1 | /*
|
---|
2 | ** 2001 September 15
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** This module contains C code that generates VDBE code used to process
|
---|
13 | ** the WHERE clause of SQL statements.
|
---|
14 | **
|
---|
15 | ** $Id: where.c,v 1.89.2.2 2004/07/19 19:30:50 drh Exp $
|
---|
16 | */
|
---|
17 | #include "sqliteInt.h"
|
---|
18 |
|
---|
19 | /*
|
---|
20 | ** The query generator uses an array of instances of this structure to
|
---|
21 | ** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
---|
22 | ** clause subexpression is separated from the others by an AND operator.
|
---|
23 | */
|
---|
24 | typedef struct ExprInfo ExprInfo;
|
---|
25 | struct ExprInfo {
|
---|
26 | Expr *p; /* Pointer to the subexpression */
|
---|
27 | u8 indexable; /* True if this subexprssion is usable by an index */
|
---|
28 | short int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
---|
29 | ** p->pLeft is not the column of any table */
|
---|
30 | short int idxRight; /* p->pRight is a column in this table number. -1 if
|
---|
31 | ** p->pRight is not the column of any table */
|
---|
32 | unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
|
---|
33 | unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
|
---|
34 | unsigned prereqAll; /* Bitmask of tables referenced by p */
|
---|
35 | };
|
---|
36 |
|
---|
37 | /*
|
---|
38 | ** An instance of the following structure keeps track of a mapping
|
---|
39 | ** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
|
---|
40 | ** are small integers contained in SrcList_item.iCursor and Expr.iTable
|
---|
41 | ** fields. For any given WHERE clause, we want to track which cursors
|
---|
42 | ** are being used, so we assign a single bit in a 32-bit word to track
|
---|
43 | ** that cursor. Then a 32-bit integer is able to show the set of all
|
---|
44 | ** cursors being used.
|
---|
45 | */
|
---|
46 | typedef struct ExprMaskSet ExprMaskSet;
|
---|
47 | struct ExprMaskSet {
|
---|
48 | int n; /* Number of assigned cursor values */
|
---|
49 | int ix[31]; /* Cursor assigned to each bit */
|
---|
50 | };
|
---|
51 |
|
---|
52 | /*
|
---|
53 | ** Determine the number of elements in an array.
|
---|
54 | */
|
---|
55 | #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
---|
56 |
|
---|
57 | /*
|
---|
58 | ** This routine is used to divide the WHERE expression into subexpressions
|
---|
59 | ** separated by the AND operator.
|
---|
60 | **
|
---|
61 | ** aSlot[] is an array of subexpressions structures.
|
---|
62 | ** There are nSlot spaces left in this array. This routine attempts to
|
---|
63 | ** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
|
---|
64 | ** The return value is the number of slots filled.
|
---|
65 | */
|
---|
66 | static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
---|
67 | int cnt = 0;
|
---|
68 | if( pExpr==0 || nSlot<1 ) return 0;
|
---|
69 | if( nSlot==1 || pExpr->op!=TK_AND ){
|
---|
70 | aSlot[0].p = pExpr;
|
---|
71 | return 1;
|
---|
72 | }
|
---|
73 | if( pExpr->pLeft->op!=TK_AND ){
|
---|
74 | aSlot[0].p = pExpr->pLeft;
|
---|
75 | cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
---|
76 | }else{
|
---|
77 | cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
|
---|
78 | cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
|
---|
79 | }
|
---|
80 | return cnt;
|
---|
81 | }
|
---|
82 |
|
---|
83 | /*
|
---|
84 | ** Initialize an expression mask set
|
---|
85 | */
|
---|
86 | #define initMaskSet(P) memset(P, 0, sizeof(*P))
|
---|
87 |
|
---|
88 | /*
|
---|
89 | ** Return the bitmask for the given cursor. Assign a new bitmask
|
---|
90 | ** if this is the first time the cursor has been seen.
|
---|
91 | */
|
---|
92 | static int getMask(ExprMaskSet *pMaskSet, int iCursor){
|
---|
93 | int i;
|
---|
94 | for(i=0; i<pMaskSet->n; i++){
|
---|
95 | if( pMaskSet->ix[i]==iCursor ) return 1<<i;
|
---|
96 | }
|
---|
97 | if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
|
---|
98 | pMaskSet->n++;
|
---|
99 | pMaskSet->ix[i] = iCursor;
|
---|
100 | return 1<<i;
|
---|
101 | }
|
---|
102 | return 0;
|
---|
103 | }
|
---|
104 |
|
---|
105 | /*
|
---|
106 | ** Destroy an expression mask set
|
---|
107 | */
|
---|
108 | #define freeMaskSet(P) /* NO-OP */
|
---|
109 |
|
---|
110 | /*
|
---|
111 | ** This routine walks (recursively) an expression tree and generates
|
---|
112 | ** a bitmask indicating which tables are used in that expression
|
---|
113 | ** tree.
|
---|
114 | **
|
---|
115 | ** In order for this routine to work, the calling function must have
|
---|
116 | ** previously invoked sqliteExprResolveIds() on the expression. See
|
---|
117 | ** the header comment on that routine for additional information.
|
---|
118 | ** The sqliteExprResolveIds() routines looks for column names and
|
---|
119 | ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
|
---|
120 | ** the VDBE cursor number of the table.
|
---|
121 | */
|
---|
122 | static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
|
---|
123 | unsigned int mask = 0;
|
---|
124 | if( p==0 ) return 0;
|
---|
125 | if( p->op==TK_COLUMN ){
|
---|
126 | mask = getMask(pMaskSet, p->iTable);
|
---|
127 | if( mask==0 ) mask = -1;
|
---|
128 | return mask;
|
---|
129 | }
|
---|
130 | if( p->pRight ){
|
---|
131 | mask = exprTableUsage(pMaskSet, p->pRight);
|
---|
132 | }
|
---|
133 | if( p->pLeft ){
|
---|
134 | mask |= exprTableUsage(pMaskSet, p->pLeft);
|
---|
135 | }
|
---|
136 | if( p->pList ){
|
---|
137 | int i;
|
---|
138 | for(i=0; i<p->pList->nExpr; i++){
|
---|
139 | mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
|
---|
140 | }
|
---|
141 | }
|
---|
142 | return mask;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /*
|
---|
146 | ** Return TRUE if the given operator is one of the operators that is
|
---|
147 | ** allowed for an indexable WHERE clause. The allowed operators are
|
---|
148 | ** "=", "<", ">", "<=", ">=", and "IN".
|
---|
149 | */
|
---|
150 | static int allowedOp(int op){
|
---|
151 | switch( op ){
|
---|
152 | case TK_LT:
|
---|
153 | case TK_LE:
|
---|
154 | case TK_GT:
|
---|
155 | case TK_GE:
|
---|
156 | case TK_EQ:
|
---|
157 | case TK_IN:
|
---|
158 | return 1;
|
---|
159 | default:
|
---|
160 | return 0;
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | /*
|
---|
165 | ** The input to this routine is an ExprInfo structure with only the
|
---|
166 | ** "p" field filled in. The job of this routine is to analyze the
|
---|
167 | ** subexpression and populate all the other fields of the ExprInfo
|
---|
168 | ** structure.
