[205] | 1 | /*
|
---|
| 2 | ** 2001 September 15
|
---|
| 3 | **
|
---|
| 4 | ** The author disclaims copyright to this source code. In place of
|
---|
| 5 | ** a legal notice, here is a blessing:
|
---|
| 6 | **
|
---|
| 7 | ** May you do good and not evil.
|
---|
| 8 | ** May you find forgiveness for yourself and forgive others.
|
---|
| 9 | ** May you share freely, never taking more than you give.
|
---|
| 10 | **
|
---|
| 11 | *************************************************************************
|
---|
| 12 | ** $Id: btree.c,v 1.103 2004/03/10 13:42:38 drh Exp $
|
---|
| 13 | **
|
---|
| 14 | ** This file implements a external (disk-based) database using BTrees.
|
---|
| 15 | ** For a detailed discussion of BTrees, refer to
|
---|
| 16 | **
|
---|
| 17 | ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
|
---|
| 18 | ** "Sorting And Searching", pages 473-480. Addison-Wesley
|
---|
| 19 | ** Publishing Company, Reading, Massachusetts.
|
---|
| 20 | **
|
---|
| 21 | ** The basic idea is that each page of the file contains N database
|
---|
| 22 | ** entries and N+1 pointers to subpages.
|
---|
| 23 | **
|
---|
| 24 | ** ----------------------------------------------------------------
|
---|
| 25 | ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
|
---|
| 26 | ** ----------------------------------------------------------------
|
---|
| 27 | **
|
---|
| 28 | ** All of the keys on the page that Ptr(0) points to have values less
|
---|
| 29 | ** than Key(0). All of the keys on page Ptr(1) and its subpages have
|
---|
| 30 | ** values greater than Key(0) and less than Key(1). All of the keys
|
---|
| 31 | ** on Ptr(N+1) and its subpages have values greater than Key(N). And
|
---|
| 32 | ** so forth.
|
---|
| 33 | **
|
---|
| 34 | ** Finding a particular key requires reading O(log(M)) pages from the
|
---|
| 35 | ** disk where M is the number of entries in the tree.
|
---|
| 36 | **
|
---|
| 37 | ** In this implementation, a single file can hold one or more separate
|
---|
| 38 | ** BTrees. Each BTree is identified by the index of its root page. The
|
---|
| 39 | ** key and data for any entry are combined to form the "payload". Up to
|
---|
| 40 | ** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
|
---|
| 41 | ** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
|
---|
| 42 | ** then surplus bytes are stored on overflow pages. The payload for an
|
---|
| 43 | ** entry and the preceding pointer are combined to form a "Cell". Each
|
---|
| 44 | ** page has a small header which contains the Ptr(N+1) pointer.
|
---|
| 45 | **
|
---|
| 46 | ** The first page of the file contains a magic string used to verify that
|
---|
| 47 | ** the file really is a valid BTree database, a pointer to a list of unused
|
---|
| 48 | ** pages in the file, and some meta information. The root of the first
|
---|
| 49 | ** BTree begins on page 2 of the file. (Pages are numbered beginning with
|
---|
| 50 | ** 1, not 0.) Thus a minimum database contains 2 pages.
|
---|
| 51 | */
|
---|
| 52 | #include "sqliteInt.h"
|
---|
| 53 | #include "pager.h"
|
---|
| 54 | #include "btree.h"
|
---|
| 55 | #include <assert.h>
|
---|
| 56 |
|
---|
| 57 | /* Forward declarations */
|
---|
| 58 | static BtOps sqliteBtreeOps;
|
---|
| 59 | static BtCursorOps sqliteBtreeCursorOps;
|
---|
| 60 |
|
---|
| 61 | /*
|
---|
| 62 | ** Macros used for byteswapping. B is a pointer to the Btree
|
---|
| 63 | ** structure. This is needed to access the Btree.needSwab boolean
|
---|
| 64 | ** in order to tell if byte swapping is needed or not.
|
---|
| 65 | ** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
|
---|
| 66 | ** SWAB32 byteswaps a 32-bit integer.
|
---|
| 67 | */
|
---|
| 68 | #define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
|
---|
| 69 | #define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
|
---|
| 70 | #define SWAB_ADD(B,X,A) \
|
---|
| 71 | if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
|
---|
| 72 |
|
---|
| 73 | /*
|
---|
| 74 | ** The following global variable - available only if SQLITE_TEST is
|
---|
| 75 | ** defined - is used to determine whether new databases are created in
|
---|
| 76 | ** native byte order or in non-native byte order. Non-native byte order
|
---|
| 77 | ** databases are created for testing purposes only. Under normal operation,
|
---|
| 78 | ** only native byte-order databases should be created, but we should be
|
---|
| 79 | ** able to read or write existing databases regardless of the byteorder.
|
---|
| 80 | */
|
---|
| 81 | #ifdef SQLITE_TEST
|
---|
| 82 | int btree_native_byte_order = 1;
|
---|
| 83 | #else
|
---|
| 84 | # define btree_native_byte_order 1
|
---|
| 85 | #endif
|
---|
| 86 |
|
---|
| 87 | /*
|
---|
| 88 | ** Forward declarations of structures used only in this file.
|
---|
| 89 | */
|
---|
| 90 | typedef struct PageOne PageOne;
|
---|
| 91 | typedef struct MemPage MemPage;
|
---|
| 92 | typedef struct PageHdr PageHdr;
|
---|
| 93 | typedef struct Cell Cell;
|
---|
| 94 | typedef struct CellHdr CellHdr;
|
---|
| 95 | typedef struct FreeBlk FreeBlk;
|
---|
| 96 | typedef struct OverflowPage OverflowPage;
|
---|
| 97 | typedef struct FreelistInfo FreelistInfo;
|
---|
| 98 |
|
---|
| 99 | /*
|
---|
| 100 | ** All structures on a database page are aligned to 4-byte boundries.
|
---|
| 101 | ** This routine rounds up a number of bytes to the next multiple of 4.
|
---|
| 102 | **
|
---|
| 103 | ** This might need to change for computer architectures that require
|
---|
| 104 | ** and 8-byte alignment boundry for structures.
|
---|
| 105 | */
|
---|
| 106 | #define ROUNDUP(X) ((X+3) & ~3)
|
---|
| 107 |
|
---|
| 108 | /*
|
---|
| 109 | ** This is a magic string that appears at the beginning of every
|
---|
| 110 | ** SQLite database in order to identify the file as a real database.
|
---|
| 111 | */
|
---|
| 112 | static const char zMagicHeader[] =
|
---|
| 113 | "** This file contains an SQLite 2.1 database **";
|
---|
| 114 | #define MAGIC_SIZE (sizeof(zMagicHeader))
|
---|
| 115 |
|
---|
| 116 | /*
|
---|
| 117 | ** This is a magic integer also used to test the integrity of the database
|
---|
| 118 | ** file. This integer is used in addition to the string above so that
|
---|
| 119 | ** if the file is written on a little-endian architecture and read
|
---|
| 120 | ** on a big-endian architectures (or vice versa) we can detect the
|
---|
| 121 | ** problem.
|
---|
| 122 | **
|
---|
| 123 | ** The number used was obtained at random and has no special
|
---|
| 124 | ** significance other than the fact that it represents a different
|
---|
| 125 | ** integer on little-endian and big-endian machines.
|
---|
| 126 | */
|
---|
| 127 | #define MAGIC 0xdae37528
|
---|
| 128 |
|
---|
| 129 | /*
|
---|
| 130 | ** The first page of the database file contains a magic header string
|
---|
| 131 | ** to identify the file as an SQLite database file. It also contains
|
---|
| 132 | ** a pointer to the first free page of the file. Page 2 contains the
|
---|
| 133 | ** root of the principle BTree. The file might contain other BTrees
|
---|
| 134 | ** rooted on pages above 2.
|
---|
| 135 | **
|
---|
| 136 | ** The first page also contains SQLITE_N_BTREE_META integers that
|
---|
| 137 | ** can be used by higher-level routines.
|
---|
| 138 | **
|
---|
| 139 | ** Remember that pages are numbered beginning with 1. (See pager.c
|
---|
| 140 | ** for additional information.) Page 0 does not exist and a page
|
---|
| 141 | ** number of 0 is used to mean "no such page".
|
---|
| 142 | */
|
---|
| 143 | struct PageOne {
|
---|
| 144 | char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
|
---|
| 145 | int iMagic; /* Integer to verify correct byte order */
|
---|
| 146 | Pgno freeList; /* First free page in a list of all free pages */
|
---|
| 147 | int nFree; /* Number of pages on the free list */
|
---|
| 148 | int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
|
---|
| 149 | };
|
---|
| 150 |
|
---|
| 151 | /*
|
---|
| 152 | ** Each database page has a header that is an instance of this
|
---|
| 153 | ** structure.
|
---|
| 154 | **
|
---|
| 155 | ** PageHdr.firstFree is 0 if there is no free space on this page.
|
---|
| 156 | ** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
|
---|
| 157 | ** FreeBlk structure that describes the first block of free space.
|
---|
| 158 | ** All free space is defined by a linked list of FreeBlk structures.
|
---|
| 159 | **
|
---|
| 160 | ** Data is stored in a linked list of Cell structures. PageHdr.firstCell
|
---|
| 161 | ** is the index into MemPage.u.aDisk[] of the first cell on the page. The
|
---|
| 162 | ** Cells are kept in sorted order.
|
---|
| 163 | **
|
---|
| 164 | ** A Cell contains all information about a database entry and a pointer
|
---|
| 165 | ** to a child page that contains other entries less than itself. In
|
---|
| 166 | ** other words, the i-th Cell contains both Ptr(i) and Key(i). The
|
---|
| 167 | ** right-most pointer of the page is contained in PageHdr.rightChild.
|
---|
| 168 | */
|
---|
| 169 | struct PageHdr {
|
---|
| 170 | Pgno rightChild; /* Child page that comes after all cells on this page */
|
---|
| 171 | u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
|
---|
| 172 | u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
|
---|
| 173 | };
|
---|
| 174 |
|
---|
| 175 | /*
|
---|
| 176 | ** Entries on a page of the database are called "Cells". Each Cell
|
---|
| 177 | ** has a header and data. This structure defines the header. The
|
---|
| 178 | ** key and data (collectively the "payload") follow this header on
|
---|
| 179 | ** the database page.
|
---|
| 180 | **
|
---|
| 181 | ** A definition of the complete Cell structure is given below. The
|
---|
| 182 | ** header for the cell must be defined first in order to do some
|
---|
| 183 | ** of the sizing #defines that follow.
|
---|
| 184 | */
|
---|
| 185 | struct CellHdr {
|
---|
| 186 | Pgno leftChild; /* Child page that comes before this cell */
|
---|
| 187 | u16 nKey; /* Number of bytes in the key */
|
---|
| 188 | u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
|
---|
| 189 | u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
|
---|
| 190 | u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
|
---|
| 191 | u16 nData; /* Number of bytes of data */
|
---|
| 192 | };
|
---|
| 193 |
|
---|
| 194 | /*
|
---|
| 195 | ** The key and data size are split into a lower 16-bit segment and an
|
---|
| 196 | ** upper 8-bit segment in order to pack them together into a smaller
|
---|
| 197 | ** space. The following macros reassembly a key or data size back
|
---|
| 198 | ** into an integer.
|
---|
| 199 | */
|
---|
| 200 | #define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
|
---|
| 201 | #define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
|
---|
| 202 |
|
---|
| 203 | /*
|
---|
| 204 | ** The minimum size of a complete Cell. The Cell must contain a header
|
---|
| 205 | ** and at least 4 bytes of payload.
|
---|
| 206 | */
|
---|
| 207 | #define MIN_CELL_SIZE (sizeof(CellHdr)+4)
|
---|
| 208 |
|
---|
| 209 | /*
|
---|
| 210 | ** The maximum number of database entries that can be held in a single
|
---|
| 211 | ** page of the database.
|
---|
| 212 | */
|
---|
| 213 | #define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
|
---|
| 214 |
|
---|
| 215 | /*
|
---|
| 216 | ** The amount of usable space on a single page of the BTree. This is the
|
---|
| 217 | ** page size minus the overhead of the page header.
|
---|
| 218 | */
|
---|
| 219 | #define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
|
---|
| 220 |
|
---|
| 221 | /*
|
---|
| 222 | ** The maximum amount of payload (in bytes) that can be stored locally for
|
---|
| 223 | ** a database entry. If the entry contains more data than this, the
|
---|
| 224 | ** extra goes onto overflow pages.
|
---|
| 225 | **
|
---|
| 226 | ** This number is chosen so that at least 4 cells will fit on every page.
|
---|
| 227 | */
|
---|
| 228 | #define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
|
---|
| 229 |
|
---|
| 230 | /*
|
---|
| 231 | ** Data on a database page is stored as a linked list of Cell structures.
|
---|
| 232 | ** Both the key and the data are stored in aPayload[]. The key always comes
|
---|
| 233 | ** first. The aPayload[] field grows as necessary to hold the key and data,
|
---|
| 234 | ** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
|
---|
| 235 | ** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
|
---|
| 236 | ** page number of the first overflow page.
|
---|
| 237 | **
|
---|
| 238 | ** Though this structure is fixed in size, the Cell on the database
|
---|
| 239 | ** page varies in size. Every cell has a CellHdr and at least 4 bytes
|
---|
| 240 | ** of payload space. Additional payload bytes (up to the maximum of
|
---|
| 241 | ** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
|
---|
| 242 | ** needed.
|
---|
| 243 | */
|
---|
| 244 | struct Cell {
|
---|
| 245 | CellHdr h; /* The cell header */
|
---|
| 246 | char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
|
---|
| 247 | Pgno ovfl; /* The first overflow page */
|
---|
| 248 | };
|
---|
| 249 |
|
---|
| 250 | /*
|
---|
| 251 | ** Free space on a page is remembered using a linked list of the FreeBlk
|
---|
| 252 | ** structures. Space on a database page is allocated in increments of
|
---|
| 253 | ** at least 4 bytes and is always aligned to a 4-byte boundry. The
|
---|
| 254 | ** linked list of FreeBlks is always kept in order by address.
|
---|
| 255 | */
|
---|
| 256 | struct FreeBlk {
|
---|
| 257 | u16 iSize; /* Number of bytes in this block of free space */
|
---|
| 258 | u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
|
---|
| 259 | };
|
---|
| 260 |
|
---|
| 261 | /*
|
---|
| 262 | ** The number of bytes of payload that will fit on a single overflow page.
|
---|
| 263 | */
|
---|
| 264 | #define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
|
---|
| 265 |
|
---|
| 266 | /*
|
---|
| 267 | ** When the key and data for a single entry in the BTree will not fit in
|
---|
| 268 | ** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
|
---|
| 269 | ** then all extra bytes are written to a linked list of overflow pages.
|
---|
| 270 | ** Each overflow page is an instance of the following structure.
|
---|
| 271 | **
|
---|
| 272 | ** Unused pages in the database are also represented by instances of
|
---|
| 273 | ** the OverflowPage structure. The PageOne.freeList field is the
|
---|
| 274 | ** page number of the first page in a linked list of unused database
|
---|
| 275 | ** pages.
|
---|
| 276 | */
|
---|
| 277 | struct OverflowPage {
|
---|
| 278 | Pgno iNext;
|
---|
| 279 | char aPayload[OVERFLOW_SIZE];
|
---|
| 280 | };
|
---|
| 281 |
|
---|
| 282 | /*
|
---|
| 283 | ** The PageOne.freeList field points to a linked list of overflow pages
|
---|
| 284 | ** hold information about free pages. The aPayload section of each
|
---|
| 285 | ** overflow page contains an instance of the following structure. The
|
---|
| 286 | ** aFree[] array holds the page number of nFree unused pages in the disk
|
---|
| 287 | ** file.
|
---|
| 288 | */
|
---|
| 289 | struct FreelistInfo {
|
---|
| 290 | int nFree;
|
---|
| 291 | Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
|
---|
| 292 | };
|
---|
| 293 |
|
---|
| 294 | /*
|
---|
| 295 | ** For every page in the database file, an instance of the following structure
|
---|
| 296 | ** is stored in memory. The u.aDisk[] array contains the raw bits read from
|
---|
| 297 | ** the disk. The rest is auxiliary information held in memory only. The
|
---|
| 298 | ** auxiliary info is only valid for regular database pages - it is not
|
---|
| 299 | ** used for overflow pages and pages on the freelist.
|
---|
| 300 | **
|
---|
| 301 | ** Of particular interest in the auxiliary info is the apCell[] entry. Each
|
---|
| 302 | ** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
|
---|
| 303 | ** put in this array so that they can be accessed in constant time, rather
|
---|
| 304 | ** than in linear time which would be needed if we had to walk the linked
|
---|
| 305 | ** list on every access.
|
---|
| 306 | **
|
---|
| 307 | ** Note that apCell[] contains enough space to hold up to two more Cells
|
---|
| 308 | ** than can possibly fit on one page. In the steady state, every apCell[]
|
---|
| 309 | ** points to memory inside u.aDisk[]. But in the middle of an insert
|
---|
| 310 | ** operation, some apCell[] entries may temporarily point to data space
|
---|
| 311 | ** outside of u.aDisk[]. This is a transient situation that is quickly
|
---|
| 312 | ** resolved. But while it is happening, it is possible for a database
|
---|
| 313 | ** page to hold as many as two more cells than it might otherwise hold.
|
---|
| 314 | ** The extra two entries in apCell[] are an allowance for this situation.
|
---|
| 315 | **
|
---|
| 316 | ** The pParent field points back to the parent page. This allows us to
|
---|
| 317 | ** walk up the BTree from any leaf to the root. Care must be taken to
|
---|
| 318 | ** unref() the parent page pointer when this page is no longer referenced.
|
---|
| 319 | ** The pageDestructor() routine handles that chore.
|
---|
| 320 | */
|
---|
| 321 | struct MemPage {
|
---|
| 322 | union u_page_data {
|
---|
| 323 | char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
|
---|
| 324 | PageHdr hdr; /* Overlay page header */
|
---|
| 325 | } u;
|
---|
| 326 | u8 isInit; /* True if auxiliary data is initialized */
|
---|
| 327 | u8 idxShift; /* True if apCell[] indices have changed */
|
---|
| 328 | u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
|
---|
| 329 | MemPage *pParent; /* The parent of this page. NULL for root */
|
---|
| 330 | int idxParent; /* Index in pParent->apCell[] of this node */
|
---|
| 331 | int nFree; /* Number of free bytes in u.aDisk[] */
|
---|
| 332 | int nCell; /* Number of entries on this page */
|
---|
| 333 | Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
|
---|
| 334 | };
|
---|
| 335 |
|
---|
| 336 | /*
|
---|
| 337 | ** The in-memory image of a disk page has the auxiliary information appended
|
---|
| 338 | ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
|
---|
| 339 | ** that extra information.
|
---|
| 340 | */
|
---|
| 341 | #define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
|
---|
| 342 |
|
---|
| 343 | /*
|
---|
| 344 | ** Everything we need to know about an open database
|
---|
| 345 | */
|
---|
| 346 | struct Btree {
|
---|
| 347 | BtOps *pOps; /* Function table */
|
---|
| 348 | Pager *pPager; /* The page cache */
|
---|
| 349 | BtCursor *pCursor; /* A list of all open cursors */
|
---|
| 350 | PageOne *page1; /* First page of the database */
|
---|
| 351 | u8 inTrans; /* True if a transaction is in progress */
|
---|
| 352 | u8 inCkpt; /* True if there is a checkpoint on the transaction */
|
---|
| 353 | u8 readOnly; /* True if the underlying file is readonly */
|
---|
| 354 | u8 needSwab; /* Need to byte-swapping */
|
---|
| 355 | };
|
---|
| 356 | typedef Btree Bt;
|
---|
| 357 |
|
---|
| 358 | /*
|
---|
| 359 | ** A cursor is a pointer to a particular entry in the BTree.
|
---|
| 360 | ** The entry is identified by its MemPage and the index in
|
---|
| 361 | ** MemPage.apCell[] of the entry.
|
---|
| 362 | */
|
---|
| 363 | struct BtCursor {
|
---|
| 364 | BtCursorOps *pOps; /* Function table */
|
---|
| 365 | Btree *pBt; /* The Btree to which this cursor belongs */
|
---|
| 366 | BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
|
---|
| 367 | BtCursor *pShared; /* Loop of cursors with the same root page */
|
---|
| 368 | Pgno pgnoRoot; /* The root page of this tree */
|
---|
| 369 | MemPage *pPage; /* Page that contains the entry */
|
---|
| 370 | int idx; /* Index of the entry in pPage->apCell[] */
|
---|
| 371 | u8 wrFlag; /* True if writable */
|
---|
| 372 | u8 eSkip; /* Determines if next step operation is a no-op */
|
---|
| 373 | u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
|
---|
| 374 | };
|
---|
| 375 |
|
---|
| 376 | /*
|
---|
| 377 | ** Legal values for BtCursor.eSkip.
|
---|
| 378 | */
|
---|
| 379 | #define SKIP_NONE 0 /* Always step the cursor */
|
---|
| 380 | #define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
|
---|
| 381 | #define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
|
---|
| 382 | #define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
|
---|
| 383 |
|
---|
| 384 | /* Forward declarations */
|
---|
| 385 | static int fileBtreeCloseCursor(BtCursor *pCur);
|
---|
| 386 |
|
---|
| 387 | /*
|
---|
| 388 | ** Routines for byte swapping.
|
---|
| 389 | */
|
---|
| 390 | u16 swab16(u16 x){
|
---|
| 391 | return ((x & 0xff)<<8) | ((x>>8)&0xff);
|
---|
| 392 | }
|
---|
| 393 | u32 swab32(u32 x){
|
---|
| 394 | return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
|
---|
| 395 | ((x>>8) & 0xff00) | ((x>>24)&0xff);
|
---|
| 396 | }
|
---|
| 397 |
|
---|
| 398 | /*
|
---|
| 399 | ** Compute the total number of bytes that a Cell needs on the main
|
---|
| 400 | ** database page. The number returned includes the Cell header,
|
---|
| 401 | ** local payload storage, and the pointer to overflow pages (if
|
---|
| 402 | ** applicable). Additional space allocated on overflow pages
|
---|
| 403 | ** is NOT included in the value returned from this routine.
|
---|
| 404 | */
|
---|
| 405 | static int cellSize(Btree *pBt, Cell *pCell){
|
---|
| 406 | int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
|
---|
| 407 | if( n>MX_LOCAL_PAYLOAD ){
|
---|
| 408 | n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
|
---|
| 409 | }else{
|
---|
| 410 | n = ROUNDUP(n);
|
---|
| 411 | }
|
---|
| 412 | n += sizeof(CellHdr);
|
---|
| 413 | return n;
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 | /*
|
---|
| 417 | ** Defragment the page given. All Cells are moved to the
|
---|
| 418 | ** beginning of the page and all free space is collected
|
---|
| 419 | ** into one big FreeBlk at the end of the page.
|
---|
| 420 | */
|
---|
| 421 | static void defragmentPage(Btree *pBt, MemPage *pPage){
|
---|
| 422 | int pc, i, n;
|
---|
| 423 | FreeBlk *pFBlk;
|
---|
| 424 | char newPage[SQLITE_USABLE_SIZE];
|
---|
| 425 |
|
---|
| 426 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 427 | assert( pPage->isInit );
|
---|
| 428 | pc = sizeof(PageHdr);
|
---|
| 429 | pPage->u.hdr.firstCell = SWAB16(pBt, pc);
|
---|
| 430 | memcpy(newPage, pPage->u.aDisk, pc);
|
---|
| 431 | for(i=0; i<pPage->nCell; i++){
|
---|
| 432 | Cell *pCell = pPage->apCell[i];
|
---|
| 433 |
|
---|
| 434 | /* This routine should never be called on an overfull page. The
|
---|
| 435 | ** following asserts verify that constraint. */
|
---|
| 436 | assert( Addr(pCell) > Addr(pPage) );
|
---|
| 437 | assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
|
---|
| 438 |
|
---|
| 439 | n = cellSize(pBt, pCell);
|
---|
| 440 | pCell->h.iNext = SWAB16(pBt, pc + n);
|
---|
| 441 | memcpy(&newPage[pc], pCell, n);
|
---|
| 442 | pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
|
---|
| 443 | pc += n;
|
---|
| 444 | }
|
---|
| 445 | assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
|
---|
| 446 | memcpy(pPage->u.aDisk, newPage, pc);
|
---|
| 447 | if( pPage->nCell>0 ){
|
---|
| 448 | pPage->apCell[pPage->nCell-1]->h.iNext = 0;
|
---|
| 449 | }
|
---|
| 450 | pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
|
---|
| 451 | pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
|
---|
| 452 | pFBlk->iNext = 0;
|
---|
| 453 | pPage->u.hdr.firstFree = SWAB16(pBt, pc);
|
---|
| 454 | memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | /*
|
---|
| 458 | ** Allocate nByte bytes of space on a page. nByte must be a
|
---|
| 459 | ** multiple of 4.
