operators that is
|
---|
| 147 | ** allowed for an indexable WHERE clause. The allowed operators are
|
---|
| 148 | ** "=", "<", ">", "<=", ">=", and "IN".
|
---|
| 149 | */
|
---|
| 150 | static int allowedOp(int op){
|
---|
| 151 | switch( op ){
|
---|
| 152 | case TK_LT:
|
---|
| 153 | case TK_LE:
|
---|
| 154 | case TK_GT:
|
---|
| 155 | case TK_GE:
|
---|
| 156 | case TK_EQ:
|
---|
| 157 | case TK_IN:
|
---|
| 158 | return 1;
|
---|
| 159 | default:
|
---|
| 160 | return 0;
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | /*
|
---|
| 165 | ** The input to this routine is an ExprInfo structure with only the
|
---|
| 166 | ** "p" field filled in. The job of this routine is to analyze the
|
---|
| 167 | ** subexpression and populate all the other fields of the ExprInfo
|
---|
| 168 | ** structure.
|
---|
| 169 | */
|
---|
| 170 | static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
|
---|
| 171 | Expr *pExpr = pInfo->p;
|
---|
| 172 | pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
---|
| 173 | pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
---|
| 174 | pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
|
---|
| 175 | pInfo->indexable = 0;
|
---|
| 176 | pInfo->idxLeft = -1;
|
---|
| 177 | pInfo->idxRight = -1;
|
---|
| 178 | if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
---|
| 179 | if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
|
---|
| 180 | pInfo->idxRight = pExpr->pRight->iTable;
|
---|
| 181 | pInfo->indexable = 1;
|
---|
| 182 | }
|
---|
| 183 | if( pExpr->pLeft->op==TK_COLUMN ){
|
---|
| 184 | pInfo->idxLeft = pExpr->pLeft->iTable;
|
---|
| 185 | pInfo->indexable = 1;
|
---|
| 186 | }
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | /*
|
---|
| 191 | ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
---|
| 192 | ** left-most table in the FROM clause of that same SELECT statement and
|
---|
| 193 | ** the table has a cursor number of "base".
|
---|
| 194 | **
|
---|
| 195 | ** This routine attempts to find an index for pTab that generates the
|
---|
| 196 | ** correct record sequence for the given ORDER BY clause. The return value
|
---|
| 197 | ** is a pointer to an index that does the job. NULL is returned if the
|
---|
| 198 | ** table has no index that will generate the correct sort order.
|
---|
| 199 | **
|
---|
| 200 | ** If there are two or more indices that generate the correct sort order
|
---|
| 201 | ** and pPreferredIdx is one of those indices, then return pPreferredIdx.
|
---|
| 202 | **
|
---|
| 203 | ** nEqCol is the number of columns of pPreferredIdx that are used as
|
---|
| 204 | ** equality constraints. Any index returned must have exactly this same
|
---|
| 205 | ** set of columns. The ORDER BY clause only matches index columns beyond the
|
---|
| 206 | ** the first nEqCol columns.
|
---|
| 207 | **
|
---|
| 208 | ** All terms of the ORDER BY clause must be either ASC or DESC. The
|
---|
| 209 | ** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
|
---|
| 210 | ** set to 0 if the ORDER BY clause is all ASC.
|
---|
| 211 | */
|
---|
| 212 | static Index *findSortingIndex(
|
---|
| 213 | Table *pTab, /* The table to be sorted */
|
---|
| 214 | int base, /* Cursor number for pTab */
|
---|
| 215 | ExprList *pOrderBy, /* The ORDER BY clause */
|
---|
| 216 | Index *pPreferredIdx, /* Use this index, if possible and not NULL */
|
---|
| 217 | int nEqCol, /* Number of index columns used with == constraints */
|
---|
| 218 | int *pbRev /* Set to 1 if ORDER BY is DESC */
|
---|
| 219 | ){
|
---|
| 220 | int i, j;
|
---|
| 221 | Index *pMatch;
|
---|
| 222 | Index *pIdx;
|
---|
| 223 | int sortOrder;
|
---|
| 224 |
|
---|
| 225 | assert( pOrderBy!=0 );
|
---|
| 226 | assert( pOrderBy->nExpr>0 );
|
---|
| 227 | sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
|
---|
| 228 | for(i=0; i<pOrderBy->nExpr; i++){
|
---|
| 229 | Expr *p;
|
---|
| 230 | if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
|
---|
| 231 | /* Indices can only be used if all ORDER BY terms are either
|
---|
| 232 | ** DESC or ASC. Indices cannot be used on a mixture. */
|
---|
| 233 | return 0;
|
---|
| 234 | }
|
---|
| 235 | if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
|
---|
| 236 | /* Do not sort by index if there is a COLLATE clause */
|
---|
| 237 | return 0;
|
---|
| 238 | }
|
---|
| 239 | p = pOrderBy->a[i].pExpr;
|
---|
| 240 | if( p->op!=TK_COLUMN || p->iTable!=base ){
|
---|
| 241 | /* Can not use an index sort on anything that is not a column in the
|
---|
| 242 | ** left-most table of the FROM clause */
|
---|
| 243 | return 0;
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 | /* If we get this far, it means the ORDER BY clause consists only of
|
---|
| 248 | ** ascending columns in the left-most table of the FROM clause. Now
|
---|
| 249 | ** check for a matching index.
|
---|
| 250 | */
|
---|
| 251 | pMatch = 0;
|
---|
| 252 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
---|
| 253 | int nExpr = pOrderBy->nExpr;
|
---|
| 254 | if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
|
---|
| 255 | for(i=j=0; i<nEqCol; i++){
|
---|
| 256 | if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
|
---|
| 257 | if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
|
---|
| 258 | }
|
---|
| 259 | if( i<nEqCol ) continue;
|
---|
| 260 | for(i=0; i+j<nExpr; i++){
|
---|
| 261 | if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
|
---|
| 262 | }
|
---|
| 263 | if( i+j>=nExpr ){
|
---|
| 264 | pMatch = pIdx;
|
---|
| 265 | if( pIdx==pPreferredIdx ) break;
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 | if( pMatch && pbRev ){
|
---|
| 269 | *pbRev = sortOrder==SQLITE_SO_DESC;
|
---|
| 270 | }
|
---|
| 271 | return pMatch;
|
---|
| 272 | }
|
---|
| 273 |
|
---|
| 274 | /*
|
---|
| 275 | ** Disable a term in the WHERE clause. Except, do not disable the term
|
---|
| 276 | ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
---|
| 277 | ** or USING clause of that join.