|
---|
169 | */
|
---|
170 | static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
|
---|
171 | Expr *pExpr = pInfo->p;
|
---|
172 | pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
---|
173 | pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
---|
174 | pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
|
---|
175 | pInfo->indexable = 0;
|
---|
176 | pInfo->idxLeft = -1;
|
---|
177 | pInfo->idxRight = -1;
|
---|
178 | if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
---|
179 | if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
|
---|
180 | pInfo->idxRight = pExpr->pRight->iTable;
|
---|
181 | pInfo->indexable = 1;
|
---|
182 | }
|
---|
183 | if( pExpr->pLeft->op==TK_COLUMN ){
|
---|
184 | pInfo->idxLeft = pExpr->pLeft->iTable;
|
---|
185 | pInfo->indexable = 1;
|
---|
186 | }
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 | /*
|
---|
191 | ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
---|
192 | ** left-most table in the FROM clause of that same SELECT statement and
|
---|
193 | ** the table has a cursor number of "base".
|
---|
194 | **
|
---|
195 | ** This routine attempts to find an index for pTab that generates the
|
---|
196 | ** correct record sequence for the given ORDER BY clause. The return value
|
---|
197 | ** is a pointer to an index that does the job. NULL is returned if the
|
---|
198 | ** table has no index that will generate the correct sort order.
|
---|
199 | **
|
---|
200 | ** If there are two or more indices that generate the correct sort order
|
---|
201 | ** and pPreferredIdx is one of those indices, then return pPreferredIdx.
|
---|
202 | **
|
---|
203 | ** nEqCol is the number of columns of pPreferredIdx that are used as
|
---|
204 | ** equality constraints. Any index returned must have exactly this same
|
---|
205 | ** set of columns. The ORDER BY clause only matches index columns beyond the
|
---|
206 | ** the first nEqCol columns.
|
---|
207 | **
|
---|
208 | ** All terms of the ORDER BY clause must be either ASC or DESC. The
|
---|
209 | ** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
|
---|
210 | ** set to 0 if the ORDER BY clause is all ASC.
|
---|
211 | */
|
---|
212 | static Index *findSortingIndex(
|
---|
213 | Table *pTab, /* The table to be sorted */
|
---|
214 | int base, /* Cursor number for pTab */
|
---|
215 | ExprList *pOrderBy, /* The ORDER BY clause */
|
---|
216 | Index *pPreferredIdx, /* Use this index, if possible and not NULL */
|
---|
217 | int nEqCol, /* Number of index columns used with == constraints */
|
---|
218 | int *pbRev /* Set to 1 if ORDER BY is DESC */
|
---|
219 | ){
|
---|
220 | int i, j;
|
---|
221 | Index *pMatch;
|
---|
222 | Index *pIdx;
|
---|
223 | int sortOrder;
|
---|
224 |
|
---|
225 | assert( pOrderBy!=0 );
|
---|
226 | assert( pOrderBy->nExpr>0 );
|
---|
227 | sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
|
---|
228 | for(i=0; i<pOrderBy->nExpr; i++){
|
---|
229 | Expr *p;
|
---|
230 | if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
|
---|
231 | /* Indices can only be used if all ORDER BY terms are either
|
---|
232 | ** DESC or ASC. Indices cannot be used on a mixture. */
|
---|
233 | return 0;
|
---|
234 | }
|
---|
235 | if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
|
---|
236 | /* Do not sort by index if there is a COLLATE clause */
|
---|
237 | return 0;
|
---|
238 | }
|
---|
239 | p = pOrderBy->a[i].pExpr;
|
---|
240 | if( p->op!=TK_COLUMN || p->iTable!=base ){
|
---|
241 | /* Can not use an index sort on anything that is not a column in the
|
---|
242 | ** left-most table of the FROM clause */
|
---|
243 | return 0;
|
---|
244 | }
|
---|
245 | }
|
---|
246 |
|
---|
247 | /* If we get this far, it means the ORDER BY clause consists only of
|
---|
248 | ** ascending columns in the left-most table of the FROM clause. Now
|
---|
249 | ** check for a matching index.
|
---|
250 | */
|
---|
251 | pMatch = 0;
|
---|
252 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
---|
253 | int nExpr = pOrderBy->nExpr;
|
---|
254 | if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
|
---|
255 | for(i=j=0; i<nEqCol; i++){
|
---|
256 | if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
|
---|
257 | if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
|
---|
258 | }
|
---|
259 | if( i<nEqCol ) continue;
|
---|
260 | for(i=0; i+j<nExpr; i++){
|
---|
261 | if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
|
---|
262 | }
|
---|
263 | if( i+j>=nExpr ){
|
---|
264 | pMatch = pIdx;
|
---|
265 | if( pIdx==pPreferredIdx ) break;
|
---|
266 | }
|
---|
267 | }
|
---|
268 | if( pMatch && pbRev ){
|
---|
269 | *pbRev = sortOrder==SQLITE_SO_DESC;
|
---|
270 | }
|
---|
271 | return pMatch;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /*
|
---|
275 | ** Disable a term in the WHERE clause. Except, do not disable the term
|
---|
276 | ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
---|
277 | ** or USING clause of that join.
|
---|
278 | **
|
---|
279 | ** Consider the term t2.z='ok' in the following queries:
|
---|
280 | **
|
---|
281 | ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
---|
282 | ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
---|
283 | ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
---|
284 | **
|
---|
285 | ** The t2.z='ok' is disabled in the in (2) because it did not originate
|
---|
286 | ** in the ON clause. The term is disabled in (3) because it is not part
|
---|
287 | ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
---|
288 | **
|
---|
289 | ** Disabling a term causes that term to not be tested in the inner loop
|
---|
290 | ** of the join. Disabling is an optimization. We would get the correct
|
---|
291 | ** results if nothing were ever disabled, but joins might run a little
|
---|
292 | ** slower. The trick is to disable as much as we can without disabling
|
---|
293 | ** too much. If we disabled in (1), we'd get the wrong answer.
|
---|
294 | ** See ticket #813.
|
---|
295 | */
|
---|
296 | static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
|
---|
297 | Expr *pExpr = *ppExpr;
|
---|
298 | if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
|
---|
299 | *ppExpr = 0;
|
---|
300 | }
|
---|
301 | }
|
---|
302 |
|
---|
303 | /*
|
---|
304 | ** Generate the beginning of the loop used for WHERE clause processing.
|
---|
305 | ** The return value is a pointer to an (opaque) structure that contains
|
---|
306 | ** information needed to terminate the loop. Later, the calling routine
|
---|
307 | ** should invoke sqliteWhereEnd() with the return value of this function
|
---|
308 | ** in order to complete the WHERE clause processing.
|
---|
309 | **
|
---|
310 | ** If an error occurs, this routine returns NULL.