|
---|
| 460 | **
|
---|
| 461 | ** Return the index into pPage->u.aDisk[] of the first byte of
|
---|
| 462 | ** the new allocation. Or return 0 if there is not enough free
|
---|
| 463 | ** space on the page to satisfy the allocation request.
|
---|
| 464 | **
|
---|
| 465 | ** If the page contains nBytes of free space but does not contain
|
---|
| 466 | ** nBytes of contiguous free space, then this routine automatically
|
---|
| 467 | ** calls defragementPage() to consolidate all free space before
|
---|
| 468 | ** allocating the new chunk.
|
---|
| 469 | */
|
---|
| 470 | static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
|
---|
| 471 | FreeBlk *p;
|
---|
| 472 | u16 *pIdx;
|
---|
| 473 | int start;
|
---|
| 474 | int iSize;
|
---|
| 475 | #ifndef NDEBUG
|
---|
| 476 | int cnt = 0;
|
---|
| 477 | #endif
|
---|
| 478 |
|
---|
| 479 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 480 | assert( nByte==ROUNDUP(nByte) );
|
---|
| 481 | assert( pPage->isInit );
|
---|
| 482 | if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
|
---|
| 483 | pIdx = &pPage->u.hdr.firstFree;
|
---|
| 484 | p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
|
---|
| 485 | while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
|
---|
| 486 | assert( cnt++ < SQLITE_USABLE_SIZE/4 );
|
---|
| 487 | if( p->iNext==0 ){
|
---|
| 488 | defragmentPage(pBt, pPage);
|
---|
| 489 | pIdx = &pPage->u.hdr.firstFree;
|
---|
| 490 | }else{
|
---|
| 491 | pIdx = &p->iNext;
|
---|
| 492 | }
|
---|
| 493 | p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
|
---|
| 494 | }
|
---|
| 495 | if( iSize==nByte ){
|
---|
| 496 | start = SWAB16(pBt, *pIdx);
|
---|
| 497 | *pIdx = p->iNext;
|
---|
| 498 | }else{
|
---|
| 499 | FreeBlk *pNew;
|
---|
| 500 | start = SWAB16(pBt, *pIdx);
|
---|
| 501 | pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
|
---|
| 502 | pNew->iNext = p->iNext;
|
---|
| 503 | pNew->iSize = SWAB16(pBt, iSize - nByte);
|
---|
| 504 | *pIdx = SWAB16(pBt, start + nByte);
|
---|
| 505 | }
|
---|
| 506 | pPage->nFree -= nByte;
|
---|
| 507 | return start;
|
---|
| 508 | }
|
---|
| 509 |
|
---|
| 510 | /*
|
---|
| 511 | ** Return a section of the MemPage.u.aDisk[] to the freelist.
|
---|
| 512 | ** The first byte of the new free block is pPage->u.aDisk[start]
|
---|
| 513 | ** and the size of the block is "size" bytes. Size must be
|
---|
| 514 | ** a multiple of 4.
|
---|
| 515 | **
|
---|
| 516 | ** Most of the effort here is involved in coalesing adjacent
|
---|
| 517 | ** free blocks into a single big free block.
|
---|
| 518 | */
|
---|
| 519 | static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
|
---|
| 520 | int end = start + size;
|
---|
| 521 | u16 *pIdx, idx;
|
---|
| 522 | FreeBlk *pFBlk;
|
---|
| 523 | FreeBlk *pNew;
|
---|
| 524 | FreeBlk *pNext;
|
---|
| 525 | int iSize;
|
---|
| 526 |
|
---|
| 527 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 528 | assert( size == ROUNDUP(size) );
|
---|
| 529 | assert( start == ROUNDUP(start) );
|
---|
| 530 | assert( pPage->isInit );
|
---|
| 531 | pIdx = &pPage->u.hdr.firstFree;
|
---|
| 532 | idx = SWAB16(pBt, *pIdx);
|
---|
| 533 | while( idx!=0 && idx<start ){
|
---|
| 534 | pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
| 535 | iSize = SWAB16(pBt, pFBlk->iSize);
|
---|
| 536 | if( idx + iSize == start ){
|
---|
| 537 | pFBlk->iSize = SWAB16(pBt, iSize + size);
|
---|
| 538 | if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
|
---|
| 539 | pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
|
---|
| 540 | if( pBt->needSwab ){
|
---|
| 541 | pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
|
---|
| 542 | }else{
|
---|
| 543 | pFBlk->iSize += pNext->iSize;
|
---|
| 544 | }
|
---|
| 545 | pFBlk->iNext = pNext->iNext;
|
---|
| 546 | }
|
---|
| 547 | pPage->nFree += size;
|
---|
| 548 | return;
|
---|
| 549 | }
|
---|
| 550 | pIdx = &pFBlk->iNext;
|
---|
| 551 | idx = SWAB16(pBt, *pIdx);
|
---|
| 552 | }
|
---|
| 553 | pNew = (FreeBlk*)&pPage->u.aDisk[start];
|
---|
| 554 | if( idx != end ){
|
---|
| 555 | pNew->iSize = SWAB16(pBt, size);
|
---|
| 556 | pNew->iNext = SWAB16(pBt, idx);
|
---|
| 557 | }else{
|
---|
| 558 | pNext = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
| 559 | pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
|
---|
| 560 | pNew->iNext = pNext->iNext;
|
---|
| 561 | }
|
---|
| 562 | *pIdx = SWAB16(pBt, start);
|
---|
| 563 | pPage->nFree += size;
|
---|
| 564 | }
|
---|
| 565 |
|
---|
| 566 | /*
|
---|
| 567 | ** Initialize the auxiliary information for a disk block.
|
---|
| 568 | **
|
---|
| 569 | ** The pParent parameter must be a pointer to the MemPage which
|
---|
| 570 | ** is the parent of the page being initialized. The root of the
|
---|
| 571 | ** BTree (usually page 2) has no parent and so for that page,
|
---|
| 572 | ** pParent==NULL.
|
---|
| 573 | **
|
---|
| 574 | ** Return SQLITE_OK on success. If we see that the page does
|
---|
| 575 | ** not contain a well-formed database page, then return
|
---|
| 576 | ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
|
---|
| 577 | ** guarantee that the page is well-formed. It only shows that
|
---|
| 578 | ** we failed to detect any corruption.
|
---|
| 579 | */
|
---|
| 580 | static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
|
---|
| 581 | int idx; /* An index into pPage->u.aDisk[] */
|
---|
| 582 | Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
|
---|
| 583 | FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
|
---|
| 584 | int sz; /* The size of a Cell in bytes */
|
---|
| 585 | int freeSpace; /* Amount of free space on the page */
|
---|
| 586 |
|
---|
| 587 | if( pPage->pParent ){
|
---|
| 588 | assert( pPage->pParent==pParent );
|
---|
| 589 | return SQLITE_OK;
|
---|
| 590 | }
|
---|
| 591 | if( pParent ){
|
---|
| 592 | pPage->pParent = pParent;
|
---|
| 593 | sqlitepager_ref(pParent);
|
---|
| 594 | }
|
---|
| 595 | if( pPage->isInit ) return SQLITE_OK;
|
---|
| 596 | pPage->isInit = 1;
|
---|
| 597 | pPage->nCell = 0;
|
---|
| 598 | freeSpace = USABLE_SPACE;
|
---|
| 599 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
| 600 | while( idx!=0 ){
|
---|
| 601 | if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
|
---|
| 602 | if( idx<sizeof(PageHdr) ) goto page_format_error;
|
---|
| 603 | if( idx!=ROUNDUP(idx) ) goto page_format_error;
|
---|
| 604 | pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
| 605 | sz = cellSize(pBt, pCell);
|
---|
| 606 | if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
|
---|
| 607 | freeSpace -= sz;
|
---|
| 608 | pPage->apCell[pPage->nCell++] = pCell;
|
---|
| 609 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
| 610 | }
|
---|
| 611 | pPage->nFree = 0;
|
---|
| 612 | idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
---|
| 613 | while( idx!=0 ){
|
---|
| 614 | int iNext;
|
---|
| 615 | if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
|
---|
| 616 | if( idx<sizeof(PageHdr) ) goto page_format_error;
|
---|
| 617 | pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
| 618 | pPage->nFree += SWAB16(pBt, pFBlk->iSize);
|
---|
| 619 | iNext = SWAB16(pBt, pFBlk->iNext);
|
---|
| 620 | if( iNext>0 && iNext <= idx ) goto page_format_error;
|
---|
| 621 | idx = iNext;
|
---|
| 622 | }
|
---|
| 623 | if( pPage->nCell==0 && pPage->nFree==0 ){
|
---|
| 624 | /* As a special case, an uninitialized root page appears to be
|
---|
| 625 | ** an empty database */
|
---|
| 626 | return SQLITE_OK;
|
---|
| 627 | }
|
---|
| 628 | if( pPage->nFree!=freeSpace ) goto page_format_error;
|
---|
| 629 | return SQLITE_OK;
|
---|
| 630 |
|
---|
| 631 | page_format_error:
|
---|
| 632 | return SQLITE_CORRUPT;
|
---|
| 633 | }
|
---|
| 634 |
|
---|
| 635 | /*
|
---|
| 636 | ** Set up a raw page so that it looks like a database page holding
|
---|
| 637 | ** no entries.
|
---|
| 638 | */
|
---|
| 639 | static void zeroPage(Btree *pBt, MemPage *pPage){
|
---|
| 640 | PageHdr *pHdr;
|
---|
| 641 | FreeBlk *pFBlk;
|
---|
| 642 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 643 | memset(pPage, 0, SQLITE_USABLE_SIZE);
|
---|
| 644 | pHdr = &pPage->u.hdr;
|
---|
| 645 | pHdr->firstCell = 0;
|
---|
| 646 | pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
|
---|
| 647 | pFBlk = (FreeBlk*)&pHdr[1];
|
---|
| 648 | pFBlk->iNext = 0;
|
---|
| 649 | pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
|
---|
| 650 | pFBlk->iSize = SWAB16(pBt, pPage->nFree);
|
---|
| 651 | pPage->nCell = 0;
|
---|
| 652 | pPage->isOverfull = 0;
|
---|
| 653 | }
|
---|
| 654 |
|
---|
| 655 | /*
|
---|
| 656 | ** This routine is called when the reference count for a page
|
---|
| 657 | ** reaches zero. We need to unref the pParent pointer when that
|
---|
| 658 | ** happens.
|
---|
| 659 | */
|
---|
| 660 | static void pageDestructor(void *pData){
|
---|
| 661 | MemPage *pPage = (MemPage*)pData;
|
---|
| 662 | if( pPage->pParent ){
|
---|
| 663 | MemPage *pParent = pPage->pParent;
|
---|
| 664 | pPage->pParent = 0;
|
---|
| 665 | sqlitepager_unref(pParent);
|
---|
| 666 | }
|
---|
| 667 | }
|
---|
| 668 |
|
---|
| 669 | /*
|
---|
| 670 | ** Open a new database.
|
---|
| 671 | **
|
---|
| 672 | ** Actually, this routine just sets up the internal data structures
|
---|
| 673 | ** for accessing the database. We do not open the database file
|
---|
| 674 | ** until the first page is loaded.
|
---|
| 675 | **
|
---|
| 676 | ** zFilename is the name of the database file. If zFilename is NULL
|
---|
| 677 | ** a new database with a random name is created. This randomly named
|
---|
| 678 | ** database file will be deleted when sqliteBtreeClose() is called.
|
---|
| 679 | */
|
---|
| 680 | int sqliteBtreeOpen(
|
---|
| 681 | const char *zFilename, /* Name of the file containing the BTree database */
|
---|
| 682 | int omitJournal, /* if TRUE then do not journal this file */
|
---|
| 683 | int nCache, /* How many pages in the page cache */
|
---|
| 684 | Btree **ppBtree /* Pointer to new Btree object written here */
|
---|
| 685 | ){
|
---|
| 686 | Btree *pBt;
|
---|
| 687 | int rc;
|
---|
| 688 |
|
---|
| 689 | /*
|
---|
| 690 | ** The following asserts make sure that structures used by the btree are
|
---|
| 691 | ** the right size. This is to guard against size changes that result
|
---|
| 692 | ** when compiling on a different architecture.
|
---|
| 693 | */
|
---|
| 694 | assert( sizeof(u32)==4 );
|
---|
| 695 | assert( sizeof(u16)==2 );
|
---|
| 696 | assert( sizeof(Pgno)==4 );
|
---|
| 697 | assert( sizeof(PageHdr)==8 );
|
---|
| 698 | assert( sizeof(CellHdr)==12 );
|
---|
| 699 | assert( sizeof(FreeBlk)==4 );
|
---|
| 700 | assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
|
---|
| 701 | assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
|
---|
| 702 | assert( sizeof(ptr)==sizeof(char*) );
|
---|
| 703 | assert( sizeof(uptr)==sizeof(ptr) );
|
---|
| 704 |
|
---|
| 705 | pBt = sqliteMalloc( sizeof(*pBt) );
|
---|
| 706 | if( pBt==0 ){
|
---|
| 707 | *ppBtree = 0;
|
---|
| 708 | return SQLITE_NOMEM;
|
---|
| 709 | }
|
---|
| 710 | if( nCache<10 ) nCache = 10;
|
---|
| 711 | rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
|
---|
| 712 | !omitJournal);
|
---|
| 713 | if( rc!=SQLITE_OK ){
|
---|
| 714 | if( pBt->pPager ) sqlitepager_close(pBt->pPager);
|
---|
| 715 | sqliteFree(pBt);
|
---|
| 716 | *ppBtree = 0;
|
---|
| 717 | return rc;
|
---|
| 718 | }
|
---|
| 719 | sqlitepager_set_destructor(pBt->pPager, pageDestructor);
|
---|
| 720 | pBt->pCursor = 0;
|
---|
| 721 | pBt->page1 = 0;
|
---|
| 722 | pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
|
---|
| 723 | pBt->pOps = &sqliteBtreeOps;
|
---|
| 724 | *ppBtree = pBt;
|
---|
| 725 | return SQLITE_OK;
|
---|
| 726 | }
|
---|
| 727 |
|
---|
| 728 | /*
|
---|
| 729 | ** Close an open database and invalidate all cursors.
|
---|
| 730 | */
|
---|
| 731 | static int fileBtreeClose(Btree *pBt){
|
---|
| 732 | while( pBt->pCursor ){
|
---|
| 733 | fileBtreeCloseCursor(pBt->pCursor);
|
---|
| 734 | }
|
---|
| 735 | sqlitepager_close(pBt->pPager);
|
---|
| 736 | sqliteFree(pBt);
|
---|
| 737 | return SQLITE_OK;
|
---|
| 738 | }
|
---|
| 739 |
|
---|
| 740 | /*
|
---|
| 741 | ** Change the limit on the number of pages allowed in the cache.
|
---|
| 742 | **
|
---|
| 743 | ** The maximum number of cache pages is set to the absolute
|
---|
| 744 | ** value of mxPage. If mxPage is negative, the pager will
|
---|
| 745 | ** operate asynchronously - it will not stop to do fsync()s
|
---|
| 746 | ** to insure data is written to the disk surface before
|
---|
| 747 | ** continuing. Transactions still work if synchronous is off,
|
---|
| 748 | ** and the database cannot be corrupted if this program
|
---|
| 749 | ** crashes. But if the operating system crashes or there is
|
---|
| 750 | ** an abrupt power failure when synchronous is off, the database
|
---|
| 751 | ** could be left in an inconsistent and unrecoverable state.
|
---|
| 752 | ** Synchronous is on by default so database corruption is not
|
---|
| 753 | ** normally a worry.
|
---|
| 754 | */
|
---|
| 755 | static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
|
---|
| 756 | sqlitepager_set_cachesize(pBt->pPager, mxPage);
|
---|
| 757 | return SQLITE_OK;
|
---|
| 758 | }
|
---|
| 759 |
|
---|
| 760 | /*
|
---|
| 761 | ** Change the way data is synced to disk in order to increase or decrease
|
---|
| 762 | ** how well the database resists damage due to OS crashes and power
|
---|
| 763 | ** failures. Level 1 is the same as asynchronous (no syncs() occur and
|
---|
| 764 | ** there is a high probability of damage) Level 2 is the default. There
|
---|
| 765 | ** is a very low but non-zero probability of damage. Level 3 reduces the
|
---|
| 766 | ** probability of damage to near zero but with a write performance reduction.
|
---|
| 767 | */
|
---|
| 768 | static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
|
---|
| 769 | sqlitepager_set_safety_level(pBt->pPager, level);
|
---|
| 770 | return SQLITE_OK;
|
---|
| 771 | }
|
---|
| 772 |
|
---|
| 773 | /*
|
---|
| 774 | ** Get a reference to page1 of the database file. This will
|
---|
| 775 | ** also acquire a readlock on that file.
|
---|
| 776 | **
|
---|
| 777 | ** SQLITE_OK is returned on success. If the file is not a
|
---|
| 778 | ** well-formed database file, then SQLITE_CORRUPT is returned.
|
---|
| 779 | ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
|
---|
| 780 | ** is returned if we run out of memory. SQLITE_PROTOCOL is returned
|
---|
| 781 | ** if there is a locking protocol violation.
|
---|
| 782 | */
|
---|
| 783 | static int lockBtree(Btree *pBt){
|
---|
| 784 | int rc;
|
---|
| 785 | if( pBt->page1 ) return SQLITE_OK;
|
---|
| 786 | rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
|
---|
| 787 | if( rc!=SQLITE_OK ) return rc;
|
---|
| 788 |
|
---|
| 789 | /* Do some checking to help insure the file we opened really is
|
---|
| 790 | ** a valid database file.
|
---|
| 791 | */
|
---|
| 792 | if( sqlitepager_pagecount(pBt->pPager)>0 ){
|
---|
| 793 | PageOne *pP1 = pBt->page1;
|
---|
| 794 | if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
|
---|
| 795 | (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
|
---|
| 796 | rc = SQLITE_NOTADB;
|
---|
| 797 | goto page1_init_failed;
|
---|
| 798 | }
|
---|
| 799 | pBt->needSwab = pP1->iMagic!=MAGIC;
|
---|
| 800 | }
|
---|
| 801 | return rc;
|
---|
| 802 |
|
---|
| 803 | page1_init_failed:
|
---|
| 804 | sqlitepager_unref(pBt->page1);
|
---|
| 805 | pBt->page1 = 0;
|
---|
| 806 | return rc;
|
---|
| 807 | }
|
---|
| 808 |
|
---|
| 809 | /*
|
---|
| 810 | ** If there are no outstanding cursors and we are not in the middle
|
---|
| 811 | ** of a transaction but there is a read lock on the database, then
|
---|
| 812 | ** this routine unrefs the first page of the database file which
|
---|
| 813 | ** has the effect of releasing the read lock.
|
---|
| 814 | **
|
---|
| 815 | ** If there are any outstanding cursors, this routine is a no-op.
|
---|
| 816 | **
|
---|
| 817 | ** If there is a transaction in progress, this routine is a no-op.
|
---|
| 818 | */
|
---|
| 819 | static void unlockBtreeIfUnused(Btree *pBt){
|
---|
| 820 | if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
|
---|
| 821 | sqlitepager_unref(pBt->page1);
|
---|
| 822 | pBt->page1 = 0;
|
---|
| 823 | pBt->inTrans = 0;
|
---|
| 824 | pBt->inCkpt = 0;
|
---|
| 825 | }
|
---|
| 826 | }
|
---|
| 827 |
|
---|
| 828 | /*
|
---|
| 829 | ** Create a new database by initializing the first two pages of the
|
---|
| 830 | ** file.
|
---|
| 831 | */
|
---|
| 832 | static int newDatabase(Btree *pBt){
|
---|
| 833 | MemPage *pRoot;
|
---|
| 834 | PageOne *pP1;
|
---|
| 835 | int rc;
|
---|
| 836 | if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
|
---|
| 837 | pP1 = pBt->page1;
|
---|
| 838 | rc = sqlitepager_write(pBt->page1);
|
---|
| 839 | if( rc ) return rc;
|
---|
| 840 | rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
|
---|
| 841 | if( rc ) return rc;
|
---|
| 842 | rc = sqlitepager_write(pRoot);
|
---|
| 843 | if( rc ){
|
---|
| 844 | sqlitepager_unref(pRoot);
|
---|
| 845 | return rc;
|
---|
| 846 | }
|
---|
| 847 | strcpy(pP1->zMagic, zMagicHeader);
|
---|
| 848 | if( btree_native_byte_order ){
|
---|
| 849 | pP1->iMagic = MAGIC;
|
---|
| 850 | pBt->needSwab = 0;
|
---|
| 851 | }else{
|
---|
| 852 | pP1->iMagic = swab32(MAGIC);
|
---|
| 853 | pBt->needSwab = 1;
|
---|
| 854 | }
|
---|
| 855 | zeroPage(pBt, pRoot);
|
---|
| 856 | sqlitepager_unref(pRoot);
|
---|
| 857 | return SQLITE_OK;
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 | /*
|
---|
| 861 | ** Attempt to start a new transaction.
|
---|
| 862 | **
|
---|
| 863 | ** A transaction must be started before attempting any changes
|
---|
| 864 | ** to the database. None of the following routines will work
|
---|
| 865 | ** unless a transaction is started first:
|
---|
| 866 | **
|
---|
| 867 | ** sqliteBtreeCreateTable()
|
---|
| 868 | ** sqliteBtreeCreateIndex()
|
---|
| 869 | ** sqliteBtreeClearTable()
|
---|
| 870 | ** sqliteBtreeDropTable()
|
---|
| 871 | ** sqliteBtreeInsert()
|
---|
| 872 | ** sqliteBtreeDelete()
|
---|
| 873 | ** sqliteBtreeUpdateMeta()
|
---|
| 874 | */
|
---|
| 875 | static int fileBtreeBeginTrans(Btree *pBt){
|
---|
| 876 | int rc;
|
---|
| 877 | if( pBt->inTrans ) return SQLITE_ERROR;
|
---|
| 878 | if( pBt->readOnly ) return SQLITE_READONLY;
|
---|
| 879 | if( pBt->page1==0 ){
|
---|
| 880 | rc = lockBtree(pBt);
|
---|
| 881 | if( rc!=SQLITE_OK ){
|
---|
| 882 | return rc;
|
---|
| 883 | }
|
---|
| 884 | }
|
---|
| 885 | rc = sqlitepager_begin(pBt->page1);
|
---|
| 886 | if( rc==SQLITE_OK ){
|
---|
| 887 | rc = newDatabase(pBt);
|
---|
| 888 | }
|
---|
| 889 | if( rc==SQLITE_OK ){
|
---|
| 890 | pBt->inTrans = 1;
|
---|
| 891 | pBt->inCkpt = 0;
|
---|
| 892 | }else{
|
---|
| 893 | unlockBtreeIfUnused(pBt);
|
---|
| 894 | }
|
---|
| 895 | return rc;
|
---|
| 896 | }
|
---|
| 897 |
|
---|
| 898 | /*
|
---|
| 899 | ** Commit the transaction currently in progress.
|
---|
| 900 | **
|
---|
| 901 | ** This will release the write lock on the database file. If there
|
---|
| 902 | ** are no active cursors, it also releases the read lock.
