1 | /*
|
---|
2 | ** 2001 September 15
|
---|
3 | **
|
---|
4 | ** The author disclaims copyright to this source code. In place of
|
---|
5 | ** a legal notice, here is a blessing:
|
---|
6 | **
|
---|
7 | ** May you do good and not evil.
|
---|
8 | ** May you find forgiveness for yourself and forgive others.
|
---|
9 | ** May you share freely, never taking more than you give.
|
---|
10 | **
|
---|
11 | *************************************************************************
|
---|
12 | ** $Id: btree.c,v 1.103 2004/03/10 13:42:38 drh Exp $
|
---|
13 | **
|
---|
14 | ** This file implements a external (disk-based) database using BTrees.
|
---|
15 | ** For a detailed discussion of BTrees, refer to
|
---|
16 | **
|
---|
17 | ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
|
---|
18 | ** "Sorting And Searching", pages 473-480. Addison-Wesley
|
---|
19 | ** Publishing Company, Reading, Massachusetts.
|
---|
20 | **
|
---|
21 | ** The basic idea is that each page of the file contains N database
|
---|
22 | ** entries and N+1 pointers to subpages.
|
---|
23 | **
|
---|
24 | ** ----------------------------------------------------------------
|
---|
25 | ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
|
---|
26 | ** ----------------------------------------------------------------
|
---|
27 | **
|
---|
28 | ** All of the keys on the page that Ptr(0) points to have values less
|
---|
29 | ** than Key(0). All of the keys on page Ptr(1) and its subpages have
|
---|
30 | ** values greater than Key(0) and less than Key(1). All of the keys
|
---|
31 | ** on Ptr(N+1) and its subpages have values greater than Key(N). And
|
---|
32 | ** so forth.
|
---|
33 | **
|
---|
34 | ** Finding a particular key requires reading O(log(M)) pages from the
|
---|
35 | ** disk where M is the number of entries in the tree.
|
---|
36 | **
|
---|
37 | ** In this implementation, a single file can hold one or more separate
|
---|
38 | ** BTrees. Each BTree is identified by the index of its root page. The
|
---|
39 | ** key and data for any entry are combined to form the "payload". Up to
|
---|
40 | ** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
|
---|
41 | ** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
|
---|
42 | ** then surplus bytes are stored on overflow pages. The payload for an
|
---|
43 | ** entry and the preceding pointer are combined to form a "Cell". Each
|
---|
44 | ** page has a small header which contains the Ptr(N+1) pointer.
|
---|
45 | **
|
---|
46 | ** The first page of the file contains a magic string used to verify that
|
---|
47 | ** the file really is a valid BTree database, a pointer to a list of unused
|
---|
48 | ** pages in the file, and some meta information. The root of the first
|
---|
49 | ** BTree begins on page 2 of the file. (Pages are numbered beginning with
|
---|
50 | ** 1, not 0.) Thus a minimum database contains 2 pages.
|
---|
51 | */
|
---|
52 | #include "sqliteInt.h"
|
---|
53 | #include "pager.h"
|
---|
54 | #include "btree.h"
|
---|
55 | #include <assert.h>
|
---|
56 |
|
---|
57 | /* Forward declarations */
|
---|
58 | static BtOps sqliteBtreeOps;
|
---|
59 | static BtCursorOps sqliteBtreeCursorOps;
|
---|
60 |
|
---|
61 | /*
|
---|
62 | ** Macros used for byteswapping. B is a pointer to the Btree
|
---|
63 | ** structure. This is needed to access the Btree.needSwab boolean
|
---|
64 | ** in order to tell if byte swapping is needed or not.
|
---|
65 | ** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
|
---|
66 | ** SWAB32 byteswaps a 32-bit integer.
|
---|
67 | */
|
---|
68 | #define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
|
---|
69 | #define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
|
---|
70 | #define SWAB_ADD(B,X,A) \
|
---|
71 | if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
|
---|
72 |
|
---|
73 | /*
|
---|
74 | ** The following global variable - available only if SQLITE_TEST is
|
---|
75 | ** defined - is used to determine whether new databases are created in
|
---|
76 | ** native byte order or in non-native byte order. Non-native byte order
|
---|
77 | ** databases are created for testing purposes only. Under normal operation,
|
---|
78 | ** only native byte-order databases should be created, but we should be
|
---|
79 | ** able to read or write existing databases regardless of the byteorder.
|
---|
80 | */
|
---|
81 | #ifdef SQLITE_TEST
|
---|
82 | int btree_native_byte_order = 1;
|
---|
83 | #else
|
---|
84 | # define btree_native_byte_order 1
|
---|
85 | #endif
|
---|
86 |
|
---|
87 | /*
|
---|
88 | ** Forward declarations of structures used only in this file.
|
---|
89 | */
|
---|
90 | typedef struct PageOne PageOne;
|
---|
91 | typedef struct MemPage MemPage;
|
---|
92 | typedef struct PageHdr PageHdr;
|
---|
93 | typedef struct Cell Cell;
|
---|
94 | typedef struct CellHdr CellHdr;
|
---|
95 | typedef struct FreeBlk FreeBlk;
|
---|
96 | typedef struct OverflowPage OverflowPage;
|
---|
97 | typedef struct FreelistInfo FreelistInfo;
|
---|
98 |
|
---|
99 | /*
|
---|
100 | ** All structures on a database page are aligned to 4-byte boundries.
|
---|
101 | ** This routine rounds up a number of bytes to the next multiple of 4.
|
---|
102 | **
|
---|
103 | ** This might need to change for computer architectures that require
|
---|
104 | ** and 8-byte alignment boundry for structures.
|
---|
105 | */
|
---|
106 | #define ROUNDUP(X) ((X+3) & ~3)
|
---|
107 |
|
---|
108 | /*
|
---|
109 | ** This is a magic string that appears at the beginning of every
|
---|
110 | ** SQLite database in order to identify the file as a real database.
|
---|
111 | */
|
---|
112 | static const char zMagicHeader[] =
|
---|
113 | "** This file contains an SQLite 2.1 database **";
|
---|
114 | #define MAGIC_SIZE (sizeof(zMagicHeader))
|
---|
115 |
|
---|
116 | /*
|
---|
117 | ** This is a magic integer also used to test the integrity of the database
|
---|
118 | ** file. This integer is used in addition to the string above so that
|
---|
119 | ** if the file is written on a little-endian architecture and read
|
---|
120 | ** on a big-endian architectures (or vice versa) we can detect the
|
---|
121 | ** problem.
|
---|
122 | **
|
---|
123 | ** The number used was obtained at random and has no special
|
---|
124 | ** significance other than the fact that it represents a different
|
---|
125 | ** integer on little-endian and big-endian machines.
|
---|
126 | */
|
---|
127 | #define MAGIC 0xdae37528
|
---|
128 |
|
---|
129 | /*
|
---|
130 | ** The first page of the database file contains a magic header string
|
---|
131 | ** to identify the file as an SQLite database file. It also contains
|
---|
132 | ** a pointer to the first free page of the file. Page 2 contains the
|
---|
133 | ** root of the principle BTree. The file might contain other BTrees
|
---|
134 | ** rooted on pages above 2.
|
---|
135 | **
|
---|
136 | ** The first page also contains SQLITE_N_BTREE_META integers that
|
---|
137 | ** can be used by higher-level routines.
|
---|
138 | **
|
---|
139 | ** Remember that pages are numbered beginning with 1. (See pager.c
|
---|
140 | ** for additional information.) Page 0 does not exist and a page
|
---|
141 | ** number of 0 is used to mean "no such page".
|
---|
142 | */
|
---|
143 | struct PageOne {
|
---|
144 | char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
|
---|
145 | int iMagic; /* Integer to verify correct byte order */
|
---|
146 | Pgno freeList; /* First free page in a list of all free pages */
|
---|
147 | int nFree; /* Number of pages on the free list */
|
---|
148 | int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
|
---|
149 | };
|
---|
150 |
|
---|
151 | /*
|
---|
152 | ** Each database page has a header that is an instance of this
|
---|
153 | ** structure.
|
---|
154 | **
|
---|
155 | ** PageHdr.firstFree is 0 if there is no free space on this page.
|
---|
156 | ** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
|
---|
157 | ** FreeBlk structure that describes the first block of free space.
|
---|
158 | ** All free space is defined by a linked list of FreeBlk structures.
|
---|
159 | **
|
---|
160 | ** Data is stored in a linked list of Cell structures. PageHdr.firstCell
|
---|
161 | ** is the index into MemPage.u.aDisk[] of the first cell on the page. The
|
---|
162 | ** Cells are kept in sorted order.
|
---|
163 | **
|
---|
164 | ** A Cell contains all information about a database entry and a pointer
|
---|
165 | ** to a child page that contains other entries less than itself. In
|
---|
166 | ** other words, the i-th Cell contains both Ptr(i) and Key(i). The
|
---|
167 | ** right-most pointer of the page is contained in PageHdr.rightChild.
|
---|
168 | */
|
---|
169 | struct PageHdr {
|
---|
170 | Pgno rightChild; /* Child page that comes after all cells on this page */
|
---|
171 | u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
|
---|
172 | u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
|
---|
173 | };
|
---|
174 |
|
---|
175 | /*
|
---|
176 | ** Entries on a page of the database are called "Cells". Each Cell
|
---|
177 | ** has a header and data. This structure defines the header. The
|
---|
178 | ** key and data (collectively the "payload") follow this header on
|
---|
179 | ** the database page.
|
---|
180 | **
|
---|
181 | ** A definition of the complete Cell structure is given below. The
|
---|
182 | ** header for the cell must be defined first in order to do some
|
---|
183 | ** of the sizing #defines that follow.
|
---|
184 | */
|
---|
185 | struct CellHdr {
|
---|
186 | Pgno leftChild; /* Child page that comes before this cell */
|
---|
187 | u16 nKey; /* Number of bytes in the key */
|
---|
188 | u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
|
---|
189 | u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
|
---|
190 | u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
|
---|
191 | u16 nData; /* Number of bytes of data */
|
---|
192 | };
|
---|
193 |
|
---|
194 | /*
|
---|
195 | ** The key and data size are split into a lower 16-bit segment and an
|
---|
196 | ** upper 8-bit segment in order to pack them together into a smaller
|
---|
197 | ** space. The following macros reassembly a key or data size back
|
---|
198 | ** into an integer.
|
---|
199 | */
|
---|
200 | #define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
|
---|
201 | #define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
|
---|
202 |
|
---|
203 | /*
|
---|
204 | ** The minimum size of a complete Cell. The Cell must contain a header
|
---|
205 | ** and at least 4 bytes of payload.
|
---|
206 | */
|
---|
207 | #define MIN_CELL_SIZE (sizeof(CellHdr)+4)
|
---|
208 |
|
---|
209 | /*
|
---|
210 | ** The maximum number of database entries that can be held in a single
|
---|
211 | ** page of the database.
|
---|
212 | */
|
---|
213 | #define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
|
---|
214 |
|
---|
215 | /*
|
---|
216 | ** The amount of usable space on a single page of the BTree. This is the
|
---|
217 | ** page size minus the overhead of the page header.
|
---|
218 | */
|
---|
219 | #define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
|
---|
220 |
|
---|
221 | /*
|
---|
222 | ** The maximum amount of payload (in bytes) that can be stored locally for
|
---|
223 | ** a database entry. If the entry contains more data than this, the
|
---|
224 | ** extra goes onto overflow pages.
|
---|
225 | **
|
---|
226 | ** This number is chosen so that at least 4 cells will fit on every page.
|
---|
227 | */
|
---|
228 | #define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
|
---|
229 |
|
---|
230 | /*
|
---|
231 | ** Data on a database page is stored as a linked list of Cell structures.
|
---|
232 | ** Both the key and the data are stored in aPayload[]. The key always comes
|
---|
233 | ** first. The aPayload[] field grows as necessary to hold the key and data,
|
---|
234 | ** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
|
---|
235 | ** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
|
---|
236 | ** page number of the first overflow page.
|
---|
237 | **
|
---|
238 | ** Though this structure is fixed in size, the Cell on the database
|
---|
239 | ** page varies in size. Every cell has a CellHdr and at least 4 bytes
|
---|
240 | ** of payload space. Additional payload bytes (up to the maximum of
|
---|
241 | ** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
|
---|
242 | ** needed.
|
---|
243 | */
|
---|
244 | struct Cell {
|
---|
245 | CellHdr h; /* The cell header */
|
---|
246 | char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
|
---|
247 | Pgno ovfl; /* The first overflow page */
|
---|
248 | };
|
---|
249 |
|
---|
250 | /*
|
---|
251 | ** Free space on a page is remembered using a linked list of the FreeBlk
|
---|
252 | ** structures. Space on a database page is allocated in increments of
|
---|
253 | ** at least 4 bytes and is always aligned to a 4-byte boundry. The
|
---|
254 | ** linked list of FreeBlks is always kept in order by address.
|
---|
255 | */
|
---|
256 | struct FreeBlk {
|
---|
257 | u16 iSize; /* Number of bytes in this block of free space */
|
---|
258 | u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
|
---|
259 | };
|
---|
260 |
|
---|
261 | /*
|
---|
262 | ** The number of bytes of payload that will fit on a single overflow page.
|
---|
263 | */
|
---|
264 | #define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
|
---|
265 |
|
---|
266 | /*
|
---|
267 | ** When the key and data for a single entry in the BTree will not fit in
|
---|
268 | ** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
|
---|
269 | ** then all extra bytes are written to a linked list of overflow pages.
|
---|
270 | ** Each overflow page is an instance of the following structure.
|
---|
271 | **
|
---|
272 | ** Unused pages in the database are also represented by instances of
|
---|
273 | ** the OverflowPage structure. The PageOne.freeList field is the
|
---|
274 | ** page number of the first page in a linked list of unused database
|
---|
275 | ** pages.
|
---|
276 | */
|
---|
277 | struct OverflowPage {
|
---|
278 | Pgno iNext;
|
---|
279 | char aPayload[OVERFLOW_SIZE];
|
---|
280 | };
|
---|
281 |
|
---|
282 | /*
|
---|
283 | ** The PageOne.freeList field points to a linked list of overflow pages
|
---|
284 | ** hold information about free pages. The aPayload section of each
|
---|
285 | ** overflow page contains an instance of the following structure. The
|
---|
286 | ** aFree[] array holds the page number of nFree unused pages in the disk
|
---|
287 | ** file.
|
---|
288 | */
|
---|
289 | struct FreelistInfo {
|
---|
290 | int nFree;
|
---|
291 | Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
|
---|
292 | };
|
---|
293 |
|
---|
294 | /*
|
---|
295 | ** For every page in the database file, an instance of the following structure
|
---|
296 | ** is stored in memory. The u.aDisk[] array contains the raw bits read from
|
---|
297 | ** the disk. The rest is auxiliary information held in memory only. The
|
---|
298 | ** auxiliary info is only valid for regular database pages - it is not
|
---|
299 | ** used for overflow pages and pages on the freelist.
|
---|
300 | **
|
---|
301 | ** Of particular interest in the auxiliary info is the apCell[] entry. Each
|
---|
302 | ** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
|
---|
303 | ** put in this array so that they can be accessed in constant time, rather
|
---|
304 | ** than in linear time which would be needed if we had to walk the linked
|
---|
305 | ** list on every access.
|
---|
306 | **
|
---|
307 | ** Note that apCell[] contains enough space to hold up to two more Cells
|
---|
308 | ** than can possibly fit on one page. In the steady state, every apCell[]
|
---|
309 | ** points to memory inside u.aDisk[]. But in the middle of an insert
|
---|
310 | ** operation, some apCell[] entries may temporarily point to data space
|
---|
311 | ** outside of u.aDisk[]. This is a transient situation that is quickly
|
---|
312 | ** resolved. But while it is happening, it is possible for a database
|
---|
313 | ** page to hold as many as two more cells than it might otherwise hold.
|
---|
314 | ** The extra two entries in apCell[] are an allowance for this situation.
|
---|
315 | **
|
---|
316 | ** The pParent field points back to the parent page. This allows us to
|
---|
317 | ** walk up the BTree from any leaf to the root. Care must be taken to
|
---|
318 | ** unref() the parent page pointer when this page is no longer referenced.
|
---|
319 | ** The pageDestructor() routine handles that chore.
|
---|
320 | */
|
---|
321 | struct MemPage {
|
---|
322 | union u_page_data {
|
---|
323 | char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
|
---|
324 | PageHdr hdr; /* Overlay page header */
|
---|
325 | } u;
|
---|
326 | u8 isInit; /* True if auxiliary data is initialized */
|
---|
327 | u8 idxShift; /* True if apCell[] indices have changed */
|
---|
328 | u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
|
---|
329 | MemPage *pParent; /* The parent of this page. NULL for root */
|
---|
330 | int idxParent; /* Index in pParent->apCell[] of this node */
|
---|
331 | int nFree; /* Number of free bytes in u.aDisk[] */
|
---|
332 | int nCell; /* Number of entries on this page */
|
---|
333 | Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
|
---|
334 | };
|
---|
335 |
|
---|
336 | /*
|
---|
337 | ** The in-memory image of a disk page has the auxiliary information appended
|
---|
338 | ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
|
---|
339 | ** that extra information.
|
---|
340 | */
|
---|
341 | #define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
|
---|
342 |
|
---|
343 | /*
|
---|
344 | ** Everything we need to know about an open database
|
---|
345 | */
|
---|
346 | struct Btree {
|
---|
347 | BtOps *pOps; /* Function table */
|
---|
348 | Pager *pPager; /* The page cache */
|
---|
349 | BtCursor *pCursor; /* A list of all open cursors */
|
---|
350 | PageOne *page1; /* First page of the database */
|
---|
351 | u8 inTrans; /* True if a transaction is in progress */
|
---|
352 | u8 inCkpt; /* True if there is a checkpoint on the transaction */
|
---|
353 | u8 readOnly; /* True if the underlying file is readonly */
|
---|
354 | u8 needSwab; /* Need to byte-swapping */
|
---|
355 | };
|
---|
356 | typedef Btree Bt;
|
---|
357 |
|
---|
358 | /*
|
---|
359 | ** A cursor is a pointer to a particular entry in the BTree.
|
---|
360 | ** The entry is identified by its MemPage and the index in
|
---|
361 | ** MemPage.apCell[] of the entry.