|
---|
| 278 | **
|
---|
| 279 | ** Consider the term t2.z='ok' in the following queries:
|
---|
| 280 | **
|
---|
| 281 | ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
---|
| 282 | ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
---|
| 283 | ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
---|
| 284 | **
|
---|
| 285 | ** The t2.z='ok' is disabled in the in (2) because it did not originate
|
---|
| 286 | ** in the ON clause. The term is disabled in (3) because it is not part
|
---|
| 287 | ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
---|
| 288 | **
|
---|
| 289 | ** Disabling a term causes that term to not be tested in the inner loop
|
---|
| 290 | ** of the join. Disabling is an optimization. We would get the correct
|
---|
| 291 | ** results if nothing were ever disabled, but joins might run a little
|
---|
| 292 | ** slower. The trick is to disable as much as we can without disabling
|
---|
| 293 | ** too much. If we disabled in (1), we'd get the wrong answer.
|
---|
| 294 | ** See ticket #813.
|
---|
| 295 | */
|
---|
| 296 | static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
|
---|
| 297 | Expr *pExpr = *ppExpr;
|
---|
| 298 | if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
|
---|
| 299 | *ppExpr = 0;
|
---|
| 300 | }
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | /*
|
---|
| 304 | ** Generate the beginning of the loop used for WHERE clause processing.
|
---|
| 305 | ** The return value is a pointer to an (opaque) structure that contains
|
---|
| 306 | ** information needed to terminate the loop. Later, the calling routine
|
---|
| 307 | ** should invoke sqliteWhereEnd() with the return value of this function
|
---|
| 308 | ** in order to complete the WHERE clause processing.
|
---|
| 309 | **
|
---|
| 310 | ** If an error occurs, this routine returns NULL.
|
---|
| 311 | **
|
---|
| 312 | ** The basic idea is to do a nested loop, one loop for each table in
|
---|
| 313 | ** the FROM clause of a select. (INSERT and UPDATE statements are the
|
---|
| 314 | ** same as a SELECT with only a single table in the FROM clause.) For
|
---|
| 315 | ** example, if the SQL is this:
|
---|
| 316 | **
|
---|
| 317 | ** SELECT * FROM t1, t2, t3 WHERE ...;
|
---|
| 318 | **
|
---|
| 319 | ** Then the code generated is conceptually like the following:
|
---|
| 320 | **
|
---|
| 321 | ** foreach row1 in t1 do \ Code generated
|
---|
| 322 | ** foreach row2 in t2 do |-- by sqliteWhereBegin()
|
---|
| 323 | ** foreach row3 in t3 do /
|
---|
| 324 | ** ...
|
---|
| 325 | ** end \ Code generated
|
---|
| 326 | ** end |-- by sqliteWhereEnd()
|
---|
| 327 | ** end /
|
---|
| 328 | **
|
---|
| 329 | ** There are Btree cursors associated with each table. t1 uses cursor
|
---|
| 330 | ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
---|
| 331 | ** And so forth. This routine generates code to open those VDBE cursors
|
---|
| 332 | ** and sqliteWhereEnd() generates the code to close them.
|
---|
| 333 | **
|
---|
| 334 | ** If the WHERE clause is empty, the foreach loops must each scan their
|
---|
| 335 | ** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
---|
| 336 | ** the tables have indices and there are terms in the WHERE clause that
|
---|
| 337 | ** refer to those indices, a complete table scan can be avoided and the
|
---|
| 338 | ** code will run much faster. Most of the work of this routine is checking
|
---|
| 339 | ** to see if there are indices that can be used to speed up the loop.
|
---|
| 340 | **
|
---|
| 341 | ** Terms of the WHERE clause are also used to limit which rows actually
|
---|
| 342 | ** make it to the "..." in the middle of the loop. After each "foreach",
|
---|
| 343 | ** terms of the WHERE clause that use only terms in that loop and outer
|
---|
| 344 | ** loops are evaluated and if false a jump is made around all subsequent
|
---|
| 345 | ** inner loops (or around the "..." if the test occurs within the inner-
|
---|
| 346 | ** most loop)
|
---|
| 347 | **
|
---|
| 348 | ** OUTER JOINS
|
---|
| 349 | **
|
---|
| 350 | ** An outer join of tables t1 and t2 is conceptally coded as follows:
|
---|
| 351 | **
|
---|
| 352 | ** foreach row1 in t1 do
|
---|
| 353 | ** flag = 0
|
---|
| 354 | ** foreach row2 in t2 do
|
---|
| 355 | ** start:
|
---|
| 356 | ** ...
|
---|
| 357 | ** flag = 1
|
---|
| 358 | ** end
|
---|
| 359 | ** if flag==0 then
|
---|
| 360 | ** move the row2 cursor to a null row
|
---|
| 361 | ** goto start
|
---|
| 362 | ** fi
|
---|
| 363 | ** end
|
---|
| 364 | **
|
---|
| 365 | ** ORDER BY CLAUSE PROCESSING
|
---|
| 366 | **
|
---|
| 367 | ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
---|
| 368 | ** if there is one. If there is no ORDER BY clause or if this routine
|
---|
| 369 | ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
---|
| 370 | **
|
---|
| 371 | ** If an index can be used so that the natural output order of the table
|
---|
| 372 | ** scan is correct for the ORDER BY clause, then that index is used and
|
---|
| 373 | ** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
---|
| 374 | ** unnecessary sort of the result set if an index appropriate for the
|
---|
| 375 | ** ORDER BY clause already exists.
|
---|
| 376 | **
|
---|
| 377 | ** If the where clause loops cannot be arranged to provide the correct
|
---|
| 378 | ** output order, then the *ppOrderBy is unchanged.
|
---|
| 379 | */
|
---|
| 380 | WhereInfo *sqliteWhereBegin(
|
---|
| 381 | Parse *pParse, /* The parser context */
|
---|
| 382 | SrcList *pTabList, /* A list of all tables to be scanned */
|
---|
| 383 | Expr *pWhere, /* The WHERE clause */
|
---|
| 384 | int pushKey, /* If TRUE, leave the table key on the stack */
|
---|
| 385 | ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
|
---|
| 386 | ){
|
---|
| 387 | int i; /* Loop counter */
|
---|
| 388 | WhereInfo *pWInfo; /* Will become the return value of this function */
|
---|
| 389 | Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
---|
| 390 | int brk, cont = 0; /* Addresses used during code generation */
|
---|
| 391 | int nExpr; /* Number of subexpressions in the WHERE clause */
|
---|
| 392 | int loopMask; /* One bit set for each outer loop */
|
---|
| 393 | int haveKey; /* True if KEY is on the stack */
|
---|
| 394 | ExprMaskSet maskSet; /* The expression mask set */
|
---|
| 395 | int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
|
---|
| 396 | int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
|
---|
| 397 | int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
|
---|
| 398 | ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
|
---|
| 399 |
|
---|
| 400 | /* pushKey is only allowed if there is a single table (as in an INSERT or
|
---|
| 401 | ** UPDATE statement)
|
---|
| 402 | */
|
---|
| 403 | assert( pushKey==0 || pTabList->nSrc==1 );
|
---|
| 404 |
|
---|
| 405 | /* Split the WHERE clause into separate subexpressions where each
|
---|
| 406 | ** subexpression is separated by an AND operator. If the aExpr[]
|
---|
| 407 | ** array fills up, the last entry might point to an expression which
|
---|
| 408 | ** contains additional unfactored AND operators.