|
---|
| 903 | */
|
---|
| 904 | static int fileBtreeCommit(Btree *pBt){
|
---|
| 905 | int rc;
|
---|
| 906 | rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
|
---|
| 907 | pBt->inTrans = 0;
|
---|
| 908 | pBt->inCkpt = 0;
|
---|
| 909 | unlockBtreeIfUnused(pBt);
|
---|
| 910 | return rc;
|
---|
| 911 | }
|
---|
| 912 |
|
---|
| 913 | /*
|
---|
| 914 | ** Rollback the transaction in progress. All cursors will be
|
---|
| 915 | ** invalided by this operation. Any attempt to use a cursor
|
---|
| 916 | ** that was open at the beginning of this operation will result
|
---|
| 917 | ** in an error.
|
---|
| 918 | **
|
---|
| 919 | ** This will release the write lock on the database file. If there
|
---|
| 920 | ** are no active cursors, it also releases the read lock.
|
---|
| 921 | */
|
---|
| 922 | static int fileBtreeRollback(Btree *pBt){
|
---|
| 923 | int rc;
|
---|
| 924 | BtCursor *pCur;
|
---|
| 925 | if( pBt->inTrans==0 ) return SQLITE_OK;
|
---|
| 926 | pBt->inTrans = 0;
|
---|
| 927 | pBt->inCkpt = 0;
|
---|
| 928 | rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
|
---|
| 929 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
| 930 | if( pCur->pPage && pCur->pPage->isInit==0 ){
|
---|
| 931 | sqlitepager_unref(pCur->pPage);
|
---|
| 932 | pCur->pPage = 0;
|
---|
| 933 | }
|
---|
| 934 | }
|
---|
| 935 | unlockBtreeIfUnused(pBt);
|
---|
| 936 | return rc;
|
---|
| 937 | }
|
---|
| 938 |
|
---|
| 939 | /*
|
---|
| 940 | ** Set the checkpoint for the current transaction. The checkpoint serves
|
---|
| 941 | ** as a sub-transaction that can be rolled back independently of the
|
---|
| 942 | ** main transaction. You must start a transaction before starting a
|
---|
| 943 | ** checkpoint. The checkpoint is ended automatically if the transaction
|
---|
| 944 | ** commits or rolls back.
|
---|
| 945 | **
|
---|
| 946 | ** Only one checkpoint may be active at a time. It is an error to try
|
---|
| 947 | ** to start a new checkpoint if another checkpoint is already active.
|
---|
| 948 | */
|
---|
| 949 | static int fileBtreeBeginCkpt(Btree *pBt){
|
---|
| 950 | int rc;
|
---|
| 951 | if( !pBt->inTrans || pBt->inCkpt ){
|
---|
| 952 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
| 953 | }
|
---|
| 954 | rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
|
---|
| 955 | pBt->inCkpt = 1;
|
---|
| 956 | return rc;
|
---|
| 957 | }
|
---|
| 958 |
|
---|
| 959 |
|
---|
| 960 | /*
|
---|
| 961 | ** Commit a checkpoint to transaction currently in progress. If no
|
---|
| 962 | ** checkpoint is active, this is a no-op.
|
---|
| 963 | */
|
---|
| 964 | static int fileBtreeCommitCkpt(Btree *pBt){
|
---|
| 965 | int rc;
|
---|
| 966 | if( pBt->inCkpt && !pBt->readOnly ){
|
---|
| 967 | rc = sqlitepager_ckpt_commit(pBt->pPager);
|
---|
| 968 | }else{
|
---|
| 969 | rc = SQLITE_OK;
|
---|
| 970 | }
|
---|
| 971 | pBt->inCkpt = 0;
|
---|
| 972 | return rc;
|
---|
| 973 | }
|
---|
| 974 |
|
---|
| 975 | /*
|
---|
| 976 | ** Rollback the checkpoint to the current transaction. If there
|
---|
| 977 | ** is no active checkpoint or transaction, this routine is a no-op.
|
---|
| 978 | **
|
---|
| 979 | ** All cursors will be invalided by this operation. Any attempt
|
---|
| 980 | ** to use a cursor that was open at the beginning of this operation
|
---|
| 981 | ** will result in an error.
|
---|
| 982 | */
|
---|
| 983 | static int fileBtreeRollbackCkpt(Btree *pBt){
|
---|
| 984 | int rc;
|
---|
| 985 | BtCursor *pCur;
|
---|
| 986 | if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
|
---|
| 987 | rc = sqlitepager_ckpt_rollback(pBt->pPager);
|
---|
| 988 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
| 989 | if( pCur->pPage && pCur->pPage->isInit==0 ){
|
---|
| 990 | sqlitepager_unref(pCur->pPage);
|
---|
| 991 | pCur->pPage = 0;
|
---|
| 992 | }
|
---|
| 993 | }
|
---|
| 994 | pBt->inCkpt = 0;
|
---|
| 995 | return rc;
|
---|
| 996 | }
|
---|
| 997 |
|
---|
| 998 | /*
|
---|
| 999 | ** Create a new cursor for the BTree whose root is on the page
|
---|
| 1000 | ** iTable. The act of acquiring a cursor gets a read lock on
|
---|
| 1001 | ** the database file.
|
---|
| 1002 | **
|
---|
| 1003 | ** If wrFlag==0, then the cursor can only be used for reading.
|
---|
| 1004 | ** If wrFlag==1, then the cursor can be used for reading or for
|
---|
| 1005 | ** writing if other conditions for writing are also met. These
|
---|
| 1006 | ** are the conditions that must be met in order for writing to
|
---|
| 1007 | ** be allowed:
|
---|
| 1008 | **
|
---|
| 1009 | ** 1: The cursor must have been opened with wrFlag==1
|
---|
| 1010 | **
|
---|
| 1011 | ** 2: No other cursors may be open with wrFlag==0 on the same table
|
---|
| 1012 | **
|
---|
| 1013 | ** 3: The database must be writable (not on read-only media)
|
---|
| 1014 | **
|
---|
| 1015 | ** 4: There must be an active transaction.
|
---|
| 1016 | **
|
---|
| 1017 | ** Condition 2 warrants further discussion. If any cursor is opened
|
---|
| 1018 | ** on a table with wrFlag==0, that prevents all other cursors from
|
---|
| 1019 | ** writing to that table. This is a kind of "read-lock". When a cursor
|
---|
| 1020 | ** is opened with wrFlag==0 it is guaranteed that the table will not
|
---|
| 1021 | ** change as long as the cursor is open. This allows the cursor to
|
---|
| 1022 | ** do a sequential scan of the table without having to worry about
|
---|
| 1023 | ** entries being inserted or deleted during the scan. Cursors should
|
---|
| 1024 | ** be opened with wrFlag==0 only if this read-lock property is needed.
|
---|
| 1025 | ** That is to say, cursors should be opened with wrFlag==0 only if they
|
---|
| 1026 | ** intend to use the sqliteBtreeNext() system call. All other cursors
|
---|
| 1027 | ** should be opened with wrFlag==1 even if they never really intend
|
---|
| 1028 | ** to write.
|
---|
| 1029 | **
|
---|
| 1030 | ** No checking is done to make sure that page iTable really is the
|
---|
| 1031 | ** root page of a b-tree. If it is not, then the cursor acquired
|
---|
| 1032 | ** will not work correctly.
|
---|
| 1033 | */
|
---|
| 1034 | static
|
---|
| 1035 | int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
|
---|
| 1036 | int rc;
|
---|
| 1037 | BtCursor *pCur, *pRing;
|
---|
| 1038 |
|
---|
| 1039 | if( pBt->readOnly && wrFlag ){
|
---|
| 1040 | *ppCur = 0;
|
---|
| 1041 | return SQLITE_READONLY;
|
---|
| 1042 | }
|
---|
| 1043 | if( pBt->page1==0 ){
|
---|
| 1044 | rc = lockBtree(pBt);
|
---|
| 1045 | if( rc!=SQLITE_OK ){
|
---|
| 1046 | *ppCur = 0;
|
---|
| 1047 | return rc;
|
---|
| 1048 | }
|
---|
| 1049 | }
|
---|
| 1050 | pCur = sqliteMalloc( sizeof(*pCur) );
|
---|
| 1051 | if( pCur==0 ){
|
---|
| 1052 | rc = SQLITE_NOMEM;
|
---|
| 1053 | goto create_cursor_exception;
|
---|
| 1054 | }
|
---|
| 1055 | pCur->pgnoRoot = (Pgno)iTable;
|
---|
| 1056 | rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
|
---|
| 1057 | if( rc!=SQLITE_OK ){
|
---|
| 1058 | goto create_cursor_exception;
|
---|
| 1059 | }
|
---|
| 1060 | rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
|
---|
| 1061 | if( rc!=SQLITE_OK ){
|
---|
| 1062 | goto create_cursor_exception;
|
---|
| 1063 | }
|
---|
| 1064 | pCur->pOps = &sqliteBtreeCursorOps;
|
---|
| 1065 | pCur->pBt = pBt;
|
---|
| 1066 | pCur->wrFlag = wrFlag;
|
---|
| 1067 | pCur->idx = 0;
|
---|
| 1068 | pCur->eSkip = SKIP_INVALID;
|
---|
| 1069 | pCur->pNext = pBt->pCursor;
|
---|
| 1070 | if( pCur->pNext ){
|
---|
| 1071 | pCur->pNext->pPrev = pCur;
|
---|
| 1072 | }
|
---|
| 1073 | pCur->pPrev = 0;
|
---|
| 1074 | pRing = pBt->pCursor;
|
---|
| 1075 | while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
|
---|
| 1076 | if( pRing ){
|
---|
| 1077 | pCur->pShared = pRing->pShared;
|
---|
| 1078 | pRing->pShared = pCur;
|
---|
| 1079 | }else{
|
---|
| 1080 | pCur->pShared = pCur;
|
---|
| 1081 | }
|
---|
| 1082 | pBt->pCursor = pCur;
|
---|
| 1083 | *ppCur = pCur;
|
---|
| 1084 | return SQLITE_OK;
|
---|
| 1085 |
|
---|
| 1086 | create_cursor_exception:
|
---|
| 1087 | *ppCur = 0;
|
---|
| 1088 | if( pCur ){
|
---|
| 1089 | if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
|
---|
| 1090 | sqliteFree(pCur);
|
---|
| 1091 | }
|
---|
| 1092 | unlockBtreeIfUnused(pBt);
|
---|
| 1093 | return rc;
|
---|
| 1094 | }
|
---|
| 1095 |
|
---|
| 1096 | /*
|
---|
| 1097 | ** Close a cursor. The read lock on the database file is released
|
---|
| 1098 | ** when the last cursor is closed.
|
---|
| 1099 | */
|
---|
| 1100 | static int fileBtreeCloseCursor(BtCursor *pCur){
|
---|
| 1101 | Btree *pBt = pCur->pBt;
|
---|
| 1102 | if( pCur->pPrev ){
|
---|
| 1103 | pCur->pPrev->pNext = pCur->pNext;
|
---|
| 1104 | }else{
|
---|
| 1105 | pBt->pCursor = pCur->pNext;
|
---|
| 1106 | }
|
---|
| 1107 | if( pCur->pNext ){
|
---|
| 1108 | pCur->pNext->pPrev = pCur->pPrev;
|
---|
| 1109 | }
|
---|
| 1110 | if( pCur->pPage ){
|
---|
| 1111 | sqlitepager_unref(pCur->pPage);
|
---|
| 1112 | }
|
---|
| 1113 | if( pCur->pShared!=pCur ){
|
---|
| 1114 | BtCursor *pRing = pCur->pShared;
|
---|
| 1115 | while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
|
---|
| 1116 | pRing->pShared = pCur->pShared;
|
---|
| 1117 | }
|
---|
| 1118 | unlockBtreeIfUnused(pBt);
|
---|
| 1119 | sqliteFree(pCur);
|
---|
| 1120 | return SQLITE_OK;
|
---|
| 1121 | }
|
---|
| 1122 |
|
---|
| 1123 | /*
|
---|
| 1124 | ** Make a temporary cursor by filling in the fields of pTempCur.
|
---|
| 1125 | ** The temporary cursor is not on the cursor list for the Btree.
|
---|
| 1126 | */
|
---|
| 1127 | static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
|
---|
| 1128 | memcpy(pTempCur, pCur, sizeof(*pCur));
|
---|
| 1129 | pTempCur->pNext = 0;
|
---|
| 1130 | pTempCur->pPrev = 0;
|
---|
| 1131 | if( pTempCur->pPage ){
|
---|
| 1132 | sqlitepager_ref(pTempCur->pPage);
|
---|
| 1133 | }
|
---|
| 1134 | }
|
---|
| 1135 |
|
---|
| 1136 | /*
|
---|
| 1137 | ** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
|
---|
| 1138 | ** function above.
|
---|
| 1139 | */
|
---|
| 1140 | static void releaseTempCursor(BtCursor *pCur){
|
---|
| 1141 | if( pCur->pPage ){
|
---|
| 1142 | sqlitepager_unref(pCur->pPage);
|
---|
| 1143 | }
|
---|
| 1144 | }
|
---|
| 1145 |
|
---|
| 1146 | /*
|
---|
| 1147 | ** Set *pSize to the number of bytes of key in the entry the
|
---|
| 1148 | ** cursor currently points to. Always return SQLITE_OK.
|
---|
| 1149 | ** Failure is not possible. If the cursor is not currently
|
---|
| 1150 | ** pointing to an entry (which can happen, for example, if
|
---|
| 1151 | ** the database is empty) then *pSize is set to 0.
|
---|
| 1152 | */
|
---|
| 1153 | static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
|
---|
| 1154 | Cell *pCell;
|
---|
| 1155 | MemPage *pPage;
|
---|
| 1156 |
|
---|
| 1157 | pPage = pCur->pPage;
|
---|
| 1158 | assert( pPage!=0 );
|
---|
| 1159 | if( pCur->idx >= pPage->nCell ){
|
---|
| 1160 | *pSize = 0;
|
---|
| 1161 | }else{
|
---|
| 1162 | pCell = pPage->apCell[pCur->idx];
|
---|
| 1163 | *pSize = NKEY(pCur->pBt, pCell->h);
|
---|
| 1164 | }
|
---|
| 1165 | return SQLITE_OK;
|
---|
| 1166 | }
|
---|
| 1167 |
|
---|
| 1168 | /*
|
---|
| 1169 | ** Read payload information from the entry that the pCur cursor is
|
---|
| 1170 | ** pointing to. Begin reading the payload at "offset" and read
|
---|
| 1171 | ** a total of "amt" bytes. Put the result in zBuf.
|
---|
| 1172 | **
|
---|
| 1173 | ** This routine does not make a distinction between key and data.
|
---|
| 1174 | ** It just reads bytes from the payload area.
|
---|
| 1175 | */
|
---|
| 1176 | static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
|
---|
| 1177 | char *aPayload;
|
---|
| 1178 | Pgno nextPage;
|
---|
| 1179 | int rc;
|
---|
| 1180 | Btree *pBt = pCur->pBt;
|
---|
| 1181 | assert( pCur!=0 && pCur->pPage!=0 );
|
---|
| 1182 | assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
---|
| 1183 | aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
|
---|
| 1184 | if( offset<MX_LOCAL_PAYLOAD ){
|
---|
| 1185 | int a = amt;
|
---|
| 1186 | if( a+offset>MX_LOCAL_PAYLOAD ){
|
---|
| 1187 | a = MX_LOCAL_PAYLOAD - offset;
|
---|
| 1188 | }
|
---|
| 1189 | memcpy(zBuf, &aPayload[offset], a);
|
---|
| 1190 | if( a==amt ){
|
---|
| 1191 | return SQLITE_OK;
|
---|
| 1192 | }
|
---|
| 1193 | offset = 0;
|
---|
| 1194 | zBuf += a;
|
---|
| 1195 | amt -= a;
|
---|
| 1196 | }else{
|
---|
| 1197 | offset -= MX_LOCAL_PAYLOAD;
|
---|
| 1198 | }
|
---|
| 1199 | if( amt>0 ){
|
---|
| 1200 | nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
|
---|
| 1201 | }
|
---|
| 1202 | while( amt>0 && nextPage ){
|
---|
| 1203 | OverflowPage *pOvfl;
|
---|
| 1204 | rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
|
---|
| 1205 | if( rc!=0 ){
|
---|
| 1206 | return rc;
|
---|
| 1207 | }
|
---|
| 1208 | nextPage = SWAB32(pBt, pOvfl->iNext);
|
---|
| 1209 | if( offset<OVERFLOW_SIZE ){
|
---|
| 1210 | int a = amt;
|
---|
| 1211 | if( a + offset > OVERFLOW_SIZE ){
|
---|
| 1212 | a = OVERFLOW_SIZE - offset;
|
---|
| 1213 | }
|
---|
| 1214 | memcpy(zBuf, &pOvfl->aPayload[offset], a);
|
---|
| 1215 | offset = 0;
|
---|
| 1216 | amt -= a;
|
---|
| 1217 | zBuf += a;
|
---|
| 1218 | }else{
|
---|
| 1219 | offset -= OVERFLOW_SIZE;
|
---|
| 1220 | }
|
---|
| 1221 | sqlitepager_unref(pOvfl);
|
---|
| 1222 | }
|
---|
| 1223 | if( amt>0 ){
|
---|
| 1224 | return SQLITE_CORRUPT;
|
---|
| 1225 | }
|
---|
| 1226 | return SQLITE_OK;
|
---|
| 1227 | }
|
---|
| 1228 |
|
---|
| 1229 | /*
|
---|
| 1230 | ** Read part of the key associated with cursor pCur. A maximum
|
---|
| 1231 | ** of "amt" bytes will be transfered into zBuf[]. The transfer
|
---|
| 1232 | ** begins at "offset". The number of bytes actually read is
|
---|
| 1233 | ** returned.
|
---|
| 1234 | **
|
---|
| 1235 | ** Change: It used to be that the amount returned will be smaller
|
---|
| 1236 | ** than the amount requested if there are not enough bytes in the key
|
---|
| 1237 | ** to satisfy the request. But now, it must be the case that there
|
---|
| 1238 | ** is enough data available to satisfy the request. If not, an exception
|
---|
| 1239 | ** is raised. The change was made in an effort to boost performance
|
---|
| 1240 | ** by eliminating unneeded tests.
|
---|
| 1241 | */
|
---|
| 1242 | static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
|
---|
| 1243 | MemPage *pPage;
|
---|
| 1244 |
|
---|
| 1245 | assert( amt>=0 );
|
---|
| 1246 | assert( offset>=0 );
|
---|
| 1247 | assert( pCur->pPage!=0 );
|
---|
| 1248 | pPage = pCur->pPage;
|
---|
| 1249 | if( pCur->idx >= pPage->nCell ){
|
---|
| 1250 | return 0;
|
---|
| 1251 | }
|
---|
| 1252 | assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
|
---|
| 1253 | getPayload(pCur, offset, amt, zBuf);
|
---|
| 1254 | return amt;
|
---|
| 1255 | }
|
---|
| 1256 |
|
---|
| 1257 | /*
|
---|
| 1258 | ** Set *pSize to the number of bytes of data in the entry the
|
---|
| 1259 | ** cursor currently points to. Always return SQLITE_OK.
|
---|
| 1260 | ** Failure is not possible. If the cursor is not currently
|
---|
| 1261 | ** pointing to an entry (which can happen, for example, if
|
---|
| 1262 | ** the database is empty) then *pSize is set to 0.
|
---|
| 1263 | */
|
---|
| 1264 | static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
|
---|
| 1265 | Cell *pCell;
|
---|
| 1266 | MemPage *pPage;
|
---|
| 1267 |
|
---|
| 1268 | pPage = pCur->pPage;
|
---|
| 1269 | assert( pPage!=0 );
|
---|
| 1270 | if( pCur->idx >= pPage->nCell ){
|
---|
| 1271 | *pSize = 0;
|
---|
| 1272 | }else{
|
---|
| 1273 | pCell = pPage->apCell[pCur->idx];
|
---|
| 1274 | *pSize = NDATA(pCur->pBt, pCell->h);
|
---|
| 1275 | }
|
---|
| 1276 | return SQLITE_OK;
|
---|
| 1277 | }
|
---|
| 1278 |
|
---|
| 1279 | /*
|
---|
| 1280 | ** Read part of the data associated with cursor pCur. A maximum
|
---|
| 1281 | ** of "amt" bytes will be transfered into zBuf[]. The transfer
|
---|
| 1282 | ** begins at "offset". The number of bytes actually read is
|
---|
| 1283 | ** returned. The amount returned will be smaller than the
|
---|
| 1284 | ** amount requested if there are not enough bytes in the data
|
---|
| 1285 | ** to satisfy the request.
|
---|
| 1286 | */
|
---|
| 1287 | static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
|
---|
| 1288 | Cell *pCell;
|
---|
| 1289 | MemPage *pPage;
|
---|
| 1290 |
|
---|
| 1291 | assert( amt>=0 );
|
---|
| 1292 | assert( offset>=0 );
|
---|
| 1293 | assert( pCur->pPage!=0 );
|
---|
| 1294 | pPage = pCur->pPage;
|
---|
| 1295 | if( pCur->idx >= pPage->nCell ){
|
---|
| 1296 | return 0;
|
---|
| 1297 | }
|
---|
| 1298 | pCell = pPage->apCell[pCur->idx];
|
---|
| 1299 | assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
|
---|
| 1300 | getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
|
---|
| 1301 | return amt;
|
---|
| 1302 | }
|
---|
| 1303 |
|
---|
| 1304 | /*
|
---|
| 1305 | ** Compare an external key against the key on the entry that pCur points to.
|
---|
| 1306 | **
|
---|
| 1307 | ** The external key is pKey and is nKey bytes long. The last nIgnore bytes
|
---|
| 1308 | ** of the key associated with pCur are ignored, as if they do not exist.
|
---|
| 1309 | ** (The normal case is for nIgnore to be zero in which case the entire
|
---|
| 1310 | ** internal key is used in the comparison.)
|
---|
| 1311 | **
|
---|
| 1312 | ** The comparison result is written to *pRes as follows:
|
---|
| 1313 | **
|
---|
| 1314 | ** *pRes<0 This means pCur<pKey
|
---|
| 1315 | **
|
---|
| 1316 | ** *pRes==0 This means pCur==pKey for all nKey bytes
|
---|
| 1317 | **
|
---|
| 1318 | ** *pRes>0 This means pCur>pKey
|
---|
| 1319 | **
|
---|
| 1320 | ** When one key is an exact prefix of the other, the shorter key is
|
---|
| 1321 | ** considered less than the longer one. In order to be equal the
|
---|
| 1322 | ** keys must be exactly the same length. (The length of the pCur key
|
---|
| 1323 | ** is the actual key length minus nIgnore bytes.)