|
---|
362 | */
|
---|
363 | struct BtCursor {
|
---|
364 | BtCursorOps *pOps; /* Function table */
|
---|
365 | Btree *pBt; /* The Btree to which this cursor belongs */
|
---|
366 | BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
|
---|
367 | BtCursor *pShared; /* Loop of cursors with the same root page */
|
---|
368 | Pgno pgnoRoot; /* The root page of this tree */
|
---|
369 | MemPage *pPage; /* Page that contains the entry */
|
---|
370 | int idx; /* Index of the entry in pPage->apCell[] */
|
---|
371 | u8 wrFlag; /* True if writable */
|
---|
372 | u8 eSkip; /* Determines if next step operation is a no-op */
|
---|
373 | u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
|
---|
374 | };
|
---|
375 |
|
---|
376 | /*
|
---|
377 | ** Legal values for BtCursor.eSkip.
|
---|
378 | */
|
---|
379 | #define SKIP_NONE 0 /* Always step the cursor */
|
---|
380 | #define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
|
---|
381 | #define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
|
---|
382 | #define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
|
---|
383 |
|
---|
384 | /* Forward declarations */
|
---|
385 | static int fileBtreeCloseCursor(BtCursor *pCur);
|
---|
386 |
|
---|
387 | /*
|
---|
388 | ** Routines for byte swapping.
|
---|
389 | */
|
---|
390 | u16 swab16(u16 x){
|
---|
391 | return ((x & 0xff)<<8) | ((x>>8)&0xff);
|
---|
392 | }
|
---|
393 | u32 swab32(u32 x){
|
---|
394 | return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
|
---|
395 | ((x>>8) & 0xff00) | ((x>>24)&0xff);
|
---|
396 | }
|
---|
397 |
|
---|
398 | /*
|
---|
399 | ** Compute the total number of bytes that a Cell needs on the main
|
---|
400 | ** database page. The number returned includes the Cell header,
|
---|
401 | ** local payload storage, and the pointer to overflow pages (if
|
---|
402 | ** applicable). Additional space allocated on overflow pages
|
---|
403 | ** is NOT included in the value returned from this routine.
|
---|
404 | */
|
---|
405 | static int cellSize(Btree *pBt, Cell *pCell){
|
---|
406 | int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
|
---|
407 | if( n>MX_LOCAL_PAYLOAD ){
|
---|
408 | n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
|
---|
409 | }else{
|
---|
410 | n = ROUNDUP(n);
|
---|
411 | }
|
---|
412 | n += sizeof(CellHdr);
|
---|
413 | return n;
|
---|
414 | }
|
---|
415 |
|
---|
416 | /*
|
---|
417 | ** Defragment the page given. All Cells are moved to the
|
---|
418 | ** beginning of the page and all free space is collected
|
---|
419 | ** into one big FreeBlk at the end of the page.
|
---|
420 | */
|
---|
421 | static void defragmentPage(Btree *pBt, MemPage *pPage){
|
---|
422 | int pc, i, n;
|
---|
423 | FreeBlk *pFBlk;
|
---|
424 | char newPage[SQLITE_USABLE_SIZE];
|
---|
425 |
|
---|
426 | assert( sqlitepager_iswriteable(pPage) );
|
---|
427 | assert( pPage->isInit );
|
---|
428 | pc = sizeof(PageHdr);
|
---|
429 | pPage->u.hdr.firstCell = SWAB16(pBt, pc);
|
---|
430 | memcpy(newPage, pPage->u.aDisk, pc);
|
---|
431 | for(i=0; i<pPage->nCell; i++){
|
---|
432 | Cell *pCell = pPage->apCell[i];
|
---|
433 |
|
---|
434 | /* This routine should never be called on an overfull page. The
|
---|
435 | ** following asserts verify that constraint. */
|
---|
436 | assert( Addr(pCell) > Addr(pPage) );
|
---|
437 | assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
|
---|
438 |
|
---|
439 | n = cellSize(pBt, pCell);
|
---|
440 | pCell->h.iNext = SWAB16(pBt, pc + n);
|
---|
441 | memcpy(&newPage[pc], pCell, n);
|
---|
442 | pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
|
---|
443 | pc += n;
|
---|
444 | }
|
---|
445 | assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
|
---|
446 | memcpy(pPage->u.aDisk, newPage, pc);
|
---|
447 | if( pPage->nCell>0 ){
|
---|
448 | pPage->apCell[pPage->nCell-1]->h.iNext = 0;
|
---|
449 | }
|
---|
450 | pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
|
---|
451 | pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
|
---|
452 | pFBlk->iNext = 0;
|
---|
453 | pPage->u.hdr.firstFree = SWAB16(pBt, pc);
|
---|
454 | memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
|
---|
455 | }
|
---|
456 |
|
---|
457 | /*
|
---|
458 | ** Allocate nByte bytes of space on a page. nByte must be a
|
---|
459 | ** multiple of 4.
|
---|
460 | **
|
---|
461 | ** Return the index into pPage->u.aDisk[] of the first byte of
|
---|
462 | ** the new allocation. Or return 0 if there is not enough free
|
---|
463 | ** space on the page to satisfy the allocation request.
|
---|
464 | **
|
---|
465 | ** If the page contains nBytes of free space but does not contain
|
---|
466 | ** nBytes of contiguous free space, then this routine automatically
|
---|
467 | ** calls defragementPage() to consolidate all free space before
|
---|
468 | ** allocating the new chunk.
|
---|
469 | */
|
---|
470 | static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
|
---|
471 | FreeBlk *p;
|
---|
472 | u16 *pIdx;
|
---|
473 | int start;
|
---|
474 | int iSize;
|
---|
475 | #ifndef NDEBUG
|
---|
476 | int cnt = 0;
|
---|
477 | #endif
|
---|
478 |
|
---|
479 | assert( sqlitepager_iswriteable(pPage) );
|
---|
480 | assert( nByte==ROUNDUP(nByte) );
|
---|
481 | assert( pPage->isInit );
|
---|
482 | if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
|
---|
483 | pIdx = &pPage->u.hdr.firstFree;
|
---|
484 | p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
|
---|
485 | while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
|
---|
486 | assert( cnt++ < SQLITE_USABLE_SIZE/4 );
|
---|
487 | if( p->iNext==0 ){
|
---|
488 | defragmentPage(pBt, pPage);
|
---|
489 | pIdx = &pPage->u.hdr.firstFree;
|
---|
490 | }else{
|
---|
491 | pIdx = &p->iNext;
|
---|
492 | }
|
---|
493 | p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
|
---|
494 | }
|
---|
495 | if( iSize==nByte ){
|
---|
496 | start = SWAB16(pBt, *pIdx);
|
---|
497 | *pIdx = p->iNext;
|
---|
498 | }else{
|
---|
499 | FreeBlk *pNew;
|
---|
500 | start = SWAB16(pBt, *pIdx);
|
---|
501 | pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
|
---|
502 | pNew->iNext = p->iNext;
|
---|
503 | pNew->iSize = SWAB16(pBt, iSize - nByte);
|
---|
504 | *pIdx = SWAB16(pBt, start + nByte);
|
---|
505 | }
|
---|
506 | pPage->nFree -= nByte;
|
---|
507 | return start;
|
---|
508 | }
|
---|
509 |
|
---|
510 | /*
|
---|
511 | ** Return a section of the MemPage.u.aDisk[] to the freelist.
|
---|
512 | ** The first byte of the new free block is pPage->u.aDisk[start]
|
---|
513 | ** and the size of the block is "size" bytes. Size must be
|
---|
514 | ** a multiple of 4.
|
---|
515 | **
|
---|
516 | ** Most of the effort here is involved in coalesing adjacent
|
---|
517 | ** free blocks into a single big free block.
|
---|
518 | */
|
---|
519 | static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
|
---|
520 | int end = start + size;
|
---|
521 | u16 *pIdx, idx;
|
---|
522 | FreeBlk *pFBlk;
|
---|
523 | FreeBlk *pNew;
|
---|
524 | FreeBlk *pNext;
|
---|
525 | int iSize;
|
---|
526 |
|
---|
527 | assert( sqlitepager_iswriteable(pPage) );
|
---|
528 | assert( size == ROUNDUP(size) );
|
---|
529 | assert( start == ROUNDUP(start) );
|
---|
530 | assert( pPage->isInit );
|
---|
531 | pIdx = &pPage->u.hdr.firstFree;
|
---|
532 | idx = SWAB16(pBt, *pIdx);
|
---|
533 | while( idx!=0 && idx<start ){
|
---|
534 | pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
535 | iSize = SWAB16(pBt, pFBlk->iSize);
|
---|
536 | if( idx + iSize == start ){
|
---|
537 | pFBlk->iSize = SWAB16(pBt, iSize + size);
|
---|
538 | if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
|
---|
539 | pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
|
---|
540 | if( pBt->needSwab ){
|
---|
541 | pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
|
---|
542 | }else{
|
---|
543 | pFBlk->iSize += pNext->iSize;
|
---|
544 | }
|
---|
545 | pFBlk->iNext = pNext->iNext;
|
---|
546 | }
|
---|
547 | pPage->nFree += size;
|
---|
548 | return;
|
---|
549 | }
|
---|
550 | pIdx = &pFBlk->iNext;
|
---|
551 | idx = SWAB16(pBt, *pIdx);
|
---|
552 | }
|
---|
553 | pNew = (FreeBlk*)&pPage->u.aDisk[start];
|
---|
554 | if( idx != end ){
|
---|
555 | pNew->iSize = SWAB16(pBt, size);
|
---|
556 | pNew->iNext = SWAB16(pBt, idx);
|
---|
557 | }else{
|
---|
558 | pNext = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
559 | pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
|
---|
560 | pNew->iNext = pNext->iNext;
|
---|
561 | }
|
---|
562 | *pIdx = SWAB16(pBt, start);
|
---|
563 | pPage->nFree += size;
|
---|
564 | }
|
---|
565 |
|
---|
566 | /*
|
---|
567 | ** Initialize the auxiliary information for a disk block.
|
---|
568 | **
|
---|
569 | ** The pParent parameter must be a pointer to the MemPage which
|
---|
570 | ** is the parent of the page being initialized. The root of the
|
---|
571 | ** BTree (usually page 2) has no parent and so for that page,
|
---|
572 | ** pParent==NULL.
|
---|
573 | **
|
---|
574 | ** Return SQLITE_OK on success. If we see that the page does
|
---|
575 | ** not contain a well-formed database page, then return
|
---|
576 | ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
|
---|
577 | ** guarantee that the page is well-formed. It only shows that
|
---|
578 | ** we failed to detect any corruption.
|
---|
579 | */
|
---|
580 | static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
|
---|
581 | int idx; /* An index into pPage->u.aDisk[] */
|
---|
582 | Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
|
---|
583 | FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
|
---|
584 | int sz; /* The size of a Cell in bytes */
|
---|
585 | int freeSpace; /* Amount of free space on the page */
|
---|
586 |
|
---|
587 | if( pPage->pParent ){
|
---|
588 | assert( pPage->pParent==pParent );
|
---|
589 | return SQLITE_OK;
|
---|
590 | }
|
---|
591 | if( pParent ){
|
---|
592 | pPage->pParent = pParent;
|
---|
593 | sqlitepager_ref(pParent);
|
---|
594 | }
|
---|
595 | if( pPage->isInit ) return SQLITE_OK;
|
---|
596 | pPage->isInit = 1;
|
---|
597 | pPage->nCell = 0;
|
---|
598 | freeSpace = USABLE_SPACE;
|
---|
599 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
600 | while( idx!=0 ){
|
---|
601 | if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
|
---|
602 | if( idx<sizeof(PageHdr) ) goto page_format_error;
|
---|
603 | if( idx!=ROUNDUP(idx) ) goto page_format_error;
|
---|
604 | pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
605 | sz = cellSize(pBt, pCell);
|
---|
606 | if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
|
---|
607 | freeSpace -= sz;
|
---|
608 | pPage->apCell[pPage->nCell++] = pCell;
|
---|
609 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
610 | }
|
---|
611 | pPage->nFree = 0;
|
---|
612 | idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
---|
613 | while( idx!=0 ){
|
---|
614 | int iNext;
|
---|
615 | if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
|
---|
616 | if( idx<sizeof(PageHdr) ) goto page_format_error;
|
---|
617 | pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
618 | pPage->nFree += SWAB16(pBt, pFBlk->iSize);
|
---|
619 | iNext = SWAB16(pBt, pFBlk->iNext);
|
---|
620 | if( iNext>0 && iNext <= idx ) goto page_format_error;
|
---|
621 | idx = iNext;
|
---|
622 | }
|
---|
623 | if( pPage->nCell==0 && pPage->nFree==0 ){
|
---|
624 | /* As a special case, an uninitialized root page appears to be
|
---|
625 | ** an empty database */
|
---|
626 | return SQLITE_OK;
|
---|
627 | }
|
---|
628 | if( pPage->nFree!=freeSpace ) goto page_format_error;
|
---|
629 | return SQLITE_OK;
|
---|
630 |
|
---|
631 | page_format_error:
|
---|
632 | return SQLITE_CORRUPT;
|
---|
633 | }
|
---|
634 |
|
---|
635 | /*
|
---|
636 | ** Set up a raw page so that it looks like a database page holding
|
---|
637 | ** no entries.
|
---|
638 | */
|
---|
639 | static void zeroPage(Btree *pBt, MemPage *pPage){
|
---|
640 | PageHdr *pHdr;
|
---|
641 | FreeBlk *pFBlk;
|
---|
642 | assert( sqlitepager_iswriteable(pPage) );
|
---|
643 | memset(pPage, 0, SQLITE_USABLE_SIZE);
|
---|
644 | pHdr = &pPage->u.hdr;
|
---|
645 | pHdr->firstCell = 0;
|
---|
646 | pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
|
---|
647 | pFBlk = (FreeBlk*)&pHdr[1];
|
---|
648 | pFBlk->iNext = 0;
|
---|
649 | pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
|
---|
650 | pFBlk->iSize = SWAB16(pBt, pPage->nFree);
|
---|
651 | pPage->nCell = 0;
|
---|
652 | pPage->isOverfull = 0;
|
---|
653 | }
|
---|
654 |
|
---|
655 | /*
|
---|
656 | ** This routine is called when the reference count for a page
|
---|
657 | ** reaches zero. We need to unref the pParent pointer when that
|
---|
658 | ** happens.
|
---|
659 | */
|
---|
660 | static void pageDestructor(void *pData){
|
---|
661 | MemPage *pPage = (MemPage*)pData;
|
---|
662 | if( pPage->pParent ){
|
---|
663 | MemPage *pParent = pPage->pParent;
|
---|
664 | pPage->pParent = 0;
|
---|
665 | sqlitepager_unref(pParent);
|
---|
666 | }
|
---|
667 | }
|
---|
668 |
|
---|
669 | /*
|
---|
670 | ** Open a new database.
|
---|
671 | **
|
---|
672 | ** Actually, this routine just sets up the internal data structures
|
---|
673 | ** for accessing the database. We do not open the database file
|
---|
674 | ** until the first page is loaded.
|
---|
675 | **
|
---|
676 | ** zFilename is the name of the database file. If zFilename is NULL
|
---|
677 | ** a new database with a random name is created. This randomly named
|
---|
678 | ** database file will be deleted when sqliteBtreeClose() is called.
|
---|
679 | */
|
---|
680 | int sqliteBtreeOpen(
|
---|
681 | const char *zFilename, /* Name of the file containing the BTree database */
|
---|
682 | int omitJournal, /* if TRUE then do not journal this file */
|
---|
683 | int nCache, /* How many pages in the page cache */
|
---|
684 | Btree **ppBtree /* Pointer to new Btree object written here */
|
---|
685 | ){
|
---|
686 | Btree *pBt;
|
---|
687 | int rc;
|
---|
688 |
|
---|
689 | /*
|
---|
690 | ** The following asserts make sure that structures used by the btree are
|
---|
691 | ** the right size. This is to guard against size changes that result
|
---|
692 | ** when compiling on a different architecture.
|
---|
693 | */
|
---|
694 | assert( sizeof(u32)==4 );
|
---|
695 | assert( sizeof(u16)==2 );
|
---|
696 | assert( sizeof(Pgno)==4 );
|
---|
697 | assert( sizeof(PageHdr)==8 );
|
---|
698 | assert( sizeof(CellHdr)==12 );
|
---|
699 | assert( sizeof(FreeBlk)==4 );
|
---|
700 | assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
|
---|
701 | assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
|
---|
702 | assert( sizeof(ptr)==sizeof(char*) );
|
---|
703 | assert( sizeof(uptr)==sizeof(ptr) );
|
---|
704 |
|
---|
705 | pBt = sqliteMalloc( sizeof(*pBt) );
|
---|
706 | if( pBt==0 ){
|
---|
707 | *ppBtree = 0;
|
---|
708 | return SQLITE_NOMEM;
|
---|
709 | }
|
---|
710 | if( nCache<10 ) nCache = 10;
|
---|
711 | rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
|
---|
712 | !omitJournal);
|
---|
713 | if( rc!=SQLITE_OK ){
|
---|
714 | if( pBt->pPager ) sqlitepager_close(pBt->pPager);
|
---|
715 | sqliteFree(pBt);
|
---|
716 | *ppBtree = 0;
|
---|
717 | return rc;
|
---|
718 | }
|
---|
719 | sqlitepager_set_destructor(pBt->pPager, pageDestructor);
|
---|
720 | pBt->pCursor = 0;
|
---|
721 | pBt->page1 = 0;
|
---|
722 | pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
|
---|
723 | pBt->pOps = &sqliteBtreeOps;
|
---|
724 | *ppBtree = pBt;
|
---|
725 | return SQLITE_OK;
|
---|
726 | }
|
---|
727 |
|
---|
728 | /*
|
---|
729 | ** Close an open database and invalidate all cursors.
|
---|
730 | */
|
---|
731 | static int fileBtreeClose(Btree *pBt){
|
---|
732 | while( pBt->pCursor ){
|
---|
733 | fileBtreeCloseCursor(pBt->pCursor);
|
---|
734 | }
|
---|
735 | sqlitepager_close(pBt->pPager);
|
---|
736 | sqliteFree(pBt);
|
---|
737 | return SQLITE_OK;
|
---|
738 | }
|
---|
739 |
|
---|
740 | /*
|
---|
741 | ** Change the limit on the number of pages allowed in the cache.
|
---|
742 | **
|
---|
743 | ** The maximum number of cache pages is set to the absolute
|
---|
744 | ** value of mxPage. If mxPage is negative, the pager will
|
---|
745 | ** operate asynchronously - it will not stop to do fsync()s
|
---|
746 | ** to insure data is written to the disk surface before
|
---|
747 | ** continuing. Transactions still work if synchronous is off,
|
---|
748 | ** and the database cannot be corrupted if this program
|
---|
749 | ** crashes. But if the operating system crashes or there is
|
---|
750 | ** an abrupt power failure when synchronous is off, the database
|
---|
751 | ** could be left in an inconsistent and unrecoverable state.