|
---|
311 | **
|
---|
312 | ** The basic idea is to do a nested loop, one loop for each table in
|
---|
313 | ** the FROM clause of a select. (INSERT and UPDATE statements are the
|
---|
314 | ** same as a SELECT with only a single table in the FROM clause.) For
|
---|
315 | ** example, if the SQL is this:
|
---|
316 | **
|
---|
317 | ** SELECT * FROM t1, t2, t3 WHERE ...;
|
---|
318 | **
|
---|
319 | ** Then the code generated is conceptually like the following:
|
---|
320 | **
|
---|
321 | ** foreach row1 in t1 do \ Code generated
|
---|
322 | ** foreach row2 in t2 do |-- by sqliteWhereBegin()
|
---|
323 | ** foreach row3 in t3 do /
|
---|
324 | ** ...
|
---|
325 | ** end \ Code generated
|
---|
326 | ** end |-- by sqliteWhereEnd()
|
---|
327 | ** end /
|
---|
328 | **
|
---|
329 | ** There are Btree cursors associated with each table. t1 uses cursor
|
---|
330 | ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
---|
331 | ** And so forth. This routine generates code to open those VDBE cursors
|
---|
332 | ** and sqliteWhereEnd() generates the code to close them.
|
---|
333 | **
|
---|
334 | ** If the WHERE clause is empty, the foreach loops must each scan their
|
---|
335 | ** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
---|
336 | ** the tables have indices and there are terms in the WHERE clause that
|
---|
337 | ** refer to those indices, a complete table scan can be avoided and the
|
---|
338 | ** code will run much faster. Most of the work of this routine is checking
|
---|
339 | ** to see if there are indices that can be used to speed up the loop.
|
---|
340 | **
|
---|
341 | ** Terms of the WHERE clause are also used to limit which rows actually
|
---|
342 | ** make it to the "..." in the middle of the loop. After each "foreach",
|
---|
343 | ** terms of the WHERE clause that use only terms in that loop and outer
|
---|
344 | ** loops are evaluated and if false a jump is made around all subsequent
|
---|
345 | ** inner loops (or around the "..." if the test occurs within the inner-
|
---|
346 | ** most loop)
|
---|
347 | **
|
---|
348 | ** OUTER JOINS
|
---|
349 | **
|
---|
350 | ** An outer join of tables t1 and t2 is conceptally coded as follows:
|
---|
351 | **
|
---|
352 | ** foreach row1 in t1 do
|
---|
353 | ** flag = 0
|
---|
354 | ** foreach row2 in t2 do
|
---|
355 | ** start:
|
---|
356 | ** ...
|
---|
357 | ** flag = 1
|
---|
358 | ** end
|
---|
359 | ** if flag==0 then
|
---|
360 | ** move the row2 cursor to a null row
|
---|
361 | ** goto start
|
---|
362 | ** fi
|
---|
363 | ** end
|
---|
364 | **
|
---|
365 | ** ORDER BY CLAUSE PROCESSING
|
---|
366 | **
|
---|
367 | ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
---|
368 | ** if there is one. If there is no ORDER BY clause or if this routine
|
---|
369 | ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
---|
370 | **
|
---|
371 | ** If an index can be used so that the natural output order of the table
|
---|
372 | ** scan is correct for the ORDER BY clause, then that index is used and
|
---|
373 | ** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
---|
374 | ** unnecessary sort of the result set if an index appropriate for the
|
---|
375 | ** ORDER BY clause already exists.
|
---|
376 | **
|
---|
377 | ** If the where clause loops cannot be arranged to provide the correct
|
---|
378 | ** output order, then the *ppOrderBy is unchanged.
|
---|
379 | */
|
---|
380 | WhereInfo *sqliteWhereBegin(
|
---|
381 | Parse *pParse, /* The parser context */
|
---|
382 | SrcList *pTabList, /* A list of all tables to be scanned */
|
---|
383 | Expr *pWhere, /* The WHERE clause */
|
---|
384 | int pushKey, /* If TRUE, leave the table key on the stack */
|
---|
385 | ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
|
---|
386 | ){
|
---|
387 | int i; /* Loop counter */
|
---|
388 | WhereInfo *pWInfo; /* Will become the return value of this function */
|
---|
389 | Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
---|
390 | int brk, cont = 0; /* Addresses used during code generation */
|
---|
391 | int nExpr; /* Number of subexpressions in the WHERE clause */
|
---|
392 | int loopMask; /* One bit set for each outer loop */
|
---|
393 | int haveKey; /* True if KEY is on the stack */
|
---|
394 | ExprMaskSet maskSet; /* The expression mask set */
|
---|
395 | int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
|
---|
396 | int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
|
---|
397 | int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
|
---|
398 | ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
|
---|
399 |
|
---|
400 | /* pushKey is only allowed if there is a single table (as in an INSERT or
|
---|
401 | ** UPDATE statement)
|
---|
402 | */
|
---|
403 | assert( pushKey==0 || pTabList->nSrc==1 );
|
---|
404 |
|
---|
405 | /* Split the WHERE clause into separate subexpressions where each
|
---|
406 | ** subexpression is separated by an AND operator. If the aExpr[]
|
---|
407 | ** array fills up, the last entry might point to an expression which
|
---|
408 | ** contains additional unfactored AND operators.
|
---|
409 | */
|
---|
410 | initMaskSet(&maskSet);
|
---|
411 | memset(aExpr, 0, sizeof(aExpr));
|
---|
412 | nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
---|
413 | if( nExpr==ARRAYSIZE(aExpr) ){
|
---|
414 | sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
|
---|
415 | "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
|
---|
416 | return 0;
|
---|
417 | }
|
---|
418 |
|
---|
419 | /* Allocate and initialize the WhereInfo structure that will become the
|
---|
420 | ** return value.
|
---|
421 | */
|
---|
422 | pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
---|
423 | if( sqlite_malloc_failed ){
|
---|
424 | sqliteFree(pWInfo);
|
---|
425 | return 0;
|
---|
426 | }
|
---|
427 | pWInfo->pParse = pParse;
|
---|
428 | pWInfo->pTabList = pTabList;
|
---|
429 | pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
|
---|
430 | pWInfo->iBreak = sqliteVdbeMakeLabel(v);
|
---|
431 |
|
---|
432 | /* Special case: a WHERE clause that is constant. Evaluate the
|
---|
433 | ** expression and either jump over all of the code or fall thru.
|
---|
434 | */
|
---|
435 | if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
|
---|
436 | sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
|
---|
437 | pWhere = 0;
|
---|
438 | }
|
---|
439 |
|
---|
440 | /* Analyze all of the subexpressions.
|
---|
441 | */
|
---|
442 | for(i=0; i<nExpr; i++){
|
---|
443 | exprAnalyze(&maskSet, &aExpr[i]);
|
---|
444 |
|
---|
445 | /* If we are executing a trigger body, remove all references to
|
---|
446 | ** new.* and old.* tables from the prerequisite masks.