|
---|
| 1324 | */
|
---|
| 1325 | static int fileBtreeKeyCompare(
|
---|
| 1326 | BtCursor *pCur, /* Pointer to entry to compare against */
|
---|
| 1327 | const void *pKey, /* Key to compare against entry that pCur points to */
|
---|
| 1328 | int nKey, /* Number of bytes in pKey */
|
---|
| 1329 | int nIgnore, /* Ignore this many bytes at the end of pCur */
|
---|
| 1330 | int *pResult /* Write the result here */
|
---|
| 1331 | ){
|
---|
| 1332 | Pgno nextPage;
|
---|
| 1333 | int n, c, rc, nLocal;
|
---|
| 1334 | Cell *pCell;
|
---|
| 1335 | Btree *pBt = pCur->pBt;
|
---|
| 1336 | const char *zKey = (const char*)pKey;
|
---|
| 1337 |
|
---|
| 1338 | assert( pCur->pPage );
|
---|
| 1339 | assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
---|
| 1340 | pCell = pCur->pPage->apCell[pCur->idx];
|
---|
| 1341 | nLocal = NKEY(pBt, pCell->h) - nIgnore;
|
---|
| 1342 | if( nLocal<0 ) nLocal = 0;
|
---|
| 1343 | n = nKey<nLocal ? nKey : nLocal;
|
---|
| 1344 | if( n>MX_LOCAL_PAYLOAD ){
|
---|
| 1345 | n = MX_LOCAL_PAYLOAD;
|
---|
| 1346 | }
|
---|
| 1347 | c = memcmp(pCell->aPayload, zKey, n);
|
---|
| 1348 | if( c!=0 ){
|
---|
| 1349 | *pResult = c;
|
---|
| 1350 | return SQLITE_OK;
|
---|
| 1351 | }
|
---|
| 1352 | zKey += n;
|
---|
| 1353 | nKey -= n;
|
---|
| 1354 | nLocal -= n;
|
---|
| 1355 | nextPage = SWAB32(pBt, pCell->ovfl);
|
---|
| 1356 | while( nKey>0 && nLocal>0 ){
|
---|
| 1357 | OverflowPage *pOvfl;
|
---|
| 1358 | if( nextPage==0 ){
|
---|
| 1359 | return SQLITE_CORRUPT;
|
---|
| 1360 | }
|
---|
| 1361 | rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
|
---|
| 1362 | if( rc ){
|
---|
| 1363 | return rc;
|
---|
| 1364 | }
|
---|
| 1365 | nextPage = SWAB32(pBt, pOvfl->iNext);
|
---|
| 1366 | n = nKey<nLocal ? nKey : nLocal;
|
---|
| 1367 | if( n>OVERFLOW_SIZE ){
|
---|
| 1368 | n = OVERFLOW_SIZE;
|
---|
| 1369 | }
|
---|
| 1370 | c = memcmp(pOvfl->aPayload, zKey, n);
|
---|
| 1371 | sqlitepager_unref(pOvfl);
|
---|
| 1372 | if( c!=0 ){
|
---|
| 1373 | *pResult = c;
|
---|
| 1374 | return SQLITE_OK;
|
---|
| 1375 | }
|
---|
| 1376 | nKey -= n;
|
---|
| 1377 | nLocal -= n;
|
---|
| 1378 | zKey += n;
|
---|
| 1379 | }
|
---|
| 1380 | if( c==0 ){
|
---|
| 1381 | c = nLocal - nKey;
|
---|
| 1382 | }
|
---|
| 1383 | *pResult = c;
|
---|
| 1384 | return SQLITE_OK;
|
---|
| 1385 | }
|
---|
| 1386 |
|
---|
| 1387 | /*
|
---|
| 1388 | ** Move the cursor down to a new child page. The newPgno argument is the
|
---|
| 1389 | ** page number of the child page in the byte order of the disk image.
|
---|
| 1390 | */
|
---|
| 1391 | static int moveToChild(BtCursor *pCur, int newPgno){
|
---|
| 1392 | int rc;
|
---|
| 1393 | MemPage *pNewPage;
|
---|
| 1394 | Btree *pBt = pCur->pBt;
|
---|
| 1395 |
|
---|
| 1396 | newPgno = SWAB32(pBt, newPgno);
|
---|
| 1397 | rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
|
---|
| 1398 | if( rc ) return rc;
|
---|
| 1399 | rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
|
---|
| 1400 | if( rc ) return rc;
|
---|
| 1401 | assert( pCur->idx>=pCur->pPage->nCell
|
---|
| 1402 | || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
|
---|
| 1403 | assert( pCur->idx<pCur->pPage->nCell
|
---|
| 1404 | || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
|
---|
| 1405 | pNewPage->idxParent = pCur->idx;
|
---|
| 1406 | pCur->pPage->idxShift = 0;
|
---|
| 1407 | sqlitepager_unref(pCur->pPage);
|
---|
| 1408 | pCur->pPage = pNewPage;
|
---|
| 1409 | pCur->idx = 0;
|
---|
| 1410 | if( pNewPage->nCell<1 ){
|
---|
| 1411 | return SQLITE_CORRUPT;
|
---|
| 1412 | }
|
---|
| 1413 | return SQLITE_OK;
|
---|
| 1414 | }
|
---|
| 1415 |
|
---|
| 1416 | /*
|
---|
| 1417 | ** Move the cursor up to the parent page.
|
---|
| 1418 | **
|
---|
| 1419 | ** pCur->idx is set to the cell index that contains the pointer
|
---|
| 1420 | ** to the page we are coming from. If we are coming from the
|
---|
| 1421 | ** right-most child page then pCur->idx is set to one more than
|
---|
| 1422 | ** the largest cell index.
|
---|
| 1423 | */
|
---|
| 1424 | static void moveToParent(BtCursor *pCur){
|
---|
| 1425 | Pgno oldPgno;
|
---|
| 1426 | MemPage *pParent;
|
---|
| 1427 | MemPage *pPage;
|
---|
| 1428 | int idxParent;
|
---|
| 1429 | pPage = pCur->pPage;
|
---|
| 1430 | assert( pPage!=0 );
|
---|
| 1431 | pParent = pPage->pParent;
|
---|
| 1432 | assert( pParent!=0 );
|
---|
| 1433 | idxParent = pPage->idxParent;
|
---|
| 1434 | sqlitepager_ref(pParent);
|
---|
| 1435 | sqlitepager_unref(pPage);
|
---|
| 1436 | pCur->pPage = pParent;
|
---|
| 1437 | assert( pParent->idxShift==0 );
|
---|
| 1438 | if( pParent->idxShift==0 ){
|
---|
| 1439 | pCur->idx = idxParent;
|
---|
| 1440 | #ifndef NDEBUG
|
---|
| 1441 | /* Verify that pCur->idx is the correct index to point back to the child
|
---|
| 1442 | ** page we just came from
|
---|
| 1443 | */
|
---|
| 1444 | oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
|
---|
| 1445 | if( pCur->idx<pParent->nCell ){
|
---|
| 1446 | assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
|
---|
| 1447 | }else{
|
---|
| 1448 | assert( pParent->u.hdr.rightChild==oldPgno );
|
---|
| 1449 | }
|
---|
| 1450 | #endif
|
---|
| 1451 | }else{
|
---|
| 1452 | /* The MemPage.idxShift flag indicates that cell indices might have
|
---|
| 1453 | ** changed since idxParent was set and hence idxParent might be out
|
---|
| 1454 | ** of date. So recompute the parent cell index by scanning all cells
|
---|
| 1455 | ** and locating the one that points to the child we just came from.
|
---|
| 1456 | */
|
---|
| 1457 | int i;
|
---|
| 1458 | pCur->idx = pParent->nCell;
|
---|
| 1459 | oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
|
---|
| 1460 | for(i=0; i<pParent->nCell; i++){
|
---|
| 1461 | if( pParent->apCell[i]->h.leftChild==oldPgno ){
|
---|
| 1462 | pCur->idx = i;
|
---|
| 1463 | break;
|
---|
| 1464 | }
|
---|
| 1465 | }
|
---|
| 1466 | }
|
---|
| 1467 | }
|
---|
| 1468 |
|
---|
| 1469 | /*
|
---|
| 1470 | ** Move the cursor to the root page
|
---|
| 1471 | */
|
---|
| 1472 | static int moveToRoot(BtCursor *pCur){
|
---|
| 1473 | MemPage *pNew;
|
---|
| 1474 | int rc;
|
---|
| 1475 | Btree *pBt = pCur->pBt;
|
---|
| 1476 |
|
---|
| 1477 | rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
|
---|
| 1478 | if( rc ) return rc;
|
---|
| 1479 | rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
|
---|
| 1480 | if( rc ) return rc;
|
---|
| 1481 | sqlitepager_unref(pCur->pPage);
|
---|
| 1482 | pCur->pPage = pNew;
|
---|
| 1483 | pCur->idx = 0;
|
---|
| 1484 | return SQLITE_OK;
|
---|
| 1485 | }
|
---|
| 1486 |
|
---|
| 1487 | /*
|
---|
| 1488 | ** Move the cursor down to the left-most leaf entry beneath the
|
---|
| 1489 | ** entry to which it is currently pointing.
|
---|
| 1490 | */
|
---|
| 1491 | static int moveToLeftmost(BtCursor *pCur){
|
---|
| 1492 | Pgno pgno;
|
---|
| 1493 | int rc;
|
---|
| 1494 |
|
---|
| 1495 | while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
|
---|
| 1496 | rc = moveToChild(pCur, pgno);
|
---|
| 1497 | if( rc ) return rc;
|
---|
| 1498 | }
|
---|
| 1499 | return SQLITE_OK;
|
---|
| 1500 | }
|
---|
| 1501 |
|
---|
| 1502 | /*
|
---|
| 1503 | ** Move the cursor down to the right-most leaf entry beneath the
|
---|
| 1504 | ** page to which it is currently pointing. Notice the difference
|
---|
| 1505 | ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
|
---|
| 1506 | ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
|
---|
| 1507 | ** finds the right-most entry beneath the *page*.
|
---|
| 1508 | */
|
---|
| 1509 | static int moveToRightmost(BtCursor *pCur){
|
---|
| 1510 | Pgno pgno;
|
---|
| 1511 | int rc;
|
---|
| 1512 |
|
---|
| 1513 | while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
|
---|
| 1514 | pCur->idx = pCur->pPage->nCell;
|
---|
| 1515 | rc = moveToChild(pCur, pgno);
|
---|
| 1516 | if( rc ) return rc;
|
---|
| 1517 | }
|
---|
| 1518 | pCur->idx = pCur->pPage->nCell - 1;
|
---|
| 1519 | return SQLITE_OK;
|
---|
| 1520 | }
|
---|
| 1521 |
|
---|
| 1522 | /* Move the cursor to the first entry in the table. Return SQLITE_OK
|
---|
| 1523 | ** on success. Set *pRes to 0 if the cursor actually points to something
|
---|
| 1524 | ** or set *pRes to 1 if the table is empty.
|
---|
| 1525 | */
|
---|
| 1526 | static int fileBtreeFirst(BtCursor *pCur, int *pRes){
|
---|
| 1527 | int rc;
|
---|
| 1528 | if( pCur->pPage==0 ) return SQLITE_ABORT;
|
---|
| 1529 | rc = moveToRoot(pCur);
|
---|
| 1530 | if( rc ) return rc;
|
---|
| 1531 | if( pCur->pPage->nCell==0 ){
|
---|
| 1532 | *pRes = 1;
|
---|
| 1533 | return SQLITE_OK;
|
---|
| 1534 | }
|
---|
| 1535 | *pRes = 0;
|
---|
| 1536 | rc = moveToLeftmost(pCur);
|
---|
| 1537 | pCur->eSkip = SKIP_NONE;
|
---|
| 1538 | return rc;
|
---|
| 1539 | }
|
---|
| 1540 |
|
---|
| 1541 | /* Move the cursor to the last entry in the table. Return SQLITE_OK
|
---|
| 1542 | ** on success. Set *pRes to 0 if the cursor actually points to something
|
---|
| 1543 | ** or set *pRes to 1 if the table is empty.
|
---|
| 1544 | */
|
---|
| 1545 | static int fileBtreeLast(BtCursor *pCur, int *pRes){
|
---|
| 1546 | int rc;
|
---|
| 1547 | if( pCur->pPage==0 ) return SQLITE_ABORT;
|
---|
| 1548 | rc = moveToRoot(pCur);
|
---|
| 1549 | if( rc ) return rc;
|
---|
| 1550 | assert( pCur->pPage->isInit );
|
---|
| 1551 | if( pCur->pPage->nCell==0 ){
|
---|
| 1552 | *pRes = 1;
|
---|
| 1553 | return SQLITE_OK;
|
---|
| 1554 | }
|
---|
| 1555 | *pRes = 0;
|
---|
| 1556 | rc = moveToRightmost(pCur);
|
---|
| 1557 | pCur->eSkip = SKIP_NONE;
|
---|
| 1558 | return rc;
|
---|
| 1559 | }
|
---|
| 1560 |
|
---|
| 1561 | /* Move the cursor so that it points to an entry near pKey.
|
---|
| 1562 | ** Return a success code.
|
---|
| 1563 | **
|
---|
| 1564 | ** If an exact match is not found, then the cursor is always
|
---|
| 1565 | ** left pointing at a leaf page which would hold the entry if it
|
---|
| 1566 | ** were present. The cursor might point to an entry that comes
|
---|
| 1567 | ** before or after the key.
|
---|
| 1568 | **
|
---|
| 1569 | ** The result of comparing the key with the entry to which the
|
---|
| 1570 | ** cursor is left pointing is stored in pCur->iMatch. The same
|
---|
| 1571 | ** value is also written to *pRes if pRes!=NULL. The meaning of
|
---|
| 1572 | ** this value is as follows:
|
---|
| 1573 | **
|
---|
| 1574 | ** *pRes<0 The cursor is left pointing at an entry that
|
---|
| 1575 | ** is smaller than pKey or if the table is empty
|
---|
| 1576 | ** and the cursor is therefore left point to nothing.
|
---|
| 1577 | **
|
---|
| 1578 | ** *pRes==0 The cursor is left pointing at an entry that
|
---|
| 1579 | ** exactly matches pKey.
|
---|
| 1580 | **
|
---|
| 1581 | ** *pRes>0 The cursor is left pointing at an entry that
|
---|
| 1582 | ** is larger than pKey.
|
---|
| 1583 | */
|
---|
| 1584 | static
|
---|
| 1585 | int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
|
---|
| 1586 | int rc;
|
---|
| 1587 | if( pCur->pPage==0 ) return SQLITE_ABORT;
|
---|
| 1588 | pCur->eSkip = SKIP_NONE;
|
---|
| 1589 | rc = moveToRoot(pCur);
|
---|
| 1590 | if( rc ) return rc;
|
---|
| 1591 | for(;;){
|
---|
| 1592 | int lwr, upr;
|
---|
| 1593 | Pgno chldPg;
|
---|
| 1594 | MemPage *pPage = pCur->pPage;
|
---|
| 1595 | int c = -1; /* pRes return if table is empty must be -1 */
|
---|
| 1596 | lwr = 0;
|
---|
| 1597 | upr = pPage->nCell-1;
|
---|
| 1598 | while( lwr<=upr ){
|
---|
| 1599 | pCur->idx = (lwr+upr)/2;
|
---|
| 1600 | rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
|
---|
| 1601 | if( rc ) return rc;
|
---|
| 1602 | if( c==0 ){
|
---|
| 1603 | pCur->iMatch = c;
|
---|
| 1604 | if( pRes ) *pRes = 0;
|
---|
| 1605 | return SQLITE_OK;
|
---|
| 1606 | }
|
---|
| 1607 | if( c<0 ){
|
---|
| 1608 | lwr = pCur->idx+1;
|
---|
| 1609 | }else{
|
---|
| 1610 | upr = pCur->idx-1;
|
---|
| 1611 | }
|
---|
| 1612 | }
|
---|
| 1613 | assert( lwr==upr+1 );
|
---|
| 1614 | assert( pPage->isInit );
|
---|
| 1615 | if( lwr>=pPage->nCell ){
|
---|
| 1616 | chldPg = pPage->u.hdr.rightChild;
|
---|
| 1617 | }else{
|
---|
| 1618 | chldPg = pPage->apCell[lwr]->h.leftChild;
|
---|
| 1619 | }
|
---|
| 1620 | if( chldPg==0 ){
|
---|
| 1621 | pCur->iMatch = c;
|
---|
| 1622 | if( pRes ) *pRes = c;
|
---|
| 1623 | return SQLITE_OK;
|
---|
| 1624 | }
|
---|
| 1625 | pCur->idx = lwr;
|
---|
| 1626 | rc = moveToChild(pCur, chldPg);
|
---|
| 1627 | if( rc ) return rc;
|
---|
| 1628 | }
|
---|
| 1629 | /* NOT REACHED */
|
---|
| 1630 | }
|
---|
| 1631 |
|
---|
| 1632 | /*
|
---|
| 1633 | ** Advance the cursor to the next entry in the database. If
|
---|
| 1634 | ** successful then set *pRes=0. If the cursor
|
---|
| 1635 | ** was already pointing to the last entry in the database before
|
---|
| 1636 | ** this routine was called, then set *pRes=1.
|
---|
| 1637 | */
|
---|
| 1638 | static int fileBtreeNext(BtCursor *pCur, int *pRes){
|
---|
| 1639 | int rc;
|
---|
| 1640 | MemPage *pPage = pCur->pPage;
|
---|
| 1641 | assert( pRes!=0 );
|
---|
| 1642 | if( pPage==0 ){
|
---|
| 1643 | *pRes = 1;
|
---|
| 1644 | return SQLITE_ABORT;
|
---|
| 1645 | }
|
---|
| 1646 | assert( pPage->isInit );
|
---|
| 1647 | assert( pCur->eSkip!=SKIP_INVALID );
|
---|
| 1648 | if( pPage->nCell==0 ){
|
---|
| 1649 | *pRes = 1;
|
---|
| 1650 | return SQLITE_OK;
|
---|
| 1651 | }
|
---|
| 1652 | assert( pCur->idx<pPage->nCell );
|
---|
| 1653 | if( pCur->eSkip==SKIP_NEXT ){
|
---|
| 1654 | pCur->eSkip = SKIP_NONE;
|
---|
| 1655 | *pRes = 0;
|
---|
| 1656 | return SQLITE_OK;
|
---|
| 1657 | }
|
---|
| 1658 | pCur->eSkip = SKIP_NONE;
|
---|
| 1659 | pCur->idx++;
|
---|
| 1660 | if( pCur->idx>=pPage->nCell ){
|
---|
| 1661 | if( pPage->u.hdr.rightChild ){
|
---|
| 1662 | rc = moveToChild(pCur, pPage->u.hdr.rightChild);
|
---|
| 1663 | if( rc ) return rc;
|
---|
| 1664 | rc = moveToLeftmost(pCur);
|
---|
| 1665 | *pRes = 0;
|
---|
| 1666 | return rc;
|
---|
| 1667 | }
|
---|
| 1668 | do{
|
---|
| 1669 | if( pPage->pParent==0 ){
|
---|
| 1670 | *pRes = 1;
|
---|
| 1671 | return SQLITE_OK;
|
---|
| 1672 | }
|
---|
| 1673 | moveToParent(pCur);
|
---|
| 1674 | pPage = pCur->pPage;
|
---|
| 1675 | }while( pCur->idx>=pPage->nCell );
|
---|
| 1676 | *pRes = 0;
|
---|
| 1677 | return SQLITE_OK;
|
---|
| 1678 | }
|
---|
| 1679 | *pRes = 0;
|
---|
| 1680 | if( pPage->u.hdr.rightChild==0 ){
|
---|
| 1681 | return SQLITE_OK;
|
---|
| 1682 | }
|
---|
| 1683 | rc = moveToLeftmost(pCur);
|
---|
| 1684 | return rc;
|
---|
| 1685 | }
|
---|
| 1686 |
|
---|
| 1687 | /*
|
---|
| 1688 | ** Step the cursor to the back to the previous entry in the database. If
|
---|
| 1689 | ** successful then set *pRes=0. If the cursor
|
---|
| 1690 | ** was already pointing to the first entry in the database before
|
---|
| 1691 | ** this routine was called, then set *pRes=1.
|
---|
| 1692 | */
|
---|
| 1693 | static int fileBtreePrevious(BtCursor *pCur, int *pRes){
|
---|
| 1694 | int rc;
|
---|
| 1695 | Pgno pgno;
|
---|
| 1696 | MemPage *pPage;
|
---|
| 1697 | pPage = pCur->pPage;
|
---|
| 1698 | if( pPage==0 ){
|
---|
| 1699 | *pRes = 1;
|
---|
| 1700 | return SQLITE_ABORT;
|
---|
| 1701 | }
|
---|
| 1702 | assert( pPage->isInit );
|
---|
| 1703 | assert( pCur->eSkip!=SKIP_INVALID );
|
---|
| 1704 | if( pPage->nCell==0 ){
|
---|
| 1705 | *pRes = 1;
|
---|
| 1706 | return SQLITE_OK;
|
---|
| 1707 | }
|
---|
| 1708 | if( pCur->eSkip==SKIP_PREV ){
|
---|
| 1709 | pCur->eSkip = SKIP_NONE;
|
---|
| 1710 | *pRes = 0;
|
---|
| 1711 | return SQLITE_OK;
|
---|
| 1712 | }
|
---|
| 1713 | pCur->eSkip = SKIP_NONE;
|
---|
| 1714 | assert( pCur->idx>=0 );
|
---|
| 1715 | if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
|
---|
| 1716 | rc = moveToChild(pCur, pgno);
|
---|
| 1717 | if( rc ) return rc;
|
---|
| 1718 | rc = moveToRightmost(pCur);
|
---|
| 1719 | }else{
|
---|
| 1720 | while( pCur->idx==0 ){
|
---|
| 1721 | if( pPage->pParent==0 ){
|
---|
| 1722 | if( pRes ) *pRes = 1;
|
---|
| 1723 | return SQLITE_OK;
|
---|
| 1724 | }
|
---|
| 1725 | moveToParent(pCur);
|
---|
| 1726 | pPage = pCur->pPage;
|
---|
| 1727 | }
|
---|
| 1728 | pCur->idx--;
|
---|
| 1729 | rc = SQLITE_OK;
|
---|
| 1730 | }
|
---|
| 1731 | *pRes = 0;
|
---|
| 1732 | return rc;
|
---|
| 1733 | }
|
---|
| 1734 |
|
---|
| 1735 | /*
|
---|
| 1736 | ** Allocate a new page from the database file.
|
---|
| 1737 | **
|
---|
| 1738 | ** The new page is marked as dirty. (In other words, sqlitepager_write()
|
---|
| 1739 | ** has already been called on the new page.) The new page has also
|
---|
| 1740 | ** been referenced and the calling routine is responsible for calling
|
---|
| 1741 | ** sqlitepager_unref() on the new page when it is done.
|
---|
| 1742 | **
|
---|
| 1743 | ** SQLITE_OK is returned on success. Any other return value indicates
|
---|
| 1744 | ** an error. *ppPage and *pPgno are undefined in the event of an error.
|
---|
| 1745 | ** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
|
---|
| 1746 | **
|
---|
| 1747 | ** If the "nearby" parameter is not 0, then a (feeble) effort is made to
|
---|
| 1748 | ** locate a page close to the page number "nearby". This can be used in an
|
---|
| 1749 | ** attempt to keep related pages close to each other in the database file,
|
---|
| 1750 | ** which in turn can make database access faster.
|
---|
| 1751 | */
|
---|
| 1752 | static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
|
---|
| 1753 | PageOne *pPage1 = pBt->page1;
|
---|
| 1754 | int rc;
|
---|
| 1755 | if( pPage1->freeList ){
|
---|
| 1756 | OverflowPage *pOvfl;
|
---|
| 1757 | FreelistInfo *pInfo;
|
---|
| 1758 |
|
---|
| 1759 | rc = sqlitepager_write(pPage1);
|
---|
| 1760 | if( rc ) return rc;
|
---|
| 1761 | SWAB_ADD(pBt, pPage1->nFree, -1);
|
---|
| 1762 | rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
|
---|
| 1763 | (void**)&pOvfl);
|
---|
| 1764 | if( rc ) return rc;
|
---|
| 1765 | rc = sqlitepager_write(pOvfl);
|
---|
| 1766 | if( rc ){
|
---|
| 1767 | sqlitepager_unref(pOvfl);
|
---|
| 1768 | return rc;
|
---|
| 1769 | }
|
---|
| 1770 | pInfo = (FreelistInfo*)pOvfl->aPayload;
|
---|
| 1771 | if( pInfo->nFree==0 ){
|
---|
| 1772 | *pPgno = SWAB32(pBt, pPage1->freeList);
|
---|
| 1773 | pPage1->freeList = pOvfl->iNext;
|
---|
| 1774 | *ppPage = (MemPage*)pOvfl;
|
---|
| 1775 | }else{
|
---|
| 1776 | int closest, n;
|
---|
| 1777 | n = SWAB32(pBt, pInfo->nFree);
|
---|
| 1778 | if( n>1 && nearby>0 ){
|
---|
| 1779 | int i, dist;
|
---|
| 1780 | closest = 0;
|
---|
| 1781 | dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
|
---|
| 1782 | if( dist<0 ) dist = -dist;
|
---|
| 1783 | for(i=1; i<n; i++){
|
---|
| 1784 | int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
|
---|
| 1785 | if( d2<0 ) d2 = -d2;
|
---|
| 1786 | if( d2<dist ) closest = i;
|
---|
| 1787 | }
|
---|
| 1788 | }else{
|
---|
| 1789 | closest = 0;
|
---|
| 1790 | }
|
---|
| 1791 | SWAB_ADD(pBt, pInfo->nFree, -1);
|
---|
| 1792 | *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
|
---|
| 1793 | pInfo->aFree[closest] = pInfo->aFree[n-1];
|
---|
| 1794 | rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
|
---|
| 1795 | sqlitepager_unref(pOvfl);
|
---|
| 1796 | if( rc==SQLITE_OK ){
|
---|
| 1797 | sqlitepager_dont_rollback(*ppPage);
|
---|
| 1798 | rc = sqlitepager_write(*ppPage);
|
---|
| 1799 | }
|
---|
| 1800 | }
|
---|
| 1801 | }else{
|
---|
| 1802 | *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
|
---|
| 1803 | rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
|
---|
| 1804 | if( rc ) return rc;
|
---|
| 1805 | rc = sqlitepager_write(*ppPage);
|
---|
| 1806 | }
|
---|
| 1807 | return rc;
|
---|
| 1808 | }
|
---|
| 1809 |
|
---|
| 1810 | /*
|
---|
| 1811 | ** Add a page of the database file to the freelist. Either pgno or
|
---|
| 1812 | ** pPage but not both may be 0.