|
---|
752 | ** Synchronous is on by default so database corruption is not
|
---|
753 | ** normally a worry.
|
---|
754 | */
|
---|
755 | static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
|
---|
756 | sqlitepager_set_cachesize(pBt->pPager, mxPage);
|
---|
757 | return SQLITE_OK;
|
---|
758 | }
|
---|
759 |
|
---|
760 | /*
|
---|
761 | ** Change the way data is synced to disk in order to increase or decrease
|
---|
762 | ** how well the database resists damage due to OS crashes and power
|
---|
763 | ** failures. Level 1 is the same as asynchronous (no syncs() occur and
|
---|
764 | ** there is a high probability of damage) Level 2 is the default. There
|
---|
765 | ** is a very low but non-zero probability of damage. Level 3 reduces the
|
---|
766 | ** probability of damage to near zero but with a write performance reduction.
|
---|
767 | */
|
---|
768 | static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
|
---|
769 | sqlitepager_set_safety_level(pBt->pPager, level);
|
---|
770 | return SQLITE_OK;
|
---|
771 | }
|
---|
772 |
|
---|
773 | /*
|
---|
774 | ** Get a reference to page1 of the database file. This will
|
---|
775 | ** also acquire a readlock on that file.
|
---|
776 | **
|
---|
777 | ** SQLITE_OK is returned on success. If the file is not a
|
---|
778 | ** well-formed database file, then SQLITE_CORRUPT is returned.
|
---|
779 | ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
|
---|
780 | ** is returned if we run out of memory. SQLITE_PROTOCOL is returned
|
---|
781 | ** if there is a locking protocol violation.
|
---|
782 | */
|
---|
783 | static int lockBtree(Btree *pBt){
|
---|
784 | int rc;
|
---|
785 | if( pBt->page1 ) return SQLITE_OK;
|
---|
786 | rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
|
---|
787 | if( rc!=SQLITE_OK ) return rc;
|
---|
788 |
|
---|
789 | /* Do some checking to help insure the file we opened really is
|
---|
790 | ** a valid database file.
|
---|
791 | */
|
---|
792 | if( sqlitepager_pagecount(pBt->pPager)>0 ){
|
---|
793 | PageOne *pP1 = pBt->page1;
|
---|
794 | if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
|
---|
795 | (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
|
---|
796 | rc = SQLITE_NOTADB;
|
---|
797 | goto page1_init_failed;
|
---|
798 | }
|
---|
799 | pBt->needSwab = pP1->iMagic!=MAGIC;
|
---|
800 | }
|
---|
801 | return rc;
|
---|
802 |
|
---|
803 | page1_init_failed:
|
---|
804 | sqlitepager_unref(pBt->page1);
|
---|
805 | pBt->page1 = 0;
|
---|
806 | return rc;
|
---|
807 | }
|
---|
808 |
|
---|
809 | /*
|
---|
810 | ** If there are no outstanding cursors and we are not in the middle
|
---|
811 | ** of a transaction but there is a read lock on the database, then
|
---|
812 | ** this routine unrefs the first page of the database file which
|
---|
813 | ** has the effect of releasing the read lock.
|
---|
814 | **
|
---|
815 | ** If there are any outstanding cursors, this routine is a no-op.
|
---|
816 | **
|
---|
817 | ** If there is a transaction in progress, this routine is a no-op.
|
---|
818 | */
|
---|
819 | static void unlockBtreeIfUnused(Btree *pBt){
|
---|
820 | if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
|
---|
821 | sqlitepager_unref(pBt->page1);
|
---|
822 | pBt->page1 = 0;
|
---|
823 | pBt->inTrans = 0;
|
---|
824 | pBt->inCkpt = 0;
|
---|
825 | }
|
---|
826 | }
|
---|
827 |
|
---|
828 | /*
|
---|
829 | ** Create a new database by initializing the first two pages of the
|
---|
830 | ** file.
|
---|
831 | */
|
---|
832 | static int newDatabase(Btree *pBt){
|
---|
833 | MemPage *pRoot;
|
---|
834 | PageOne *pP1;
|
---|
835 | int rc;
|
---|
836 | if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
|
---|
837 | pP1 = pBt->page1;
|
---|
838 | rc = sqlitepager_write(pBt->page1);
|
---|
839 | if( rc ) return rc;
|
---|
840 | rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
|
---|
841 | if( rc ) return rc;
|
---|
842 | rc = sqlitepager_write(pRoot);
|
---|
843 | if( rc ){
|
---|
844 | sqlitepager_unref(pRoot);
|
---|
845 | return rc;
|
---|
846 | }
|
---|
847 | strcpy(pP1->zMagic, zMagicHeader);
|
---|
848 | if( btree_native_byte_order ){
|
---|
849 | pP1->iMagic = MAGIC;
|
---|
850 | pBt->needSwab = 0;
|
---|
851 | }else{
|
---|
852 | pP1->iMagic = swab32(MAGIC);
|
---|
853 | pBt->needSwab = 1;
|
---|
854 | }
|
---|
855 | zeroPage(pBt, pRoot);
|
---|
856 | sqlitepager_unref(pRoot);
|
---|
857 | return SQLITE_OK;
|
---|
858 | }
|
---|
859 |
|
---|
860 | /*
|
---|
861 | ** Attempt to start a new transaction.
|
---|
862 | **
|
---|
863 | ** A transaction must be started before attempting any changes
|
---|
864 | ** to the database. None of the following routines will work
|
---|
865 | ** unless a transaction is started first:
|
---|
866 | **
|
---|
867 | ** sqliteBtreeCreateTable()
|
---|
868 | ** sqliteBtreeCreateIndex()
|
---|
869 | ** sqliteBtreeClearTable()
|
---|
870 | ** sqliteBtreeDropTable()
|
---|
871 | ** sqliteBtreeInsert()
|
---|
872 | ** sqliteBtreeDelete()
|
---|
873 | ** sqliteBtreeUpdateMeta()
|
---|
874 | */
|
---|
875 | static int fileBtreeBeginTrans(Btree *pBt){
|
---|
876 | int rc;
|
---|
877 | if( pBt->inTrans ) return SQLITE_ERROR;
|
---|
878 | if( pBt->readOnly ) return SQLITE_READONLY;
|
---|
879 | if( pBt->page1==0 ){
|
---|
880 | rc = lockBtree(pBt);
|
---|
881 | if( rc!=SQLITE_OK ){
|
---|
882 | return rc;
|
---|
883 | }
|
---|
884 | }
|
---|
885 | rc = sqlitepager_begin(pBt->page1);
|
---|
886 | if( rc==SQLITE_OK ){
|
---|
887 | rc = newDatabase(pBt);
|
---|
888 | }
|
---|
889 | if( rc==SQLITE_OK ){
|
---|
890 | pBt->inTrans = 1;
|
---|
891 | pBt->inCkpt = 0;
|
---|
892 | }else{
|
---|
893 | unlockBtreeIfUnused(pBt);
|
---|
894 | }
|
---|
895 | return rc;
|
---|
896 | }
|
---|
897 |
|
---|
898 | /*
|
---|
899 | ** Commit the transaction currently in progress.
|
---|
900 | **
|
---|
901 | ** This will release the write lock on the database file. If there
|
---|
902 | ** are no active cursors, it also releases the read lock.
|
---|
903 | */
|
---|
904 | static int fileBtreeCommit(Btree *pBt){
|
---|
905 | int rc;
|
---|
906 | rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
|
---|
907 | pBt->inTrans = 0;
|
---|
908 | pBt->inCkpt = 0;
|
---|
909 | unlockBtreeIfUnused(pBt);
|
---|
910 | return rc;
|
---|
911 | }
|
---|
912 |
|
---|
913 | /*
|
---|
914 | ** Rollback the transaction in progress. All cursors will be
|
---|
915 | ** invalided by this operation. Any attempt to use a cursor
|
---|
916 | ** that was open at the beginning of this operation will result
|
---|
917 | ** in an error.
|
---|
918 | **
|
---|
919 | ** This will release the write lock on the database file. If there
|
---|
920 | ** are no active cursors, it also releases the read lock.
|
---|
921 | */
|
---|
922 | static int fileBtreeRollback(Btree *pBt){
|
---|
923 | int rc;
|
---|
924 | BtCursor *pCur;
|
---|
925 | if( pBt->inTrans==0 ) return SQLITE_OK;
|
---|
926 | pBt->inTrans = 0;
|
---|
927 | pBt->inCkpt = 0;
|
---|
928 | rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
|
---|
929 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
930 | if( pCur->pPage && pCur->pPage->isInit==0 ){
|
---|
931 | sqlitepager_unref(pCur->pPage);
|
---|
932 | pCur->pPage = 0;
|
---|
933 | }
|
---|
934 | }
|
---|
935 | unlockBtreeIfUnused(pBt);
|
---|
936 | return rc;
|
---|
937 | }
|
---|
938 |
|
---|
939 | /*
|
---|
940 | ** Set the checkpoint for the current transaction. The checkpoint serves
|
---|
941 | ** as a sub-transaction that can be rolled back independently of the
|
---|
942 | ** main transaction. You must start a transaction before starting a
|
---|
943 | ** checkpoint. The checkpoint is ended automatically if the transaction
|
---|
944 | ** commits or rolls back.
|
---|
945 | **
|
---|
946 | ** Only one checkpoint may be active at a time. It is an error to try
|
---|
947 | ** to start a new checkpoint if another checkpoint is already active.
|
---|
948 | */
|
---|
949 | static int fileBtreeBeginCkpt(Btree *pBt){
|
---|
950 | int rc;
|
---|
951 | if( !pBt->inTrans || pBt->inCkpt ){
|
---|
952 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
953 | }
|
---|
954 | rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
|
---|
955 | pBt->inCkpt = 1;
|
---|
956 | return rc;
|
---|
957 | }
|
---|
958 |
|
---|
959 |
|
---|
960 | /*
|
---|
961 | ** Commit a checkpoint to transaction currently in progress. If no
|
---|
962 | ** checkpoint is active, this is a no-op.
|
---|
963 | */
|
---|
964 | static int fileBtreeCommitCkpt(Btree *pBt){
|
---|
965 | int rc;
|
---|
966 | if( pBt->inCkpt && !pBt->readOnly ){
|
---|
967 | rc = sqlitepager_ckpt_commit(pBt->pPager);
|
---|
968 | }else{
|
---|
969 | rc = SQLITE_OK;
|
---|
970 | }
|
---|
971 | pBt->inCkpt = 0;
|
---|
972 | return rc;
|
---|
973 | }
|
---|
974 |
|
---|
975 | /*
|
---|
976 | ** Rollback the checkpoint to the current transaction. If there
|
---|
977 | ** is no active checkpoint or transaction, this routine is a no-op.
|
---|
978 | **
|
---|
979 | ** All cursors will be invalided by this operation. Any attempt
|
---|
980 | ** to use a cursor that was open at the beginning of this operation
|
---|
981 | ** will result in an error.
|
---|
982 | */
|
---|
983 | static int fileBtreeRollbackCkpt(Btree *pBt){
|
---|
984 | int rc;
|
---|
985 | BtCursor *pCur;
|
---|
986 | if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
|
---|
987 | rc = sqlitepager_ckpt_rollback(pBt->pPager);
|
---|
988 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
989 | if( pCur->pPage && pCur->pPage->isInit==0 ){
|
---|
990 | sqlitepager_unref(pCur->pPage);
|
---|
991 | pCur->pPage = 0;
|
---|
992 | }
|
---|
993 | }
|
---|
994 | pBt->inCkpt = 0;
|
---|
995 | return rc;
|
---|
996 | }
|
---|
997 |
|
---|
998 | /*
|
---|
999 | ** Create a new cursor for the BTree whose root is on the page
|
---|
1000 | ** iTable. The act of acquiring a cursor gets a read lock on
|
---|
1001 | ** the database file.
|
---|
1002 | **
|
---|
1003 | ** If wrFlag==0, then the cursor can only be used for reading.
|
---|
1004 | ** If wrFlag==1, then the cursor can be used for reading or for
|
---|
1005 | ** writing if other conditions for writing are also met. These
|
---|
1006 | ** are the conditions that must be met in order for writing to
|
---|
1007 | ** be allowed:
|
---|
1008 | **
|
---|
1009 | ** 1: The cursor must have been opened with wrFlag==1
|
---|
1010 | **
|
---|
1011 | ** 2: No other cursors may be open with wrFlag==0 on the same table
|
---|
1012 | **
|
---|
1013 | ** 3: The database must be writable (not on read-only media)
|
---|
1014 | **
|
---|
1015 | ** 4: There must be an active transaction.
|
---|
1016 | **
|
---|
1017 | ** Condition 2 warrants further discussion. If any cursor is opened
|
---|
1018 | ** on a table with wrFlag==0, that prevents all other cursors from
|
---|
1019 | ** writing to that table. This is a kind of "read-lock". When a cursor
|
---|
1020 | ** is opened with wrFlag==0 it is guaranteed that the table will not
|
---|
1021 | ** change as long as the cursor is open. This allows the cursor to
|
---|
1022 | ** do a sequential scan of the table without having to worry about
|
---|
1023 | ** entries being inserted or deleted during the scan. Cursors should
|
---|
1024 | ** be opened with wrFlag==0 only if this read-lock property is needed.
|
---|
1025 | ** That is to say, cursors should be opened with wrFlag==0 only if they
|
---|
1026 | ** intend to use the sqliteBtreeNext() system call. All other cursors
|
---|
1027 | ** should be opened with wrFlag==1 even if they never really intend
|
---|
1028 | ** to write.
|
---|
1029 | **
|
---|
1030 | ** No checking is done to make sure that page iTable really is the
|
---|
1031 | ** root page of a b-tree. If it is not, then the cursor acquired
|
---|
1032 | ** will not work correctly.
|
---|
1033 | */
|
---|
1034 | static
|
---|
1035 | int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
|
---|
1036 | int rc;
|
---|
1037 | BtCursor *pCur, *pRing;
|
---|
1038 |
|
---|
1039 | if( pBt->readOnly && wrFlag ){
|
---|
1040 | *ppCur = 0;
|
---|
1041 | return SQLITE_READONLY;
|
---|
1042 | }
|
---|
1043 | if( pBt->page1==0 ){
|
---|
1044 | rc = lockBtree(pBt);
|
---|
1045 | if( rc!=SQLITE_OK ){
|
---|
1046 | *ppCur = 0;
|
---|
1047 | return rc;
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 | pCur = sqliteMalloc( sizeof(*pCur) );
|
---|
1051 | if( pCur==0 ){
|
---|
1052 | rc = SQLITE_NOMEM;
|
---|
1053 | goto create_cursor_exception;
|
---|
1054 | }
|
---|
1055 | pCur->pgnoRoot = (Pgno)iTable;
|
---|
1056 | rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
|
---|
1057 | if( rc!=SQLITE_OK ){
|
---|
1058 | goto create_cursor_exception;
|
---|
1059 | }
|
---|
1060 | rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
|
---|
1061 | if( rc!=SQLITE_OK ){
|
---|
1062 | goto create_cursor_exception;
|
---|
1063 | }
|
---|
1064 | pCur->pOps = &sqliteBtreeCursorOps;
|
---|
1065 | pCur->pBt = pBt;
|
---|
1066 | pCur->wrFlag = wrFlag;
|
---|
1067 | pCur->idx = 0;
|
---|
1068 | pCur->eSkip = SKIP_INVALID;
|
---|
1069 | pCur->pNext = pBt->pCursor;
|
---|
1070 | if( pCur->pNext ){
|
---|
1071 | pCur->pNext->pPrev = pCur;
|
---|
1072 | }
|
---|
1073 | pCur->pPrev = 0;
|
---|
1074 | pRing = pBt->pCursor;
|
---|
1075 | while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
|
---|
1076 | if( pRing ){
|
---|
1077 | pCur->pShared = pRing->pShared;
|
---|
1078 | pRing->pShared = pCur;
|
---|
1079 | }else{
|
---|
1080 | pCur->pShared = pCur;
|
---|
1081 | }
|
---|
1082 | pBt->pCursor = pCur;
|
---|
1083 | *ppCur = pCur;
|
---|
1084 | return SQLITE_OK;
|
---|
1085 |
|
---|
1086 | create_cursor_exception:
|
---|
1087 | *ppCur = 0;
|
---|
1088 | if( pCur ){
|
---|
1089 | if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
|
---|
1090 | sqliteFree(pCur);
|
---|
1091 | }
|
---|
1092 | unlockBtreeIfUnused(pBt);
|
---|
1093 | return rc;
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 | /*
|
---|
1097 | ** Close a cursor. The read lock on the database file is released
|
---|
1098 | ** when the last cursor is closed.
|
---|
1099 | */
|
---|
1100 | static int fileBtreeCloseCursor(BtCursor *pCur){
|
---|
1101 | Btree *pBt = pCur->pBt;
|
---|
1102 | if( pCur->pPrev ){
|
---|
1103 | pCur->pPrev->pNext = pCur->pNext;
|
---|
1104 | }else{
|
---|
1105 | pBt->pCursor = pCur->pNext;
|
---|
1106 | }
|
---|
1107 | if( pCur->pNext ){
|
---|
1108 | pCur->pNext->pPrev = pCur->pPrev;
|
---|
1109 | }
|
---|
1110 | if( pCur->pPage ){
|
---|
1111 | sqlitepager_unref(pCur->pPage);
|
---|
1112 | }
|
---|
1113 | if( pCur->pShared!=pCur ){
|
---|
1114 | BtCursor *pRing = pCur->pShared;
|
---|
1115 | while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
|
---|
1116 | pRing->pShared = pCur->pShared;
|
---|
1117 | }
|
---|
1118 | unlockBtreeIfUnused(pBt);
|
---|
1119 | sqliteFree(pCur);
|
---|
1120 | return SQLITE_OK;
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | /*
|
---|
1124 | ** Make a temporary cursor by filling in the fields of pTempCur.
|
---|
1125 | ** The temporary cursor is not on the cursor list for the Btree.
|
---|
1126 | */
|
---|
1127 | static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
|
---|
1128 | memcpy(pTempCur, pCur, sizeof(*pCur));
|
---|
1129 | pTempCur->pNext = 0;
|
---|
1130 | pTempCur->pPrev = 0;
|
---|
1131 | if( pTempCur->pPage ){
|
---|
1132 | sqlitepager_ref(pTempCur->pPage);
|
---|
1133 | }
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 | /*
|
---|
1137 | ** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
|
---|
1138 | ** function above.