|
---|
| 409 | */
|
---|
| 410 | initMaskSet(&maskSet);
|
---|
| 411 | memset(aExpr, 0, sizeof(aExpr));
|
---|
| 412 | nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
---|
| 413 | if( nExpr==ARRAYSIZE(aExpr) ){
|
---|
| 414 | sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
|
---|
| 415 | "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
|
---|
| 416 | return 0;
|
---|
| 417 | }
|
---|
| 418 |
|
---|
| 419 | /* Allocate and initialize the WhereInfo structure that will become the
|
---|
| 420 | ** return value.
|
---|
| 421 | */
|
---|
| 422 | pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
---|
| 423 | if( sqlite_malloc_failed ){
|
---|
| 424 | sqliteFree(pWInfo);
|
---|
| 425 | return 0;
|
---|
| 426 | }
|
---|
| 427 | pWInfo->pParse = pParse;
|
---|
| 428 | pWInfo->pTabList = pTabList;
|
---|
| 429 | pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
|
---|
| 430 | pWInfo->iBreak = sqliteVdbeMakeLabel(v);
|
---|
| 431 |
|
---|
| 432 | /* Special case: a WHERE clause that is constant. Evaluate the
|
---|
| 433 | ** expression and either jump over all of the code or fall thru.
|
---|
| 434 | */
|
---|
| 435 | if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
|
---|
| 436 | sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
|
---|
| 437 | pWhere = 0;
|
---|
| 438 | }
|
---|
| 439 |
|
---|
| 440 | /* Analyze all of the subexpressions.
|
---|
| 441 | */
|
---|
| 442 | for(i=0; i<nExpr; i++){
|
---|
| 443 | exprAnalyze(&maskSet, &aExpr[i]);
|
---|
| 444 |
|
---|
| 445 | /* If we are executing a trigger body, remove all references to
|
---|
| 446 | ** new.* and old.* tables from the prerequisite masks.
|
---|
| 447 | */
|
---|
| 448 | if( pParse->trigStack ){
|
---|
| 449 | int x;
|
---|
| 450 | if( (x = pParse->trigStack->newIdx) >= 0 ){
|
---|
| 451 | int mask = ~getMask(&maskSet, x);
|
---|
| 452 | aExpr[i].prereqRight &= mask;
|
---|
| 453 | aExpr[i].prereqLeft &= mask;
|
---|
| 454 | aExpr[i].prereqAll &= mask;
|
---|
| 455 | }
|
---|
| 456 | if( (x = pParse->trigStack->oldIdx) >= 0 ){
|
---|
| 457 | int mask = ~getMask(&maskSet, x);
|
---|
| 458 | aExpr[i].prereqRight &= mask;
|
---|
| 459 | aExpr[i].prereqLeft &= mask;
|
---|
| 460 | aExpr[i].prereqAll &= mask;
|
---|
| 461 | }
|
---|
| 462 | }
|
---|
| 463 | }
|
---|
| 464 |
|
---|
| 465 | /* Figure out what index to use (if any) for each nested loop.
|
---|
| 466 | ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
|
---|
| 467 | ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
|
---|
| 468 | ** loop.
|
---|
| 469 | **
|
---|
| 470 | ** If terms exist that use the ROWID of any table, then set the
|
---|
| 471 | ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
|
---|
| 472 | ** to the index of the term containing the ROWID. We always prefer
|
---|
| 473 | ** to use a ROWID which can directly access a table rather than an
|
---|
| 474 | ** index which requires reading an index first to get the rowid then
|
---|
| 475 | ** doing a second read of the actual database table.
|
---|
| 476 | **
|
---|
| 477 | ** Actually, if there are more than 32 tables in the join, only the
|
---|
| 478 | ** first 32 tables are candidates for indices. This is (again) due
|
---|
| 479 | ** to the limit of 32 bits in an integer bitmask.
|
---|
| 480 | */
|
---|
| 481 | loopMask = 0;
|
---|
| 482 | for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
|
---|
| 483 | int j;
|
---|
| 484 | int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
|
---|
| 485 | int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
|
---|
| 486 | Table *pTab = pTabList->a[i].pTab;
|
---|
| 487 | Index *pIdx;
|
---|
| 488 | Index *pBestIdx = 0;
|
---|
| 489 | int bestScore = 0;
|
---|
| 490 |
|
---|
| 491 | /* Check to see if there is an expression that uses only the
|
---|
| 492 | ** ROWID field of this table. For terms of the form ROWID==expr
|
---|
| 493 | ** set iDirectEq[i] to the index of the term. For terms of the
|
---|
| 494 | ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
|
---|
| 495 | ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
|
---|
| 496 | **
|
---|
| 497 | ** (Added:) Treat ROWID IN expr like ROWID=expr.
|
---|
| 498 | */
|
---|
| 499 | pWInfo->a[i].iCur = -1;
|
---|
| 500 | iDirectEq[i] = -1;
|
---|
| 501 | iDirectLt[i] = -1;
|
---|
| 502 | iDirectGt[i] = -1;
|
---|
| 503 | for(j=0; j<nExpr; j++){
|
---|
| 504 | if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
|
---|
| 505 | && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
---|
| 506 | switch( aExpr[j].p->op ){
|
---|
| 507 | case TK_IN:
|
---|
| 508 | case TK_EQ: iDirectEq[i] = j; break;
|
---|
| 509 | case TK_LE:
|
---|
| 510 | case TK_LT: iDirectLt[i] = j; break;
|
---|
| 511 | case TK_GE:
|
---|
| 512 | case TK_GT: iDirectGt[i] = j; break;
|
---|
| 513 | }
|
---|
| 514 | }
|
---|
| 515 | if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
|
---|
| 516 | && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
---|
| 517 | switch( aExpr[j].p->op ){
|
---|
| 518 | case TK_EQ: iDirectEq[i] = j; break;
|
---|
| 519 | case TK_LE:
|
---|
| 520 | case TK_LT: iDirectGt[i] = j; break;
|
---|
| 521 | case TK_GE:
|
---|
| 522 | case TK_GT: iDirectLt[i] = j; break;
|
---|
| 523 | }
|
---|
| 524 | }
|
---|
| 525 | }
|
---|
| 526 | if( iDirectEq[i]>=0 ){
|
---|
| 527 | loopMask |= mask;
|
---|
| 528 | pWInfo->a[i].pIdx = 0;
|
---|
| 529 | continue;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | /* Do a search for usable indices. Leave pBestIdx pointing to
|
---|
| 533 | ** the "best" index. pBestIdx is left set to NULL if no indices
|
---|
| 534 | ** are usable.