|
---|
| 1813 | **
|
---|
| 1814 | ** sqlitepager_unref() is NOT called for pPage.
|
---|
| 1815 | */
|
---|
| 1816 | static int freePage(Btree *pBt, void *pPage, Pgno pgno){
|
---|
| 1817 | PageOne *pPage1 = pBt->page1;
|
---|
| 1818 | OverflowPage *pOvfl = (OverflowPage*)pPage;
|
---|
| 1819 | int rc;
|
---|
| 1820 | int needUnref = 0;
|
---|
| 1821 | MemPage *pMemPage;
|
---|
| 1822 |
|
---|
| 1823 | if( pgno==0 ){
|
---|
| 1824 | assert( pOvfl!=0 );
|
---|
| 1825 | pgno = sqlitepager_pagenumber(pOvfl);
|
---|
| 1826 | }
|
---|
| 1827 | assert( pgno>2 );
|
---|
| 1828 | assert( sqlitepager_pagenumber(pOvfl)==pgno );
|
---|
| 1829 | pMemPage = (MemPage*)pPage;
|
---|
| 1830 | pMemPage->isInit = 0;
|
---|
| 1831 | if( pMemPage->pParent ){
|
---|
| 1832 | sqlitepager_unref(pMemPage->pParent);
|
---|
| 1833 | pMemPage->pParent = 0;
|
---|
| 1834 | }
|
---|
| 1835 | rc = sqlitepager_write(pPage1);
|
---|
| 1836 | if( rc ){
|
---|
| 1837 | return rc;
|
---|
| 1838 | }
|
---|
| 1839 | SWAB_ADD(pBt, pPage1->nFree, 1);
|
---|
| 1840 | if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
|
---|
| 1841 | OverflowPage *pFreeIdx;
|
---|
| 1842 | rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
|
---|
| 1843 | (void**)&pFreeIdx);
|
---|
| 1844 | if( rc==SQLITE_OK ){
|
---|
| 1845 | FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
|
---|
| 1846 | int n = SWAB32(pBt, pInfo->nFree);
|
---|
| 1847 | if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
|
---|
| 1848 | rc = sqlitepager_write(pFreeIdx);
|
---|
| 1849 | if( rc==SQLITE_OK ){
|
---|
| 1850 | pInfo->aFree[n] = SWAB32(pBt, pgno);
|
---|
| 1851 | SWAB_ADD(pBt, pInfo->nFree, 1);
|
---|
| 1852 | sqlitepager_unref(pFreeIdx);
|
---|
| 1853 | sqlitepager_dont_write(pBt->pPager, pgno);
|
---|
| 1854 | return rc;
|
---|
| 1855 | }
|
---|
| 1856 | }
|
---|
| 1857 | sqlitepager_unref(pFreeIdx);
|
---|
| 1858 | }
|
---|
| 1859 | }
|
---|
| 1860 | if( pOvfl==0 ){
|
---|
| 1861 | assert( pgno>0 );
|
---|
| 1862 | rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
|
---|
| 1863 | if( rc ) return rc;
|
---|
| 1864 | needUnref = 1;
|
---|
| 1865 | }
|
---|
| 1866 | rc = sqlitepager_write(pOvfl);
|
---|
| 1867 | if( rc ){
|
---|
| 1868 | if( needUnref ) sqlitepager_unref(pOvfl);
|
---|
| 1869 | return rc;
|
---|
| 1870 | }
|
---|
| 1871 | pOvfl->iNext = pPage1->freeList;
|
---|
| 1872 | pPage1->freeList = SWAB32(pBt, pgno);
|
---|
| 1873 | memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
|
---|
| 1874 | if( needUnref ) rc = sqlitepager_unref(pOvfl);
|
---|
| 1875 | return rc;
|
---|
| 1876 | }
|
---|
| 1877 |
|
---|
| 1878 | /*
|
---|
| 1879 | ** Erase all the data out of a cell. This involves returning overflow
|
---|
| 1880 | ** pages back the freelist.
|
---|
| 1881 | */
|
---|
| 1882 | static int clearCell(Btree *pBt, Cell *pCell){
|
---|
| 1883 | Pager *pPager = pBt->pPager;
|
---|
| 1884 | OverflowPage *pOvfl;
|
---|
| 1885 | Pgno ovfl, nextOvfl;
|
---|
| 1886 | int rc;
|
---|
| 1887 |
|
---|
| 1888 | if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
|
---|
| 1889 | return SQLITE_OK;
|
---|
| 1890 | }
|
---|
| 1891 | ovfl = SWAB32(pBt, pCell->ovfl);
|
---|
| 1892 | pCell->ovfl = 0;
|
---|
| 1893 | while( ovfl ){
|
---|
| 1894 | rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
|
---|
| 1895 | if( rc ) return rc;
|
---|
| 1896 | nextOvfl = SWAB32(pBt, pOvfl->iNext);
|
---|
| 1897 | rc = freePage(pBt, pOvfl, ovfl);
|
---|
| 1898 | if( rc ) return rc;
|
---|
| 1899 | sqlitepager_unref(pOvfl);
|
---|
| 1900 | ovfl = nextOvfl;
|
---|
| 1901 | }
|
---|
| 1902 | return SQLITE_OK;
|
---|
| 1903 | }
|
---|
| 1904 |
|
---|
| 1905 | /*
|
---|
| 1906 | ** Create a new cell from key and data. Overflow pages are allocated as
|
---|
| 1907 | ** necessary and linked to this cell.
|
---|
| 1908 | */
|
---|
| 1909 | static int fillInCell(
|
---|
| 1910 | Btree *pBt, /* The whole Btree. Needed to allocate pages */
|
---|
| 1911 | Cell *pCell, /* Populate this Cell structure */
|
---|
| 1912 | const void *pKey, int nKey, /* The key */
|
---|
| 1913 | const void *pData,int nData /* The data */
|
---|
| 1914 | ){
|
---|
| 1915 | OverflowPage *pOvfl, *pPrior;
|
---|
| 1916 | Pgno *pNext;
|
---|
| 1917 | int spaceLeft;
|
---|
| 1918 | int n, rc;
|
---|
| 1919 | int nPayload;
|
---|
| 1920 | const char *pPayload;
|
---|
| 1921 | char *pSpace;
|
---|
| 1922 | Pgno nearby = 0;
|
---|
| 1923 |
|
---|
| 1924 | pCell->h.leftChild = 0;
|
---|
| 1925 | pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
|
---|
| 1926 | pCell->h.nKeyHi = nKey >> 16;
|
---|
| 1927 | pCell->h.nData = SWAB16(pBt, nData & 0xffff);
|
---|
| 1928 | pCell->h.nDataHi = nData >> 16;
|
---|
| 1929 | pCell->h.iNext = 0;
|
---|
| 1930 |
|
---|
| 1931 | pNext = &pCell->ovfl;
|
---|
| 1932 | pSpace = pCell->aPayload;
|
---|
| 1933 | spaceLeft = MX_LOCAL_PAYLOAD;
|
---|
| 1934 | pPayload = pKey;
|
---|
| 1935 | pKey = 0;
|
---|
| 1936 | nPayload = nKey;
|
---|
| 1937 | pPrior = 0;
|
---|
| 1938 | while( nPayload>0 ){
|
---|
| 1939 | if( spaceLeft==0 ){
|
---|
| 1940 | rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
|
---|
| 1941 | if( rc ){
|
---|
| 1942 | *pNext = 0;
|
---|
| 1943 | }else{
|
---|
| 1944 | nearby = *pNext;
|
---|
| 1945 | }
|
---|
| 1946 | if( pPrior ) sqlitepager_unref(pPrior);
|
---|
| 1947 | if( rc ){
|
---|
| 1948 | clearCell(pBt, pCell);
|
---|
| 1949 | return rc;
|
---|
| 1950 | }
|
---|
| 1951 | if( pBt->needSwab ) *pNext = swab32(*pNext);
|
---|
| 1952 | pPrior = pOvfl;
|
---|
| 1953 | spaceLeft = OVERFLOW_SIZE;
|
---|
| 1954 | pSpace = pOvfl->aPayload;
|
---|
| 1955 | pNext = &pOvfl->iNext;
|
---|
| 1956 | }
|
---|
| 1957 | n = nPayload;
|
---|
| 1958 | if( n>spaceLeft ) n = spaceLeft;
|
---|
| 1959 | memcpy(pSpace, pPayload, n);
|
---|
| 1960 | nPayload -= n;
|
---|
| 1961 | if( nPayload==0 && pData ){
|
---|
| 1962 | pPayload = pData;
|
---|
| 1963 | nPayload = nData;
|
---|
| 1964 | pData = 0;
|
---|
| 1965 | }else{
|
---|
| 1966 | pPayload += n;
|
---|
| 1967 | }
|
---|
| 1968 | spaceLeft -= n;
|
---|
| 1969 | pSpace += n;
|
---|
| 1970 | }
|
---|
| 1971 | *pNext = 0;
|
---|
| 1972 | if( pPrior ){
|
---|
| 1973 | sqlitepager_unref(pPrior);
|
---|
| 1974 | }
|
---|
| 1975 | return SQLITE_OK;
|
---|
| 1976 | }
|
---|
| 1977 |
|
---|
| 1978 | /*
|
---|
| 1979 | ** Change the MemPage.pParent pointer on the page whose number is
|
---|
| 1980 | ** given in the second argument so that MemPage.pParent holds the
|
---|
| 1981 | ** pointer in the third argument.
|
---|
| 1982 | */
|
---|
| 1983 | static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
|
---|
| 1984 | MemPage *pThis;
|
---|
| 1985 |
|
---|
| 1986 | if( pgno==0 ) return;
|
---|
| 1987 | assert( pPager!=0 );
|
---|
| 1988 | pThis = sqlitepager_lookup(pPager, pgno);
|
---|
| 1989 | if( pThis && pThis->isInit ){
|
---|
| 1990 | if( pThis->pParent!=pNewParent ){
|
---|
| 1991 | if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
|
---|
| 1992 | pThis->pParent = pNewParent;
|
---|
| 1993 | if( pNewParent ) sqlitepager_ref(pNewParent);
|
---|
| 1994 | }
|
---|
| 1995 | pThis->idxParent = idx;
|
---|
| 1996 | sqlitepager_unref(pThis);
|
---|
| 1997 | }
|
---|
| 1998 | }
|
---|
| 1999 |
|
---|
| 2000 | /*
|
---|
| 2001 | ** Reparent all children of the given page to be the given page.
|
---|
| 2002 | ** In other words, for every child of pPage, invoke reparentPage()
|
---|
| 2003 | ** to make sure that each child knows that pPage is its parent.
|
---|
| 2004 | **
|
---|
| 2005 | ** This routine gets called after you memcpy() one page into
|
---|
| 2006 | ** another.
|
---|
| 2007 | */
|
---|
| 2008 | static void reparentChildPages(Btree *pBt, MemPage *pPage){
|
---|
| 2009 | int i;
|
---|
| 2010 | Pager *pPager = pBt->pPager;
|
---|
| 2011 | for(i=0; i<pPage->nCell; i++){
|
---|
| 2012 | reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
|
---|
| 2013 | }
|
---|
| 2014 | reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
|
---|
| 2015 | pPage->idxShift = 0;
|
---|
| 2016 | }
|
---|
| 2017 |
|
---|
| 2018 | /*
|
---|
| 2019 | ** Remove the i-th cell from pPage. This routine effects pPage only.
|
---|
| 2020 | ** The cell content is not freed or deallocated. It is assumed that
|
---|
| 2021 | ** the cell content has been copied someplace else. This routine just
|
---|
| 2022 | ** removes the reference to the cell from pPage.
|
---|
| 2023 | **
|
---|
| 2024 | ** "sz" must be the number of bytes in the cell.
|
---|
| 2025 | **
|
---|
| 2026 | ** Do not bother maintaining the integrity of the linked list of Cells.
|
---|
| 2027 | ** Only the pPage->apCell[] array is important. The relinkCellList()
|
---|
| 2028 | ** routine will be called soon after this routine in order to rebuild
|
---|
| 2029 | ** the linked list.
|
---|
| 2030 | */
|
---|
| 2031 | static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
|
---|
| 2032 | int j;
|
---|
| 2033 | assert( idx>=0 && idx<pPage->nCell );
|
---|
| 2034 | assert( sz==cellSize(pBt, pPage->apCell[idx]) );
|
---|
| 2035 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 2036 | freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
|
---|
| 2037 | for(j=idx; j<pPage->nCell-1; j++){
|
---|
| 2038 | pPage->apCell[j] = pPage->apCell[j+1];
|
---|
| 2039 | }
|
---|
| 2040 | pPage->nCell--;
|
---|
| 2041 | pPage->idxShift = 1;
|
---|
| 2042 | }
|
---|
| 2043 |
|
---|
| 2044 | /*
|
---|
| 2045 | ** Insert a new cell on pPage at cell index "i". pCell points to the
|
---|
| 2046 | ** content of the cell.
|
---|
| 2047 | **
|
---|
| 2048 | ** If the cell content will fit on the page, then put it there. If it
|
---|
| 2049 | ** will not fit, then just make pPage->apCell[i] point to the content
|
---|
| 2050 | ** and set pPage->isOverfull.
|
---|
| 2051 | **
|
---|
| 2052 | ** Do not bother maintaining the integrity of the linked list of Cells.
|
---|
| 2053 | ** Only the pPage->apCell[] array is important. The relinkCellList()
|
---|
| 2054 | ** routine will be called soon after this routine in order to rebuild
|
---|
| 2055 | ** the linked list.
|
---|
| 2056 | */
|
---|
| 2057 | static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
|
---|
| 2058 | int idx, j;
|
---|
| 2059 | assert( i>=0 && i<=pPage->nCell );
|
---|
| 2060 | assert( sz==cellSize(pBt, pCell) );
|
---|
| 2061 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 2062 | idx = allocateSpace(pBt, pPage, sz);
|
---|
| 2063 | for(j=pPage->nCell; j>i; j--){
|
---|
| 2064 | pPage->apCell[j] = pPage->apCell[j-1];
|
---|
| 2065 | }
|
---|
| 2066 | pPage->nCell++;
|
---|
| 2067 | if( idx<=0 ){
|
---|
| 2068 | pPage->isOverfull = 1;
|
---|
| 2069 | pPage->apCell[i] = pCell;
|
---|
| 2070 | }else{
|
---|
| 2071 | memcpy(&pPage->u.aDisk[idx], pCell, sz);
|
---|
| 2072 | pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
|
---|
| 2073 | }
|
---|
| 2074 | pPage->idxShift = 1;
|
---|
| 2075 | }
|
---|
| 2076 |
|
---|
| 2077 | /*
|
---|
| 2078 | ** Rebuild the linked list of cells on a page so that the cells
|
---|
| 2079 | ** occur in the order specified by the pPage->apCell[] array.
|
---|
| 2080 | ** Invoke this routine once to repair damage after one or more
|
---|
| 2081 | ** invocations of either insertCell() or dropCell().
|
---|
| 2082 | */
|
---|
| 2083 | static void relinkCellList(Btree *pBt, MemPage *pPage){
|
---|
| 2084 | int i;
|
---|
| 2085 | u16 *pIdx;
|
---|
| 2086 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 2087 | pIdx = &pPage->u.hdr.firstCell;
|
---|
| 2088 | for(i=0; i<pPage->nCell; i++){
|
---|
| 2089 | int idx = Addr(pPage->apCell[i]) - Addr(pPage);
|
---|
| 2090 | assert( idx>0 && idx<SQLITE_USABLE_SIZE );
|
---|
| 2091 | *pIdx = SWAB16(pBt, idx);
|
---|
| 2092 | pIdx = &pPage->apCell[i]->h.iNext;
|
---|
| 2093 | }
|
---|
| 2094 | *pIdx = 0;
|
---|
| 2095 | }
|
---|
| 2096 |
|
---|
| 2097 | /*
|
---|
| 2098 | ** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
|
---|
| 2099 | ** pointers that point into pFrom->u.aDisk[] must be adjusted to point
|
---|
| 2100 | ** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
|
---|
| 2101 | ** not point to pFrom->u.aDisk[]. Those are unchanged.
|
---|
| 2102 | */
|
---|
| 2103 | static void copyPage(MemPage *pTo, MemPage *pFrom){
|
---|
| 2104 | uptr from, to;
|
---|
| 2105 | int i;
|
---|
| 2106 | memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
|
---|
| 2107 | pTo->pParent = 0;
|
---|
| 2108 | pTo->isInit = 1;
|
---|
| 2109 | pTo->nCell = pFrom->nCell;
|
---|
| 2110 | pTo->nFree = pFrom->nFree;
|
---|
| 2111 | pTo->isOverfull = pFrom->isOverfull;
|
---|
| 2112 | to = Addr(pTo);
|
---|
| 2113 | from = Addr(pFrom);
|
---|
| 2114 | for(i=0; i<pTo->nCell; i++){
|
---|
| 2115 | uptr x = Addr(pFrom->apCell[i]);
|
---|
| 2116 | if( x>from && x<from+SQLITE_USABLE_SIZE ){
|
---|
| 2117 | *((uptr*)&pTo->apCell[i]) = x + to - from;
|
---|
| 2118 | }else{
|
---|
| 2119 | pTo->apCell[i] = pFrom->apCell[i];
|
---|
| 2120 | }
|
---|
| 2121 | }
|
---|
| 2122 | }
|
---|
| 2123 |
|
---|
| 2124 | /*
|
---|
| 2125 | ** The following parameters determine how many adjacent pages get involved
|
---|
| 2126 | ** in a balancing operation. NN is the number of neighbors on either side
|
---|
| 2127 | ** of the page that participate in the balancing operation. NB is the
|
---|
| 2128 | ** total number of pages that participate, including the target page and
|
---|
| 2129 | ** NN neighbors on either side.
|
---|
| 2130 | **
|
---|
| 2131 | ** The minimum value of NN is 1 (of course). Increasing NN above 1
|
---|
| 2132 | ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
|
---|
| 2133 | ** in exchange for a larger degradation in INSERT and UPDATE performance.
|
---|
| 2134 | ** The value of NN appears to give the best results overall.
|
---|
| 2135 | */
|
---|
| 2136 | #define NN 1 /* Number of neighbors on either side of pPage */
|
---|
| 2137 | #define NB (NN*2+1) /* Total pages involved in the balance */
|
---|
| 2138 |
|
---|
| 2139 | /*
|
---|
| 2140 | ** This routine redistributes Cells on pPage and up to two siblings
|
---|
| 2141 | ** of pPage so that all pages have about the same amount of free space.
|
---|
| 2142 | ** Usually one sibling on either side of pPage is used in the balancing,
|
---|
| 2143 | ** though both siblings might come from one side if pPage is the first
|
---|
| 2144 | ** or last child of its parent. If pPage has fewer than two siblings
|
---|
| 2145 | ** (something which can only happen if pPage is the root page or a
|
---|
| 2146 | ** child of root) then all available siblings participate in the balancing.
|
---|
| 2147 | **
|
---|
| 2148 | ** The number of siblings of pPage might be increased or decreased by
|
---|
| 2149 | ** one in an effort to keep pages between 66% and 100% full. The root page
|
---|
| 2150 | ** is special and is allowed to be less than 66% full. If pPage is
|
---|
| 2151 | ** the root page, then the depth of the tree might be increased
|
---|
| 2152 | ** or decreased by one, as necessary, to keep the root page from being
|
---|
| 2153 | ** overfull or empty.
|
---|
| 2154 | **
|
---|
| 2155 | ** This routine calls relinkCellList() on its input page regardless of
|
---|
| 2156 | ** whether or not it does any real balancing. Client routines will typically
|
---|
| 2157 | ** invoke insertCell() or dropCell() before calling this routine, so we
|
---|
| 2158 | ** need to call relinkCellList() to clean up the mess that those other
|
---|
| 2159 | ** routines left behind.
|
---|
| 2160 | **
|
---|
| 2161 | ** pCur is left pointing to the same cell as when this routine was called
|
---|
| 2162 | ** even if that cell gets moved to a different page. pCur may be NULL.
|
---|
| 2163 | ** Set the pCur parameter to NULL if you do not care about keeping track
|
---|
| 2164 | ** of a cell as that will save this routine the work of keeping track of it.
|
---|
| 2165 | **
|
---|
| 2166 | ** Note that when this routine is called, some of the Cells on pPage
|
---|
| 2167 | ** might not actually be stored in pPage->u.aDisk[]. This can happen
|
---|
| 2168 | ** if the page is overfull. Part of the job of this routine is to
|
---|
| 2169 | ** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
|
---|
| 2170 | **
|
---|
| 2171 | ** In the course of balancing the siblings of pPage, the parent of pPage
|
---|
| 2172 | ** might become overfull or underfull. If that happens, then this routine
|
---|
| 2173 | ** is called recursively on the parent.
|
---|
| 2174 | **
|
---|
| 2175 | ** If this routine fails for any reason, it might leave the database
|
---|
| 2176 | ** in a corrupted state. So if this routine fails, the database should
|
---|
| 2177 | ** be rolled back.
|
---|
| 2178 | */
|
---|
| 2179 | static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
|
---|
| 2180 | MemPage *pParent; /* The parent of pPage */
|
---|
| 2181 | int nCell; /* Number of cells in apCell[] */
|
---|
| 2182 | int nOld; /* Number of pages in apOld[] */
|
---|
| 2183 | int nNew; /* Number of pages in apNew[] */
|
---|
| 2184 | int nDiv; /* Number of cells in apDiv[] */
|
---|
| 2185 | int i, j, k; /* Loop counters */
|
---|
| 2186 | int idx; /* Index of pPage in pParent->apCell[] */
|
---|
| 2187 | int nxDiv; /* Next divider slot in pParent->apCell[] */
|
---|
| 2188 | int rc; /* The return code */
|
---|
| 2189 | int iCur; /* apCell[iCur] is the cell of the cursor */
|
---|
| 2190 | MemPage *pOldCurPage; /* The cursor originally points to this page */
|
---|
| 2191 | int subtotal; /* Subtotal of bytes in cells on one page */
|
---|
| 2192 | MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
|
---|
| 2193 | MemPage *apOld[NB]; /* pPage and up to two siblings */
|
---|
| 2194 | Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
|
---|
| 2195 | MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
|
---|
| 2196 | Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
|
---|
| 2197 | int idxDiv[NB]; /* Indices of divider cells in pParent */
|
---|
| 2198 | Cell *apDiv[NB]; /* Divider cells in pParent */
|
---|
| 2199 | Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
|
---|
| 2200 | int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
|
---|
| 2201 | int szNew[NB+1]; /* Combined size of cells place on i-th page */
|
---|
| 2202 | MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
|
---|
| 2203 | Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
|
---|
| 2204 | int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
|
---|
| 2205 |
|
---|
| 2206 | /*
|
---|
| 2207 | ** Return without doing any work if pPage is neither overfull nor
|
---|
| 2208 | ** underfull.