|
---|
447 | */
|
---|
448 | if( pParse->trigStack ){
|
---|
449 | int x;
|
---|
450 | if( (x = pParse->trigStack->newIdx) >= 0 ){
|
---|
451 | int mask = ~getMask(&maskSet, x);
|
---|
452 | aExpr[i].prereqRight &= mask;
|
---|
453 | aExpr[i].prereqLeft &= mask;
|
---|
454 | aExpr[i].prereqAll &= mask;
|
---|
455 | }
|
---|
456 | if( (x = pParse->trigStack->oldIdx) >= 0 ){
|
---|
457 | int mask = ~getMask(&maskSet, x);
|
---|
458 | aExpr[i].prereqRight &= mask;
|
---|
459 | aExpr[i].prereqLeft &= mask;
|
---|
460 | aExpr[i].prereqAll &= mask;
|
---|
461 | }
|
---|
462 | }
|
---|
463 | }
|
---|
464 |
|
---|
465 | /* Figure out what index to use (if any) for each nested loop.
|
---|
466 | ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
|
---|
467 | ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
|
---|
468 | ** loop.
|
---|
469 | **
|
---|
470 | ** If terms exist that use the ROWID of any table, then set the
|
---|
471 | ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
|
---|
472 | ** to the index of the term containing the ROWID. We always prefer
|
---|
473 | ** to use a ROWID which can directly access a table rather than an
|
---|
474 | ** index which requires reading an index first to get the rowid then
|
---|
475 | ** doing a second read of the actual database table.
|
---|
476 | **
|
---|
477 | ** Actually, if there are more than 32 tables in the join, only the
|
---|
478 | ** first 32 tables are candidates for indices. This is (again) due
|
---|
479 | ** to the limit of 32 bits in an integer bitmask.
|
---|
480 | */
|
---|
481 | loopMask = 0;
|
---|
482 | for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
|
---|
483 | int j;
|
---|
484 | int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
|
---|
485 | int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
|
---|
486 | Table *pTab = pTabList->a[i].pTab;
|
---|
487 | Index *pIdx;
|
---|
488 | Index *pBestIdx = 0;
|
---|
489 | int bestScore = 0;
|
---|
490 |
|
---|
491 | /* Check to see if there is an expression that uses only the
|
---|
492 | ** ROWID field of this table. For terms of the form ROWID==expr
|
---|
493 | ** set iDirectEq[i] to the index of the term. For terms of the
|
---|
494 | ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
|
---|
495 | ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
|
---|
496 | **
|
---|
497 | ** (Added:) Treat ROWID IN expr like ROWID=expr.
|
---|
498 | */
|
---|
499 | pWInfo->a[i].iCur = -1;
|
---|
500 | iDirectEq[i] = -1;
|
---|
501 | iDirectLt[i] = -1;
|
---|
502 | iDirectGt[i] = -1;
|
---|
503 | for(j=0; j<nExpr; j++){
|
---|
504 | if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
|
---|
505 | && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
---|
506 | switch( aExpr[j].p->op ){
|
---|
507 | case TK_IN:
|
---|
508 | case TK_EQ: iDirectEq[i] = j; break;
|
---|
509 | case TK_LE:
|
---|
510 | case TK_LT: iDirectLt[i] = j; break;
|
---|
511 | case TK_GE:
|
---|
512 | case TK_GT: iDirectGt[i] = j; break;
|
---|
513 | }
|
---|
514 | }
|
---|
515 | if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
|
---|
516 | && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
---|
517 | switch( aExpr[j].p->op ){
|
---|
518 | case TK_EQ: iDirectEq[i] = j; break;
|
---|
519 | case TK_LE:
|
---|
520 | case TK_LT: iDirectGt[i] = j; break;
|
---|
521 | case TK_GE:
|
---|
522 | case TK_GT: iDirectLt[i] = j; break;
|
---|
523 | }
|
---|
524 | }
|
---|
525 | }
|
---|
526 | if( iDirectEq[i]>=0 ){
|
---|
527 | loopMask |= mask;
|
---|
528 | pWInfo->a[i].pIdx = 0;
|
---|
529 | continue;
|
---|
530 | }
|
---|
531 |
|
---|
532 | /* Do a search for usable indices. Leave pBestIdx pointing to
|
---|
533 | ** the "best" index. pBestIdx is left set to NULL if no indices
|
---|
534 | ** are usable.
|
---|
535 | **
|
---|
536 | ** The best index is determined as follows. For each of the
|
---|
537 | ** left-most terms that is fixed by an equality operator, add
|
---|
538 | ** 8 to the score. The right-most term of the index may be
|
---|
539 | ** constrained by an inequality. Add 1 if for an "x<..." constraint
|
---|
540 | ** and add 2 for an "x>..." constraint. Chose the index that
|
---|
541 | ** gives the best score.
|
---|
542 | **
|
---|
543 | ** This scoring system is designed so that the score can later be
|
---|
544 | ** used to determine how the index is used. If the score&7 is 0
|
---|
545 | ** then all constraints are equalities. If score&1 is not 0 then
|
---|
546 | ** there is an inequality used as a termination key. (ex: "x<...")
|
---|
547 | ** If score&2 is not 0 then there is an inequality used as the
|
---|
548 | ** start key. (ex: "x>..."). A score or 4 is the special case
|
---|
549 | ** of an IN operator constraint. (ex: "x IN ...").
|
---|
550 | **
|
---|
551 | ** The IN operator (as in "<expr> IN (...)") is treated the same as
|
---|
552 | ** an equality comparison except that it can only be used on the
|
---|
553 | ** left-most column of an index and other terms of the WHERE clause
|
---|
554 | ** cannot be used in conjunction with the IN operator to help satisfy
|
---|
555 | ** other columns of the index.