|
---|
1139 | */
|
---|
1140 | static void releaseTempCursor(BtCursor *pCur){
|
---|
1141 | if( pCur->pPage ){
|
---|
1142 | sqlitepager_unref(pCur->pPage);
|
---|
1143 | }
|
---|
1144 | }
|
---|
1145 |
|
---|
1146 | /*
|
---|
1147 | ** Set *pSize to the number of bytes of key in the entry the
|
---|
1148 | ** cursor currently points to. Always return SQLITE_OK.
|
---|
1149 | ** Failure is not possible. If the cursor is not currently
|
---|
1150 | ** pointing to an entry (which can happen, for example, if
|
---|
1151 | ** the database is empty) then *pSize is set to 0.
|
---|
1152 | */
|
---|
1153 | static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
|
---|
1154 | Cell *pCell;
|
---|
1155 | MemPage *pPage;
|
---|
1156 |
|
---|
1157 | pPage = pCur->pPage;
|
---|
1158 | assert( pPage!=0 );
|
---|
1159 | if( pCur->idx >= pPage->nCell ){
|
---|
1160 | *pSize = 0;
|
---|
1161 | }else{
|
---|
1162 | pCell = pPage->apCell[pCur->idx];
|
---|
1163 | *pSize = NKEY(pCur->pBt, pCell->h);
|
---|
1164 | }
|
---|
1165 | return SQLITE_OK;
|
---|
1166 | }
|
---|
1167 |
|
---|
1168 | /*
|
---|
1169 | ** Read payload information from the entry that the pCur cursor is
|
---|
1170 | ** pointing to. Begin reading the payload at "offset" and read
|
---|
1171 | ** a total of "amt" bytes. Put the result in zBuf.
|
---|
1172 | **
|
---|
1173 | ** This routine does not make a distinction between key and data.
|
---|
1174 | ** It just reads bytes from the payload area.
|
---|
1175 | */
|
---|
1176 | static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
|
---|
1177 | char *aPayload;
|
---|
1178 | Pgno nextPage;
|
---|
1179 | int rc;
|
---|
1180 | Btree *pBt = pCur->pBt;
|
---|
1181 | assert( pCur!=0 && pCur->pPage!=0 );
|
---|
1182 | assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
---|
1183 | aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
|
---|
1184 | if( offset<MX_LOCAL_PAYLOAD ){
|
---|
1185 | int a = amt;
|
---|
1186 | if( a+offset>MX_LOCAL_PAYLOAD ){
|
---|
1187 | a = MX_LOCAL_PAYLOAD - offset;
|
---|
1188 | }
|
---|
1189 | memcpy(zBuf, &aPayload[offset], a);
|
---|
1190 | if( a==amt ){
|
---|
1191 | return SQLITE_OK;
|
---|
1192 | }
|
---|
1193 | offset = 0;
|
---|
1194 | zBuf += a;
|
---|
1195 | amt -= a;
|
---|
1196 | }else{
|
---|
1197 | offset -= MX_LOCAL_PAYLOAD;
|
---|
1198 | }
|
---|
1199 | if( amt>0 ){
|
---|
1200 | nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
|
---|
1201 | }
|
---|
1202 | while( amt>0 && nextPage ){
|
---|
1203 | OverflowPage *pOvfl;
|
---|
1204 | rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
|
---|
1205 | if( rc!=0 ){
|
---|
1206 | return rc;
|
---|
1207 | }
|
---|
1208 | nextPage = SWAB32(pBt, pOvfl->iNext);
|
---|
1209 | if( offset<OVERFLOW_SIZE ){
|
---|
1210 | int a = amt;
|
---|
1211 | if( a + offset > OVERFLOW_SIZE ){
|
---|
1212 | a = OVERFLOW_SIZE - offset;
|
---|
1213 | }
|
---|
1214 | memcpy(zBuf, &pOvfl->aPayload[offset], a);
|
---|
1215 | offset = 0;
|
---|
1216 | amt -= a;
|
---|
1217 | zBuf += a;
|
---|
1218 | }else{
|
---|
1219 | offset -= OVERFLOW_SIZE;
|
---|
1220 | }
|
---|
1221 | sqlitepager_unref(pOvfl);
|
---|
1222 | }
|
---|
1223 | if( amt>0 ){
|
---|
1224 | return SQLITE_CORRUPT;
|
---|
1225 | }
|
---|
1226 | return SQLITE_OK;
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 | /*
|
---|
1230 | ** Read part of the key associated with cursor pCur. A maximum
|
---|
1231 | ** of "amt" bytes will be transfered into zBuf[]. The transfer
|
---|
1232 | ** begins at "offset". The number of bytes actually read is
|
---|
1233 | ** returned.
|
---|
1234 | **
|
---|
1235 | ** Change: It used to be that the amount returned will be smaller
|
---|
1236 | ** than the amount requested if there are not enough bytes in the key
|
---|
1237 | ** to satisfy the request. But now, it must be the case that there
|
---|
1238 | ** is enough data available to satisfy the request. If not, an exception
|
---|
1239 | ** is raised. The change was made in an effort to boost performance
|
---|
1240 | ** by eliminating unneeded tests.
|
---|
1241 | */
|
---|
1242 | static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
|
---|
1243 | MemPage *pPage;
|
---|
1244 |
|
---|
1245 | assert( amt>=0 );
|
---|
1246 | assert( offset>=0 );
|
---|
1247 | assert( pCur->pPage!=0 );
|
---|
1248 | pPage = pCur->pPage;
|
---|
1249 | if( pCur->idx >= pPage->nCell ){
|
---|
1250 | return 0;
|
---|
1251 | }
|
---|
1252 | assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
|
---|
1253 | getPayload(pCur, offset, amt, zBuf);
|
---|
1254 | return amt;
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | /*
|
---|
1258 | ** Set *pSize to the number of bytes of data in the entry the
|
---|
1259 | ** cursor currently points to. Always return SQLITE_OK.
|
---|
1260 | ** Failure is not possible. If the cursor is not currently
|
---|
1261 | ** pointing to an entry (which can happen, for example, if
|
---|
1262 | ** the database is empty) then *pSize is set to 0.
|
---|
1263 | */
|
---|
1264 | static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
|
---|
1265 | Cell *pCell;
|
---|
1266 | MemPage *pPage;
|
---|
1267 |
|
---|
1268 | pPage = pCur->pPage;
|
---|
1269 | assert( pPage!=0 );
|
---|
1270 | if( pCur->idx >= pPage->nCell ){
|
---|
1271 | *pSize = 0;
|
---|
1272 | }else{
|
---|
1273 | pCell = pPage->apCell[pCur->idx];
|
---|
1274 | *pSize = NDATA(pCur->pBt, pCell->h);
|
---|
1275 | }
|
---|
1276 | return SQLITE_OK;
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 | /*
|
---|
1280 | ** Read part of the data associated with cursor pCur. A maximum
|
---|
1281 | ** of "amt" bytes will be transfered into zBuf[]. The transfer
|
---|
1282 | ** begins at "offset". The number of bytes actually read is
|
---|
1283 | ** returned. The amount returned will be smaller than the
|
---|
1284 | ** amount requested if there are not enough bytes in the data
|
---|
1285 | ** to satisfy the request.
|
---|
1286 | */
|
---|
1287 | static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
|
---|
1288 | Cell *pCell;
|
---|
1289 | MemPage *pPage;
|
---|
1290 |
|
---|
1291 | assert( amt>=0 );
|
---|
1292 | assert( offset>=0 );
|
---|
1293 | assert( pCur->pPage!=0 );
|
---|
1294 | pPage = pCur->pPage;
|
---|
1295 | if( pCur->idx >= pPage->nCell ){
|
---|
1296 | return 0;
|
---|
1297 | }
|
---|
1298 | pCell = pPage->apCell[pCur->idx];
|
---|
1299 | assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
|
---|
1300 | getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
|
---|
1301 | return amt;
|
---|
1302 | }
|
---|
1303 |
|
---|
1304 | /*
|
---|
1305 | ** Compare an external key against the key on the entry that pCur points to.
|
---|
1306 | **
|
---|
1307 | ** The external key is pKey and is nKey bytes long. The last nIgnore bytes
|
---|
1308 | ** of the key associated with pCur are ignored, as if they do not exist.
|
---|
1309 | ** (The normal case is for nIgnore to be zero in which case the entire
|
---|
1310 | ** internal key is used in the comparison.)
|
---|
1311 | **
|
---|
1312 | ** The comparison result is written to *pRes as follows:
|
---|
1313 | **
|
---|
1314 | ** *pRes<0 This means pCur<pKey
|
---|
1315 | **
|
---|
1316 | ** *pRes==0 This means pCur==pKey for all nKey bytes
|
---|
1317 | **
|
---|
1318 | ** *pRes>0 This means pCur>pKey
|
---|
1319 | **
|
---|
1320 | ** When one key is an exact prefix of the other, the shorter key is
|
---|
1321 | ** considered less than the longer one. In order to be equal the
|
---|
1322 | ** keys must be exactly the same length. (The length of the pCur key
|
---|
1323 | ** is the actual key length minus nIgnore bytes.)
|
---|
1324 | */
|
---|
1325 | static int fileBtreeKeyCompare(
|
---|
1326 | BtCursor *pCur, /* Pointer to entry to compare against */
|
---|
1327 | const void *pKey, /* Key to compare against entry that pCur points to */
|
---|
1328 | int nKey, /* Number of bytes in pKey */
|
---|
1329 | int nIgnore, /* Ignore this many bytes at the end of pCur */
|
---|
1330 | int *pResult /* Write the result here */
|
---|
1331 | ){
|
---|
1332 | Pgno nextPage;
|
---|
1333 | int n, c, rc, nLocal;
|
---|
1334 | Cell *pCell;
|
---|
1335 | Btree *pBt = pCur->pBt;
|
---|
1336 | const char *zKey = (const char*)pKey;
|
---|
1337 |
|
---|
1338 | assert( pCur->pPage );
|
---|
1339 | assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
|
---|
1340 | pCell = pCur->pPage->apCell[pCur->idx];
|
---|
1341 | nLocal = NKEY(pBt, pCell->h) - nIgnore;
|
---|
1342 | if( nLocal<0 ) nLocal = 0;
|
---|
1343 | n = nKey<nLocal ? nKey : nLocal;
|
---|
1344 | if( n>MX_LOCAL_PAYLOAD ){
|
---|
1345 | n = MX_LOCAL_PAYLOAD;
|
---|
1346 | }
|
---|
1347 | c = memcmp(pCell->aPayload, zKey, n);
|
---|
1348 | if( c!=0 ){
|
---|
1349 | *pResult = c;
|
---|
1350 | return SQLITE_OK;
|
---|
1351 | }
|
---|
1352 | zKey += n;
|
---|
1353 | nKey -= n;
|
---|
1354 | nLocal -= n;
|
---|
1355 | nextPage = SWAB32(pBt, pCell->ovfl);
|
---|
1356 | while( nKey>0 && nLocal>0 ){
|
---|
1357 | OverflowPage *pOvfl;
|
---|
1358 | if( nextPage==0 ){
|
---|
1359 | return SQLITE_CORRUPT;
|
---|
1360 | }
|
---|
1361 | rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
|
---|
1362 | if( rc ){
|
---|
1363 | return rc;
|
---|
1364 | }
|
---|
1365 | nextPage = SWAB32(pBt, pOvfl->iNext);
|
---|
1366 | n = nKey<nLocal ? nKey : nLocal;
|
---|
1367 | if( n>OVERFLOW_SIZE ){
|
---|
1368 | n = OVERFLOW_SIZE;
|
---|
1369 | }
|
---|
1370 | c = memcmp(pOvfl->aPayload, zKey, n);
|
---|
1371 | sqlitepager_unref(pOvfl);
|
---|
1372 | if( c!=0 ){
|
---|
1373 | *pResult = c;
|
---|
1374 | return SQLITE_OK;
|
---|
1375 | }
|
---|
1376 | nKey -= n;
|
---|
1377 | nLocal -= n;
|
---|
1378 | zKey += n;
|
---|
1379 | }
|
---|
1380 | if( c==0 ){
|
---|
1381 | c = nLocal - nKey;
|
---|
1382 | }
|
---|
1383 | *pResult = c;
|
---|
1384 | return SQLITE_OK;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | /*
|
---|
1388 | ** Move the cursor down to a new child page. The newPgno argument is the
|
---|
1389 | ** page number of the child page in the byte order of the disk image.
|
---|
1390 | */
|
---|
1391 | static int moveToChild(BtCursor *pCur, int newPgno){
|
---|
1392 | int rc;
|
---|
1393 | MemPage *pNewPage;
|
---|
1394 | Btree *pBt = pCur->pBt;
|
---|
1395 |
|
---|
1396 | newPgno = SWAB32(pBt, newPgno);
|
---|
1397 | rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
|
---|
1398 | if( rc ) return rc;
|
---|
1399 | rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
|
---|
1400 | if( rc ) return rc;
|
---|
1401 | assert( pCur->idx>=pCur->pPage->nCell
|
---|
1402 | || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
|
---|
1403 | assert( pCur->idx<pCur->pPage->nCell
|
---|
1404 | || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
|
---|
1405 | pNewPage->idxParent = pCur->idx;
|
---|
1406 | pCur->pPage->idxShift = 0;
|
---|
1407 | sqlitepager_unref(pCur->pPage);
|
---|
1408 | pCur->pPage = pNewPage;
|
---|
1409 | pCur->idx = 0;
|
---|
1410 | if( pNewPage->nCell<1 ){
|
---|
1411 | return SQLITE_CORRUPT;
|
---|
1412 | }
|
---|
1413 | return SQLITE_OK;
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 | /*
|
---|
1417 | ** Move the cursor up to the parent page.
|
---|
1418 | **
|
---|
1419 | ** pCur->idx is set to the cell index that contains the pointer
|
---|
1420 | ** to the page we are coming from. If we are coming from the
|
---|
1421 | ** right-most child page then pCur->idx is set to one more than
|
---|
1422 | ** the largest cell index.
|
---|
1423 | */
|
---|
1424 | static void moveToParent(BtCursor *pCur){
|
---|
1425 | Pgno oldPgno;
|
---|
1426 | MemPage *pParent;
|
---|
1427 | MemPage *pPage;
|
---|
1428 | int idxParent;
|
---|
1429 | pPage = pCur->pPage;
|
---|
1430 | assert( pPage!=0 );
|
---|
1431 | pParent = pPage->pParent;
|
---|
1432 | assert( pParent!=0 );
|
---|
1433 | idxParent = pPage->idxParent;
|
---|
1434 | sqlitepager_ref(pParent);
|
---|
1435 | sqlitepager_unref(pPage);
|
---|
1436 | pCur->pPage = pParent;
|
---|
1437 | assert( pParent->idxShift==0 );
|
---|
1438 | if( pParent->idxShift==0 ){
|
---|
1439 | pCur->idx = idxParent;
|
---|
1440 | #ifndef NDEBUG
|
---|
1441 | /* Verify that pCur->idx is the correct index to point back to the child
|
---|
1442 | ** page we just came from
|
---|
1443 | */
|
---|
1444 | oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
|
---|
1445 | if( pCur->idx<pParent->nCell ){
|
---|
1446 | assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
|
---|
1447 | }else{
|
---|
1448 | assert( pParent->u.hdr.rightChild==oldPgno );
|
---|
1449 | }
|
---|
1450 | #endif
|
---|
1451 | }else{
|
---|
1452 | /* The MemPage.idxShift flag indicates that cell indices might have
|
---|
1453 | ** changed since idxParent was set and hence idxParent might be out
|
---|
1454 | ** of date. So recompute the parent cell index by scanning all cells
|
---|
1455 | ** and locating the one that points to the child we just came from.
|
---|
1456 | */
|
---|
1457 | int i;
|
---|
1458 | pCur->idx = pParent->nCell;
|
---|
1459 | oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
|
---|
1460 | for(i=0; i<pParent->nCell; i++){
|
---|
1461 | if( pParent->apCell[i]->h.leftChild==oldPgno ){
|
---|
1462 | pCur->idx = i;
|
---|
1463 | break;
|
---|
1464 | }
|
---|
1465 | }
|
---|
1466 | }
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 | /*
|
---|
1470 | ** Move the cursor to the root page
|
---|
1471 | */
|
---|
1472 | static int moveToRoot(BtCursor *pCur){
|
---|
1473 | MemPage *pNew;
|
---|
1474 | int rc;
|
---|
1475 | Btree *pBt = pCur->pBt;
|
---|
1476 |
|
---|
1477 | rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
|
---|
1478 | if( rc ) return rc;
|
---|
1479 | rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
|
---|
1480 | if( rc ) return rc;
|
---|
1481 | sqlitepager_unref(pCur->pPage);
|
---|
1482 | pCur->pPage = pNew;
|
---|
1483 | pCur->idx = 0;
|
---|
1484 | return SQLITE_OK;
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | /*
|
---|
1488 | ** Move the cursor down to the left-most leaf entry beneath the
|
---|
1489 | ** entry to which it is currently pointing.
|
---|
1490 | */
|
---|
1491 | static int moveToLeftmost(BtCursor *pCur){
|
---|
1492 | Pgno pgno;
|
---|
1493 | int rc;
|
---|
1494 |
|
---|
1495 | while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
|
---|
1496 | rc = moveToChild(pCur, pgno);
|
---|
1497 | if( rc ) return rc;
|
---|
1498 | }
|
---|
1499 | return SQLITE_OK;
|
---|
1500 | }
|
---|
1501 |
|
---|
1502 | /*
|
---|
1503 | ** Move the cursor down to the right-most leaf entry beneath the
|
---|
1504 | ** page to which it is currently pointing. Notice the difference
|
---|
1505 | ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
|
---|
1506 | ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
|
---|
1507 | ** finds the right-most entry beneath the *page*.
|
---|
1508 | */
|
---|
1509 | static int moveToRightmost(BtCursor *pCur){
|
---|
1510 | Pgno pgno;
|
---|
1511 | int rc;
|
---|
1512 |
|
---|
1513 | while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
|
---|
1514 | pCur->idx = pCur->pPage->nCell;
|
---|
1515 | rc = moveToChild(pCur, pgno);
|
---|
1516 | if( rc ) return rc;
|
---|
1517 | }
|
---|
1518 | pCur->idx = pCur->pPage->nCell - 1;
|
---|
1519 | return SQLITE_OK;
|
---|
1520 | }
|
---|
1521 |
|
---|
1522 | /* Move the cursor to the first entry in the table. Return SQLITE_OK
|
---|
1523 | ** on success. Set *pRes to 0 if the cursor actually points to something
|
---|
1524 | ** or set *pRes to 1 if the table is empty.