|
---|
| 2209 | */
|
---|
| 2210 | assert( sqlitepager_iswriteable(pPage) );
|
---|
| 2211 | if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
|
---|
| 2212 | && pPage->nCell>=2){
|
---|
| 2213 | relinkCellList(pBt, pPage);
|
---|
| 2214 | return SQLITE_OK;
|
---|
| 2215 | }
|
---|
| 2216 |
|
---|
| 2217 | /*
|
---|
| 2218 | ** Find the parent of the page to be balanceed.
|
---|
| 2219 | ** If there is no parent, it means this page is the root page and
|
---|
| 2220 | ** special rules apply.
|
---|
| 2221 | */
|
---|
| 2222 | pParent = pPage->pParent;
|
---|
| 2223 | if( pParent==0 ){
|
---|
| 2224 | Pgno pgnoChild;
|
---|
| 2225 | MemPage *pChild;
|
---|
| 2226 | assert( pPage->isInit );
|
---|
| 2227 | if( pPage->nCell==0 ){
|
---|
| 2228 | if( pPage->u.hdr.rightChild ){
|
---|
| 2229 | /*
|
---|
| 2230 | ** The root page is empty. Copy the one child page
|
---|
| 2231 | ** into the root page and return. This reduces the depth
|
---|
| 2232 | ** of the BTree by one.
|
---|
| 2233 | */
|
---|
| 2234 | pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
|
---|
| 2235 | rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
|
---|
| 2236 | if( rc ) return rc;
|
---|
| 2237 | memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
|
---|
| 2238 | pPage->isInit = 0;
|
---|
| 2239 | rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
|
---|
| 2240 | assert( rc==SQLITE_OK );
|
---|
| 2241 | reparentChildPages(pBt, pPage);
|
---|
| 2242 | if( pCur && pCur->pPage==pChild ){
|
---|
| 2243 | sqlitepager_unref(pChild);
|
---|
| 2244 | pCur->pPage = pPage;
|
---|
| 2245 | sqlitepager_ref(pPage);
|
---|
| 2246 | }
|
---|
| 2247 | freePage(pBt, pChild, pgnoChild);
|
---|
| 2248 | sqlitepager_unref(pChild);
|
---|
| 2249 | }else{
|
---|
| 2250 | relinkCellList(pBt, pPage);
|
---|
| 2251 | }
|
---|
| 2252 | return SQLITE_OK;
|
---|
| 2253 | }
|
---|
| 2254 | if( !pPage->isOverfull ){
|
---|
| 2255 | /* It is OK for the root page to be less than half full.
|
---|
| 2256 | */
|
---|
| 2257 | relinkCellList(pBt, pPage);
|
---|
| 2258 | return SQLITE_OK;
|
---|
| 2259 | }
|
---|
| 2260 | /*
|
---|
| 2261 | ** If we get to here, it means the root page is overfull.
|
---|
| 2262 | ** When this happens, Create a new child page and copy the
|
---|
| 2263 | ** contents of the root into the child. Then make the root
|
---|
| 2264 | ** page an empty page with rightChild pointing to the new
|
---|
| 2265 | ** child. Then fall thru to the code below which will cause
|
---|
| 2266 | ** the overfull child page to be split.
|
---|
| 2267 | */
|
---|
| 2268 | rc = sqlitepager_write(pPage);
|
---|
| 2269 | if( rc ) return rc;
|
---|
| 2270 | rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
|
---|
| 2271 | if( rc ) return rc;
|
---|
| 2272 | assert( sqlitepager_iswriteable(pChild) );
|
---|
| 2273 | copyPage(pChild, pPage);
|
---|
| 2274 | pChild->pParent = pPage;
|
---|
| 2275 | pChild->idxParent = 0;
|
---|
| 2276 | sqlitepager_ref(pPage);
|
---|
| 2277 | pChild->isOverfull = 1;
|
---|
| 2278 | if( pCur && pCur->pPage==pPage ){
|
---|
| 2279 | sqlitepager_unref(pPage);
|
---|
| 2280 | pCur->pPage = pChild;
|
---|
| 2281 | }else{
|
---|
| 2282 | extraUnref = pChild;
|
---|
| 2283 | }
|
---|
| 2284 | zeroPage(pBt, pPage);
|
---|
| 2285 | pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
|
---|
| 2286 | pParent = pPage;
|
---|
| 2287 | pPage = pChild;
|
---|
| 2288 | }
|
---|
| 2289 | rc = sqlitepager_write(pParent);
|
---|
| 2290 | if( rc ) return rc;
|
---|
| 2291 | assert( pParent->isInit );
|
---|
| 2292 |
|
---|
| 2293 | /*
|
---|
| 2294 | ** Find the Cell in the parent page whose h.leftChild points back
|
---|
| 2295 | ** to pPage. The "idx" variable is the index of that cell. If pPage
|
---|
| 2296 | ** is the rightmost child of pParent then set idx to pParent->nCell
|
---|
| 2297 | */
|
---|
| 2298 | if( pParent->idxShift ){
|
---|
| 2299 | Pgno pgno, swabPgno;
|
---|
| 2300 | pgno = sqlitepager_pagenumber(pPage);
|
---|
| 2301 | swabPgno = SWAB32(pBt, pgno);
|
---|
| 2302 | for(idx=0; idx<pParent->nCell; idx++){
|
---|
| 2303 | if( pParent->apCell[idx]->h.leftChild==swabPgno ){
|
---|
| 2304 | break;
|
---|
| 2305 | }
|
---|
| 2306 | }
|
---|
| 2307 | assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
|
---|
| 2308 | }else{
|
---|
| 2309 | idx = pPage->idxParent;
|
---|
| 2310 | }
|
---|
| 2311 |
|
---|
| 2312 | /*
|
---|
| 2313 | ** Initialize variables so that it will be safe to jump
|
---|
| 2314 | ** directly to balance_cleanup at any moment.
|
---|
| 2315 | */
|
---|
| 2316 | nOld = nNew = 0;
|
---|
| 2317 | sqlitepager_ref(pParent);
|
---|
| 2318 |
|
---|
| 2319 | /*
|
---|
| 2320 | ** Find sibling pages to pPage and the Cells in pParent that divide
|
---|
| 2321 | ** the siblings. An attempt is made to find NN siblings on either
|
---|
| 2322 | ** side of pPage. More siblings are taken from one side, however, if
|
---|
| 2323 | ** pPage there are fewer than NN siblings on the other side. If pParent
|
---|
| 2324 | ** has NB or fewer children then all children of pParent are taken.
|
---|
| 2325 | */
|
---|
| 2326 | nxDiv = idx - NN;
|
---|
| 2327 | if( nxDiv + NB > pParent->nCell ){
|
---|
| 2328 | nxDiv = pParent->nCell - NB + 1;
|
---|
| 2329 | }
|
---|
| 2330 | if( nxDiv<0 ){
|
---|
| 2331 | nxDiv = 0;
|
---|
| 2332 | }
|
---|
| 2333 | nDiv = 0;
|
---|
| 2334 | for(i=0, k=nxDiv; i<NB; i++, k++){
|
---|
| 2335 | if( k<pParent->nCell ){
|
---|
| 2336 | idxDiv[i] = k;
|
---|
| 2337 | apDiv[i] = pParent->apCell[k];
|
---|
| 2338 | nDiv++;
|
---|
| 2339 | pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
|
---|
| 2340 | }else if( k==pParent->nCell ){
|
---|
| 2341 | pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
|
---|
| 2342 | }else{
|
---|
| 2343 | break;
|
---|
| 2344 | }
|
---|
| 2345 | rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
|
---|
| 2346 | if( rc ) goto balance_cleanup;
|
---|
| 2347 | rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
|
---|
| 2348 | if( rc ) goto balance_cleanup;
|
---|
| 2349 | apOld[i]->idxParent = k;
|
---|
| 2350 | nOld++;
|
---|
| 2351 | }
|
---|
| 2352 |
|
---|
| 2353 | /*
|
---|
| 2354 | ** Set iCur to be the index in apCell[] of the cell that the cursor
|
---|
| 2355 | ** is pointing to. We will need this later on in order to keep the
|
---|
| 2356 | ** cursor pointing at the same cell. If pCur points to a page that
|
---|
| 2357 | ** has no involvement with this rebalancing, then set iCur to a large
|
---|
| 2358 | ** number so that the iCur==j tests always fail in the main cell
|
---|
| 2359 | ** distribution loop below.
|
---|
| 2360 | */
|
---|
| 2361 | if( pCur ){
|
---|
| 2362 | iCur = 0;
|
---|
| 2363 | for(i=0; i<nOld; i++){
|
---|
| 2364 | if( pCur->pPage==apOld[i] ){
|
---|
| 2365 | iCur += pCur->idx;
|
---|
| 2366 | break;
|
---|
| 2367 | }
|
---|
| 2368 | iCur += apOld[i]->nCell;
|
---|
| 2369 | if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
|
---|
| 2370 | break;
|
---|
| 2371 | }
|
---|
| 2372 | iCur++;
|
---|
| 2373 | }
|
---|
| 2374 | pOldCurPage = pCur->pPage;
|
---|
| 2375 | }
|
---|
| 2376 |
|
---|
| 2377 | /*
|
---|
| 2378 | ** Make copies of the content of pPage and its siblings into aOld[].
|
---|
| 2379 | ** The rest of this function will use data from the copies rather
|
---|
| 2380 | ** that the original pages since the original pages will be in the
|
---|
| 2381 | ** process of being overwritten.
|
---|
| 2382 | */
|
---|
| 2383 | for(i=0; i<nOld; i++){
|
---|
| 2384 | copyPage(&aOld[i], apOld[i]);
|
---|
| 2385 | }
|
---|
| 2386 |
|
---|
| 2387 | /*
|
---|
| 2388 | ** Load pointers to all cells on sibling pages and the divider cells
|
---|
| 2389 | ** into the local apCell[] array. Make copies of the divider cells
|
---|
| 2390 | ** into aTemp[] and remove the the divider Cells from pParent.
|
---|
| 2391 | */
|
---|
| 2392 | nCell = 0;
|
---|
| 2393 | for(i=0; i<nOld; i++){
|
---|
| 2394 | MemPage *pOld = &aOld[i];
|
---|
| 2395 | for(j=0; j<pOld->nCell; j++){
|
---|
| 2396 | apCell[nCell] = pOld->apCell[j];
|
---|
| 2397 | szCell[nCell] = cellSize(pBt, apCell[nCell]);
|
---|
| 2398 | nCell++;
|
---|
| 2399 | }
|
---|
| 2400 | if( i<nOld-1 ){
|
---|
| 2401 | szCell[nCell] = cellSize(pBt, apDiv[i]);
|
---|
| 2402 | memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
|
---|
| 2403 | apCell[nCell] = &aTemp[i];
|
---|
| 2404 | dropCell(pBt, pParent, nxDiv, szCell[nCell]);
|
---|
| 2405 | assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
|
---|
| 2406 | apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
|
---|
| 2407 | nCell++;
|
---|
| 2408 | }
|
---|
| 2409 | }
|
---|
| 2410 |
|
---|
| 2411 | /*
|
---|
| 2412 | ** Figure out the number of pages needed to hold all nCell cells.
|
---|
| 2413 | ** Store this number in "k". Also compute szNew[] which is the total
|
---|
| 2414 | ** size of all cells on the i-th page and cntNew[] which is the index
|
---|
| 2415 | ** in apCell[] of the cell that divides path i from path i+1.
|
---|
| 2416 | ** cntNew[k] should equal nCell.
|
---|
| 2417 | **
|
---|
| 2418 | ** This little patch of code is critical for keeping the tree
|
---|
| 2419 | ** balanced.
|
---|
| 2420 | */
|
---|
| 2421 | for(subtotal=k=i=0; i<nCell; i++){
|
---|
| 2422 | subtotal += szCell[i];
|
---|
| 2423 | if( subtotal > USABLE_SPACE ){
|
---|
| 2424 | szNew[k] = subtotal - szCell[i];
|
---|
| 2425 | cntNew[k] = i;
|
---|
| 2426 | subtotal = 0;
|
---|
| 2427 | k++;
|
---|
| 2428 | }
|
---|
| 2429 | }
|
---|
| 2430 | szNew[k] = subtotal;
|
---|
| 2431 | cntNew[k] = nCell;
|
---|
| 2432 | k++;
|
---|
| 2433 | for(i=k-1; i>0; i--){
|
---|
| 2434 | while( szNew[i]<USABLE_SPACE/2 ){
|
---|
| 2435 | cntNew[i-1]--;
|
---|
| 2436 | assert( cntNew[i-1]>0 );
|
---|
| 2437 | szNew[i] += szCell[cntNew[i-1]];
|
---|
| 2438 | szNew[i-1] -= szCell[cntNew[i-1]-1];
|
---|
| 2439 | }
|
---|
| 2440 | }
|
---|
| 2441 | assert( cntNew[0]>0 );
|
---|
| 2442 |
|
---|
| 2443 | /*
|
---|
| 2444 | ** Allocate k new pages. Reuse old pages where possible.
|
---|
| 2445 | */
|
---|
| 2446 | for(i=0; i<k; i++){
|
---|
| 2447 | if( i<nOld ){
|
---|
| 2448 | apNew[i] = apOld[i];
|
---|
| 2449 | pgnoNew[i] = pgnoOld[i];
|
---|
| 2450 | apOld[i] = 0;
|
---|
| 2451 | sqlitepager_write(apNew[i]);
|
---|
| 2452 | }else{
|
---|
| 2453 | rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
|
---|
| 2454 | if( rc ) goto balance_cleanup;
|
---|
| 2455 | }
|
---|
| 2456 | nNew++;
|
---|
| 2457 | zeroPage(pBt, apNew[i]);
|
---|
| 2458 | apNew[i]->isInit = 1;
|
---|
| 2459 | }
|
---|
| 2460 |
|
---|
| 2461 | /* Free any old pages that were not reused as new pages.
|
---|
| 2462 | */
|
---|
| 2463 | while( i<nOld ){
|
---|
| 2464 | rc = freePage(pBt, apOld[i], pgnoOld[i]);
|
---|
| 2465 | if( rc ) goto balance_cleanup;
|
---|
| 2466 | sqlitepager_unref(apOld[i]);
|
---|
| 2467 | apOld[i] = 0;
|
---|
| 2468 | i++;
|
---|
| 2469 | }
|
---|
| 2470 |
|
---|
| 2471 | /*
|
---|
| 2472 | ** Put the new pages in accending order. This helps to
|
---|
| 2473 | ** keep entries in the disk file in order so that a scan
|
---|
| 2474 | ** of the table is a linear scan through the file. That
|
---|
| 2475 | ** in turn helps the operating system to deliver pages
|
---|
| 2476 | ** from the disk more rapidly.
|
---|
| 2477 | **
|
---|
| 2478 | ** An O(n^2) insertion sort algorithm is used, but since
|
---|
| 2479 | ** n is never more than NB (a small constant), that should
|
---|
| 2480 | ** not be a problem.
|
---|
| 2481 | **
|
---|
| 2482 | ** When NB==3, this one optimization makes the database
|
---|
| 2483 | ** about 25% faster for large insertions and deletions.
|
---|
| 2484 | */
|
---|
| 2485 | for(i=0; i<k-1; i++){
|
---|
| 2486 | int minV = pgnoNew[i];
|
---|
| 2487 | int minI = i;
|
---|
| 2488 | for(j=i+1; j<k; j++){
|
---|
| 2489 | if( pgnoNew[j]<(unsigned)minV ){
|
---|
| 2490 | minI = j;
|
---|
| 2491 | minV = pgnoNew[j];
|
---|
| 2492 | }
|
---|
| 2493 | }
|
---|
| 2494 | if( minI>i ){
|
---|
| 2495 | int t;
|
---|
| 2496 | MemPage *pT;
|
---|
| 2497 | t = pgnoNew[i];
|
---|
| 2498 | pT = apNew[i];
|
---|
| 2499 | pgnoNew[i] = pgnoNew[minI];
|
---|
| 2500 | apNew[i] = apNew[minI];
|
---|
| 2501 | pgnoNew[minI] = t;
|
---|
| 2502 | apNew[minI] = pT;
|
---|
| 2503 | }
|
---|
| 2504 | }
|
---|
| 2505 |
|
---|
| 2506 | /*
|
---|
| 2507 | ** Evenly distribute the data in apCell[] across the new pages.
|
---|
| 2508 | ** Insert divider cells into pParent as necessary.
|
---|
| 2509 | */
|
---|
| 2510 | j = 0;
|
---|
| 2511 | for(i=0; i<nNew; i++){
|
---|
| 2512 | MemPage *pNew = apNew[i];
|
---|
| 2513 | while( j<cntNew[i] ){
|
---|
| 2514 | assert( pNew->nFree>=szCell[j] );
|
---|
| 2515 | if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
|
---|
| 2516 | insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
|
---|
| 2517 | j++;
|
---|
| 2518 | }
|
---|
| 2519 | assert( pNew->nCell>0 );
|
---|
| 2520 | assert( !pNew->isOverfull );
|
---|
| 2521 | relinkCellList(pBt, pNew);
|
---|
| 2522 | if( i<nNew-1 && j<nCell ){
|
---|
| 2523 | pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
|
---|
| 2524 | apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
|
---|
| 2525 | if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
|
---|
| 2526 | insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
|
---|
| 2527 | j++;
|
---|
| 2528 | nxDiv++;
|
---|
| 2529 | }
|
---|
| 2530 | }
|
---|
| 2531 | assert( j==nCell );
|
---|
| 2532 | apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
|
---|
| 2533 | if( nxDiv==pParent->nCell ){
|
---|
| 2534 | pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
|
---|
| 2535 | }else{
|
---|
| 2536 | pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
|
---|
| 2537 | }
|
---|
| 2538 | if( pCur ){
|
---|
| 2539 | if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
|
---|
| 2540 | assert( pCur->pPage==pOldCurPage );
|
---|
| 2541 | pCur->idx += nNew - nOld;
|
---|
| 2542 | }else{
|
---|
| 2543 | assert( pOldCurPage!=0 );
|
---|
| 2544 | sqlitepager_ref(pCur->pPage);
|
---|
| 2545 | sqlitepager_unref(pOldCurPage);
|
---|
| 2546 | }
|
---|
| 2547 | }
|
---|
| 2548 |
|
---|
| 2549 | /*
|
---|
| 2550 | ** Reparent children of all cells.
|
---|
| 2551 | */
|
---|
| 2552 | for(i=0; i<nNew; i++){
|
---|
| 2553 | reparentChildPages(pBt, apNew[i]);
|
---|
| 2554 | }
|
---|
| 2555 | reparentChildPages(pBt, pParent);
|
---|
| 2556 |
|
---|
| 2557 | /*
|
---|
| 2558 | ** balance the parent page.
|
---|
| 2559 | */
|
---|
| 2560 | rc = balance(pBt, pParent, pCur);
|
---|
| 2561 |
|
---|
| 2562 | /*
|
---|
| 2563 | ** Cleanup before returning.
|
---|
| 2564 | */
|
---|
| 2565 | balance_cleanup:
|
---|
| 2566 | if( extraUnref ){
|
---|
| 2567 | sqlitepager_unref(extraUnref);
|
---|
| 2568 | }
|
---|
| 2569 | for(i=0; i<nOld; i++){
|
---|
| 2570 | if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
|
---|
| 2571 | }
|
---|
| 2572 | for(i=0; i<nNew; i++){
|
---|
| 2573 | sqlitepager_unref(apNew[i]);
|
---|
| 2574 | }
|
---|
| 2575 | if( pCur && pCur->pPage==0 ){
|
---|
| 2576 | pCur->pPage = pParent;
|
---|
| 2577 | pCur->idx = 0;
|
---|
| 2578 | }else{
|
---|
| 2579 | sqlitepager_unref(pParent);
|
---|
| 2580 | }
|
---|
| 2581 | return rc;
|
---|
| 2582 | }
|
---|
| 2583 |
|
---|
| 2584 | /*
|
---|
| 2585 | ** This routine checks all cursors that point to the same table
|
---|
| 2586 | ** as pCur points to. If any of those cursors were opened with
|
---|
| 2587 | ** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
|
---|
| 2588 | ** cursors point to the same table were opened with wrFlag==1
|
---|
| 2589 | ** then this routine returns SQLITE_OK.
|
---|
| 2590 | **
|
---|
| 2591 | ** In addition to checking for read-locks (where a read-lock
|
---|
| 2592 | ** means a cursor opened with wrFlag==0) this routine also moves
|
---|
| 2593 | ** all cursors other than pCur so that they are pointing to the
|
---|
| 2594 | ** first Cell on root page. This is necessary because an insert
|
---|
| 2595 | ** or delete might change the number of cells on a page or delete
|
---|
| 2596 | ** a page entirely and we do not want to leave any cursors
|
---|
| 2597 | ** pointing to non-existant pages or cells.
|
---|
| 2598 | */
|
---|
| 2599 | static int checkReadLocks(BtCursor *pCur){
|
---|
| 2600 | BtCursor *p;
|
---|
| 2601 | assert( pCur->wrFlag );
|
---|
| 2602 | for(p=pCur->pShared; p!=pCur; p=p->pShared){
|
---|
| 2603 | assert( p );
|
---|
| 2604 | assert( p->pgnoRoot==pCur->pgnoRoot );
|
---|
| 2605 | if( p->wrFlag==0 ) return SQLITE_LOCKED;
|
---|
| 2606 | if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
|
---|
| 2607 | moveToRoot(p);
|
---|
| 2608 | }
|
---|
| 2609 | }
|
---|
| 2610 | return SQLITE_OK;
|
---|
| 2611 | }
|
---|
| 2612 |
|
---|
| 2613 | /*
|
---|
| 2614 | ** Insert a new record into the BTree. The key is given by (pKey,nKey)
|
---|
| 2615 | ** and the data is given by (pData,nData). The cursor is used only to
|
---|
| 2616 | ** define what database the record should be inserted into. The cursor
|
---|
| 2617 | ** is left pointing at the new record.
|
---|
| 2618 | */
|
---|
| 2619 | static int fileBtreeInsert(
|
---|
| 2620 | BtCursor *pCur, /* Insert data into the table of this cursor */
|
---|
| 2621 | const void *pKey, int nKey, /* The key of the new record */
|
---|
| 2622 | const void *pData, int nData /* The data of the new record */
|
---|
| 2623 | ){
|
---|
| 2624 | Cell newCell;
|
---|
| 2625 | int rc;
|
---|
| 2626 | int loc;
|
---|
| 2627 | int szNew;
|
---|
| 2628 | MemPage *pPage;
|
---|
| 2629 | Btree *pBt = pCur->pBt;
|
---|
| 2630 |
|
---|
| 2631 | if( pCur->pPage==0 ){
|
---|
| 2632 | return SQLITE_ABORT; /* A rollback destroyed this cursor */
|
---|
| 2633 | }
|
---|
| 2634 | if( !pBt->inTrans || nKey+nData==0 ){
|
---|
| 2635 | /* Must start a transaction before doing an insert */
|
---|
| 2636 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
| 2637 | }
|
---|
| 2638 | assert( !pBt->readOnly );
|
---|
| 2639 | if( !pCur->wrFlag ){
|
---|
| 2640 | return SQLITE_PERM; /* Cursor not open for writing */
|
---|
| 2641 | }
|
---|
| 2642 | if( checkReadLocks(pCur) ){
|
---|
| 2643 | return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
---|
| 2644 | }
|
---|
| 2645 | rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
|
---|
| 2646 | if( rc ) return rc;
|
---|
| 2647 | pPage = pCur->pPage;
|
---|
| 2648 | assert( pPage->isInit );
|
---|
| 2649 | rc = sqlitepager_write(pPage);
|
---|
| 2650 | if( rc ) return rc;
|
---|
| 2651 | rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
|
---|
| 2652 | if( rc ) return rc;
|
---|
| 2653 | szNew = cellSize(pBt, &newCell);
|
---|
| 2654 | if( loc==0 ){
|
---|
| 2655 | newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
|
---|
| 2656 | rc = clearCell(pBt, pPage->apCell[pCur->idx]);
|
---|
| 2657 | if( rc ) return rc;
|
---|
| 2658 | dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
|
---|
| 2659 | }else if( loc<0 && pPage->nCell>0 ){
|
---|
| 2660 | assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
|
---|
| 2661 | pCur->idx++;
|
---|
| 2662 | }else{
|
---|
| 2663 | assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
|
---|
| 2664 | }
|
---|
| 2665 | insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
|
---|
| 2666 | rc = balance(pCur->pBt, pPage, pCur);
|
---|
| 2667 | /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
|
---|
| 2668 | /* fflush(stdout); */
|
---|
| 2669 | pCur->eSkip = SKIP_INVALID;
|
---|
| 2670 | return rc;
|
---|
| 2671 | }
|
---|
| 2672 |
|
---|
| 2673 | /*
|
---|
| 2674 | ** Delete the entry that the cursor is pointing to.