|
---|
| 535 | **
|
---|
| 536 | ** The best index is determined as follows. For each of the
|
---|
| 537 | ** left-most terms that is fixed by an equality operator, add
|
---|
| 538 | ** 8 to the score. The right-most term of the index may be
|
---|
| 539 | ** constrained by an inequality. Add 1 if for an "x<..." constraint
|
---|
| 540 | ** and add 2 for an "x>..." constraint. Chose the index that
|
---|
| 541 | ** gives the best score.
|
---|
| 542 | **
|
---|
| 543 | ** This scoring system is designed so that the score can later be
|
---|
| 544 | ** used to determine how the index is used. If the score&7 is 0
|
---|
| 545 | ** then all constraints are equalities. If score&1 is not 0 then
|
---|
| 546 | ** there is an inequality used as a termination key. (ex: "x<...")
|
---|
| 547 | ** If score&2 is not 0 then there is an inequality used as the
|
---|
| 548 | ** start key. (ex: "x>..."). A score or 4 is the special case
|
---|
| 549 | ** of an IN operator constraint. (ex: "x IN ...").
|
---|
| 550 | **
|
---|
| 551 | ** The IN operator (as in "<expr> IN (...)") is treated the same as
|
---|
| 552 | ** an equality comparison except that it can only be used on the
|
---|
| 553 | ** left-most column of an index and other terms of the WHERE clause
|
---|
| 554 | ** cannot be used in conjunction with the IN operator to help satisfy
|
---|
| 555 | ** other columns of the index.
|
---|
| 556 | */
|
---|
| 557 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
---|
| 558 | int eqMask = 0; /* Index columns covered by an x=... term */
|
---|
| 559 | int ltMask = 0; /* Index columns covered by an x<... term */
|
---|
| 560 | int gtMask = 0; /* Index columns covered by an x>... term */
|
---|
| 561 | int inMask = 0; /* Index columns covered by an x IN .. term */
|
---|
| 562 | int nEq, m, score;
|
---|
| 563 |
|
---|
| 564 | if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
|
---|
| 565 | for(j=0; j<nExpr; j++){
|
---|
| 566 | if( aExpr[j].idxLeft==iCur
|
---|
| 567 | && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
---|
| 568 | int iColumn = aExpr[j].p->pLeft->iColumn;
|
---|
| 569 | int k;
|
---|
| 570 | for(k=0; k<pIdx->nColumn; k++){
|
---|
| 571 | if( pIdx->aiColumn[k]==iColumn ){
|
---|
| 572 | switch( aExpr[j].p->op ){
|
---|
| 573 | case TK_IN: {
|
---|
| 574 | if( k==0 ) inMask |= 1;
|
---|
| 575 | break;
|
---|
| 576 | }
|
---|
| 577 | case TK_EQ: {
|
---|
| 578 | eqMask |= 1<<k;
|
---|
| 579 | break;
|
---|
| 580 | }
|
---|
| 581 | case TK_LE:
|
---|
| 582 | case TK_LT: {
|
---|
| 583 | ltMask |= 1<<k;
|
---|
| 584 | break;
|
---|
| 585 | }
|
---|
| 586 | case TK_GE:
|
---|
| 587 | case TK_GT: {
|
---|
| 588 | gtMask |= 1<<k;
|
---|
| 589 | break;
|
---|
| 590 | }
|
---|
| 591 | default: {
|
---|
| 592 | /* CANT_HAPPEN */
|
---|
| 593 | assert( 0 );
|
---|
| 594 | break;
|
---|
| 595 | }
|
---|
| 596 | }
|
---|
| 597 | break;
|
---|
| 598 | }
|
---|
| 599 | }
|
---|
| 600 | }
|
---|
| 601 | if( aExpr[j].idxRight==iCur
|
---|
| 602 | && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
---|
| 603 | int iColumn = aExpr[j].p->pRight->iColumn;
|
---|
| 604 | int k;
|
---|
| 605 | for(k=0; k<pIdx->nColumn; k++){
|
---|
| 606 | if( pIdx->aiColumn[k]==iColumn ){
|
---|
| 607 | switch( aExpr[j].p->op ){
|
---|
| 608 | case TK_EQ: {
|
---|
| 609 | eqMask |= 1<<k;
|
---|
| 610 | break;
|
---|
| 611 | }
|
---|
| 612 | case TK_LE:
|
---|
| 613 | case TK_LT: {
|
---|
| 614 | gtMask |= 1<<k;
|
---|
| 615 | break;
|
---|
| 616 | }
|
---|
| 617 | case TK_GE:
|
---|
| 618 | case TK_GT: {
|
---|
| 619 | ltMask |= 1<<k;
|
---|
| 620 | break;
|
---|
| 621 | }
|
---|
| 622 | default: {
|
---|
| 623 | /* CANT_HAPPEN */
|
---|
| 624 | assert( 0 );
|
---|
| 625 | break;
|
---|
| 626 | }
|
---|
| 627 | }
|
---|
| 628 | break;
|
---|
| 629 | }
|
---|
| 630 | }
|
---|
| 631 | }
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | /* The following loop ends with nEq set to the number of columns
|
---|
| 635 | ** on the left of the index with == constraints.
|
---|
| 636 | */
|
---|
| 637 | for(nEq=0; nEq<pIdx->nColumn; nEq++){
|
---|
| 638 | m = (1<<(nEq+1))-1;
|
---|
| 639 | if( (m & eqMask)!=m ) break;
|
---|
| 640 | }
|
---|
| 641 | score = nEq*8; /* Base score is 8 times number of == constraints */
|
---|
| 642 | m = 1<<nEq;
|
---|
| 643 | if( m & ltMask ) score++; /* Increase score for a < constraint */
|
---|
| 644 | if( m & gtMask ) score+=2; /* Increase score for a > constraint */
|
---|
| 645 | if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
|
---|
| 646 | if( score>bestScore ){
|
---|
| 647 | pBestIdx = pIdx;
|
---|
| 648 | bestScore = score;
|
---|
| 649 | }
|
---|
| 650 | }
|
---|
| 651 | pWInfo->a[i].pIdx = pBestIdx;
|
---|
| 652 | pWInfo->a[i].score = bestScore;
|
---|
| 653 | pWInfo->a[i].bRev = 0;
|
---|
| 654 | loopMask |= mask;
|
---|
| 655 | if( pBestIdx ){
|
---|
| 656 | pWInfo->a[i].iCur = pParse->nTab++;
|
---|
| 657 | pWInfo->peakNTab = pParse->nTab;
|
---|
| 658 | }
|
---|
| 659 | }
|
---|
| 660 |
|
---|
| 661 | /* Check to see if the ORDER BY clause is or can be satisfied by the
|
---|
| 662 | ** use of an index on the first table.