|
---|
1525 | */
|
---|
1526 | static int fileBtreeFirst(BtCursor *pCur, int *pRes){
|
---|
1527 | int rc;
|
---|
1528 | if( pCur->pPage==0 ) return SQLITE_ABORT;
|
---|
1529 | rc = moveToRoot(pCur);
|
---|
1530 | if( rc ) return rc;
|
---|
1531 | if( pCur->pPage->nCell==0 ){
|
---|
1532 | *pRes = 1;
|
---|
1533 | return SQLITE_OK;
|
---|
1534 | }
|
---|
1535 | *pRes = 0;
|
---|
1536 | rc = moveToLeftmost(pCur);
|
---|
1537 | pCur->eSkip = SKIP_NONE;
|
---|
1538 | return rc;
|
---|
1539 | }
|
---|
1540 |
|
---|
1541 | /* Move the cursor to the last entry in the table. Return SQLITE_OK
|
---|
1542 | ** on success. Set *pRes to 0 if the cursor actually points to something
|
---|
1543 | ** or set *pRes to 1 if the table is empty.
|
---|
1544 | */
|
---|
1545 | static int fileBtreeLast(BtCursor *pCur, int *pRes){
|
---|
1546 | int rc;
|
---|
1547 | if( pCur->pPage==0 ) return SQLITE_ABORT;
|
---|
1548 | rc = moveToRoot(pCur);
|
---|
1549 | if( rc ) return rc;
|
---|
1550 | assert( pCur->pPage->isInit );
|
---|
1551 | if( pCur->pPage->nCell==0 ){
|
---|
1552 | *pRes = 1;
|
---|
1553 | return SQLITE_OK;
|
---|
1554 | }
|
---|
1555 | *pRes = 0;
|
---|
1556 | rc = moveToRightmost(pCur);
|
---|
1557 | pCur->eSkip = SKIP_NONE;
|
---|
1558 | return rc;
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | /* Move the cursor so that it points to an entry near pKey.
|
---|
1562 | ** Return a success code.
|
---|
1563 | **
|
---|
1564 | ** If an exact match is not found, then the cursor is always
|
---|
1565 | ** left pointing at a leaf page which would hold the entry if it
|
---|
1566 | ** were present. The cursor might point to an entry that comes
|
---|
1567 | ** before or after the key.
|
---|
1568 | **
|
---|
1569 | ** The result of comparing the key with the entry to which the
|
---|
1570 | ** cursor is left pointing is stored in pCur->iMatch. The same
|
---|
1571 | ** value is also written to *pRes if pRes!=NULL. The meaning of
|
---|
1572 | ** this value is as follows:
|
---|
1573 | **
|
---|
1574 | ** *pRes<0 The cursor is left pointing at an entry that
|
---|
1575 | ** is smaller than pKey or if the table is empty
|
---|
1576 | ** and the cursor is therefore left point to nothing.
|
---|
1577 | **
|
---|
1578 | ** *pRes==0 The cursor is left pointing at an entry that
|
---|
1579 | ** exactly matches pKey.
|
---|
1580 | **
|
---|
1581 | ** *pRes>0 The cursor is left pointing at an entry that
|
---|
1582 | ** is larger than pKey.
|
---|
1583 | */
|
---|
1584 | static
|
---|
1585 | int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
|
---|
1586 | int rc;
|
---|
1587 | if( pCur->pPage==0 ) return SQLITE_ABORT;
|
---|
1588 | pCur->eSkip = SKIP_NONE;
|
---|
1589 | rc = moveToRoot(pCur);
|
---|
1590 | if( rc ) return rc;
|
---|
1591 | for(;;){
|
---|
1592 | int lwr, upr;
|
---|
1593 | Pgno chldPg;
|
---|
1594 | MemPage *pPage = pCur->pPage;
|
---|
1595 | int c = -1; /* pRes return if table is empty must be -1 */
|
---|
1596 | lwr = 0;
|
---|
1597 | upr = pPage->nCell-1;
|
---|
1598 | while( lwr<=upr ){
|
---|
1599 | pCur->idx = (lwr+upr)/2;
|
---|
1600 | rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
|
---|
1601 | if( rc ) return rc;
|
---|
1602 | if( c==0 ){
|
---|
1603 | pCur->iMatch = c;
|
---|
1604 | if( pRes ) *pRes = 0;
|
---|
1605 | return SQLITE_OK;
|
---|
1606 | }
|
---|
1607 | if( c<0 ){
|
---|
1608 | lwr = pCur->idx+1;
|
---|
1609 | }else{
|
---|
1610 | upr = pCur->idx-1;
|
---|
1611 | }
|
---|
1612 | }
|
---|
1613 | assert( lwr==upr+1 );
|
---|
1614 | assert( pPage->isInit );
|
---|
1615 | if( lwr>=pPage->nCell ){
|
---|
1616 | chldPg = pPage->u.hdr.rightChild;
|
---|
1617 | }else{
|
---|
1618 | chldPg = pPage->apCell[lwr]->h.leftChild;
|
---|
1619 | }
|
---|
1620 | if( chldPg==0 ){
|
---|
1621 | pCur->iMatch = c;
|
---|
1622 | if( pRes ) *pRes = c;
|
---|
1623 | return SQLITE_OK;
|
---|
1624 | }
|
---|
1625 | pCur->idx = lwr;
|
---|
1626 | rc = moveToChild(pCur, chldPg);
|
---|
1627 | if( rc ) return rc;
|
---|
1628 | }
|
---|
1629 | /* NOT REACHED */
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 | /*
|
---|
1633 | ** Advance the cursor to the next entry in the database. If
|
---|
1634 | ** successful then set *pRes=0. If the cursor
|
---|
1635 | ** was already pointing to the last entry in the database before
|
---|
1636 | ** this routine was called, then set *pRes=1.
|
---|
1637 | */
|
---|
1638 | static int fileBtreeNext(BtCursor *pCur, int *pRes){
|
---|
1639 | int rc;
|
---|
1640 | MemPage *pPage = pCur->pPage;
|
---|
1641 | assert( pRes!=0 );
|
---|
1642 | if( pPage==0 ){
|
---|
1643 | *pRes = 1;
|
---|
1644 | return SQLITE_ABORT;
|
---|
1645 | }
|
---|
1646 | assert( pPage->isInit );
|
---|
1647 | assert( pCur->eSkip!=SKIP_INVALID );
|
---|
1648 | if( pPage->nCell==0 ){
|
---|
1649 | *pRes = 1;
|
---|
1650 | return SQLITE_OK;
|
---|
1651 | }
|
---|
1652 | assert( pCur->idx<pPage->nCell );
|
---|
1653 | if( pCur->eSkip==SKIP_NEXT ){
|
---|
1654 | pCur->eSkip = SKIP_NONE;
|
---|
1655 | *pRes = 0;
|
---|
1656 | return SQLITE_OK;
|
---|
1657 | }
|
---|
1658 | pCur->eSkip = SKIP_NONE;
|
---|
1659 | pCur->idx++;
|
---|
1660 | if( pCur->idx>=pPage->nCell ){
|
---|
1661 | if( pPage->u.hdr.rightChild ){
|
---|
1662 | rc = moveToChild(pCur, pPage->u.hdr.rightChild);
|
---|
1663 | if( rc ) return rc;
|
---|
1664 | rc = moveToLeftmost(pCur);
|
---|
1665 | *pRes = 0;
|
---|
1666 | return rc;
|
---|
1667 | }
|
---|
1668 | do{
|
---|
1669 | if( pPage->pParent==0 ){
|
---|
1670 | *pRes = 1;
|
---|
1671 | return SQLITE_OK;
|
---|
1672 | }
|
---|
1673 | moveToParent(pCur);
|
---|
1674 | pPage = pCur->pPage;
|
---|
1675 | }while( pCur->idx>=pPage->nCell );
|
---|
1676 | *pRes = 0;
|
---|
1677 | return SQLITE_OK;
|
---|
1678 | }
|
---|
1679 | *pRes = 0;
|
---|
1680 | if( pPage->u.hdr.rightChild==0 ){
|
---|
1681 | return SQLITE_OK;
|
---|
1682 | }
|
---|
1683 | rc = moveToLeftmost(pCur);
|
---|
1684 | return rc;
|
---|
1685 | }
|
---|
1686 |
|
---|
1687 | /*
|
---|
1688 | ** Step the cursor to the back to the previous entry in the database. If
|
---|
1689 | ** successful then set *pRes=0. If the cursor
|
---|
1690 | ** was already pointing to the first entry in the database before
|
---|
1691 | ** this routine was called, then set *pRes=1.
|
---|
1692 | */
|
---|
1693 | static int fileBtreePrevious(BtCursor *pCur, int *pRes){
|
---|
1694 | int rc;
|
---|
1695 | Pgno pgno;
|
---|
1696 | MemPage *pPage;
|
---|
1697 | pPage = pCur->pPage;
|
---|
1698 | if( pPage==0 ){
|
---|
1699 | *pRes = 1;
|
---|
1700 | return SQLITE_ABORT;
|
---|
1701 | }
|
---|
1702 | assert( pPage->isInit );
|
---|
1703 | assert( pCur->eSkip!=SKIP_INVALID );
|
---|
1704 | if( pPage->nCell==0 ){
|
---|
1705 | *pRes = 1;
|
---|
1706 | return SQLITE_OK;
|
---|
1707 | }
|
---|
1708 | if( pCur->eSkip==SKIP_PREV ){
|
---|
1709 | pCur->eSkip = SKIP_NONE;
|
---|
1710 | *pRes = 0;
|
---|
1711 | return SQLITE_OK;
|
---|
1712 | }
|
---|
1713 | pCur->eSkip = SKIP_NONE;
|
---|
1714 | assert( pCur->idx>=0 );
|
---|
1715 | if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
|
---|
1716 | rc = moveToChild(pCur, pgno);
|
---|
1717 | if( rc ) return rc;
|
---|
1718 | rc = moveToRightmost(pCur);
|
---|
1719 | }else{
|
---|
1720 | while( pCur->idx==0 ){
|
---|
1721 | if( pPage->pParent==0 ){
|
---|
1722 | if( pRes ) *pRes = 1;
|
---|
1723 | return SQLITE_OK;
|
---|
1724 | }
|
---|
1725 | moveToParent(pCur);
|
---|
1726 | pPage = pCur->pPage;
|
---|
1727 | }
|
---|
1728 | pCur->idx--;
|
---|
1729 | rc = SQLITE_OK;
|
---|
1730 | }
|
---|
1731 | *pRes = 0;
|
---|
1732 | return rc;
|
---|
1733 | }
|
---|
1734 |
|
---|
1735 | /*
|
---|
1736 | ** Allocate a new page from the database file.
|
---|
1737 | **
|
---|
1738 | ** The new page is marked as dirty. (In other words, sqlitepager_write()
|
---|
1739 | ** has already been called on the new page.) The new page has also
|
---|
1740 | ** been referenced and the calling routine is responsible for calling
|
---|
1741 | ** sqlitepager_unref() on the new page when it is done.
|
---|
1742 | **
|
---|
1743 | ** SQLITE_OK is returned on success. Any other return value indicates
|
---|
1744 | ** an error. *ppPage and *pPgno are undefined in the event of an error.
|
---|
1745 | ** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
|
---|
1746 | **
|
---|
1747 | ** If the "nearby" parameter is not 0, then a (feeble) effort is made to
|
---|
1748 | ** locate a page close to the page number "nearby". This can be used in an
|
---|
1749 | ** attempt to keep related pages close to each other in the database file,
|
---|
1750 | ** which in turn can make database access faster.
|
---|
1751 | */
|
---|
1752 | static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
|
---|
1753 | PageOne *pPage1 = pBt->page1;
|
---|
1754 | int rc;
|
---|
1755 | if( pPage1->freeList ){
|
---|
1756 | OverflowPage *pOvfl;
|
---|
1757 | FreelistInfo *pInfo;
|
---|
1758 |
|
---|
1759 | rc = sqlitepager_write(pPage1);
|
---|
1760 | if( rc ) return rc;
|
---|
1761 | SWAB_ADD(pBt, pPage1->nFree, -1);
|
---|
1762 | rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
|
---|
1763 | (void**)&pOvfl);
|
---|
1764 | if( rc ) return rc;
|
---|
1765 | rc = sqlitepager_write(pOvfl);
|
---|
1766 | if( rc ){
|
---|
1767 | sqlitepager_unref(pOvfl);
|
---|
1768 | return rc;
|
---|
1769 | }
|
---|
1770 | pInfo = (FreelistInfo*)pOvfl->aPayload;
|
---|
1771 | if( pInfo->nFree==0 ){
|
---|
1772 | *pPgno = SWAB32(pBt, pPage1->freeList);
|
---|
1773 | pPage1->freeList = pOvfl->iNext;
|
---|
1774 | *ppPage = (MemPage*)pOvfl;
|
---|
1775 | }else{
|
---|
1776 | int closest, n;
|
---|
1777 | n = SWAB32(pBt, pInfo->nFree);
|
---|
1778 | if( n>1 && nearby>0 ){
|
---|
1779 | int i, dist;
|
---|
1780 | closest = 0;
|
---|
1781 | dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
|
---|
1782 | if( dist<0 ) dist = -dist;
|
---|
1783 | for(i=1; i<n; i++){
|
---|
1784 | int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
|
---|
1785 | if( d2<0 ) d2 = -d2;
|
---|
1786 | if( d2<dist ) closest = i;
|
---|
1787 | }
|
---|
1788 | }else{
|
---|
1789 | closest = 0;
|
---|
1790 | }
|
---|
1791 | SWAB_ADD(pBt, pInfo->nFree, -1);
|
---|
1792 | *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
|
---|
1793 | pInfo->aFree[closest] = pInfo->aFree[n-1];
|
---|
1794 | rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
|
---|
1795 | sqlitepager_unref(pOvfl);
|
---|
1796 | if( rc==SQLITE_OK ){
|
---|
1797 | sqlitepager_dont_rollback(*ppPage);
|
---|
1798 | rc = sqlitepager_write(*ppPage);
|
---|
1799 | }
|
---|
1800 | }
|
---|
1801 | }else{
|
---|
1802 | *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
|
---|
1803 | rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
|
---|
1804 | if( rc ) return rc;
|
---|
1805 | rc = sqlitepager_write(*ppPage);
|
---|
1806 | }
|
---|
1807 | return rc;
|
---|
1808 | }
|
---|
1809 |
|
---|
1810 | /*
|
---|
1811 | ** Add a page of the database file to the freelist. Either pgno or
|
---|
1812 | ** pPage but not both may be 0.
|
---|
1813 | **
|
---|
1814 | ** sqlitepager_unref() is NOT called for pPage.
|
---|
1815 | */
|
---|
1816 | static int freePage(Btree *pBt, void *pPage, Pgno pgno){
|
---|
1817 | PageOne *pPage1 = pBt->page1;
|
---|
1818 | OverflowPage *pOvfl = (OverflowPage*)pPage;
|
---|
1819 | int rc;
|
---|
1820 | int needUnref = 0;
|
---|
1821 | MemPage *pMemPage;
|
---|
1822 |
|
---|
1823 | if( pgno==0 ){
|
---|
1824 | assert( pOvfl!=0 );
|
---|
1825 | pgno = sqlitepager_pagenumber(pOvfl);
|
---|
1826 | }
|
---|
1827 | assert( pgno>2 );
|
---|
1828 | assert( sqlitepager_pagenumber(pOvfl)==pgno );
|
---|
1829 | pMemPage = (MemPage*)pPage;
|
---|
1830 | pMemPage->isInit = 0;
|
---|
1831 | if( pMemPage->pParent ){
|
---|
1832 | sqlitepager_unref(pMemPage->pParent);
|
---|
1833 | pMemPage->pParent = 0;
|
---|
1834 | }
|
---|
1835 | rc = sqlitepager_write(pPage1);
|
---|
1836 | if( rc ){
|
---|
1837 | return rc;
|
---|
1838 | }
|
---|
1839 | SWAB_ADD(pBt, pPage1->nFree, 1);
|
---|
1840 | if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
|
---|
1841 | OverflowPage *pFreeIdx;
|
---|
1842 | rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
|
---|
1843 | (void**)&pFreeIdx);
|
---|
1844 | if( rc==SQLITE_OK ){
|
---|
1845 | FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
|
---|
1846 | int n = SWAB32(pBt, pInfo->nFree);
|
---|
1847 | if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
|
---|
1848 | rc = sqlitepager_write(pFreeIdx);
|
---|
1849 | if( rc==SQLITE_OK ){
|
---|
1850 | pInfo->aFree[n] = SWAB32(pBt, pgno);
|
---|
1851 | SWAB_ADD(pBt, pInfo->nFree, 1);
|
---|
1852 | sqlitepager_unref(pFreeIdx);
|
---|
1853 | sqlitepager_dont_write(pBt->pPager, pgno);
|
---|
1854 | return rc;
|
---|
1855 | }
|
---|
1856 | }
|
---|
1857 | sqlitepager_unref(pFreeIdx);
|
---|
1858 | }
|
---|
1859 | }
|
---|
1860 | if( pOvfl==0 ){
|
---|
1861 | assert( pgno>0 );
|
---|
1862 | rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
|
---|
1863 | if( rc ) return rc;
|
---|
1864 | needUnref = 1;
|
---|
1865 | }
|
---|
1866 | rc = sqlitepager_write(pOvfl);
|
---|
1867 | if( rc ){
|
---|
1868 | if( needUnref ) sqlitepager_unref(pOvfl);
|
---|
1869 | return rc;
|
---|
1870 | }
|
---|
1871 | pOvfl->iNext = pPage1->freeList;
|
---|
1872 | pPage1->freeList = SWAB32(pBt, pgno);
|
---|
1873 | memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
|
---|
1874 | if( needUnref ) rc = sqlitepager_unref(pOvfl);
|
---|
1875 | return rc;
|
---|
1876 | }
|
---|
1877 |
|
---|
1878 | /*
|
---|
1879 | ** Erase all the data out of a cell. This involves returning overflow
|
---|
1880 | ** pages back the freelist.