|
---|
| 2675 | **
|
---|
| 2676 | ** The cursor is left pointing at either the next or the previous
|
---|
| 2677 | ** entry. If the cursor is left pointing to the next entry, then
|
---|
| 2678 | ** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
|
---|
| 2679 | ** sqliteBtreeNext() to be a no-op. That way, you can always call
|
---|
| 2680 | ** sqliteBtreeNext() after a delete and the cursor will be left
|
---|
| 2681 | ** pointing to the first entry after the deleted entry. Similarly,
|
---|
| 2682 | ** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
|
---|
| 2683 | ** the entry prior to the deleted entry so that a subsequent call to
|
---|
| 2684 | ** sqliteBtreePrevious() will always leave the cursor pointing at the
|
---|
| 2685 | ** entry immediately before the one that was deleted.
|
---|
| 2686 | */
|
---|
| 2687 | static int fileBtreeDelete(BtCursor *pCur){
|
---|
| 2688 | MemPage *pPage = pCur->pPage;
|
---|
| 2689 | Cell *pCell;
|
---|
| 2690 | int rc;
|
---|
| 2691 | Pgno pgnoChild;
|
---|
| 2692 | Btree *pBt = pCur->pBt;
|
---|
| 2693 |
|
---|
| 2694 | assert( pPage->isInit );
|
---|
| 2695 | if( pCur->pPage==0 ){
|
---|
| 2696 | return SQLITE_ABORT; /* A rollback destroyed this cursor */
|
---|
| 2697 | }
|
---|
| 2698 | if( !pBt->inTrans ){
|
---|
| 2699 | /* Must start a transaction before doing a delete */
|
---|
| 2700 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
| 2701 | }
|
---|
| 2702 | assert( !pBt->readOnly );
|
---|
| 2703 | if( pCur->idx >= pPage->nCell ){
|
---|
| 2704 | return SQLITE_ERROR; /* The cursor is not pointing to anything */
|
---|
| 2705 | }
|
---|
| 2706 | if( !pCur->wrFlag ){
|
---|
| 2707 | return SQLITE_PERM; /* Did not open this cursor for writing */
|
---|
| 2708 | }
|
---|
| 2709 | if( checkReadLocks(pCur) ){
|
---|
| 2710 | return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
---|
| 2711 | }
|
---|
| 2712 | rc = sqlitepager_write(pPage);
|
---|
| 2713 | if( rc ) return rc;
|
---|
| 2714 | pCell = pPage->apCell[pCur->idx];
|
---|
| 2715 | pgnoChild = SWAB32(pBt, pCell->h.leftChild);
|
---|
| 2716 | clearCell(pBt, pCell);
|
---|
| 2717 | if( pgnoChild ){
|
---|
| 2718 | /*
|
---|
| 2719 | ** The entry we are about to delete is not a leaf so if we do not
|
---|
| 2720 | ** do something we will leave a hole on an internal page.
|
---|
| 2721 | ** We have to fill the hole by moving in a cell from a leaf. The
|
---|
| 2722 | ** next Cell after the one to be deleted is guaranteed to exist and
|
---|
| 2723 | ** to be a leaf so we can use it.
|
---|
| 2724 | */
|
---|
| 2725 | BtCursor leafCur;
|
---|
| 2726 | Cell *pNext;
|
---|
| 2727 | int szNext;
|
---|
| 2728 | int notUsed;
|
---|
| 2729 | getTempCursor(pCur, &leafCur);
|
---|
| 2730 | rc = fileBtreeNext(&leafCur, ¬Used);
|
---|
| 2731 | if( rc!=SQLITE_OK ){
|
---|
| 2732 | if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
|
---|
| 2733 | return rc;
|
---|
| 2734 | }
|
---|
| 2735 | rc = sqlitepager_write(leafCur.pPage);
|
---|
| 2736 | if( rc ) return rc;
|
---|
| 2737 | dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
|
---|
| 2738 | pNext = leafCur.pPage->apCell[leafCur.idx];
|
---|
| 2739 | szNext = cellSize(pBt, pNext);
|
---|
| 2740 | pNext->h.leftChild = SWAB32(pBt, pgnoChild);
|
---|
| 2741 | insertCell(pBt, pPage, pCur->idx, pNext, szNext);
|
---|
| 2742 | rc = balance(pBt, pPage, pCur);
|
---|
| 2743 | if( rc ) return rc;
|
---|
| 2744 | pCur->eSkip = SKIP_NEXT;
|
---|
| 2745 | dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
|
---|
| 2746 | rc = balance(pBt, leafCur.pPage, pCur);
|
---|
| 2747 | releaseTempCursor(&leafCur);
|
---|
| 2748 | }else{
|
---|
| 2749 | dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
|
---|
| 2750 | if( pCur->idx>=pPage->nCell ){
|
---|
| 2751 | pCur->idx = pPage->nCell-1;
|
---|
| 2752 | if( pCur->idx<0 ){
|
---|
| 2753 | pCur->idx = 0;
|
---|
| 2754 | pCur->eSkip = SKIP_NEXT;
|
---|
| 2755 | }else{
|
---|
| 2756 | pCur->eSkip = SKIP_PREV;
|
---|
| 2757 | }
|
---|
| 2758 | }else{
|
---|
| 2759 | pCur->eSkip = SKIP_NEXT;
|
---|
| 2760 | }
|
---|
| 2761 | rc = balance(pBt, pPage, pCur);
|
---|
| 2762 | }
|
---|
| 2763 | return rc;
|
---|
| 2764 | }
|
---|
| 2765 |
|
---|
| 2766 | /*
|
---|
| 2767 | ** Create a new BTree table. Write into *piTable the page
|
---|
| 2768 | ** number for the root page of the new table.
|
---|
| 2769 | **
|
---|
| 2770 | ** In the current implementation, BTree tables and BTree indices are the
|
---|
| 2771 | ** the same. In the future, we may change this so that BTree tables
|
---|
| 2772 | ** are restricted to having a 4-byte integer key and arbitrary data and
|
---|
| 2773 | ** BTree indices are restricted to having an arbitrary key and no data.
|
---|
| 2774 | ** But for now, this routine also serves to create indices.
|
---|
| 2775 | */
|
---|
| 2776 | static int fileBtreeCreateTable(Btree *pBt, int *piTable){
|
---|
| 2777 | MemPage *pRoot;
|
---|
| 2778 | Pgno pgnoRoot;
|
---|
| 2779 | int rc;
|
---|
| 2780 | if( !pBt->inTrans ){
|
---|
| 2781 | /* Must start a transaction first */
|
---|
| 2782 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
| 2783 | }
|
---|
| 2784 | if( pBt->readOnly ){
|
---|
| 2785 | return SQLITE_READONLY;
|
---|
| 2786 | }
|
---|
| 2787 | rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
|
---|
| 2788 | if( rc ) return rc;
|
---|
| 2789 | assert( sqlitepager_iswriteable(pRoot) );
|
---|
| 2790 | zeroPage(pBt, pRoot);
|
---|
| 2791 | sqlitepager_unref(pRoot);
|
---|
| 2792 | *piTable = (int)pgnoRoot;
|
---|
| 2793 | return SQLITE_OK;
|
---|
| 2794 | }
|
---|
| 2795 |
|
---|
| 2796 | /*
|
---|
| 2797 | ** Erase the given database page and all its children. Return
|
---|
| 2798 | ** the page to the freelist.
|
---|
| 2799 | */
|
---|
| 2800 | static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
|
---|
| 2801 | MemPage *pPage;
|
---|
| 2802 | int rc;
|
---|
| 2803 | Cell *pCell;
|
---|
| 2804 | int idx;
|
---|
| 2805 |
|
---|
| 2806 | rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
|
---|
| 2807 | if( rc ) return rc;
|
---|
| 2808 | rc = sqlitepager_write(pPage);
|
---|
| 2809 | if( rc ) return rc;
|
---|
| 2810 | rc = initPage(pBt, pPage, pgno, 0);
|
---|
| 2811 | if( rc ) return rc;
|
---|
| 2812 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
| 2813 | while( idx>0 ){
|
---|
| 2814 | pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
| 2815 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
| 2816 | if( pCell->h.leftChild ){
|
---|
| 2817 | rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
|
---|
| 2818 | if( rc ) return rc;
|
---|
| 2819 | }
|
---|
| 2820 | rc = clearCell(pBt, pCell);
|
---|
| 2821 | if( rc ) return rc;
|
---|
| 2822 | }
|
---|
| 2823 | if( pPage->u.hdr.rightChild ){
|
---|
| 2824 | rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
|
---|
| 2825 | if( rc ) return rc;
|
---|
| 2826 | }
|
---|
| 2827 | if( freePageFlag ){
|
---|
| 2828 | rc = freePage(pBt, pPage, pgno);
|
---|
| 2829 | }else{
|
---|
| 2830 | zeroPage(pBt, pPage);
|
---|
| 2831 | }
|
---|
| 2832 | sqlitepager_unref(pPage);
|
---|
| 2833 | return rc;
|
---|
| 2834 | }
|
---|
| 2835 |
|
---|
| 2836 | /*
|
---|
| 2837 | ** Delete all information from a single table in the database.
|
---|
| 2838 | */
|
---|
| 2839 | static int fileBtreeClearTable(Btree *pBt, int iTable){
|
---|
| 2840 | int rc;
|
---|
| 2841 | BtCursor *pCur;
|
---|
| 2842 | if( !pBt->inTrans ){
|
---|
| 2843 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
| 2844 | }
|
---|
| 2845 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
| 2846 | if( pCur->pgnoRoot==(Pgno)iTable ){
|
---|
| 2847 | if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
|
---|
| 2848 | moveToRoot(pCur);
|
---|
| 2849 | }
|
---|
| 2850 | }
|
---|
| 2851 | rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
|
---|
| 2852 | if( rc ){
|
---|
| 2853 | fileBtreeRollback(pBt);
|
---|
| 2854 | }
|
---|
| 2855 | return rc;
|
---|
| 2856 | }
|
---|
| 2857 |
|
---|
| 2858 | /*
|
---|
| 2859 | ** Erase all information in a table and add the root of the table to
|
---|
| 2860 | ** the freelist. Except, the root of the principle table (the one on
|
---|
| 2861 | ** page 2) is never added to the freelist.
|
---|
| 2862 | */
|
---|
| 2863 | static int fileBtreeDropTable(Btree *pBt, int iTable){
|
---|
| 2864 | int rc;
|
---|
| 2865 | MemPage *pPage;
|
---|
| 2866 | BtCursor *pCur;
|
---|
| 2867 | if( !pBt->inTrans ){
|
---|
| 2868 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
| 2869 | }
|
---|
| 2870 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
| 2871 | if( pCur->pgnoRoot==(Pgno)iTable ){
|
---|
| 2872 | return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
|
---|
| 2873 | }
|
---|
| 2874 | }
|
---|
| 2875 | rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
|
---|
| 2876 | if( rc ) return rc;
|
---|
| 2877 | rc = fileBtreeClearTable(pBt, iTable);
|
---|
| 2878 | if( rc ) return rc;
|
---|
| 2879 | if( iTable>2 ){
|
---|
| 2880 | rc = freePage(pBt, pPage, iTable);
|
---|
| 2881 | }else{
|
---|
| 2882 | zeroPage(pBt, pPage);
|
---|
| 2883 | }
|
---|
| 2884 | sqlitepager_unref(pPage);
|
---|
| 2885 | return rc;
|
---|
| 2886 | }
|
---|
| 2887 |
|
---|
| 2888 | #if 0 /* UNTESTED */
|
---|
| 2889 | /*
|
---|
| 2890 | ** Copy all cell data from one database file into another.
|
---|
| 2891 | ** pages back the freelist.
|
---|
| 2892 | */
|
---|
| 2893 | static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
|
---|
| 2894 | Pager *pFromPager = pBtFrom->pPager;
|
---|
| 2895 | OverflowPage *pOvfl;
|
---|
| 2896 | Pgno ovfl, nextOvfl;
|
---|
| 2897 | Pgno *pPrev;
|
---|
| 2898 | int rc = SQLITE_OK;
|
---|
| 2899 | MemPage *pNew, *pPrevPg;
|
---|
| 2900 | Pgno new;
|
---|
| 2901 |
|
---|
| 2902 | if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
|
---|
| 2903 | return SQLITE_OK;
|
---|
| 2904 | }
|
---|
| 2905 | pPrev = &pCell->ovfl;
|
---|
| 2906 | pPrevPg = 0;
|
---|
| 2907 | ovfl = SWAB32(pBtTo, pCell->ovfl);
|
---|
| 2908 | while( ovfl && rc==SQLITE_OK ){
|
---|
| 2909 | rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
|
---|
| 2910 | if( rc ) return rc;
|
---|
| 2911 | nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
|
---|
| 2912 | rc = allocatePage(pBtTo, &pNew, &new, 0);
|
---|
| 2913 | if( rc==SQLITE_OK ){
|
---|
| 2914 | rc = sqlitepager_write(pNew);
|
---|
| 2915 | if( rc==SQLITE_OK ){
|
---|
| 2916 | memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
|
---|
| 2917 | *pPrev = SWAB32(pBtTo, new);
|
---|
| 2918 | if( pPrevPg ){
|
---|
| 2919 | sqlitepager_unref(pPrevPg);
|
---|
| 2920 | }
|
---|
| 2921 | pPrev = &pOvfl->iNext;
|
---|
| 2922 | pPrevPg = pNew;
|
---|
| 2923 | }
|
---|
| 2924 | }
|
---|
| 2925 | sqlitepager_unref(pOvfl);
|
---|
| 2926 | ovfl = nextOvfl;
|
---|
| 2927 | }
|
---|
| 2928 | if( pPrevPg ){
|
---|
| 2929 | sqlitepager_unref(pPrevPg);
|
---|
| 2930 | }
|
---|
| 2931 | return rc;
|
---|
| 2932 | }
|
---|
| 2933 | #endif
|
---|
| 2934 |
|
---|
| 2935 |
|
---|
| 2936 | #if 0 /* UNTESTED */
|
---|
| 2937 | /*
|
---|
| 2938 | ** Copy a page of data from one database over to another.
|
---|
| 2939 | */
|
---|
| 2940 | static int copyDatabasePage(
|
---|
| 2941 | Btree *pBtFrom,
|
---|
| 2942 | Pgno pgnoFrom,
|
---|
| 2943 | Btree *pBtTo,
|
---|
| 2944 | Pgno *pTo
|
---|
| 2945 | ){
|
---|
| 2946 | MemPage *pPageFrom, *pPage;
|
---|
| 2947 | Pgno to;
|
---|
| 2948 | int rc;
|
---|
| 2949 | Cell *pCell;
|
---|
| 2950 | int idx;
|
---|
| 2951 |
|
---|
| 2952 | rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
|
---|
| 2953 | if( rc ) return rc;
|
---|
| 2954 | rc = allocatePage(pBt, &pPage, pTo, 0);
|
---|
| 2955 | if( rc==SQLITE_OK ){
|
---|
| 2956 | rc = sqlitepager_write(pPage);
|
---|
| 2957 | }
|
---|
| 2958 | if( rc==SQLITE_OK ){
|
---|
| 2959 | memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
|
---|
| 2960 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
| 2961 | while( idx>0 ){
|
---|
| 2962 | pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
| 2963 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
| 2964 | if( pCell->h.leftChild ){
|
---|
| 2965 | Pgno newChld;
|
---|
| 2966 | rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
|
---|
| 2967 | pBtTo, &newChld);
|
---|
| 2968 | if( rc ) return rc;
|
---|
| 2969 | pCell->h.leftChild = SWAB32(pBtFrom, newChld);
|
---|
| 2970 | }
|
---|
| 2971 | rc = copyCell(pBtFrom, pBtTo, pCell);
|
---|
| 2972 | if( rc ) return rc;
|
---|
| 2973 | }
|
---|
| 2974 | if( pPage->u.hdr.rightChild ){
|
---|
| 2975 | Pgno newChld;
|
---|
| 2976 | rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
|
---|
| 2977 | pBtTo, &newChld);
|
---|
| 2978 | if( rc ) return rc;
|
---|
| 2979 | pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
|
---|
| 2980 | }
|
---|
| 2981 | }
|
---|
| 2982 | sqlitepager_unref(pPage);
|
---|
| 2983 | return rc;
|
---|
| 2984 | }
|
---|
| 2985 | #endif
|
---|
| 2986 |
|
---|
| 2987 | /*
|
---|
| 2988 | ** Read the meta-information out of a database file.
|
---|
| 2989 | */
|
---|
| 2990 | static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
|
---|
| 2991 | PageOne *pP1;
|
---|
| 2992 | int rc;
|
---|
| 2993 | int i;
|
---|
| 2994 |
|
---|
| 2995 | rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
|
---|
| 2996 | if( rc ) return rc;
|
---|
| 2997 | aMeta[0] = SWAB32(pBt, pP1->nFree);
|
---|
| 2998 | for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
|
---|
| 2999 | aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
|
---|
| 3000 | }
|
---|
| 3001 | sqlitepager_unref(pP1);
|
---|
| 3002 | return SQLITE_OK;
|
---|
| 3003 | }
|
---|
| 3004 |
|
---|
| 3005 | /*
|
---|
| 3006 | ** Write meta-information back into the database.
|
---|
| 3007 | */
|
---|
| 3008 | static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
|
---|
| 3009 | PageOne *pP1;
|
---|
| 3010 | int rc, i;
|
---|
| 3011 | if( !pBt->inTrans ){
|
---|
| 3012 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
| 3013 | }
|
---|
| 3014 | pP1 = pBt->page1;
|
---|
| 3015 | rc = sqlitepager_write(pP1);
|
---|
| 3016 | if( rc ) return rc;
|
---|
| 3017 | for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
|
---|
| 3018 | pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
|
---|
| 3019 | }
|
---|
| 3020 | return SQLITE_OK;
|
---|
| 3021 | }
|
---|
| 3022 |
|
---|
| 3023 | /******************************************************************************
|
---|
| 3024 | ** The complete implementation of the BTree subsystem is above this line.
|
---|
| 3025 | ** All the code the follows is for testing and troubleshooting the BTree
|
---|
| 3026 | ** subsystem. None of the code that follows is used during normal operation.
|
---|
| 3027 | ******************************************************************************/
|
---|
| 3028 |
|
---|
| 3029 | /*
|
---|
| 3030 | ** Print a disassembly of the given page on standard output. This routine
|
---|
| 3031 | ** is used for debugging and testing only.
|
---|
| 3032 | */
|
---|
| 3033 | #ifdef SQLITE_TEST
|
---|
| 3034 | static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
|
---|
| 3035 | int rc;
|
---|
| 3036 | MemPage *pPage;
|
---|
| 3037 | int i, j;
|
---|
| 3038 | int nFree;
|
---|
| 3039 | u16 idx;
|
---|
| 3040 | char range[20];
|
---|
| 3041 | unsigned char payload[20];
|
---|
| 3042 | rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
|
---|
| 3043 | if( rc ){
|
---|
| 3044 | return rc;
|
---|
| 3045 | }
|
---|
| 3046 | if( recursive ) printf("PAGE %d:\n", pgno);
|
---|
| 3047 | i = 0;
|
---|
| 3048 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
| 3049 | while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
|
---|
| 3050 | Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
| 3051 | int sz = cellSize(pBt, pCell);
|
---|
| 3052 | sprintf(range,"%d..%d", idx, idx+sz-1);
|
---|
| 3053 | sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
|
---|
| 3054 | if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
|
---|
| 3055 | memcpy(payload, pCell->aPayload, sz);
|
---|
| 3056 | for(j=0; j<sz; j++){
|
---|
| 3057 | if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
|
---|
| 3058 | }
|
---|
| 3059 | payload[sz] = 0;
|
---|
| 3060 | printf(
|
---|
| 3061 | "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
|
---|
| 3062 | i, range, (int)pCell->h.leftChild,
|
---|
| 3063 | NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
|
---|
| 3064 | payload
|
---|
| 3065 | );
|
---|
| 3066 | if( pPage->isInit && pPage->apCell[i]!=pCell ){
|
---|
| 3067 | printf("**** apCell[%d] does not match on prior entry ****\n", i);
|
---|
| 3068 | }
|
---|
| 3069 | i++;
|
---|
| 3070 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
| 3071 | }
|
---|
| 3072 | if( idx!=0 ){
|
---|
| 3073 | printf("ERROR: next cell index out of range: %d\n", idx);
|
---|
| 3074 | }
|
---|
| 3075 | printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
|
---|
| 3076 | nFree = 0;
|
---|
| 3077 | i = 0;
|
---|
| 3078 | idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
---|
| 3079 | while( idx>0 && idx<SQLITE_USABLE_SIZE ){
|
---|
| 3080 | FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
| 3081 | sprintf(range,"%d..%d", idx, idx+p->iSize-1);
|
---|
| 3082 | nFree += SWAB16(pBt, p->iSize);
|
---|
| 3083 | printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
|
---|
| 3084 | i, range, SWAB16(pBt, p->iSize), nFree);
|
---|
| 3085 | idx = SWAB16(pBt, p->iNext);
|
---|
| 3086 | i++;
|
---|
| 3087 | }
|
---|
| 3088 | if( idx!=0 ){
|
---|
| 3089 | printf("ERROR: next freeblock index out of range: %d\n", idx);
|
---|
| 3090 | }
|
---|
| 3091 | if( recursive && pPage->u.hdr.rightChild!=0 ){
|
---|
| 3092 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
| 3093 | while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
|
---|
| 3094 | Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
| 3095 | fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
|
---|
| 3096 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
| 3097 | }
|
---|
| 3098 | fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
|
---|
| 3099 | }
|
---|
| 3100 | sqlitepager_unref(pPage);
|
---|
| 3101 | return SQLITE_OK;
|
---|
| 3102 | }
|
---|
| 3103 | #endif
|
---|
| 3104 |
|
---|
| 3105 | #ifdef SQLITE_TEST
|
---|
| 3106 | /*
|
---|
| 3107 | ** Fill aResult[] with information about the entry and page that the
|
---|
| 3108 | ** cursor is pointing to.
|
---|
| 3109 | **
|
---|
| 3110 | ** aResult[0] = The page number
|
---|
| 3111 | ** aResult[1] = The entry number
|
---|
| 3112 | ** aResult[2] = Total number of entries on this page
|
---|
| 3113 | ** aResult[3] = Size of this entry
|
---|
| 3114 | ** aResult[4] = Number of free bytes on this page
|
---|
| 3115 | ** aResult[5] = Number of free blocks on the page
|
---|
| 3116 | ** aResult[6] = Page number of the left child of this entry
|
---|
| 3117 | ** aResult[7] = Page number of the right child for the whole page
|
---|
| 3118 | **
|
---|
| 3119 | ** This routine is used for testing and debugging only.