|
---|
556 | */
|
---|
557 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
---|
558 | int eqMask = 0; /* Index columns covered by an x=... term */
|
---|
559 | int ltMask = 0; /* Index columns covered by an x<... term */
|
---|
560 | int gtMask = 0; /* Index columns covered by an x>... term */
|
---|
561 | int inMask = 0; /* Index columns covered by an x IN .. term */
|
---|
562 | int nEq, m, score;
|
---|
563 |
|
---|
564 | if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
|
---|
565 | for(j=0; j<nExpr; j++){
|
---|
566 | if( aExpr[j].idxLeft==iCur
|
---|
567 | && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
---|
568 | int iColumn = aExpr[j].p->pLeft->iColumn;
|
---|
569 | int k;
|
---|
570 | for(k=0; k<pIdx->nColumn; k++){
|
---|
571 | if( pIdx->aiColumn[k]==iColumn ){
|
---|
572 | switch( aExpr[j].p->op ){
|
---|
573 | case TK_IN: {
|
---|
574 | if( k==0 ) inMask |= 1;
|
---|
575 | break;
|
---|
576 | }
|
---|
577 | case TK_EQ: {
|
---|
578 | eqMask |= 1<<k;
|
---|
579 | break;
|
---|
580 | }
|
---|
581 | case TK_LE:
|
---|
582 | case TK_LT: {
|
---|
583 | ltMask |= 1<<k;
|
---|
584 | break;
|
---|
585 | }
|
---|
586 | case TK_GE:
|
---|
587 | case TK_GT: {
|
---|
588 | gtMask |= 1<<k;
|
---|
589 | break;
|
---|
590 | }
|
---|
591 | default: {
|
---|
592 | /* CANT_HAPPEN */
|
---|
593 | assert( 0 );
|
---|
594 | break;
|
---|
595 | }
|
---|
596 | }
|
---|
597 | break;
|
---|
598 | }
|
---|
599 | }
|
---|
600 | }
|
---|
601 | if( aExpr[j].idxRight==iCur
|
---|
602 | && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
---|
603 | int iColumn = aExpr[j].p->pRight->iColumn;
|
---|
604 | int k;
|
---|
605 | for(k=0; k<pIdx->nColumn; k++){
|
---|
606 | if( pIdx->aiColumn[k]==iColumn ){
|
---|
607 | switch( aExpr[j].p->op ){
|
---|
608 | case TK_EQ: {
|
---|
609 | eqMask |= 1<<k;
|
---|
610 | break;
|
---|
611 | }
|
---|
612 | case TK_LE:
|
---|
613 | case TK_LT: {
|
---|
614 | gtMask |= 1<<k;
|
---|
615 | break;
|
---|
616 | }
|
---|
617 | case TK_GE:
|
---|
618 | case TK_GT: {
|
---|
619 | ltMask |= 1<<k;
|
---|
620 | break;
|
---|
621 | }
|
---|
622 | default: {
|
---|
623 | /* CANT_HAPPEN */
|
---|
624 | assert( 0 );
|
---|
625 | break;
|
---|
626 | }
|
---|
627 | }
|
---|
628 | break;
|
---|
629 | }
|
---|
630 | }
|
---|
631 | }
|
---|
632 | }
|
---|
633 |
|
---|
634 | /* The following loop ends with nEq set to the number of columns
|
---|
635 | ** on the left of the index with == constraints.
|
---|
636 | */
|
---|
637 | for(nEq=0; nEq<pIdx->nColumn; nEq++){
|
---|
638 | m = (1<<(nEq+1))-1;
|
---|
639 | if( (m & eqMask)!=m ) break;
|
---|
640 | }
|
---|
641 | score = nEq*8; /* Base score is 8 times number of == constraints */
|
---|
642 | m = 1<<nEq;
|
---|
643 | if( m & ltMask ) score++; /* Increase score for a < constraint */
|
---|
644 | if( m & gtMask ) score+=2; /* Increase score for a > constraint */
|
---|
645 | if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
|
---|
646 | if( score>bestScore ){
|
---|
647 | pBestIdx = pIdx;
|
---|
648 | bestScore = score;
|
---|
649 | }
|
---|
650 | }
|
---|
651 | pWInfo->a[i].pIdx = pBestIdx;
|
---|
652 | pWInfo->a[i].score = bestScore;
|
---|
653 | pWInfo->a[i].bRev = 0;
|
---|
654 | loopMask |= mask;
|
---|
655 | if( pBestIdx ){
|
---|
656 | pWInfo->a[i].iCur = pParse->nTab++;
|
---|
657 | pWInfo->peakNTab = pParse->nTab;
|
---|
658 | }
|
---|
659 | }
|
---|
660 |
|
---|
661 | /* Check to see if the ORDER BY clause is or can be satisfied by the
|
---|
662 | ** use of an index on the first table.
|
---|
663 | */
|
---|
664 | if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
|
---|
665 | Index *pSortIdx;
|
---|
666 | Index *pIdx;
|
---|
667 | Table *pTab;
|
---|
668 | int bRev = 0;
|
---|
669 |
|
---|
670 | pTab = pTabList->a[0].pTab;
|
---|
671 | pIdx = pWInfo->a[0].pIdx;
|
---|
672 | if( pIdx && pWInfo->a[0].score==4 ){
|
---|
673 | /* If there is already an IN index on the left-most table,
|
---|
674 | ** it will not give the correct sort order.
|
---|
675 | ** So, pretend that no suitable index is found.
|
---|
676 | */
|
---|
677 | pSortIdx = 0;
|
---|
678 | }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
|
---|
679 | /* If the left-most column is accessed using its ROWID, then do
|
---|
680 | ** not try to sort by index.
|
---|
681 | */
|
---|
682 | pSortIdx = 0;
|
---|
683 | }else{
|
---|
684 | int nEqCol = (pWInfo->a[0].score+4)/8;
|
---|
685 | pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
|
---|
686 | *ppOrderBy, pIdx, nEqCol, &bRev);
|
---|
687 | }
|
---|
688 | if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
|
---|
689 | if( pIdx==0 ){
|
---|
690 | pWInfo->a[0].pIdx = pSortIdx;
|
---|
691 | pWInfo->a[0].iCur = pParse->nTab++;
|
---|
692 | pWInfo->peakNTab = pParse->nTab;
|
---|
693 | }
|
---|
694 | pWInfo->a[0].bRev = bRev;
|
---|
695 | *ppOrderBy = 0;
|
---|
696 | }
|
---|
697 | }
|
---|
698 |
|
---|
699 | /* Open all tables in the pTabList and all indices used by those tables.
|
---|
700 | */
|
---|
701 | for(i=0; i<pTabList->nSrc; i++){
|
---|
702 | Table *pTab;
|
---|
703 | Index *pIx;
|
---|
704 |
|
---|
705 | pTab = pTabList->a[i].pTab;
|
---|
706 | if( pTab->isTransient || pTab->pSelect ) continue;
|
---|
707 | sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
|
---|
708 | sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
|
---|
709 | pTab->zName, P3_STATIC);
|
---|
710 | sqliteCodeVerifySchema(pParse, pTab->iDb);
|
---|
711 | if( (pIx = pWInfo->a[i].pIdx)!=0 ){
|
---|
712 | sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
|
---|
713 | sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
|
---|
714 | }
|
---|
715 | }
|
---|
716 |
|
---|
717 | /* Generate the code to do the search
|
---|
718 | */
|
---|
719 | loopMask = 0;
|
---|
720 | for(i=0; i<pTabList->nSrc; i++){
|
---|
721 | int j, k;
|
---|
722 | int iCur = pTabList->a[i].iCursor;
|
---|
723 | Index *pIdx;
|
---|
724 | WhereLevel *pLevel = &pWInfo->a[i];
|
---|
725 |
|
---|
726 | /* If this is the right table of a LEFT OUTER JOIN, allocate and
|
---|
727 | ** initialize a memory cell that records if this table matches any
|
---|
728 | ** row of the left table of the join.
|
---|
729 | */
|
---|
730 | if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
|
---|
731 | if( !pParse->nMem ) pParse->nMem++;
|
---|
732 | pLevel->iLeftJoin = pParse->nMem++;
|
---|
733 | sqliteVdbeAddOp(v, OP_String, 0, 0);
|
---|
734 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
---|
735 | }
|
---|
736 |
|
---|
737 | pIdx = pLevel->pIdx;
|
---|
738 | pLevel->inOp = OP_Noop;
|
---|
739 | if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
|
---|
740 | /* Case 1: We can directly reference a single row using an
|
---|
741 | ** equality comparison against the ROWID field. Or
|
---|
742 | ** we reference multiple rows using a "rowid IN (...)"