|
---|
1881 | */
|
---|
1882 | static int clearCell(Btree *pBt, Cell *pCell){
|
---|
1883 | Pager *pPager = pBt->pPager;
|
---|
1884 | OverflowPage *pOvfl;
|
---|
1885 | Pgno ovfl, nextOvfl;
|
---|
1886 | int rc;
|
---|
1887 |
|
---|
1888 | if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
|
---|
1889 | return SQLITE_OK;
|
---|
1890 | }
|
---|
1891 | ovfl = SWAB32(pBt, pCell->ovfl);
|
---|
1892 | pCell->ovfl = 0;
|
---|
1893 | while( ovfl ){
|
---|
1894 | rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
|
---|
1895 | if( rc ) return rc;
|
---|
1896 | nextOvfl = SWAB32(pBt, pOvfl->iNext);
|
---|
1897 | rc = freePage(pBt, pOvfl, ovfl);
|
---|
1898 | if( rc ) return rc;
|
---|
1899 | sqlitepager_unref(pOvfl);
|
---|
1900 | ovfl = nextOvfl;
|
---|
1901 | }
|
---|
1902 | return SQLITE_OK;
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | /*
|
---|
1906 | ** Create a new cell from key and data. Overflow pages are allocated as
|
---|
1907 | ** necessary and linked to this cell.
|
---|
1908 | */
|
---|
1909 | static int fillInCell(
|
---|
1910 | Btree *pBt, /* The whole Btree. Needed to allocate pages */
|
---|
1911 | Cell *pCell, /* Populate this Cell structure */
|
---|
1912 | const void *pKey, int nKey, /* The key */
|
---|
1913 | const void *pData,int nData /* The data */
|
---|
1914 | ){
|
---|
1915 | OverflowPage *pOvfl, *pPrior;
|
---|
1916 | Pgno *pNext;
|
---|
1917 | int spaceLeft;
|
---|
1918 | int n, rc;
|
---|
1919 | int nPayload;
|
---|
1920 | const char *pPayload;
|
---|
1921 | char *pSpace;
|
---|
1922 | Pgno nearby = 0;
|
---|
1923 |
|
---|
1924 | pCell->h.leftChild = 0;
|
---|
1925 | pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
|
---|
1926 | pCell->h.nKeyHi = nKey >> 16;
|
---|
1927 | pCell->h.nData = SWAB16(pBt, nData & 0xffff);
|
---|
1928 | pCell->h.nDataHi = nData >> 16;
|
---|
1929 | pCell->h.iNext = 0;
|
---|
1930 |
|
---|
1931 | pNext = &pCell->ovfl;
|
---|
1932 | pSpace = pCell->aPayload;
|
---|
1933 | spaceLeft = MX_LOCAL_PAYLOAD;
|
---|
1934 | pPayload = pKey;
|
---|
1935 | pKey = 0;
|
---|
1936 | nPayload = nKey;
|
---|
1937 | pPrior = 0;
|
---|
1938 | while( nPayload>0 ){
|
---|
1939 | if( spaceLeft==0 ){
|
---|
1940 | rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
|
---|
1941 | if( rc ){
|
---|
1942 | *pNext = 0;
|
---|
1943 | }else{
|
---|
1944 | nearby = *pNext;
|
---|
1945 | }
|
---|
1946 | if( pPrior ) sqlitepager_unref(pPrior);
|
---|
1947 | if( rc ){
|
---|
1948 | clearCell(pBt, pCell);
|
---|
1949 | return rc;
|
---|
1950 | }
|
---|
1951 | if( pBt->needSwab ) *pNext = swab32(*pNext);
|
---|
1952 | pPrior = pOvfl;
|
---|
1953 | spaceLeft = OVERFLOW_SIZE;
|
---|
1954 | pSpace = pOvfl->aPayload;
|
---|
1955 | pNext = &pOvfl->iNext;
|
---|
1956 | }
|
---|
1957 | n = nPayload;
|
---|
1958 | if( n>spaceLeft ) n = spaceLeft;
|
---|
1959 | memcpy(pSpace, pPayload, n);
|
---|
1960 | nPayload -= n;
|
---|
1961 | if( nPayload==0 && pData ){
|
---|
1962 | pPayload = pData;
|
---|
1963 | nPayload = nData;
|
---|
1964 | pData = 0;
|
---|
1965 | }else{
|
---|
1966 | pPayload += n;
|
---|
1967 | }
|
---|
1968 | spaceLeft -= n;
|
---|
1969 | pSpace += n;
|
---|
1970 | }
|
---|
1971 | *pNext = 0;
|
---|
1972 | if( pPrior ){
|
---|
1973 | sqlitepager_unref(pPrior);
|
---|
1974 | }
|
---|
1975 | return SQLITE_OK;
|
---|
1976 | }
|
---|
1977 |
|
---|
1978 | /*
|
---|
1979 | ** Change the MemPage.pParent pointer on the page whose number is
|
---|
1980 | ** given in the second argument so that MemPage.pParent holds the
|
---|
1981 | ** pointer in the third argument.
|
---|
1982 | */
|
---|
1983 | static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
|
---|
1984 | MemPage *pThis;
|
---|
1985 |
|
---|
1986 | if( pgno==0 ) return;
|
---|
1987 | assert( pPager!=0 );
|
---|
1988 | pThis = sqlitepager_lookup(pPager, pgno);
|
---|
1989 | if( pThis && pThis->isInit ){
|
---|
1990 | if( pThis->pParent!=pNewParent ){
|
---|
1991 | if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
|
---|
1992 | pThis->pParent = pNewParent;
|
---|
1993 | if( pNewParent ) sqlitepager_ref(pNewParent);
|
---|
1994 | }
|
---|
1995 | pThis->idxParent = idx;
|
---|
1996 | sqlitepager_unref(pThis);
|
---|
1997 | }
|
---|
1998 | }
|
---|
1999 |
|
---|
2000 | /*
|
---|
2001 | ** Reparent all children of the given page to be the given page.
|
---|
2002 | ** In other words, for every child of pPage, invoke reparentPage()
|
---|
2003 | ** to make sure that each child knows that pPage is its parent.
|
---|
2004 | **
|
---|
2005 | ** This routine gets called after you memcpy() one page into
|
---|
2006 | ** another.
|
---|
2007 | */
|
---|
2008 | static void reparentChildPages(Btree *pBt, MemPage *pPage){
|
---|
2009 | int i;
|
---|
2010 | Pager *pPager = pBt->pPager;
|
---|
2011 | for(i=0; i<pPage->nCell; i++){
|
---|
2012 | reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
|
---|
2013 | }
|
---|
2014 | reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
|
---|
2015 | pPage->idxShift = 0;
|
---|
2016 | }
|
---|
2017 |
|
---|
2018 | /*
|
---|
2019 | ** Remove the i-th cell from pPage. This routine effects pPage only.
|
---|
2020 | ** The cell content is not freed or deallocated. It is assumed that
|
---|
2021 | ** the cell content has been copied someplace else. This routine just
|
---|
2022 | ** removes the reference to the cell from pPage.
|
---|
2023 | **
|
---|
2024 | ** "sz" must be the number of bytes in the cell.
|
---|
2025 | **
|
---|
2026 | ** Do not bother maintaining the integrity of the linked list of Cells.
|
---|
2027 | ** Only the pPage->apCell[] array is important. The relinkCellList()
|
---|
2028 | ** routine will be called soon after this routine in order to rebuild
|
---|
2029 | ** the linked list.
|
---|
2030 | */
|
---|
2031 | static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
|
---|
2032 | int j;
|
---|
2033 | assert( idx>=0 && idx<pPage->nCell );
|
---|
2034 | assert( sz==cellSize(pBt, pPage->apCell[idx]) );
|
---|
2035 | assert( sqlitepager_iswriteable(pPage) );
|
---|
2036 | freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
|
---|
2037 | for(j=idx; j<pPage->nCell-1; j++){
|
---|
2038 | pPage->apCell[j] = pPage->apCell[j+1];
|
---|
2039 | }
|
---|
2040 | pPage->nCell--;
|
---|
2041 | pPage->idxShift = 1;
|
---|
2042 | }
|
---|
2043 |
|
---|
2044 | /*
|
---|
2045 | ** Insert a new cell on pPage at cell index "i". pCell points to the
|
---|
2046 | ** content of the cell.
|
---|
2047 | **
|
---|
2048 | ** If the cell content will fit on the page, then put it there. If it
|
---|
2049 | ** will not fit, then just make pPage->apCell[i] point to the content
|
---|
2050 | ** and set pPage->isOverfull.
|
---|
2051 | **
|
---|
2052 | ** Do not bother maintaining the integrity of the linked list of Cells.
|
---|
2053 | ** Only the pPage->apCell[] array is important. The relinkCellList()
|
---|
2054 | ** routine will be called soon after this routine in order to rebuild
|
---|
2055 | ** the linked list.
|
---|
2056 | */
|
---|
2057 | static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
|
---|
2058 | int idx, j;
|
---|
2059 | assert( i>=0 && i<=pPage->nCell );
|
---|
2060 | assert( sz==cellSize(pBt, pCell) );
|
---|
2061 | assert( sqlitepager_iswriteable(pPage) );
|
---|
2062 | idx = allocateSpace(pBt, pPage, sz);
|
---|
2063 | for(j=pPage->nCell; j>i; j--){
|
---|
2064 | pPage->apCell[j] = pPage->apCell[j-1];
|
---|
2065 | }
|
---|
2066 | pPage->nCell++;
|
---|
2067 | if( idx<=0 ){
|
---|
2068 | pPage->isOverfull = 1;
|
---|
2069 | pPage->apCell[i] = pCell;
|
---|
2070 | }else{
|
---|
2071 | memcpy(&pPage->u.aDisk[idx], pCell, sz);
|
---|
2072 | pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
|
---|
2073 | }
|
---|
2074 | pPage->idxShift = 1;
|
---|
2075 | }
|
---|
2076 |
|
---|
2077 | /*
|
---|
2078 | ** Rebuild the linked list of cells on a page so that the cells
|
---|
2079 | ** occur in the order specified by the pPage->apCell[] array.
|
---|
2080 | ** Invoke this routine once to repair damage after one or more
|
---|
2081 | ** invocations of either insertCell() or dropCell().
|
---|
2082 | */
|
---|
2083 | static void relinkCellList(Btree *pBt, MemPage *pPage){
|
---|
2084 | int i;
|
---|
2085 | u16 *pIdx;
|
---|
2086 | assert( sqlitepager_iswriteable(pPage) );
|
---|
2087 | pIdx = &pPage->u.hdr.firstCell;
|
---|
2088 | for(i=0; i<pPage->nCell; i++){
|
---|
2089 | int idx = Addr(pPage->apCell[i]) - Addr(pPage);
|
---|
2090 | assert( idx>0 && idx<SQLITE_USABLE_SIZE );
|
---|
2091 | *pIdx = SWAB16(pBt, idx);
|
---|
2092 | pIdx = &pPage->apCell[i]->h.iNext;
|
---|
2093 | }
|
---|
2094 | *pIdx = 0;
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 | /*
|
---|
2098 | ** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
|
---|
2099 | ** pointers that point into pFrom->u.aDisk[] must be adjusted to point
|
---|
2100 | ** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
|
---|
2101 | ** not point to pFrom->u.aDisk[]. Those are unchanged.
|
---|
2102 | */
|
---|
2103 | static void copyPage(MemPage *pTo, MemPage *pFrom){
|
---|
2104 | uptr from, to;
|
---|
2105 | int i;
|
---|
2106 | memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
|
---|
2107 | pTo->pParent = 0;
|
---|
2108 | pTo->isInit = 1;
|
---|
2109 | pTo->nCell = pFrom->nCell;
|
---|
2110 | pTo->nFree = pFrom->nFree;
|
---|
2111 | pTo->isOverfull = pFrom->isOverfull;
|
---|
2112 | to = Addr(pTo);
|
---|
2113 | from = Addr(pFrom);
|
---|
2114 | for(i=0; i<pTo->nCell; i++){
|
---|
2115 | uptr x = Addr(pFrom->apCell[i]);
|
---|
2116 | if( x>from && x<from+SQLITE_USABLE_SIZE ){
|
---|
2117 | *((uptr*)&pTo->apCell[i]) = x + to - from;
|
---|
2118 | }else{
|
---|
2119 | pTo->apCell[i] = pFrom->apCell[i];
|
---|
2120 | }
|
---|
2121 | }
|
---|
2122 | }
|
---|
2123 |
|
---|
2124 | /*
|
---|
2125 | ** The following parameters determine how many adjacent pages get involved
|
---|
2126 | ** in a balancing operation. NN is the number of neighbors on either side
|
---|
2127 | ** of the page that participate in the balancing operation. NB is the
|
---|
2128 | ** total number of pages that participate, including the target page and
|
---|
2129 | ** NN neighbors on either side.
|
---|
2130 | **
|
---|
2131 | ** The minimum value of NN is 1 (of course). Increasing NN above 1
|
---|
2132 | ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
|
---|
2133 | ** in exchange for a larger degradation in INSERT and UPDATE performance.
|
---|
2134 | ** The value of NN appears to give the best results overall.
|
---|
2135 | */
|
---|
2136 | #define NN 1 /* Number of neighbors on either side of pPage */
|
---|
2137 | #define NB (NN*2+1) /* Total pages involved in the balance */
|
---|
2138 |
|
---|
2139 | /*
|
---|
2140 | ** This routine redistributes Cells on pPage and up to two siblings
|
---|
2141 | ** of pPage so that all pages have about the same amount of free space.
|
---|
2142 | ** Usually one sibling on either side of pPage is used in the balancing,
|
---|
2143 | ** though both siblings might come from one side if pPage is the first
|
---|
2144 | ** or last child of its parent. If pPage has fewer than two siblings
|
---|
2145 | ** (something which can only happen if pPage is the root page or a
|
---|
2146 | ** child of root) then all available siblings participate in the balancing.
|
---|
2147 | **
|
---|
2148 | ** The number of siblings of pPage might be increased or decreased by
|
---|
2149 | ** one in an effort to keep pages between 66% and 100% full. The root page
|
---|
2150 | ** is special and is allowed to be less than 66% full. If pPage is
|
---|
2151 | ** the root page, then the depth of the tree might be increased
|
---|
2152 | ** or decreased by one, as necessary, to keep the root page from being
|
---|
2153 | ** overfull or empty.
|
---|
2154 | **
|
---|
2155 | ** This routine calls relinkCellList() on its input page regardless of
|
---|
2156 | ** whether or not it does any real balancing. Client routines will typically
|
---|
2157 | ** invoke insertCell() or dropCell() before calling this routine, so we
|
---|
2158 | ** need to call relinkCellList() to clean up the mess that those other
|
---|
2159 | ** routines left behind.
|
---|
2160 | **
|
---|
2161 | ** pCur is left pointing to the same cell as when this routine was called
|
---|
2162 | ** even if that cell gets moved to a different page. pCur may be NULL.
|
---|
2163 | ** Set the pCur parameter to NULL if you do not care about keeping track
|
---|
2164 | ** of a cell as that will save this routine the work of keeping track of it.
|
---|
2165 | **
|
---|
2166 | ** Note that when this routine is called, some of the Cells on pPage
|
---|
2167 | ** might not actually be stored in pPage->u.aDisk[]. This can happen
|
---|
2168 | ** if the page is overfull. Part of the job of this routine is to
|
---|
2169 | ** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
|
---|
2170 | **
|
---|
2171 | ** In the course of balancing the siblings of pPage, the parent of pPage
|
---|
2172 | ** might become overfull or underfull. If that happens, then this routine
|
---|
2173 | ** is called recursively on the parent.
|
---|
2174 | **
|
---|
2175 | ** If this routine fails for any reason, it might leave the database
|
---|
2176 | ** in a corrupted state. So if this routine fails, the database should
|
---|
2177 | ** be rolled back.
|
---|
2178 | */
|
---|
2179 | static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
|
---|
2180 | MemPage *pParent; /* The parent of pPage */
|
---|
2181 | int nCell; /* Number of cells in apCell[] */
|
---|
2182 | int nOld; /* Number of pages in apOld[] */
|
---|
2183 | int nNew; /* Number of pages in apNew[] */
|
---|
2184 | int nDiv; /* Number of cells in apDiv[] */
|
---|
2185 | int i, j, k; /* Loop counters */
|
---|
2186 | int idx; /* Index of pPage in pParent->apCell[] */
|
---|
2187 | int nxDiv; /* Next divider slot in pParent->apCell[] */
|
---|
2188 | int rc; /* The return code */
|
---|
2189 | int iCur; /* apCell[iCur] is the cell of the cursor */
|
---|
2190 | MemPage *pOldCurPage; /* The cursor originally points to this page */
|
---|
2191 | int subtotal; /* Subtotal of bytes in cells on one page */
|
---|
2192 | MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
|
---|
2193 | MemPage *apOld[NB]; /* pPage and up to two siblings */
|
---|
2194 | Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
|
---|
2195 | MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
|
---|
2196 | Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
|
---|
2197 | int idxDiv[NB]; /* Indices of divider cells in pParent */
|
---|
2198 | Cell *apDiv[NB]; /* Divider cells in pParent */
|
---|
2199 | Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
|
---|
2200 | int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
|
---|
2201 | int szNew[NB+1]; /* Combined size of cells place on i-th page */
|
---|
2202 | MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
|
---|
2203 | Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
|
---|
2204 | int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
|
---|
2205 |
|
---|
2206 | /*
|
---|
2207 | ** Return without doing any work if pPage is neither overfull nor
|
---|
2208 | ** underfull.
|
---|
2209 | */
|
---|
2210 | assert( sqlitepager_iswriteable(pPage) );
|
---|
2211 | if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
|
---|
2212 | && pPage->nCell>=2){
|
---|
2213 | relinkCellList(pBt, pPage);
|
---|
2214 | return SQLITE_OK;
|
---|
2215 | }
|
---|
2216 |
|
---|
2217 | /*
|
---|
2218 | ** Find the parent of the page to be balanceed.
|
---|
2219 | ** If there is no parent, it means this page is the root page and
|
---|
2220 | ** special rules apply.
|
---|
2221 | */
|
---|
2222 | pParent = pPage->pParent;
|
---|
2223 | if( pParent==0 ){
|
---|
2224 | Pgno pgnoChild;
|
---|
2225 | MemPage *pChild;
|
---|
2226 | assert( pPage->isInit );
|
---|
2227 | if( pPage->nCell==0 ){
|
---|
2228 | if( pPage->u.hdr.rightChild ){
|
---|
2229 | /*
|
---|
2230 | ** The root page is empty. Copy the one child page
|
---|
2231 | ** into the root page and return. This reduces the depth
|
---|
2232 | ** of the BTree by one.