|
---|
| 663 | */
|
---|
| 664 | if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
|
---|
| 665 | Index *pSortIdx;
|
---|
| 666 | Index *pIdx;
|
---|
| 667 | Table *pTab;
|
---|
| 668 | int bRev = 0;
|
---|
| 669 |
|
---|
| 670 | pTab = pTabList->a[0].pTab;
|
---|
| 671 | pIdx = pWInfo->a[0].pIdx;
|
---|
| 672 | if( pIdx && pWInfo->a[0].score==4 ){
|
---|
| 673 | /* If there is already an IN index on the left-most table,
|
---|
| 674 | ** it will not give the correct sort order.
|
---|
| 675 | ** So, pretend that no suitable index is found.
|
---|
| 676 | */
|
---|
| 677 | pSortIdx = 0;
|
---|
| 678 | }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
|
---|
| 679 | /* If the left-most column is accessed using its ROWID, then do
|
---|
| 680 | ** not try to sort by index.
|
---|
| 681 | */
|
---|
| 682 | pSortIdx = 0;
|
---|
| 683 | }else{
|
---|
| 684 | int nEqCol = (pWInfo->a[0].score+4)/8;
|
---|
| 685 | pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
|
---|
| 686 | *ppOrderBy, pIdx, nEqCol, &bRev);
|
---|
| 687 | }
|
---|
| 688 | if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
|
---|
| 689 | if( pIdx==0 ){
|
---|
| 690 | pWInfo->a[0].pIdx = pSortIdx;
|
---|
| 691 | pWInfo->a[0].iCur = pParse->nTab++;
|
---|
| 692 | pWInfo->peakNTab = pParse->nTab;
|
---|
| 693 | }
|
---|
| 694 | pWInfo->a[0].bRev = bRev;
|
---|
| 695 | *ppOrderBy = 0;
|
---|
| 696 | }
|
---|
| 697 | }
|
---|
| 698 |
|
---|
| 699 | /* Open all tables in the pTabList and all indices used by those tables.
|
---|
| 700 | */
|
---|
| 701 | for(i=0; i<pTabList->nSrc; i++){
|
---|
| 702 | Table *pTab;
|
---|
| 703 | Index *pIx;
|
---|
| 704 |
|
---|
| 705 | pTab = pTabList->a[i].pTab;
|
---|
| 706 | if( pTab->isTransient || pTab->pSelect ) continue;
|
---|
| 707 | sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
---|
| 708 | sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
|
---|
| 709 | pTab->zName, P3_STATIC);
|
---|
| 710 | sqliteCodeVerifySchema(pParse, pTab->iDb);
|
---|
| 711 | if( (pIx = pWInfo->a[i].pIdx)!=0 ){
|
---|
| 712 | sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
|
---|
| 713 | sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
|
---|
| 714 | }
|
---|
| 715 | }
|
---|
| 716 |
|
---|
| 717 | /* Generate the code to do the search
|
---|
| 718 | */
|
---|
| 719 | loopMask = 0;
|
---|
| 720 | for(i=0; i<pTabList->nSrc; i++){
|
---|
| 721 | int j, k;
|
---|
| 722 | int iCur = pTabList->a[i].iCursor;
|
---|
| 723 | Index *pIdx;
|
---|
| 724 | WhereLevel *pLevel = &pWInfo->a[i];
|
---|
| 725 |
|
---|
| 726 | /* If this is the right table of a LEFT OUTER JOIN, allocate and
|
---|
| 727 | ** initialize a memory cell that records if this table matches any
|
---|
| 728 | ** row of the left table of the join.
|
---|
| 729 | */
|
---|
| 730 | if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
|
---|
| 731 | if( !pParse->nMem ) pParse->nMem++;
|
---|
| 732 | pLevel->iLeftJoin = pParse->nMem++;
|
---|
| 733 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
| 734 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
---|
| 735 | }
|
---|
| 736 |
|
---|
| 737 | pIdx = pLevel->pIdx;
|
---|
| 738 | pLevel->inOp = OP_Noop;
|
---|
| 739 | if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
|
---|
| 740 | /* Case 1: We can directly reference a single row using an
|
---|
| 741 | ** equality comparison against the ROWID field. Or
|
---|
| 742 | ** we reference multiple rows using a "rowid IN (...)"
|
---|
| 743 | ** construct.
|
---|
| 744 | */
|
---|
| 745 | k = iDirectEq[i];
|
---|
| 746 | assert( k<nExpr );
|
---|
| 747 | assert( aExpr[k].p!=0 );
|
---|
| 748 | assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
---|
| 749 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
| 750 | if( aExpr[k].idxLeft==iCur ){
|
---|
| 751 | Expr *pX = aExpr[k].p;
|
---|
| 752 | if( pX->op!=TK_IN ){
|
---|
| 753 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
| 754 | }else if( pX->pList ){
|
---|
| 755 | sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
---|
| 756 | pLevel->inOp = OP_SetNext;
|
---|
| 757 | pLevel->inP1 = pX->iTable;
|
---|
| 758 | pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
---|
| 759 | }else{
|
---|
| 760 | assert( pX->pSelect );
|
---|
| 761 | sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
---|
| 762 | sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
---|
| 763 | pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
---|
| 764 | pLevel->inOp = OP_Next;
|
---|
| 765 | pLevel->inP1 = pX->iTable;
|
---|
| 766 | }
|
---|
| 767 | }else{
|
---|
| 768 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
| 769 | }
|
---|
| 770 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 771 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
| 772 | sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
|
---|
| 773 | haveKey = 0;
|
---|
| 774 | sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
|
---|
| 775 | pLevel->op = OP_Noop;
|
---|
| 776 | }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
|
---|
| 777 | /* Case 2: There is an index and all terms of the WHERE clause that
|
---|
| 778 | ** refer to the index use the "==" or "IN" operators.