|
---|
743 | ** construct.
|
---|
744 | */
|
---|
745 | k = iDirectEq[i];
|
---|
746 | assert( k<nExpr );
|
---|
747 | assert( aExpr[k].p!=0 );
|
---|
748 | assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
---|
749 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
750 | if( aExpr[k].idxLeft==iCur ){
|
---|
751 | Expr *pX = aExpr[k].p;
|
---|
752 | if( pX->op!=TK_IN ){
|
---|
753 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
754 | }else if( pX->pList ){
|
---|
755 | sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
---|
756 | pLevel->inOp = OP_SetNext;
|
---|
757 | pLevel->inP1 = pX->iTable;
|
---|
758 | pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
---|
759 | }else{
|
---|
760 | assert( pX->pSelect );
|
---|
761 | sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
---|
762 | sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
---|
763 | pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
---|
764 | pLevel->inOp = OP_Next;
|
---|
765 | pLevel->inP1 = pX->iTable;
|
---|
766 | }
|
---|
767 | }else{
|
---|
768 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
769 | }
|
---|
770 | disableTerm(pLevel, &aExpr[k].p);
|
---|
771 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
772 | sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
|
---|
773 | haveKey = 0;
|
---|
774 | sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
|
---|
775 | pLevel->op = OP_Noop;
|
---|
776 | }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
|
---|
777 | /* Case 2: There is an index and all terms of the WHERE clause that
|
---|
778 | ** refer to the index use the "==" or "IN" operators.
|
---|
779 | */
|
---|
780 | int start;
|
---|
781 | int testOp;
|
---|
782 | int nColumn = (pLevel->score+4)/8;
|
---|
783 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
784 | for(j=0; j<nColumn; j++){
|
---|
785 | for(k=0; k<nExpr; k++){
|
---|
786 | Expr *pX = aExpr[k].p;
|
---|
787 | if( pX==0 ) continue;
|
---|
788 | if( aExpr[k].idxLeft==iCur
|
---|
789 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
790 | && pX->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
791 | ){
|
---|
792 | if( pX->op==TK_EQ ){
|
---|
793 | sqliteExprCode(pParse, pX->pRight);
|
---|
794 | disableTerm(pLevel, &aExpr[k].p);
|
---|
795 | break;
|
---|
796 | }
|
---|
797 | if( pX->op==TK_IN && nColumn==1 ){
|
---|
798 | if( pX->pList ){
|
---|
799 | sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
---|
800 | pLevel->inOp = OP_SetNext;
|
---|
801 | pLevel->inP1 = pX->iTable;
|
---|
802 | pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
---|
803 | }else{
|
---|
804 | assert( pX->pSelect );
|
---|
805 | sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
---|
806 | sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
---|
807 | pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
---|
808 | pLevel->inOp = OP_Next;
|
---|
809 | pLevel->inP1 = pX->iTable;
|
---|
810 | }
|
---|
811 | disableTerm(pLevel, &aExpr[k].p);
|
---|
812 | break;
|
---|
813 | }
|
---|
814 | }
|
---|
815 | if( aExpr[k].idxRight==iCur
|
---|
816 | && aExpr[k].p->op==TK_EQ
|
---|
817 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
818 | && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
---|
819 | ){
|
---|
820 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
821 | disableTerm(pLevel, &aExpr[k].p);
|
---|
822 | break;
|
---|
823 | }
|
---|
824 | }
|
---|
825 | }
|
---|
826 | pLevel->iMem = pParse->nMem++;
|
---|
827 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
828 | sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
|
---|
829 | sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
|
---|
830 | sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
---|
831 | sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
|
---|
832 | sqliteAddIdxKeyType(v, pIdx);
|
---|
833 | if( nColumn==pIdx->nColumn || pLevel->bRev ){
|
---|
834 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
---|
835 | testOp = OP_IdxGT;
|
---|
836 | }else{
|
---|
837 | sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
---|
838 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
839 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
840 | testOp = OP_IdxGE;
|
---|
841 | }
|
---|
842 | if( pLevel->bRev ){
|
---|
843 | /* Scan in reverse order */
|
---|
844 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
845 | sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
|
---|
846 | start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
847 | sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
|
---|
848 | pLevel->op = OP_Prev;
|
---|
849 | }else{
|
---|
850 | /* Scan in the forward order */
|
---|
851 | sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
---|
852 | start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
853 | sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
---|
854 | pLevel->op = OP_Next;
|
---|
855 | }
|
---|
856 | sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
---|
857 | sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
|
---|
858 | sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
---|
859 | if( i==pTabList->nSrc-1 && pushKey ){
|
---|
860 | haveKey = 1;
|
---|
861 | }else{
|
---|
862 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
863 | haveKey = 0;
|
---|
864 | }
|
---|
865 | pLevel->p1 = pLevel->iCur;
|
---|
866 | pLevel->p2 = start;
|
---|
867 | }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
|
---|
868 | /* Case 3: We have an inequality comparison against the ROWID field.
|
---|
869 | */
|
---|
870 | int testOp = OP_Noop;
|
---|
871 | int start;
|
---|
872 |
|
---|
873 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
874 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
875 | if( iDirectGt[i]>=0 ){
|
---|
876 | k = iDirectGt[i];
|
---|
877 | assert( k<nExpr );
|
---|
878 | assert( aExpr[k].p!=0 );
|
---|
879 | assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
---|
880 | if( aExpr[k].idxLeft==iCur ){
|
---|
881 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
882 | }else{
|
---|
883 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
884 | }
|
---|
885 | sqliteVdbeAddOp(v, OP_ForceInt,
|
---|
886 | aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
|
---|
887 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
|
---|
888 | disableTerm(pLevel, &aExpr[k].p);
|
---|
889 | }else{
|
---|
890 | sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
|
---|
891 | }
|
---|
892 | if( iDirectLt[i]>=0 ){
|
---|
893 | k = iDirectLt[i];
|
---|
894 | assert( k<nExpr );
|
---|
895 | assert( aExpr[k].p!=0 );
|
---|
896 | assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
|
---|
897 | if( aExpr[k].idxLeft==iCur ){
|
---|
898 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
899 | }else{
|
---|
900 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
901 | }
|
---|
902 | /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
|
---|
903 | pLevel->iMem = pParse->nMem++;
|
---|
904 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
905 | if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
|
---|
906 | testOp = OP_Ge;
|
---|
907 | }else{
|
---|
908 | testOp = OP_Gt;
|
---|
909 | }
|
---|
910 | disableTerm(pLevel, &aExpr[k].p);
|
---|
911 | }
|
---|
912 | start = sqliteVdbeCurrentAddr(v);
|
---|
913 | pLevel->op = OP_Next;
|
---|
914 | pLevel->p1 = iCur;
|
---|
915 | pLevel->p2 = start;
|
---|
916 | if( testOp!=OP_Noop ){
|
---|
917 | sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
|
---|
918 | sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
919 | sqliteVdbeAddOp(v, testOp, 0, brk);
|
---|
920 | }
|
---|
921 | haveKey = 0;
|
---|
922 | }else if( pIdx==0 ){
|
---|
923 | /* Case 4: There is no usable index. We must do a complete
|
---|
924 | ** scan of the entire database table.