|
---|
2233 | */
|
---|
2234 | pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
|
---|
2235 | rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
|
---|
2236 | if( rc ) return rc;
|
---|
2237 | memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
|
---|
2238 | pPage->isInit = 0;
|
---|
2239 | rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
|
---|
2240 | assert( rc==SQLITE_OK );
|
---|
2241 | reparentChildPages(pBt, pPage);
|
---|
2242 | if( pCur && pCur->pPage==pChild ){
|
---|
2243 | sqlitepager_unref(pChild);
|
---|
2244 | pCur->pPage = pPage;
|
---|
2245 | sqlitepager_ref(pPage);
|
---|
2246 | }
|
---|
2247 | freePage(pBt, pChild, pgnoChild);
|
---|
2248 | sqlitepager_unref(pChild);
|
---|
2249 | }else{
|
---|
2250 | relinkCellList(pBt, pPage);
|
---|
2251 | }
|
---|
2252 | return SQLITE_OK;
|
---|
2253 | }
|
---|
2254 | if( !pPage->isOverfull ){
|
---|
2255 | /* It is OK for the root page to be less than half full.
|
---|
2256 | */
|
---|
2257 | relinkCellList(pBt, pPage);
|
---|
2258 | return SQLITE_OK;
|
---|
2259 | }
|
---|
2260 | /*
|
---|
2261 | ** If we get to here, it means the root page is overfull.
|
---|
2262 | ** When this happens, Create a new child page and copy the
|
---|
2263 | ** contents of the root into the child. Then make the root
|
---|
2264 | ** page an empty page with rightChild pointing to the new
|
---|
2265 | ** child. Then fall thru to the code below which will cause
|
---|
2266 | ** the overfull child page to be split.
|
---|
2267 | */
|
---|
2268 | rc = sqlitepager_write(pPage);
|
---|
2269 | if( rc ) return rc;
|
---|
2270 | rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
|
---|
2271 | if( rc ) return rc;
|
---|
2272 | assert( sqlitepager_iswriteable(pChild) );
|
---|
2273 | copyPage(pChild, pPage);
|
---|
2274 | pChild->pParent = pPage;
|
---|
2275 | pChild->idxParent = 0;
|
---|
2276 | sqlitepager_ref(pPage);
|
---|
2277 | pChild->isOverfull = 1;
|
---|
2278 | if( pCur && pCur->pPage==pPage ){
|
---|
2279 | sqlitepager_unref(pPage);
|
---|
2280 | pCur->pPage = pChild;
|
---|
2281 | }else{
|
---|
2282 | extraUnref = pChild;
|
---|
2283 | }
|
---|
2284 | zeroPage(pBt, pPage);
|
---|
2285 | pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
|
---|
2286 | pParent = pPage;
|
---|
2287 | pPage = pChild;
|
---|
2288 | }
|
---|
2289 | rc = sqlitepager_write(pParent);
|
---|
2290 | if( rc ) return rc;
|
---|
2291 | assert( pParent->isInit );
|
---|
2292 |
|
---|
2293 | /*
|
---|
2294 | ** Find the Cell in the parent page whose h.leftChild points back
|
---|
2295 | ** to pPage. The "idx" variable is the index of that cell. If pPage
|
---|
2296 | ** is the rightmost child of pParent then set idx to pParent->nCell
|
---|
2297 | */
|
---|
2298 | if( pParent->idxShift ){
|
---|
2299 | Pgno pgno, swabPgno;
|
---|
2300 | pgno = sqlitepager_pagenumber(pPage);
|
---|
2301 | swabPgno = SWAB32(pBt, pgno);
|
---|
2302 | for(idx=0; idx<pParent->nCell; idx++){
|
---|
2303 | if( pParent->apCell[idx]->h.leftChild==swabPgno ){
|
---|
2304 | break;
|
---|
2305 | }
|
---|
2306 | }
|
---|
2307 | assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
|
---|
2308 | }else{
|
---|
2309 | idx = pPage->idxParent;
|
---|
2310 | }
|
---|
2311 |
|
---|
2312 | /*
|
---|
2313 | ** Initialize variables so that it will be safe to jump
|
---|
2314 | ** directly to balance_cleanup at any moment.
|
---|
2315 | */
|
---|
2316 | nOld = nNew = 0;
|
---|
2317 | sqlitepager_ref(pParent);
|
---|
2318 |
|
---|
2319 | /*
|
---|
2320 | ** Find sibling pages to pPage and the Cells in pParent that divide
|
---|
2321 | ** the siblings. An attempt is made to find NN siblings on either
|
---|
2322 | ** side of pPage. More siblings are taken from one side, however, if
|
---|
2323 | ** pPage there are fewer than NN siblings on the other side. If pParent
|
---|
2324 | ** has NB or fewer children then all children of pParent are taken.
|
---|
2325 | */
|
---|
2326 | nxDiv = idx - NN;
|
---|
2327 | if( nxDiv + NB > pParent->nCell ){
|
---|
2328 | nxDiv = pParent->nCell - NB + 1;
|
---|
2329 | }
|
---|
2330 | if( nxDiv<0 ){
|
---|
2331 | nxDiv = 0;
|
---|
2332 | }
|
---|
2333 | nDiv = 0;
|
---|
2334 | for(i=0, k=nxDiv; i<NB; i++, k++){
|
---|
2335 | if( k<pParent->nCell ){
|
---|
2336 | idxDiv[i] = k;
|
---|
2337 | apDiv[i] = pParent->apCell[k];
|
---|
2338 | nDiv++;
|
---|
2339 | pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
|
---|
2340 | }else if( k==pParent->nCell ){
|
---|
2341 | pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
|
---|
2342 | }else{
|
---|
2343 | break;
|
---|
2344 | }
|
---|
2345 | rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
|
---|
2346 | if( rc ) goto balance_cleanup;
|
---|
2347 | rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
|
---|
2348 | if( rc ) goto balance_cleanup;
|
---|
2349 | apOld[i]->idxParent = k;
|
---|
2350 | nOld++;
|
---|
2351 | }
|
---|
2352 |
|
---|
2353 | /*
|
---|
2354 | ** Set iCur to be the index in apCell[] of the cell that the cursor
|
---|
2355 | ** is pointing to. We will need this later on in order to keep the
|
---|
2356 | ** cursor pointing at the same cell. If pCur points to a page that
|
---|
2357 | ** has no involvement with this rebalancing, then set iCur to a large
|
---|
2358 | ** number so that the iCur==j tests always fail in the main cell
|
---|
2359 | ** distribution loop below.
|
---|
2360 | */
|
---|
2361 | if( pCur ){
|
---|
2362 | iCur = 0;
|
---|
2363 | for(i=0; i<nOld; i++){
|
---|
2364 | if( pCur->pPage==apOld[i] ){
|
---|
2365 | iCur += pCur->idx;
|
---|
2366 | break;
|
---|
2367 | }
|
---|
2368 | iCur += apOld[i]->nCell;
|
---|
2369 | if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
|
---|
2370 | break;
|
---|
2371 | }
|
---|
2372 | iCur++;
|
---|
2373 | }
|
---|
2374 | pOldCurPage = pCur->pPage;
|
---|
2375 | }
|
---|
2376 |
|
---|
2377 | /*
|
---|
2378 | ** Make copies of the content of pPage and its siblings into aOld[].
|
---|
2379 | ** The rest of this function will use data from the copies rather
|
---|
2380 | ** that the original pages since the original pages will be in the
|
---|
2381 | ** process of being overwritten.
|
---|
2382 | */
|
---|
2383 | for(i=0; i<nOld; i++){
|
---|
2384 | copyPage(&aOld[i], apOld[i]);
|
---|
2385 | }
|
---|
2386 |
|
---|
2387 | /*
|
---|
2388 | ** Load pointers to all cells on sibling pages and the divider cells
|
---|
2389 | ** into the local apCell[] array. Make copies of the divider cells
|
---|
2390 | ** into aTemp[] and remove the the divider Cells from pParent.
|
---|
2391 | */
|
---|
2392 | nCell = 0;
|
---|
2393 | for(i=0; i<nOld; i++){
|
---|
2394 | MemPage *pOld = &aOld[i];
|
---|
2395 | for(j=0; j<pOld->nCell; j++){
|
---|
2396 | apCell[nCell] = pOld->apCell[j];
|
---|
2397 | szCell[nCell] = cellSize(pBt, apCell[nCell]);
|
---|
2398 | nCell++;
|
---|
2399 | }
|
---|
2400 | if( i<nOld-1 ){
|
---|
2401 | szCell[nCell] = cellSize(pBt, apDiv[i]);
|
---|
2402 | memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
|
---|
2403 | apCell[nCell] = &aTemp[i];
|
---|
2404 | dropCell(pBt, pParent, nxDiv, szCell[nCell]);
|
---|
2405 | assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
|
---|
2406 | apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
|
---|
2407 | nCell++;
|
---|
2408 | }
|
---|
2409 | }
|
---|
2410 |
|
---|
2411 | /*
|
---|
2412 | ** Figure out the number of pages needed to hold all nCell cells.
|
---|
2413 | ** Store this number in "k". Also compute szNew[] which is the total
|
---|
2414 | ** size of all cells on the i-th page and cntNew[] which is the index
|
---|
2415 | ** in apCell[] of the cell that divides path i from path i+1.
|
---|
2416 | ** cntNew[k] should equal nCell.
|
---|
2417 | **
|
---|
2418 | ** This little patch of code is critical for keeping the tree
|
---|
2419 | ** balanced.
|
---|
2420 | */
|
---|
2421 | for(subtotal=k=i=0; i<nCell; i++){
|
---|
2422 | subtotal += szCell[i];
|
---|
2423 | if( subtotal > USABLE_SPACE ){
|
---|
2424 | szNew[k] = subtotal - szCell[i];
|
---|
2425 | cntNew[k] = i;
|
---|
2426 | subtotal = 0;
|
---|
2427 | k++;
|
---|
2428 | }
|
---|
2429 | }
|
---|
2430 | szNew[k] = subtotal;
|
---|
2431 | cntNew[k] = nCell;
|
---|
2432 | k++;
|
---|
2433 | for(i=k-1; i>0; i--){
|
---|
2434 | while( szNew[i]<USABLE_SPACE/2 ){
|
---|
2435 | cntNew[i-1]--;
|
---|
2436 | assert( cntNew[i-1]>0 );
|
---|
2437 | szNew[i] += szCell[cntNew[i-1]];
|
---|
2438 | szNew[i-1] -= szCell[cntNew[i-1]-1];
|
---|
2439 | }
|
---|
2440 | }
|
---|
2441 | assert( cntNew[0]>0 );
|
---|
2442 |
|
---|
2443 | /*
|
---|
2444 | ** Allocate k new pages. Reuse old pages where possible.
|
---|
2445 | */
|
---|
2446 | for(i=0; i<k; i++){
|
---|
2447 | if( i<nOld ){
|
---|
2448 | apNew[i] = apOld[i];
|
---|
2449 | pgnoNew[i] = pgnoOld[i];
|
---|
2450 | apOld[i] = 0;
|
---|
2451 | sqlitepager_write(apNew[i]);
|
---|
2452 | }else{
|
---|
2453 | rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
|
---|
2454 | if( rc ) goto balance_cleanup;
|
---|
2455 | }
|
---|
2456 | nNew++;
|
---|
2457 | zeroPage(pBt, apNew[i]);
|
---|
2458 | apNew[i]->isInit = 1;
|
---|
2459 | }
|
---|
2460 |
|
---|
2461 | /* Free any old pages that were not reused as new pages.
|
---|
2462 | */
|
---|
2463 | while( i<nOld ){
|
---|
2464 | rc = freePage(pBt, apOld[i], pgnoOld[i]);
|
---|
2465 | if( rc ) goto balance_cleanup;
|
---|
2466 | sqlitepager_unref(apOld[i]);
|
---|
2467 | apOld[i] = 0;
|
---|
2468 | i++;
|
---|
2469 | }
|
---|
2470 |
|
---|
2471 | /*
|
---|
2472 | ** Put the new pages in accending order. This helps to
|
---|
2473 | ** keep entries in the disk file in order so that a scan
|
---|
2474 | ** of the table is a linear scan through the file. That
|
---|
2475 | ** in turn helps the operating system to deliver pages
|
---|
2476 | ** from the disk more rapidly.
|
---|
2477 | **
|
---|
2478 | ** An O(n^2) insertion sort algorithm is used, but since
|
---|
2479 | ** n is never more than NB (a small constant), that should
|
---|
2480 | ** not be a problem.
|
---|
2481 | **
|
---|
2482 | ** When NB==3, this one optimization makes the database
|
---|
2483 | ** about 25% faster for large insertions and deletions.
|
---|
2484 | */
|
---|
2485 | for(i=0; i<k-1; i++){
|
---|
2486 | int minV = pgnoNew[i];
|
---|
2487 | int minI = i;
|
---|
2488 | for(j=i+1; j<k; j++){
|
---|
2489 | if( pgnoNew[j]<(unsigned)minV ){
|
---|
2490 | minI = j;
|
---|
2491 | minV = pgnoNew[j];
|
---|
2492 | }
|
---|
2493 | }
|
---|
2494 | if( minI>i ){
|
---|
2495 | int t;
|
---|
2496 | MemPage *pT;
|
---|
2497 | t = pgnoNew[i];
|
---|
2498 | pT = apNew[i];
|
---|
2499 | pgnoNew[i] = pgnoNew[minI];
|
---|
2500 | apNew[i] = apNew[minI];
|
---|
2501 | pgnoNew[minI] = t;
|
---|
2502 | apNew[minI] = pT;
|
---|
2503 | }
|
---|
2504 | }
|
---|
2505 |
|
---|
2506 | /*
|
---|
2507 | ** Evenly distribute the data in apCell[] across the new pages.
|
---|
2508 | ** Insert divider cells into pParent as necessary.
|
---|
2509 | */
|
---|
2510 | j = 0;
|
---|
2511 | for(i=0; i<nNew; i++){
|
---|
2512 | MemPage *pNew = apNew[i];
|
---|
2513 | while( j<cntNew[i] ){
|
---|
2514 | assert( pNew->nFree>=szCell[j] );
|
---|
2515 | if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
|
---|
2516 | insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
|
---|
2517 | j++;
|
---|
2518 | }
|
---|
2519 | assert( pNew->nCell>0 );
|
---|
2520 | assert( !pNew->isOverfull );
|
---|
2521 | relinkCellList(pBt, pNew);
|
---|
2522 | if( i<nNew-1 && j<nCell ){
|
---|
2523 | pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
|
---|
2524 | apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
|
---|
2525 | if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
|
---|
2526 | insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
|
---|
2527 | j++;
|
---|
2528 | nxDiv++;
|
---|
2529 | }
|
---|
2530 | }
|
---|
2531 | assert( j==nCell );
|
---|
2532 | apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
|
---|
2533 | if( nxDiv==pParent->nCell ){
|
---|
2534 | pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
|
---|
2535 | }else{
|
---|
2536 | pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
|
---|
2537 | }
|
---|
2538 | if( pCur ){
|
---|
2539 | if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
|
---|
2540 | assert( pCur->pPage==pOldCurPage );
|
---|
2541 | pCur->idx += nNew - nOld;
|
---|
2542 | }else{
|
---|
2543 | assert( pOldCurPage!=0 );
|
---|
2544 | sqlitepager_ref(pCur->pPage);
|
---|
2545 | sqlitepager_unref(pOldCurPage);
|
---|
2546 | }
|
---|
2547 | }
|
---|
2548 |
|
---|
2549 | /*
|
---|
2550 | ** Reparent children of all cells.
|
---|
2551 | */
|
---|
2552 | for(i=0; i<nNew; i++){
|
---|
2553 | reparentChildPages(pBt, apNew[i]);
|
---|
2554 | }
|
---|
2555 | reparentChildPages(pBt, pParent);
|
---|
2556 |
|
---|
2557 | /*
|
---|
2558 | ** balance the parent page.
|
---|
2559 | */
|
---|
2560 | rc = balance(pBt, pParent, pCur);
|
---|
2561 |
|
---|
2562 | /*
|
---|
2563 | ** Cleanup before returning.
|
---|
2564 | */
|
---|
2565 | balance_cleanup:
|
---|
2566 | if( extraUnref ){
|
---|
2567 | sqlitepager_unref(extraUnref);
|
---|
2568 | }
|
---|
2569 | for(i=0; i<nOld; i++){
|
---|
2570 | if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
|
---|
2571 | }
|
---|
2572 | for(i=0; i<nNew; i++){
|
---|
2573 | sqlitepager_unref(apNew[i]);
|
---|
2574 | }
|
---|
2575 | if( pCur && pCur->pPage==0 ){
|
---|
2576 | pCur->pPage = pParent;
|
---|
2577 | pCur->idx = 0;
|
---|
2578 | }else{
|
---|
2579 | sqlitepager_unref(pParent);
|
---|
2580 | }
|
---|
2581 | return rc;
|
---|
2582 | }
|
---|
2583 |
|
---|
2584 | /*
|
---|
2585 | ** This routine checks all cursors that point to the same table
|
---|
2586 | ** as pCur points to. If any of those cursors were opened with
|
---|
2587 | ** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
|
---|
2588 | ** cursors point to the same table were opened with wrFlag==1
|
---|
2589 | ** then this routine returns SQLITE_OK.
|
---|
2590 | **
|
---|
2591 | ** In addition to checking for read-locks (where a read-lock
|
---|
2592 | ** means a cursor opened with wrFlag==0) this routine also moves
|
---|
2593 | ** all cursors other than pCur so that they are pointing to the
|
---|
2594 | ** first Cell on root page. This is necessary because an insert
|
---|
2595 | ** or delete might change the number of cells on a page or delete
|
---|
2596 | ** a page entirely and we do not want to leave any cursors
|
---|
2597 | ** pointing to non-existant pages or cells.
|
---|
2598 | */
|
---|
2599 | static int checkReadLocks(BtCursor *pCur){
|
---|
2600 | BtCursor *p;
|
---|
2601 | assert( pCur->wrFlag );
|
---|
2602 | for(p=pCur->pShared; p!=pCur; p=p->pShared){
|
---|
2603 | assert( p );
|
---|
2604 | assert( p->pgnoRoot==pCur->pgnoRoot );
|
---|
2605 | if( p->wrFlag==0 ) return SQLITE_LOCKED;
|
---|
2606 | if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
|
---|
2607 | moveToRoot(p);
|
---|
2608 | }
|
---|
2609 | }
|
---|
2610 | return SQLITE_OK;
|
---|
2611 | }
|
---|
2612 |
|
---|
2613 | /*
|
---|
2614 | ** Insert a new record into the BTree. The key is given by (pKey,nKey)
|
---|
2615 | ** and the data is given by (pData,nData). The cursor is used only to
|
---|
2616 | ** define what database the record should be inserted into. The cursor
|
---|
2617 | ** is left pointing at the new record.