|
---|
| 779 | */
|
---|
| 780 | int start;
|
---|
| 781 | int testOp;
|
---|
| 782 | int nColumn = (pLevel->score+4)/8;
|
---|
| 783 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
| 784 | for(j=0; j<nColumn; j++){
|
---|
| 785 | for(k=0; k<nExpr; k++){
|
---|
| 786 | Expr *pX = aExpr[k].p;
|
---|
| 787 | if( pX==0 ) continue;
|
---|
| 788 | if( aExpr[k].idxLeft==iCur
|
---|
| 789 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
| 790 | && pX->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
| 791 | ){
|
---|
| 792 | if( pX->op==TK_EQ ){
|
---|
| 793 | sqliteExprCode(pParse, pX->pRight);
|
---|
| 794 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 795 | break;
|
---|
| 796 | }
|
---|
| 797 | if( pX->op==TK_IN && nColumn==1 ){
|
---|
| 798 | if( pX->pList ){
|
---|
| 799 | sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
---|
| 800 | pLevel->inOp = OP_SetNext;
|
---|
| 801 | pLevel->inP1 = pX->iTable;
|
---|
| 802 | pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
---|
| 803 | }else{
|
---|
| 804 | assert( pX->pSelect );
|
---|
| 805 | sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
---|
| 806 | sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
---|
| 807 | pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
---|
| 808 | pLevel->inOp = OP_Next;
|
---|
| 809 | pLevel->inP1 = pX->iTable;
|
---|
| 810 | }
|
---|
| 811 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 812 | break;
|
---|
| 813 | }
|
---|
| 814 | }
|
---|
| 815 | if( aExpr[k].idxRight==iCur
|
---|
| 816 | && aExpr[k].p->op==TK_EQ
|
---|
| 817 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
| 818 | && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
---|
| 819 | ){
|
---|
| 820 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
| 821 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 822 | break;
|
---|
| 823 | }
|
---|
| 824 | }
|
---|
| 825 | }
|
---|
| 826 | pLevel->iMem = pParse->nMem++;
|
---|
| 827 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
| 828 | sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
|
---|
| 829 | sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
|
---|
| 830 | sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
---|
| 831 | sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
|
---|
| 832 | sqliteAddIdxKeyType(v, pIdx);
|
---|
| 833 | if( nColumn==pIdx->nColumn || pLevel->bRev ){
|
---|
| 834 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
---|
| 835 | testOp = OP_IdxGT;
|
---|
| 836 | }else{
|
---|
| 837 | sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
---|
| 838 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
| 839 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
| 840 | testOp = OP_IdxGE;
|
---|
| 841 | }
|
---|
| 842 | if( pLevel->bRev ){
|
---|
| 843 | /* Scan in reverse order */
|
---|
| 844 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
| 845 | sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
|
---|
| 846 | start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
| 847 | sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
|
---|
| 848 | pLevel->op = OP_Prev;
|
---|
| 849 | }else{
|
---|
| 850 | /* Scan in the forward order */
|
---|
| 851 | sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
---|
| 852 | start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
| 853 | sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
---|
| 854 | pLevel->op = OP_Next;
|
---|
| 855 | }
|
---|
| 856 | sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
---|
| 857 | sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
|
---|
| 858 | sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
---|
| 859 | if( i==pTabList->nSrc-1 && pushKey ){
|
---|
| 860 | haveKey = 1;
|
---|
| 861 | }else{
|
---|
| 862 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
| 863 | haveKey = 0;
|
---|
| 864 | }
|
---|
| 865 | pLevel->p1 = pLevel->iCur;
|
---|
| 866 | pLevel->p2 = start;
|
---|
| 867 | }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
|
---|
| 868 | /* Case 3: We have an inequality comparison against the ROWID field.
|
---|
| 869 | */
|
---|
| 870 | int testOp = OP_Noop;
|
---|
| 871 | int start;
|
---|
| 872 |
|
---|
| 873 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
| 874 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
| 875 | if( iDirectGt[i]>=0 ){
|
---|
| 876 | k = iDirectGt[i];
|
---|
| 877 | assert( k<nExpr );
|
---|
| 878 | assert( aExpr[k].p!=0 );
|
---|
| 879 | assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
---|
| 880 | if( aExpr[k].idxLeft==iCur ){
|
---|
| 881 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
| 882 | }else{
|
---|
| 883 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
| 884 | }
|
---|
| 885 | sqliteVdbeAddOp(v, OP_ForceInt,
|
---|
| 886 | aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
|
---|
| 887 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
|
---|
| 888 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 889 | }else{
|
---|
| 890 | sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
|
---|
| 891 | }
|
---|
| 892 | if( iDirectLt[i]>=0 ){
|
---|
| 893 | k = iDirectLt[i];
|
---|
| 894 | assert( k<nExpr );
|
---|
| 895 | assert( aExpr[k].p!=0 );
|
---|
| 896 | assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
---|
| 897 | if( aExpr[k].idxLeft==iCur ){
|
---|
| 898 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
| 899 | }else{
|
---|
| 900 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
| 901 | }
|
---|
| 902 | /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
|
---|
| 903 | pLevel->iMem = pParse->nMem++;
|
---|
| 904 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
| 905 | if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
|
---|
| 906 | testOp = OP_Ge;
|
---|
| 907 | }else{
|
---|
| 908 | testOp = OP_Gt;
|
---|
| 909 | }
|
---|
| 910 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 911 | }
|
---|
| 912 | start = sqliteVdbeCurrentAddr(v);
|
---|
| 913 | pLevel->op = OP_Next;
|
---|
| 914 | pLevel->p1 = iCur;
|
---|
| 915 | pLevel->p2 = start;
|
---|
| 916 | if( testOp!=OP_Noop ){
|
---|
| 917 | sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
|
---|
| 918 | sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
| 919 | sqliteVdbeAddOp(v, testOp, 0, brk);
|
---|
| 920 | }
|
---|
| 921 | haveKey = 0;
|
---|
| 922 | }else if( pIdx==0 ){
|
---|
| 923 | /* Case 4: There is no usable index. We must do a complete
|
---|
| 924 | ** scan of the entire database table.
|
---|
| 925 | */
|
---|
| 926 | int start;
|
---|
| 927 |
|
---|
| 928 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
| 929 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
| 930 | sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
|
---|
| 931 | start = sqliteVdbeCurrentAddr(v);
|
---|
| 932 | pLevel->op = OP_Next;
|
---|
| 933 | pLevel->p1 = iCur;
|
---|
| 934 | pLevel->p2 = start;
|
---|
| 935 | haveKey = 0;
|
---|
| 936 | }else{
|
---|
| 937 | /* Case 5: The WHERE clause term that refers to the right-most
|
---|
| 938 | ** column of the index is an inequality. For example, if
|
---|
| 939 | ** the index is on (x,y,z) and the WHERE clause is of the
|
---|
| 940 | ** form "x=5 AND y<10" then this case is used. Only the
|
---|
| 941 | ** right-most column can be an inequality - the rest must
|
---|
| 942 | ** use the "==" operator.
|
---|
| 943 | **
|
---|
| 944 | ** This case is also used when there are no WHERE clause
|
---|
| 945 | ** constraints but an index is selected anyway, in order
|
---|
| 946 | ** to force the output order to conform to an ORDER BY.