|
---|
925 | */
|
---|
926 | int start;
|
---|
927 |
|
---|
928 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
929 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
930 | sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
|
---|
931 | start = sqliteVdbeCurrentAddr(v);
|
---|
932 | pLevel->op = OP_Next;
|
---|
933 | pLevel->p1 = iCur;
|
---|
934 | pLevel->p2 = start;
|
---|
935 | haveKey = 0;
|
---|
936 | }else{
|
---|
937 | /* Case 5: The WHERE clause term that refers to the right-most
|
---|
938 | ** column of the index is an inequality. For example, if
|
---|
939 | ** the index is on (x,y,z) and the WHERE clause is of the
|
---|
940 | ** form "x=5 AND y<10" then this case is used. Only the
|
---|
941 | ** right-most column can be an inequality - the rest must
|
---|
942 | ** use the "==" operator.
|
---|
943 | **
|
---|
944 | ** This case is also used when there are no WHERE clause
|
---|
945 | ** constraints but an index is selected anyway, in order
|
---|
946 | ** to force the output order to conform to an ORDER BY.
|
---|
947 | */
|
---|
948 | int score = pLevel->score;
|
---|
949 | int nEqColumn = score/8;
|
---|
950 | int start;
|
---|
951 | int leFlag, geFlag;
|
---|
952 | int testOp;
|
---|
953 |
|
---|
954 | /* Evaluate the equality constraints
|
---|
955 | */
|
---|
956 | for(j=0; j<nEqColumn; j++){
|
---|
957 | for(k=0; k<nExpr; k++){
|
---|
958 | if( aExpr[k].p==0 ) continue;
|
---|
959 | if( aExpr[k].idxLeft==iCur
|
---|
960 | && aExpr[k].p->op==TK_EQ
|
---|
961 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
962 | && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
963 | ){
|
---|
964 | sqliteExprCode(pParse, aExpr[k].p->pRight);
|
---|
965 | disableTerm(pLevel, &aExpr[k].p);
|
---|
966 | break;
|
---|
967 | }
|
---|
968 | if( aExpr[k].idxRight==iCur
|
---|
969 | && aExpr[k].p->op==TK_EQ
|
---|
970 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
971 | && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
---|
972 | ){
|
---|
973 | sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
---|
974 | disableTerm(pLevel, &aExpr[k].p);
|
---|
975 | break;
|
---|
976 | }
|
---|
977 | }
|
---|
978 | }
|
---|
979 |
|
---|
980 | /* Duplicate the equality term values because they will all be
|
---|
981 | ** used twice: once to make the termination key and once to make the
|
---|
982 | ** start key.
|
---|
983 | */
|
---|
984 | for(j=0; j<nEqColumn; j++){
|
---|
985 | sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
|
---|
986 | }
|
---|
987 |
|
---|
988 | /* Labels for the beginning and end of the loop
|
---|
989 | */
|
---|
990 | cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
---|
991 | brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
---|
992 |
|
---|
993 | /* Generate the termination key. This is the key value that
|
---|
994 | ** will end the search. There is no termination key if there
|
---|
995 | ** are no equality terms and no "X<..." term.
|
---|
996 | **
|
---|
997 | ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
---|
998 | ** key computed here really ends up being the start key.
|
---|
999 | */
|
---|
1000 | if( (score & 1)!=0 ){
|
---|
1001 | for(k=0; k<nExpr; k++){
|
---|
1002 | Expr *pExpr = aExpr[k].p;
|
---|
1003 | if( pExpr==0 ) continue;
|
---|
1004 | if( aExpr[k].idxLeft==iCur
|
---|
1005 | && (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
---|
1006 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
1007 | && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
1008 | ){
|
---|
1009 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1010 | leFlag = pExpr->op==TK_LE;
|
---|
1011 | disableTerm(pLevel, &aExpr[k].p);
|
---|
1012 | break;
|
---|
1013 | }
|
---|
1014 | if( aExpr[k].idxRight==iCur
|
---|
1015 | && (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
---|
1016 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
1017 | && pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
---|
1018 | ){
|
---|
1019 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1020 | leFlag = pExpr->op==TK_GE;
|
---|
1021 | disableTerm(pLevel, &aExpr[k].p);
|
---|
1022 | break;
|
---|
1023 | }
|
---|
1024 | }
|
---|
1025 | testOp = OP_IdxGE;
|
---|
1026 | }else{
|
---|
1027 | testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
|
---|
1028 | leFlag = 1;
|
---|
1029 | }
|
---|
1030 | if( testOp!=OP_Noop ){
|
---|
1031 | int nCol = nEqColumn + (score & 1);
|
---|
1032 | pLevel->iMem = pParse->nMem++;
|
---|
1033 | sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
|
---|
1034 | sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
|
---|
1035 | sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
---|
1036 | sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
|
---|
1037 | sqliteAddIdxKeyType(v, pIdx);
|
---|
1038 | if( leFlag ){
|
---|
1039 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
1040 | }
|
---|
1041 | if( pLevel->bRev ){
|
---|
1042 | sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
|
---|
1043 | }else{
|
---|
1044 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
1045 | }
|
---|
1046 | }else if( pLevel->bRev ){
|
---|
1047 | sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
|
---|
1048 | }
|
---|
1049 |
|
---|
1050 | /* Generate the start key. This is the key that defines the lower
|
---|
1051 | ** bound on the search. There is no start key if there are no
|
---|
1052 | ** equality terms and if there is no "X>..." term. In
|
---|
1053 | ** that case, generate a "Rewind" instruction in place of the
|
---|
1054 | ** start key search.
|
---|
1055 | **
|
---|
1056 | ** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
---|
1057 | ** "start" key really ends up being used as the termination key.