|
---|
| 3120 | */
|
---|
| 3121 | static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
|
---|
| 3122 | int cnt, idx;
|
---|
| 3123 | MemPage *pPage = pCur->pPage;
|
---|
| 3124 | Btree *pBt = pCur->pBt;
|
---|
| 3125 | aResult[0] = sqlitepager_pagenumber(pPage);
|
---|
| 3126 | aResult[1] = pCur->idx;
|
---|
| 3127 | aResult[2] = pPage->nCell;
|
---|
| 3128 | if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
|
---|
| 3129 | aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
|
---|
| 3130 | aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
|
---|
| 3131 | }else{
|
---|
| 3132 | aResult[3] = 0;
|
---|
| 3133 | aResult[6] = 0;
|
---|
| 3134 | }
|
---|
| 3135 | aResult[4] = pPage->nFree;
|
---|
| 3136 | cnt = 0;
|
---|
| 3137 | idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
---|
| 3138 | while( idx>0 && idx<SQLITE_USABLE_SIZE ){
|
---|
| 3139 | cnt++;
|
---|
| 3140 | idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
|
---|
| 3141 | }
|
---|
| 3142 | aResult[5] = cnt;
|
---|
| 3143 | aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
|
---|
| 3144 | return SQLITE_OK;
|
---|
| 3145 | }
|
---|
| 3146 | #endif
|
---|
| 3147 |
|
---|
| 3148 | /*
|
---|
| 3149 | ** Return the pager associated with a BTree. This routine is used for
|
---|
| 3150 | ** testing and debugging only.
|
---|
| 3151 | */
|
---|
| 3152 | static Pager *fileBtreePager(Btree *pBt){
|
---|
| 3153 | return pBt->pPager;
|
---|
| 3154 | }
|
---|
| 3155 |
|
---|
| 3156 | /*
|
---|
| 3157 | ** This structure is passed around through all the sanity checking routines
|
---|
| 3158 | ** in order to keep track of some global state information.
|
---|
| 3159 | */
|
---|
| 3160 | typedef struct IntegrityCk IntegrityCk;
|
---|
| 3161 | struct IntegrityCk {
|
---|
| 3162 | Btree *pBt; /* The tree being checked out */
|
---|
| 3163 | Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
|
---|
| 3164 | int nPage; /* Number of pages in the database */
|
---|
| 3165 | int *anRef; /* Number of times each page is referenced */
|
---|
| 3166 | char *zErrMsg; /* An error message. NULL of no errors seen. */
|
---|
| 3167 | };
|
---|
| 3168 |
|
---|
| 3169 | /*
|
---|
| 3170 | ** Append a message to the error message string.
|
---|
| 3171 | */
|
---|
| 3172 | static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
|
---|
| 3173 | if( pCheck->zErrMsg ){
|
---|
| 3174 | char *zOld = pCheck->zErrMsg;
|
---|
| 3175 | pCheck->zErrMsg = 0;
|
---|
| 3176 | sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
|
---|
| 3177 | sqliteFree(zOld);
|
---|
| 3178 | }else{
|
---|
| 3179 | sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
|
---|
| 3180 | }
|
---|
| 3181 | }
|
---|
| 3182 |
|
---|
| 3183 | /*
|
---|
| 3184 | ** Add 1 to the reference count for page iPage. If this is the second
|
---|
| 3185 | ** reference to the page, add an error message to pCheck->zErrMsg.
|
---|
| 3186 | ** Return 1 if there are 2 ore more references to the page and 0 if
|
---|
| 3187 | ** if this is the first reference to the page.
|
---|
| 3188 | **
|
---|
| 3189 | ** Also check that the page number is in bounds.
|
---|
| 3190 | */
|
---|
| 3191 | static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
|
---|
| 3192 | if( iPage==0 ) return 1;
|
---|
| 3193 | if( iPage>pCheck->nPage || iPage<0 ){
|
---|
| 3194 | char zBuf[100];
|
---|
| 3195 | sprintf(zBuf, "invalid page number %d", iPage);
|
---|
| 3196 | checkAppendMsg(pCheck, zContext, zBuf);
|
---|
| 3197 | return 1;
|
---|
| 3198 | }
|
---|
| 3199 | if( pCheck->anRef[iPage]==1 ){
|
---|
| 3200 | char zBuf[100];
|
---|
| 3201 | sprintf(zBuf, "2nd reference to page %d", iPage);
|
---|
| 3202 | checkAppendMsg(pCheck, zContext, zBuf);
|
---|
| 3203 | return 1;
|
---|
| 3204 | }
|
---|
| 3205 | return (pCheck->anRef[iPage]++)>1;
|
---|
| 3206 | }
|
---|
| 3207 |
|
---|
| 3208 | /*
|
---|
| 3209 | ** Check the integrity of the freelist or of an overflow page list.
|
---|
| 3210 | ** Verify that the number of pages on the list is N.
|
---|
| 3211 | */
|
---|
| 3212 | static void checkList(
|
---|
| 3213 | IntegrityCk *pCheck, /* Integrity checking context */
|
---|
| 3214 | int isFreeList, /* True for a freelist. False for overflow page list */
|
---|
| 3215 | int iPage, /* Page number for first page in the list */
|
---|
| 3216 | int N, /* Expected number of pages in the list */
|
---|
| 3217 | char *zContext /* Context for error messages */
|
---|
| 3218 | ){
|
---|
| 3219 | int i;
|
---|
| 3220 | char zMsg[100];
|
---|
| 3221 | while( N-- > 0 ){
|
---|
| 3222 | OverflowPage *pOvfl;
|
---|
| 3223 | if( iPage<1 ){
|
---|
| 3224 | sprintf(zMsg, "%d pages missing from overflow list", N+1);
|
---|
| 3225 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
| 3226 | break;
|
---|
| 3227 | }
|
---|
| 3228 | if( checkRef(pCheck, iPage, zContext) ) break;
|
---|
| 3229 | if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
|
---|
| 3230 | sprintf(zMsg, "failed to get page %d", iPage);
|
---|
| 3231 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
| 3232 | break;
|
---|
| 3233 | }
|
---|
| 3234 | if( isFreeList ){
|
---|
| 3235 | FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
|
---|
| 3236 | int n = SWAB32(pCheck->pBt, pInfo->nFree);
|
---|
| 3237 | for(i=0; i<n; i++){
|
---|
| 3238 | checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
|
---|
| 3239 | }
|
---|
| 3240 | N -= n;
|
---|
| 3241 | }
|
---|
| 3242 | iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
|
---|
| 3243 | sqlitepager_unref(pOvfl);
|
---|
| 3244 | }
|
---|
| 3245 | }
|
---|
| 3246 |
|
---|
| 3247 | /*
|
---|
| 3248 | ** Return negative if zKey1<zKey2.
|
---|
| 3249 | ** Return zero if zKey1==zKey2.
|
---|
| 3250 | ** Return positive if zKey1>zKey2.
|
---|
| 3251 | */
|
---|
| 3252 | static int keyCompare(
|
---|
| 3253 | const char *zKey1, int nKey1,
|
---|
| 3254 | const char *zKey2, int nKey2
|
---|
| 3255 | ){
|
---|
| 3256 | int min = nKey1>nKey2 ? nKey2 : nKey1;
|
---|
| 3257 | int c = memcmp(zKey1, zKey2, min);
|
---|
| 3258 | if( c==0 ){
|
---|
| 3259 | c = nKey1 - nKey2;
|
---|
| 3260 | }
|
---|
| 3261 | return c;
|
---|
| 3262 | }
|
---|
| 3263 |
|
---|
| 3264 | /*
|
---|
| 3265 | ** Do various sanity checks on a single page of a tree. Return
|
---|
| 3266 | ** the tree depth. Root pages return 0. Parents of root pages
|
---|
| 3267 | ** return 1, and so forth.
|
---|
| 3268 | **
|
---|
| 3269 | ** These checks are done:
|
---|
| 3270 | **
|
---|
| 3271 | ** 1. Make sure that cells and freeblocks do not overlap
|
---|
| 3272 | ** but combine to completely cover the page.
|
---|
| 3273 | ** 2. Make sure cell keys are in order.
|
---|
| 3274 | ** 3. Make sure no key is less than or equal to zLowerBound.
|
---|
| 3275 | ** 4. Make sure no key is greater than or equal to zUpperBound.
|
---|
| 3276 | ** 5. Check the integrity of overflow pages.
|
---|
| 3277 | ** 6. Recursively call checkTreePage on all children.
|
---|
| 3278 | ** 7. Verify that the depth of all children is the same.
|
---|
| 3279 | ** 8. Make sure this page is at least 33% full or else it is
|
---|
| 3280 | ** the root of the tree.
|
---|
| 3281 | */
|
---|
| 3282 | static int checkTreePage(
|
---|
| 3283 | IntegrityCk *pCheck, /* Context for the sanity check */
|
---|
| 3284 | int iPage, /* Page number of the page to check */
|
---|
| 3285 | MemPage *pParent, /* Parent page */
|
---|
| 3286 | char *zParentContext, /* Parent context */
|
---|
| 3287 | char *zLowerBound, /* All keys should be greater than this, if not NULL */
|
---|
| 3288 | int nLower, /* Number of characters in zLowerBound */
|
---|
| 3289 | char *zUpperBound, /* All keys should be less than this, if not NULL */
|
---|
| 3290 | int nUpper /* Number of characters in zUpperBound */
|
---|
| 3291 | ){
|
---|
| 3292 | MemPage *pPage;
|
---|
| 3293 | int i, rc, depth, d2, pgno;
|
---|
| 3294 | char *zKey1, *zKey2;
|
---|
| 3295 | int nKey1, nKey2;
|
---|
| 3296 | BtCursor cur;
|
---|
| 3297 | Btree *pBt;
|
---|
| 3298 | char zMsg[100];
|
---|
| 3299 | char zContext[100];
|
---|
| 3300 | char hit[SQLITE_USABLE_SIZE];
|
---|
| 3301 |
|
---|
| 3302 | /* Check that the page exists
|
---|
| 3303 | */
|
---|
| 3304 | cur.pBt = pBt = pCheck->pBt;
|
---|
| 3305 | if( iPage==0 ) return 0;
|
---|
| 3306 | if( checkRef(pCheck, iPage, zParentContext) ) return 0;
|
---|
| 3307 | sprintf(zContext, "On tree page %d: ", iPage);
|
---|
| 3308 | if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
|
---|
| 3309 | sprintf(zMsg, "unable to get the page. error code=%d", rc);
|
---|
| 3310 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
| 3311 | return 0;
|
---|
| 3312 | }
|
---|
| 3313 | if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
|
---|
| 3314 | sprintf(zMsg, "initPage() returns error code %d", rc);
|
---|
| 3315 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
| 3316 | sqlitepager_unref(pPage);
|
---|
| 3317 | return 0;
|
---|
| 3318 | }
|
---|
| 3319 |
|
---|
| 3320 | /* Check out all the cells.
|
---|
| 3321 | */
|
---|
| 3322 | depth = 0;
|
---|
| 3323 | if( zLowerBound ){
|
---|
| 3324 | zKey1 = sqliteMalloc( nLower+1 );
|
---|
| 3325 | memcpy(zKey1, zLowerBound, nLower);
|
---|
| 3326 | zKey1[nLower] = 0;
|
---|
| 3327 | }else{
|
---|
| 3328 | zKey1 = 0;
|
---|
| 3329 | }
|
---|
| 3330 | nKey1 = nLower;
|
---|
| 3331 | cur.pPage = pPage;
|
---|
| 3332 | for(i=0; i<pPage->nCell; i++){
|
---|
| 3333 | Cell *pCell = pPage->apCell[i];
|
---|
| 3334 | int sz;
|
---|
| 3335 |
|
---|
| 3336 | /* Check payload overflow pages
|
---|
| 3337 | */
|
---|
| 3338 | nKey2 = NKEY(pBt, pCell->h);
|
---|
| 3339 | sz = nKey2 + NDATA(pBt, pCell->h);
|
---|
| 3340 | sprintf(zContext, "On page %d cell %d: ", iPage, i);
|
---|
| 3341 | if( sz>MX_LOCAL_PAYLOAD ){
|
---|
| 3342 | int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
|
---|
| 3343 | checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
|
---|
| 3344 | }
|
---|
| 3345 |
|
---|
| 3346 | /* Check that keys are in the right order
|
---|
| 3347 | */
|
---|
| 3348 | cur.idx = i;
|
---|
| 3349 | zKey2 = sqliteMallocRaw( nKey2+1 );
|
---|
| 3350 | getPayload(&cur, 0, nKey2, zKey2);
|
---|
| 3351 | if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
|
---|
| 3352 | checkAppendMsg(pCheck, zContext, "Key is out of order");
|
---|
| 3353 | }
|
---|
| 3354 |
|
---|
| 3355 | /* Check sanity of left child page.
|
---|
| 3356 | */
|
---|
| 3357 | pgno = SWAB32(pBt, pCell->h.leftChild);
|
---|
| 3358 | d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
|
---|
| 3359 | if( i>0 && d2!=depth ){
|
---|
| 3360 | checkAppendMsg(pCheck, zContext, "Child page depth differs");
|
---|
| 3361 | }
|
---|
| 3362 | depth = d2;
|
---|
| 3363 | sqliteFree(zKey1);
|
---|
| 3364 | zKey1 = zKey2;
|
---|
| 3365 | nKey1 = nKey2;
|
---|
| 3366 | }
|
---|
| 3367 | pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
|
---|
| 3368 | sprintf(zContext, "On page %d at right child: ", iPage);
|
---|
| 3369 | checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
|
---|
| 3370 | sqliteFree(zKey1);
|
---|
| 3371 |
|
---|
| 3372 | /* Check for complete coverage of the page
|
---|
| 3373 | */
|
---|
| 3374 | memset(hit, 0, sizeof(hit));
|
---|
| 3375 | memset(hit, 1, sizeof(PageHdr));
|
---|
| 3376 | for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
|
---|
| 3377 | Cell *pCell = (Cell*)&pPage->u.aDisk[i];
|
---|
| 3378 | int j;
|
---|
| 3379 | for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
|
---|
| 3380 | i = SWAB16(pBt, pCell->h.iNext);
|
---|
| 3381 | }
|
---|
| 3382 | for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
|
---|
| 3383 | FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
|
---|
| 3384 | int j;
|
---|
| 3385 | for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
|
---|
| 3386 | i = SWAB16(pBt,pFBlk->iNext);
|
---|
| 3387 | }
|
---|
| 3388 | for(i=0; i<SQLITE_USABLE_SIZE; i++){
|
---|
| 3389 | if( hit[i]==0 ){
|
---|
| 3390 | sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
|
---|
| 3391 | checkAppendMsg(pCheck, zMsg, 0);
|
---|
| 3392 | break;
|
---|
| 3393 | }else if( hit[i]>1 ){
|
---|
| 3394 | sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
|
---|
| 3395 | checkAppendMsg(pCheck, zMsg, 0);
|
---|
| 3396 | break;
|
---|
| 3397 | }
|
---|
| 3398 | }
|
---|
| 3399 |
|
---|
| 3400 | /* Check that free space is kept to a minimum
|
---|
| 3401 | */
|
---|
| 3402 | #if 0
|
---|
| 3403 | if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
|
---|
| 3404 | sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
|
---|
| 3405 | SQLITE_USABLE_SIZE/3);
|
---|
| 3406 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
| 3407 | }
|
---|
| 3408 | #endif
|
---|
| 3409 |
|
---|
| 3410 | sqlitepager_unref(pPage);
|
---|
| 3411 | return depth;
|
---|
| 3412 | }
|
---|
| 3413 |
|
---|
| 3414 | /*
|
---|
| 3415 | ** This routine does a complete check of the given BTree file. aRoot[] is
|
---|
| 3416 | ** an array of pages numbers were each page number is the root page of
|
---|
| 3417 | ** a table. nRoot is the number of entries in aRoot.
|
---|
| 3418 | **
|
---|
| 3419 | ** If everything checks out, this routine returns NULL. If something is
|
---|
| 3420 | ** amiss, an error message is written into memory obtained from malloc()
|
---|
| 3421 | ** and a pointer to that error message is returned. The calling function
|
---|
| 3422 | ** is responsible for freeing the error message when it is done.
|
---|
| 3423 | */
|
---|
| 3424 | char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
|
---|
| 3425 | int i;
|
---|
| 3426 | int nRef;
|
---|
| 3427 | IntegrityCk sCheck;
|
---|
| 3428 |
|
---|
| 3429 | nRef = *sqlitepager_stats(pBt->pPager);
|
---|
| 3430 | if( lockBtree(pBt)!=SQLITE_OK ){
|
---|
| 3431 | return sqliteStrDup("Unable to acquire a read lock on the database");
|
---|
| 3432 | }
|
---|
| 3433 | sCheck.pBt = pBt;
|
---|
| 3434 | sCheck.pPager = pBt->pPager;
|
---|
| 3435 | sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
|
---|
| 3436 | if( sCheck.nPage==0 ){
|
---|
| 3437 | unlockBtreeIfUnused(pBt);
|
---|
| 3438 | return 0;
|
---|
| 3439 | }
|
---|
| 3440 | sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
|
---|
| 3441 | sCheck.anRef[1] = 1;
|
---|
| 3442 | for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
|
---|
| 3443 | sCheck.zErrMsg = 0;
|
---|
| 3444 |
|
---|
| 3445 | /* Check the integrity of the freelist
|
---|
| 3446 | */
|
---|
| 3447 | checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
|
---|
| 3448 | SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
|
---|
| 3449 |
|
---|
| 3450 | /* Check all the tables.
|
---|
| 3451 | */
|
---|
| 3452 | for(i=0; i<nRoot; i++){
|
---|
| 3453 | if( aRoot[i]==0 ) continue;
|
---|
| 3454 | checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
|
---|
| 3455 | }
|
---|
| 3456 |
|
---|
| 3457 | /* Make sure every page in the file is referenced
|
---|
| 3458 | */
|
---|
| 3459 | for(i=1; i<=sCheck.nPage; i++){
|
---|
| 3460 | if( sCheck.anRef[i]==0 ){
|
---|
| 3461 | char zBuf[100];
|
---|
| 3462 | sprintf(zBuf, "Page %d is never used", i);
|
---|
| 3463 | checkAppendMsg(&sCheck, zBuf, 0);
|
---|
| 3464 | }
|
---|
| 3465 | }
|
---|
| 3466 |
|
---|
| 3467 | /* Make sure this analysis did not leave any unref() pages
|
---|
| 3468 | */
|
---|
| 3469 | unlockBtreeIfUnused(pBt);
|
---|
| 3470 | if( nRef != *sqlitepager_stats(pBt->pPager) ){
|
---|
| 3471 | char zBuf[100];
|
---|
| 3472 | sprintf(zBuf,
|
---|
| 3473 | "Outstanding page count goes from %d to %d during this analysis",
|
---|
| 3474 | nRef, *sqlitepager_stats(pBt->pPager)
|
---|
| 3475 | );
|
---|
| 3476 | checkAppendMsg(&sCheck, zBuf, 0);
|
---|
| 3477 | }
|
---|
| 3478 |
|
---|
| 3479 | /* Clean up and report errors.
|
---|
| 3480 | */
|
---|
| 3481 | sqliteFree(sCheck.anRef);
|
---|
| 3482 | return sCheck.zErrMsg;
|
---|
| 3483 | }
|
---|
| 3484 |
|
---|
| 3485 | /*
|
---|
| 3486 | ** Return the full pathname of the underlying database file.
|
---|
| 3487 | */
|
---|
| 3488 | static const char *fileBtreeGetFilename(Btree *pBt){
|
---|
| 3489 | assert( pBt->pPager!=0 );
|
---|
| 3490 | return sqlitepager_filename(pBt->pPager);
|
---|
| 3491 | }
|
---|
| 3492 |
|
---|
| 3493 | /*
|
---|
| 3494 | ** Copy the complete content of pBtFrom into pBtTo. A transaction
|
---|
| 3495 | ** must be active for both files.
|
---|
| 3496 | **
|
---|
| 3497 | ** The size of file pBtFrom may be reduced by this operation.
|
---|
| 3498 | ** If anything goes wrong, the transaction on pBtFrom is rolled back.
|
---|
| 3499 | */
|
---|
| 3500 | static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
|
---|
| 3501 | int rc = SQLITE_OK;
|
---|
| 3502 | Pgno i, nPage, nToPage;
|
---|
| 3503 |
|
---|
| 3504 | if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
|
---|
| 3505 | if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
|
---|
| 3506 | if( pBtTo->pCursor ) return SQLITE_BUSY;
|
---|
| 3507 | memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
|
---|
| 3508 | rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
|
---|
| 3509 | nToPage = sqlitepager_pagecount(pBtTo->pPager);
|
---|
| 3510 | nPage = sqlitepager_pagecount(pBtFrom->pPager);
|
---|
| 3511 | for(i=2; rc==SQLITE_OK && i<=nPage; i++){
|
---|
| 3512 | void *pPage;
|
---|
| 3513 | rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
|
---|
| 3514 | if( rc ) break;
|
---|
| 3515 | rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
|
---|
| 3516 | if( rc ) break;
|
---|
| 3517 | sqlitepager_unref(pPage);
|
---|
| 3518 | }
|
---|
| 3519 | for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
|
---|
| 3520 | void *pPage;
|
---|
| 3521 | rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
|
---|
| 3522 | if( rc ) break;
|
---|
| 3523 | rc = sqlitepager_write(pPage);
|
---|
| 3524 | sqlitepager_unref(pPage);
|
---|
| 3525 | sqlitepager_dont_write(pBtTo->pPager, i);
|
---|
| 3526 | }
|
---|
| 3527 | if( !rc && nPage<nToPage ){
|
---|
| 3528 | rc = sqlitepager_truncate(pBtTo->pPager, nPage);
|
---|
| 3529 | }
|
---|
| 3530 | if( rc ){
|
---|
| 3531 | fileBtreeRollback(pBtTo);
|
---|
| 3532 | }
|
---|
| 3533 | return rc;
|
---|
| 3534 | }
|
---|
| 3535 |
|
---|
| 3536 | /*
|
---|
| 3537 | ** The following tables contain pointers to all of the interface
|
---|
| 3538 | ** routines for this implementation of the B*Tree backend. To
|
---|
| 3539 | ** substitute a different implemention of the backend, one has merely
|
---|
| 3540 | ** to provide pointers to alternative functions in similar tables.
|
---|
| 3541 | */
|
---|
| 3542 | static BtOps sqliteBtreeOps = {
|
---|
| 3543 | fileBtreeClose,
|
---|
| 3544 | fileBtreeSetCacheSize,
|
---|
| 3545 | fileBtreeSetSafetyLevel,
|
---|
| 3546 | fileBtreeBeginTrans,
|
---|
| 3547 | fileBtreeCommit,
|
---|
| 3548 | fileBtreeRollback,
|
---|
| 3549 | fileBtreeBeginCkpt,
|
---|
| 3550 | fileBtreeCommitCkpt,
|
---|
| 3551 | fileBtreeRollbackCkpt,
|
---|
| 3552 | fileBtreeCreateTable,
|
---|
| 3553 | fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
|
---|
| 3554 | fileBtreeDropTable,
|
---|
| 3555 | fileBtreeClearTable,
|
---|
| 3556 | fileBtreeCursor,
|
---|
| 3557 | fileBtreeGetMeta,
|
---|
| 3558 | fileBtreeUpdateMeta,
|
---|
| 3559 | fileBtreeIntegrityCheck,
|
---|
| 3560 | fileBtreeGetFilename,
|
---|
| 3561 | fileBtreeCopyFile,
|
---|
| 3562 | fileBtreePager,
|
---|
| 3563 | #ifdef SQLITE_TEST
|
---|
| 3564 | fileBtreePageDump,
|
---|
| 3565 | #endif
|
---|
| 3566 | };
|
---|
| 3567 | static BtCursorOps sqliteBtreeCursorOps = {
|
---|
| 3568 | fileBtreeMoveto,
|
---|
| 3569 | fileBtreeDelete,
|
---|
| 3570 | fileBtreeInsert,
|
---|
| 3571 | fileBtreeFirst,
|
---|
| 3572 | fileBtreeLast,
|
---|
| 3573 | fileBtreeNext,
|
---|
| 3574 | fileBtreePrevious,
|
---|
| 3575 | fileBtreeKeySize,
|
---|
| 3576 | fileBtreeKey,
|
---|
| 3577 | fileBtreeKeyCompare,
|
---|
| 3578 | fileBtreeDataSize,
|
---|
| 3579 | fileBtreeData,
|
---|
| 3580 | fileBtreeCloseCursor,
|
---|
| 3581 | #ifdef SQLITE_TEST
|
---|
| 3582 | fileBtreeCursorDump,
|
---|
| 3583 | #endif
|
---|
| 3584 | };
|
---|