|
---|
| 947 | */
|
---|
| 948 | int score = pLevel->score;
|
---|
| 949 | int nEqColumn = score/8;
|
---|
| 950 | int start;
|
---|
| 951 | int leFlag, geFlag;
|
---|
| 952 | int testOp;
|
---|
| 953 |
|
---|
| 954 | /* Evaluate the equality constraints
|
---|
| 955 | */
|
---|
| 956 | for(j=0; j<nEqColumn; j++){
|
---|
| 957 | for(k=0; k<nExpr; k++){
|
---|
| 958 | if( aExpr[k].p==0 ) continue;
|
---|
| 959 | if( aExpr[k].idxLeft==iCur
|
---|
| 960 | && aExpr[k].p->op==TK_EQ
|
---|
| 961 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
| 962 | && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
| 963 | ){
|
---|
| 964 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
| 965 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 966 | break;
|
---|
| 967 | }
|
---|
| 968 | if( aExpr[k].idxRight==iCur
|
---|
| 969 | && aExpr[k].p->op==TK_EQ
|
---|
| 970 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
| 971 | && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
---|
| 972 | ){
|
---|
| 973 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
| 974 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 975 | break;
|
---|
| 976 | }
|
---|
| 977 | }
|
---|
| 978 | }
|
---|
| 979 |
|
---|
| 980 | /* Duplicate the equality term values because they will all be
|
---|
| 981 | ** used twice: once to make the termination key and once to make the
|
---|
| 982 | ** start key.
|
---|
| 983 | */
|
---|
| 984 | for(j=0; j<nEqColumn; j++){
|
---|
| 985 | sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
|
---|
| 986 | }
|
---|
| 987 |
|
---|
| 988 | /* Labels for the beginning and end of the loop
|
---|
| 989 | */
|
---|
| 990 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
| 991 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
| 992 |
|
---|
| 993 | /* Generate the termination key. This is the key value that
|
---|
| 994 | ** will end the search. There is no termination key if there
|
---|
| 995 | ** are no equality terms and no "X<..." term.
|
---|
| 996 | **
|
---|
| 997 | ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
---|
| 998 | ** key computed here really ends up being the start key.
|
---|
| 999 | */
|
---|
| 1000 | if( (score & 1)!=0 ){
|
---|
| 1001 | for(k=0; k<nExpr; k++){
|
---|
| 1002 | Expr *pExpr = aExpr[k].p;
|
---|
| 1003 | if( pExpr==0 ) continue;
|
---|
| 1004 | if( aExpr[k].idxLeft==iCur
|
---|
| 1005 | && (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
---|
| 1006 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
| 1007 | && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
| 1008 | ){
|
---|
| 1009 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
| 1010 | leFlag = pExpr->op==TK_LE;
|
---|
| 1011 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 1012 | break;
|
---|
| 1013 | }
|
---|
| 1014 | if( aExpr[k].idxRight==iCur
|
---|
| 1015 | && (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
---|
| 1016 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
| 1017 | && pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
---|
| 1018 | ){
|
---|
| 1019 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
| 1020 | leFlag = pExpr->op==TK_GE;
|
---|
| 1021 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 1022 | break;
|
---|
| 1023 | }
|
---|
| 1024 | }
|
---|
| 1025 | testOp = OP_IdxGE;
|
---|
| 1026 | }else{
|
---|
| 1027 | testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
|
---|
| 1028 | leFlag = 1;
|
---|
| 1029 | }
|
---|
| 1030 | if( testOp!=OP_Noop ){
|
---|
| 1031 | int nCol = nEqColumn + (score & 1);
|
---|
| 1032 | pLevel->iMem = pParse->nMem++;
|
---|
| 1033 | sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
|
---|
| 1034 | sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
|
---|
| 1035 | sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
---|
| 1036 | sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
|
---|
| 1037 | sqliteAddIdxKeyType(v, pIdx);
|
---|
| 1038 | if( leFlag ){
|
---|
| 1039 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
| 1040 | }
|
---|
| 1041 | if( pLevel->bRev ){
|
---|
| 1042 | sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
|
---|
| 1043 | }else{
|
---|
| 1044 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
| 1045 | }
|
---|
| 1046 | }else if( pLevel->bRev ){
|
---|
| 1047 | sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
|
---|
| 1048 | }
|
---|
| 1049 |
|
---|
| 1050 | /* Generate the start key. This is the key that defines the lower
|
---|
| 1051 | ** bound on the search. There is no start key if there are no
|
---|
| 1052 | ** equality terms and if there is no "X>..." term. In
|
---|
| 1053 | ** that case, generate a "Rewind" instruction in place of the
|
---|
| 1054 | ** start key search.
|
---|
| 1055 | **
|
---|
| 1056 | ** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
---|
| 1057 | ** "start" key really ends up being used as the termination key.
|
---|
| 1058 | */
|
---|
| 1059 | if( (score & 2)!=0 ){
|
---|
| 1060 | for(k=0; k<nExpr; k++){
|
---|
| 1061 | Expr *pExpr = aExpr[k].p;
|
---|
| 1062 | if( pExpr==0 ) continue;
|
---|
| 1063 | if( aExpr[k].idxLeft==iCur
|
---|
| 1064 | && (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
---|
| 1065 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
| 1066 | && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
| 1067 | ){
|
---|
| 1068 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
| 1069 | geFlag = pExpr->op==TK_GE;
|
---|
| 1070 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 1071 | break;
|
---|
| 1072 | }
|
---|
| 1073 | if( aExpr[k].idxRight==iCur
|
---|
| 1074 | && (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
---|
| 1075 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
| 1076 | && pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
---|
| 1077 | ){
|
---|
| 1078 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
| 1079 | geFlag = pExpr->op==TK_LE;
|
---|
| 1080 | disableTerm(pLevel, &aExpr[k].p);
|
---|
| 1081 | break;
|
---|
| 1082 | }
|
---|
| 1083 | }
|
---|
| 1084 | }else{
|
---|
| 1085 | geFlag = 1;
|
---|
| 1086 | }
|
---|
| 1087 | if( nEqColumn>0 || (score&2)!=0 ){
|
---|
| 1088 | int nCol = nEqColumn + ((score&2)!=0);
|
---|
| 1089 | sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
|
---|
| 1090 | sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
|
---|
| 1091 | sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
---|
| 1092 | sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
|
---|
| 1093 | sqliteAddIdxKeyType(v, pIdx);
|
---|
| 1094 | if( !geFlag ){
|
---|
| 1095 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
| 1096 | }
|
---|
| 1097 | if( pLevel->bRev ){
|
---|
| 1098 | pLevel->iMem = pParse->nMem++;
|
---|
| 1099 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
| 1100 | testOp = OP_IdxLT;
|
---|
| 1101 | }else{
|
---|
| 1102 | sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
---|
| 1103 | }
|
---|
| 1104 | }else if( pLevel->bRev ){
|
---|
| 1105 | testOp = OP_Noop;
|
---|
| 1106 | }else{
|
---|
| 1107 | sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
|
---|
| 1108 | }
|
---|
| 1109 |
|
---|
| 1110 | /* Generate the the top of the loop. If there is a termination
|
---|
| 1111 | ** key we have to test for that key and abort at the top of the
|
---|
| 1112 | ** loop.