|
---|
1058 | */
|
---|
1059 | if( (score & 2)!=0 ){
|
---|
1060 | for(k=0; k<nExpr; k++){
|
---|
1061 | Expr *pExpr = aExpr[k].p;
|
---|
1062 | if( pExpr==0 ) continue;
|
---|
1063 | if( aExpr[k].idxLeft==iCur
|
---|
1064 | && (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
---|
1065 | && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
---|
1066 | && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
---|
1067 | ){
|
---|
1068 | sqliteExprCode(pParse, pExpr->pRight);
|
---|
1069 | geFlag = pExpr->op==TK_GE;
|
---|
1070 | disableTerm(pLevel, &aExpr[k].p);
|
---|
1071 | break;
|
---|
1072 | }
|
---|
1073 | if( aExpr[k].idxRight==iCur
|
---|
1074 | && (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
---|
1075 | && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
---|
1076 | && pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
---|
1077 | ){
|
---|
1078 | sqliteExprCode(pParse, pExpr->pLeft);
|
---|
1079 | geFlag = pExpr->op==TK_LE;
|
---|
1080 | disableTerm(pLevel, &aExpr[k].p);
|
---|
1081 | break;
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 | }else{
|
---|
1085 | geFlag = 1;
|
---|
1086 | }
|
---|
1087 | if( nEqColumn>0 || (score&2)!=0 ){
|
---|
1088 | int nCol = nEqColumn + ((score&2)!=0);
|
---|
1089 | sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
|
---|
1090 | sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
|
---|
1091 | sqliteVdbeAddOp(v, OP_Goto, 0, brk);
|
---|
1092 | sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
|
---|
1093 | sqliteAddIdxKeyType(v, pIdx);
|
---|
1094 | if( !geFlag ){
|
---|
1095 | sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
---|
1096 | }
|
---|
1097 | if( pLevel->bRev ){
|
---|
1098 | pLevel->iMem = pParse->nMem++;
|
---|
1099 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
---|
1100 | testOp = OP_IdxLT;
|
---|
1101 | }else{
|
---|
1102 | sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
---|
1103 | }
|
---|
1104 | }else if( pLevel->bRev ){
|
---|
1105 | testOp = OP_Noop;
|
---|
1106 | }else{
|
---|
1107 | sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | /* Generate the the top of the loop. If there is a termination
|
---|
1111 | ** key we have to test for that key and abort at the top of the
|
---|
1112 | ** loop.
|
---|
1113 | */
|
---|
1114 | start = sqliteVdbeCurrentAddr(v);
|
---|
1115 | if( testOp!=OP_Noop ){
|
---|
1116 | sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
---|
1117 | sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
---|
1118 | }
|
---|
1119 | sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
---|
1120 | sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
|
---|
1121 | sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
---|
1122 | if( i==pTabList->nSrc-1 && pushKey ){
|
---|
1123 | haveKey = 1;
|
---|
1124 | }else{
|
---|
1125 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
1126 | haveKey = 0;
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | /* Record the instruction used to terminate the loop.
|
---|
1130 | */
|
---|
1131 | pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
|
---|
1132 | pLevel->p1 = pLevel->iCur;
|
---|
1133 | pLevel->p2 = start;
|
---|
1134 | }
|
---|
1135 | loopMask |= getMask(&maskSet, iCur);
|
---|
1136 |
|
---|
1137 | /* Insert code to test every subexpression that can be completely
|
---|
1138 | ** computed using the current set of tables.
|
---|
1139 | */
|
---|
1140 | for(j=0; j<nExpr; j++){
|
---|
1141 | if( aExpr[j].p==0 ) continue;
|
---|
1142 | if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
---|
1143 | if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
|
---|
1144 | continue;
|
---|
1145 | }
|
---|
1146 | if( haveKey ){
|
---|
1147 | haveKey = 0;
|
---|
1148 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
1149 | }
|
---|
1150 | sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
---|
1151 | aExpr[j].p = 0;
|
---|
1152 | }
|
---|
1153 | brk = cont;
|
---|
1154 |
|
---|
1155 | /* For a LEFT OUTER JOIN, generate code that will record the fact that
|
---|
1156 | ** at least one row of the right table has matched the left table.
|
---|
1157 | */
|
---|
1158 | if( pLevel->iLeftJoin ){
|
---|
1159 | pLevel->top = sqliteVdbeCurrentAddr(v);
|
---|
1160 | sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
---|
1161 | sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
---|
1162 | for(j=0; j<nExpr; j++){
|
---|
1163 | if( aExpr[j].p==0 ) continue;
|
---|
1164 | if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
---|
1165 | if( haveKey ){
|
---|
1166 | /* Cannot happen. "haveKey" can only be true if pushKey is true
|
---|
1167 | ** an pushKey can only be true for DELETE and UPDATE and there are
|
---|
1168 | ** no outer joins with DELETE and UPDATE.
|
---|
1169 | */
|
---|
1170 | haveKey = 0;
|
---|
1171 | sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
|
---|
1172 | }
|
---|
1173 | sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
---|
1174 | aExpr[j].p = 0;
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 | }
|
---|
1178 | pWInfo->iContinue = cont;
|
---|
1179 | if( pushKey && !haveKey ){
|
---|
1180 | sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
|
---|
1181 | }
|
---|
1182 | freeMaskSet(&maskSet);
|
---|
1183 | return pWInfo;
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | /*
|
---|
1187 | ** Generate the end of the WHERE loop. See comments on
|
---|
1188 | ** sqliteWhereBegin() for additional information.
|
---|
1189 | */
|
---|
1190 | void sqliteWhereEnd(WhereInfo *pWInfo){
|
---|
1191 | Vdbe *v = pWInfo->pParse->pVdbe;
|
---|
1192 | int i;
|
---|
1193 | WhereLevel *pLevel;
|
---|
1194 | SrcList *pTabList = pWInfo->pTabList;
|
---|
1195 |
|
---|
1196 | for(i=pTabList->nSrc-1; i>=0; i--){
|
---|
1197 | pLevel = &pWInfo->a[i];
|
---|
1198 | sqliteVdbeResolveLabel(v, pLevel->cont);
|
---|
1199 | if( pLevel->op!=OP_Noop ){
|
---|
1200 | sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
---|
1201 | }
|
---|
1202 | sqliteVdbeResolveLabel(v, pLevel->brk);
|
---|
1203 | if( pLevel->inOp!=OP_Noop ){
|
---|
1204 | sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
|
---|
1205 | }
|
---|
1206 | if( pLevel->iLeftJoin ){
|
---|
1207 | int addr;
|
---|
1208 | addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
|
---|
1209 | sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
|
---|
1210 | sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
|
---|
1211 | if( pLevel->iCur>=0 ){
|
---|
1212 | sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
|
---|
1213 | }
|
---|
1214 | sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
|
---|
1215 | }
|
---|
1216 | }
|
---|
1217 | sqliteVdbeResolveLabel(v, pWInfo->iBreak);
|
---|
1218 | for(i=0; i<pTabList->nSrc; i++){
|
---|
1219 | Table *pTab = pTabList->a[i].pTab;
|
---|
1220 | assert( pTab!=0 );
|
---|
1221 | if( pTab->isTransient || pTab->pSelect ) continue;
|
---|
1222 | pLevel = &pWInfo->a[i];
|
---|
1223 | sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
|
---|
1224 | if( pLevel->pIdx!=0 ){
|
---|
1225 | sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
|
---|
1226 | }
|
---|
1227 | }
|
---|
1228 | #if 0 /* Never reuse a cursor */
|
---|
1229 | if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
|
---|
1230 | pWInfo->pParse->nTab = pWInfo->savedNTab;
|
---|
1231 | }
|
---|
1232 | #endif
|
---|
1233 | sqliteFree(pWInfo);
|
---|
1234 | return;
|
---|
1235 | }
|
---|