|
---|
| 1113 | */
|
---|
| 1114 | start = sqliteVdbeCurrentAddr(v);
|
---|
| 1115 | if( testOp!=OP_Noop ){
|
---|
| 1116 | sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
| 1117 | sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
---|
| 1118 | }
|
---|
| 1119 | sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
---|
| 1120 | sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
|
---|
| 1121 | sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
---|
| 1122 | if( i==pTabList->nSrc-1 && pushKey ){
|
---|
| 1123 | haveKey = 1;
|
---|
| 1124 | }else{
|
---|
| 1125 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
| 1126 | haveKey = 0;
|
---|
| 1127 | }
|
---|
| 1128 |
|
---|
| 1129 | /* Record the instruction used to terminate the loop.
|
---|
| 1130 | */
|
---|
| 1131 | pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
|
---|
| 1132 | pLevel->p1 = pLevel->iCur;
|
---|
| 1133 | pLevel->p2 = start;
|
---|
| 1134 | }
|
---|
| 1135 | loopMask |= getMask(&maskSet, iCur);
|
---|
| 1136 |
|
---|
| 1137 | /* Insert code to test every subexpression that can be completely
|
---|
| 1138 | ** computed using the current set of tables.
|
---|
| 1139 | */
|
---|
| 1140 | for(j=0; j<nExpr; j++){
|
---|
| 1141 | if( aExpr[j].p==0 ) continue;
|
---|
| 1142 | if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
---|
| 1143 | if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
|
---|
| 1144 | continue;
|
---|
| 1145 | }
|
---|
| 1146 | if( haveKey ){
|
---|
| 1147 | haveKey = 0;
|
---|
| 1148 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
| 1149 | }
|
---|
| 1150 | sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
---|
| 1151 | aExpr[j].p = 0;
|
---|
| 1152 | }
|
---|
| 1153 | brk = cont;
|
---|
| 1154 |
|
---|
| 1155 | /* For a LEFT OUTER JOIN, generate code that will record the fact that
|
---|
| 1156 | ** at least one row of the right table has matched the left table.
|
---|
| 1157 | */
|
---|
| 1158 | if( pLevel->iLeftJoin ){
|
---|
| 1159 | pLevel->top = sqliteVdbeCurrentAddr(v);
|
---|
| 1160 | sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
---|
| 1161 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
---|
| 1162 | for(j=0; j<nExpr; j++){
|
---|
| 1163 | if( aExpr[j].p==0 ) continue;
|
---|
| 1164 | if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
---|
| 1165 | if( haveKey ){
|
---|
| 1166 | /* Cannot happen. "haveKey" can only be true if pushKey is true
|
---|
| 1167 | ** an pushKey can only be true for DELETE and UPDATE and there are
|
---|
| 1168 | ** no outer joins with DELETE and UPDATE.
|
---|
| 1169 | */
|
---|
| 1170 | haveKey = 0;
|
---|
| 1171 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
| 1172 | }
|
---|
| 1173 | sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
---|
| 1174 | aExpr[j].p = 0;
|
---|
| 1175 | }
|
---|
| 1176 | }
|
---|
| 1177 | }
|
---|
| 1178 | pWInfo->iContinue = cont;
|
---|
| 1179 | if( pushKey && !haveKey ){
|
---|
| 1180 | sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
|
---|
| 1181 | }
|
---|
| 1182 | freeMaskSet(&maskSet);
|
---|
| 1183 | return pWInfo;
|
---|
| 1184 | }
|
---|
| 1185 |
|
---|
| 1186 | /*
|
---|
| 1187 | ** Generate the end of the WHERE loop. See comments on
|
---|
| 1188 | ** sqliteWhereBegin() for additional information.
|
---|
| 1189 | */
|
---|
| 1190 | void sqliteWhereEnd(WhereInfo *pWInfo){
|
---|
| 1191 | Vdbe *v = pWInfo->pParse->pVdbe;
|
---|
| 1192 | int i;
|
---|
| 1193 | WhereLevel *pLevel;
|
---|
| 1194 | SrcList *pTabList = pWInfo->pTabList;
|
---|
| 1195 |
|
---|
| 1196 | for(i=pTabList->nSrc-1; i>=0; i--){
|
---|
| 1197 | pLevel = &pWInfo->a[i];
|
---|
| 1198 | sqliteVdbeResolveLabel(v, pLevel->cont);
|
---|
| 1199 | if( pLevel->op!=OP_Noop ){
|
---|
| 1200 | sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
---|
| 1201 | }
|
---|
| 1202 | sqliteVdbeResolveLabel(v, pLevel->brk);
|
---|
| 1203 | if( pLevel->inOp!=OP_Noop ){
|
---|
| 1204 | sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
|
---|
| 1205 | }
|
---|
| 1206 | if( pLevel->iLeftJoin ){
|
---|
| 1207 | int addr;
|
---|
| 1208 | addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
|
---|
| 1209 | sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
|
---|
| 1210 | sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
|
---|
| 1211 | if( pLevel->iCur>=0 ){
|
---|
| 1212 | sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
|
---|
| 1213 | }
|
---|
| 1214 | sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
|
---|
| 1215 | }
|
---|
| 1216 | }
|
---|
| 1217 | sqliteVdbeResolveLabel(v, pWInfo->iBreak);
|
---|
| 1218 | for(i=0; i<pTabList->nSrc; i++){
|
---|
| 1219 | Table *pTab = pTabList->a[i].pTab;
|
---|
| 1220 | assert( pTab!=0 );
|
---|
| 1221 | if( pTab->isTransient || pTab->pSelect ) continue;
|
---|
| 1222 | pLevel = &pWInfo->a[i];
|
---|
| 1223 | sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
|
---|
| 1224 | if( pLevel->pIdx!=0 ){
|
---|
| 1225 | sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
|
---|
| 1226 | }
|
---|
| 1227 | }
|
---|
| 1228 | #if 0 /* Never reuse a cursor */
|
---|
| 1229 | if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
|
---|
| 1230 | pWInfo->pParse->nTab = pWInfo->savedNTab;
|
---|
| 1231 | }
|
---|
| 1232 | #endif
|
---|
| 1233 | sqliteFree(pWInfo);
|
---|
| 1234 | return;
|
---|
| 1235 | }
|
---|