|
---|
2618 | */
|
---|
2619 | static int fileBtreeInsert(
|
---|
2620 | BtCursor *pCur, /* Insert data into the table of this cursor */
|
---|
2621 | const void *pKey, int nKey, /* The key of the new record */
|
---|
2622 | const void *pData, int nData /* The data of the new record */
|
---|
2623 | ){
|
---|
2624 | Cell newCell;
|
---|
2625 | int rc;
|
---|
2626 | int loc;
|
---|
2627 | int szNew;
|
---|
2628 | MemPage *pPage;
|
---|
2629 | Btree *pBt = pCur->pBt;
|
---|
2630 |
|
---|
2631 | if( pCur->pPage==0 ){
|
---|
2632 | return SQLITE_ABORT; /* A rollback destroyed this cursor */
|
---|
2633 | }
|
---|
2634 | if( !pBt->inTrans || nKey+nData==0 ){
|
---|
2635 | /* Must start a transaction before doing an insert */
|
---|
2636 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
2637 | }
|
---|
2638 | assert( !pBt->readOnly );
|
---|
2639 | if( !pCur->wrFlag ){
|
---|
2640 | return SQLITE_PERM; /* Cursor not open for writing */
|
---|
2641 | }
|
---|
2642 | if( checkReadLocks(pCur) ){
|
---|
2643 | return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
---|
2644 | }
|
---|
2645 | rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
|
---|
2646 | if( rc ) return rc;
|
---|
2647 | pPage = pCur->pPage;
|
---|
2648 | assert( pPage->isInit );
|
---|
2649 | rc = sqlitepager_write(pPage);
|
---|
2650 | if( rc ) return rc;
|
---|
2651 | rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
|
---|
2652 | if( rc ) return rc;
|
---|
2653 | szNew = cellSize(pBt, &newCell);
|
---|
2654 | if( loc==0 ){
|
---|
2655 | newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
|
---|
2656 | rc = clearCell(pBt, pPage->apCell[pCur->idx]);
|
---|
2657 | if( rc ) return rc;
|
---|
2658 | dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
|
---|
2659 | }else if( loc<0 && pPage->nCell>0 ){
|
---|
2660 | assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
|
---|
2661 | pCur->idx++;
|
---|
2662 | }else{
|
---|
2663 | assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
|
---|
2664 | }
|
---|
2665 | insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
|
---|
2666 | rc = balance(pCur->pBt, pPage, pCur);
|
---|
2667 | /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
|
---|
2668 | /* fflush(stdout); */
|
---|
2669 | pCur->eSkip = SKIP_INVALID;
|
---|
2670 | return rc;
|
---|
2671 | }
|
---|
2672 |
|
---|
2673 | /*
|
---|
2674 | ** Delete the entry that the cursor is pointing to.
|
---|
2675 | **
|
---|
2676 | ** The cursor is left pointing at either the next or the previous
|
---|
2677 | ** entry. If the cursor is left pointing to the next entry, then
|
---|
2678 | ** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
|
---|
2679 | ** sqliteBtreeNext() to be a no-op. That way, you can always call
|
---|
2680 | ** sqliteBtreeNext() after a delete and the cursor will be left
|
---|
2681 | ** pointing to the first entry after the deleted entry. Similarly,
|
---|
2682 | ** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
|
---|
2683 | ** the entry prior to the deleted entry so that a subsequent call to
|
---|
2684 | ** sqliteBtreePrevious() will always leave the cursor pointing at the
|
---|
2685 | ** entry immediately before the one that was deleted.
|
---|
2686 | */
|
---|
2687 | static int fileBtreeDelete(BtCursor *pCur){
|
---|
2688 | MemPage *pPage = pCur->pPage;
|
---|
2689 | Cell *pCell;
|
---|
2690 | int rc;
|
---|
2691 | Pgno pgnoChild;
|
---|
2692 | Btree *pBt = pCur->pBt;
|
---|
2693 |
|
---|
2694 | assert( pPage->isInit );
|
---|
2695 | if( pCur->pPage==0 ){
|
---|
2696 | return SQLITE_ABORT; /* A rollback destroyed this cursor */
|
---|
2697 | }
|
---|
2698 | if( !pBt->inTrans ){
|
---|
2699 | /* Must start a transaction before doing a delete */
|
---|
2700 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
2701 | }
|
---|
2702 | assert( !pBt->readOnly );
|
---|
2703 | if( pCur->idx >= pPage->nCell ){
|
---|
2704 | return SQLITE_ERROR; /* The cursor is not pointing to anything */
|
---|
2705 | }
|
---|
2706 | if( !pCur->wrFlag ){
|
---|
2707 | return SQLITE_PERM; /* Did not open this cursor for writing */
|
---|
2708 | }
|
---|
2709 | if( checkReadLocks(pCur) ){
|
---|
2710 | return SQLITE_LOCKED; /* The table pCur points to has a read lock */
|
---|
2711 | }
|
---|
2712 | rc = sqlitepager_write(pPage);
|
---|
2713 | if( rc ) return rc;
|
---|
2714 | pCell = pPage->apCell[pCur->idx];
|
---|
2715 | pgnoChild = SWAB32(pBt, pCell->h.leftChild);
|
---|
2716 | clearCell(pBt, pCell);
|
---|
2717 | if( pgnoChild ){
|
---|
2718 | /*
|
---|
2719 | ** The entry we are about to delete is not a leaf so if we do not
|
---|
2720 | ** do something we will leave a hole on an internal page.
|
---|
2721 | ** We have to fill the hole by moving in a cell from a leaf. The
|
---|
2722 | ** next Cell after the one to be deleted is guaranteed to exist and
|
---|
2723 | ** to be a leaf so we can use it.
|
---|
2724 | */
|
---|
2725 | BtCursor leafCur;
|
---|
2726 | Cell *pNext;
|
---|
2727 | int szNext;
|
---|
2728 | int notUsed;
|
---|
2729 | getTempCursor(pCur, &leafCur);
|
---|
2730 | rc = fileBtreeNext(&leafCur, ¬Used);
|
---|
2731 | if( rc!=SQLITE_OK ){
|
---|
2732 | if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
|
---|
2733 | return rc;
|
---|
2734 | }
|
---|
2735 | rc = sqlitepager_write(leafCur.pPage);
|
---|
2736 | if( rc ) return rc;
|
---|
2737 | dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
|
---|
2738 | pNext = leafCur.pPage->apCell[leafCur.idx];
|
---|
2739 | szNext = cellSize(pBt, pNext);
|
---|
2740 | pNext->h.leftChild = SWAB32(pBt, pgnoChild);
|
---|
2741 | insertCell(pBt, pPage, pCur->idx, pNext, szNext);
|
---|
2742 | rc = balance(pBt, pPage, pCur);
|
---|
2743 | if( rc ) return rc;
|
---|
2744 | pCur->eSkip = SKIP_NEXT;
|
---|
2745 | dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
|
---|
2746 | rc = balance(pBt, leafCur.pPage, pCur);
|
---|
2747 | releaseTempCursor(&leafCur);
|
---|
2748 | }else{
|
---|
2749 | dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
|
---|
2750 | if( pCur->idx>=pPage->nCell ){
|
---|
2751 | pCur->idx = pPage->nCell-1;
|
---|
2752 | if( pCur->idx<0 ){
|
---|
2753 | pCur->idx = 0;
|
---|
2754 | pCur->eSkip = SKIP_NEXT;
|
---|
2755 | }else{
|
---|
2756 | pCur->eSkip = SKIP_PREV;
|
---|
2757 | }
|
---|
2758 | }else{
|
---|
2759 | pCur->eSkip = SKIP_NEXT;
|
---|
2760 | }
|
---|
2761 | rc = balance(pBt, pPage, pCur);
|
---|
2762 | }
|
---|
2763 | return rc;
|
---|
2764 | }
|
---|
2765 |
|
---|
2766 | /*
|
---|
2767 | ** Create a new BTree table. Write into *piTable the page
|
---|
2768 | ** number for the root page of the new table.
|
---|
2769 | **
|
---|
2770 | ** In the current implementation, BTree tables and BTree indices are the
|
---|
2771 | ** the same. In the future, we may change this so that BTree tables
|
---|
2772 | ** are restricted to having a 4-byte integer key and arbitrary data and
|
---|
2773 | ** BTree indices are restricted to having an arbitrary key and no data.
|
---|
2774 | ** But for now, this routine also serves to create indices.
|
---|
2775 | */
|
---|
2776 | static int fileBtreeCreateTable(Btree *pBt, int *piTable){
|
---|
2777 | MemPage *pRoot;
|
---|
2778 | Pgno pgnoRoot;
|
---|
2779 | int rc;
|
---|
2780 | if( !pBt->inTrans ){
|
---|
2781 | /* Must start a transaction first */
|
---|
2782 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
2783 | }
|
---|
2784 | if( pBt->readOnly ){
|
---|
2785 | return SQLITE_READONLY;
|
---|
2786 | }
|
---|
2787 | rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
|
---|
2788 | if( rc ) return rc;
|
---|
2789 | assert( sqlitepager_iswriteable(pRoot) );
|
---|
2790 | zeroPage(pBt, pRoot);
|
---|
2791 | sqlitepager_unref(pRoot);
|
---|
2792 | *piTable = (int)pgnoRoot;
|
---|
2793 | return SQLITE_OK;
|
---|
2794 | }
|
---|
2795 |
|
---|
2796 | /*
|
---|
2797 | ** Erase the given database page and all its children. Return
|
---|
2798 | ** the page to the freelist.
|
---|
2799 | */
|
---|
2800 | static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
|
---|
2801 | MemPage *pPage;
|
---|
2802 | int rc;
|
---|
2803 | Cell *pCell;
|
---|
2804 | int idx;
|
---|
2805 |
|
---|
2806 | rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
|
---|
2807 | if( rc ) return rc;
|
---|
2808 | rc = sqlitepager_write(pPage);
|
---|
2809 | if( rc ) return rc;
|
---|
2810 | rc = initPage(pBt, pPage, pgno, 0);
|
---|
2811 | if( rc ) return rc;
|
---|
2812 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
2813 | while( idx>0 ){
|
---|
2814 | pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
2815 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
2816 | if( pCell->h.leftChild ){
|
---|
2817 | rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
|
---|
2818 | if( rc ) return rc;
|
---|
2819 | }
|
---|
2820 | rc = clearCell(pBt, pCell);
|
---|
2821 | if( rc ) return rc;
|
---|
2822 | }
|
---|
2823 | if( pPage->u.hdr.rightChild ){
|
---|
2824 | rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
|
---|
2825 | if( rc ) return rc;
|
---|
2826 | }
|
---|
2827 | if( freePageFlag ){
|
---|
2828 | rc = freePage(pBt, pPage, pgno);
|
---|
2829 | }else{
|
---|
2830 | zeroPage(pBt, pPage);
|
---|
2831 | }
|
---|
2832 | sqlitepager_unref(pPage);
|
---|
2833 | return rc;
|
---|
2834 | }
|
---|
2835 |
|
---|
2836 | /*
|
---|
2837 | ** Delete all information from a single table in the database.
|
---|
2838 | */
|
---|
2839 | static int fileBtreeClearTable(Btree *pBt, int iTable){
|
---|
2840 | int rc;
|
---|
2841 | BtCursor *pCur;
|
---|
2842 | if( !pBt->inTrans ){
|
---|
2843 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
2844 | }
|
---|
2845 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
2846 | if( pCur->pgnoRoot==(Pgno)iTable ){
|
---|
2847 | if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
|
---|
2848 | moveToRoot(pCur);
|
---|
2849 | }
|
---|
2850 | }
|
---|
2851 | rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
|
---|
2852 | if( rc ){
|
---|
2853 | fileBtreeRollback(pBt);
|
---|
2854 | }
|
---|
2855 | return rc;
|
---|
2856 | }
|
---|
2857 |
|
---|
2858 | /*
|
---|
2859 | ** Erase all information in a table and add the root of the table to
|
---|
2860 | ** the freelist. Except, the root of the principle table (the one on
|
---|
2861 | ** page 2) is never added to the freelist.
|
---|
2862 | */
|
---|
2863 | static int fileBtreeDropTable(Btree *pBt, int iTable){
|
---|
2864 | int rc;
|
---|
2865 | MemPage *pPage;
|
---|
2866 | BtCursor *pCur;
|
---|
2867 | if( !pBt->inTrans ){
|
---|
2868 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
2869 | }
|
---|
2870 | for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
|
---|
2871 | if( pCur->pgnoRoot==(Pgno)iTable ){
|
---|
2872 | return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
|
---|
2873 | }
|
---|
2874 | }
|
---|
2875 | rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
|
---|
2876 | if( rc ) return rc;
|
---|
2877 | rc = fileBtreeClearTable(pBt, iTable);
|
---|
2878 | if( rc ) return rc;
|
---|
2879 | if( iTable>2 ){
|
---|
2880 | rc = freePage(pBt, pPage, iTable);
|
---|
2881 | }else{
|
---|
2882 | zeroPage(pBt, pPage);
|
---|
2883 | }
|
---|
2884 | sqlitepager_unref(pPage);
|
---|
2885 | return rc;
|
---|
2886 | }
|
---|
2887 |
|
---|
2888 | #if 0 /* UNTESTED */
|
---|
2889 | /*
|
---|
2890 | ** Copy all cell data from one database file into another.
|
---|
2891 | ** pages back the freelist.
|
---|
2892 | */
|
---|
2893 | static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
|
---|
2894 | Pager *pFromPager = pBtFrom->pPager;
|
---|
2895 | OverflowPage *pOvfl;
|
---|
2896 | Pgno ovfl, nextOvfl;
|
---|
2897 | Pgno *pPrev;
|
---|
2898 | int rc = SQLITE_OK;
|
---|
2899 | MemPage *pNew, *pPrevPg;
|
---|
2900 | Pgno new;
|
---|
2901 |
|
---|
2902 | if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
|
---|
2903 | return SQLITE_OK;
|
---|
2904 | }
|
---|
2905 | pPrev = &pCell->ovfl;
|
---|
2906 | pPrevPg = 0;
|
---|
2907 | ovfl = SWAB32(pBtTo, pCell->ovfl);
|
---|
2908 | while( ovfl && rc==SQLITE_OK ){
|
---|
2909 | rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
|
---|
2910 | if( rc ) return rc;
|
---|
2911 | nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
|
---|
2912 | rc = allocatePage(pBtTo, &pNew, &new, 0);
|
---|
2913 | if( rc==SQLITE_OK ){
|
---|
2914 | rc = sqlitepager_write(pNew);
|
---|
2915 | if( rc==SQLITE_OK ){
|
---|
2916 | memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
|
---|
2917 | *pPrev = SWAB32(pBtTo, new);
|
---|
2918 | if( pPrevPg ){
|
---|
2919 | sqlitepager_unref(pPrevPg);
|
---|
2920 | }
|
---|
2921 | pPrev = &pOvfl->iNext;
|
---|
2922 | pPrevPg = pNew;
|
---|
2923 | }
|
---|
2924 | }
|
---|
2925 | sqlitepager_unref(pOvfl);
|
---|
2926 | ovfl = nextOvfl;
|
---|
2927 | }
|
---|
2928 | if( pPrevPg ){
|
---|
2929 | sqlitepager_unref(pPrevPg);
|
---|
2930 | }
|
---|
2931 | return rc;
|
---|
2932 | }
|
---|
2933 | #endif
|
---|
2934 |
|
---|
2935 |
|
---|
2936 | #if 0 /* UNTESTED */
|
---|
2937 | /*
|
---|
2938 | ** Copy a page of data from one database over to another.
|
---|
2939 | */
|
---|
2940 | static int copyDatabasePage(
|
---|
2941 | Btree *pBtFrom,
|
---|
2942 | Pgno pgnoFrom,
|
---|
2943 | Btree *pBtTo,
|
---|
2944 | Pgno *pTo
|
---|
2945 | ){
|
---|
2946 | MemPage *pPageFrom, *pPage;
|
---|
2947 | Pgno to;
|
---|
2948 | int rc;
|
---|
2949 | Cell *pCell;
|
---|
2950 | int idx;
|
---|
2951 |
|
---|
2952 | rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
|
---|
2953 | if( rc ) return rc;
|
---|
2954 | rc = allocatePage(pBt, &pPage, pTo, 0);
|
---|
2955 | if( rc==SQLITE_OK ){
|
---|
2956 | rc = sqlitepager_write(pPage);
|
---|
2957 | }
|
---|
2958 | if( rc==SQLITE_OK ){
|
---|
2959 | memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
|
---|
2960 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
2961 | while( idx>0 ){
|
---|
2962 | pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
2963 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
2964 | if( pCell->h.leftChild ){
|
---|
2965 | Pgno newChld;
|
---|
2966 | rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
|
---|
2967 | pBtTo, &newChld);
|
---|
2968 | if( rc ) return rc;
|
---|
2969 | pCell->h.leftChild = SWAB32(pBtFrom, newChld);
|
---|
2970 | }
|
---|
2971 | rc = copyCell(pBtFrom, pBtTo, pCell);
|
---|
2972 | if( rc ) return rc;
|
---|
2973 | }
|
---|
2974 | if( pPage->u.hdr.rightChild ){
|
---|
2975 | Pgno newChld;
|
---|
2976 | rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
|
---|
2977 | pBtTo, &newChld);
|
---|
2978 | if( rc ) return rc;
|
---|
2979 | pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
|
---|
2980 | }
|
---|
2981 | }
|
---|
2982 | sqlitepager_unref(pPage);
|
---|
2983 | return rc;
|
---|
2984 | }
|
---|
2985 | #endif
|
---|
2986 |
|
---|
2987 | /*
|
---|
2988 | ** Read the meta-information out of a database file.
|
---|
2989 | */
|
---|
2990 | static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
|
---|
2991 | PageOne *pP1;
|
---|
2992 | int rc;
|
---|
2993 | int i;
|
---|
2994 |
|
---|
2995 | rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
|
---|
2996 | if( rc ) return rc;
|
---|
2997 | aMeta[0] = SWAB32(pBt, pP1->nFree);
|
---|
2998 | for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
|
---|
2999 | aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
|
---|
3000 | }
|
---|
3001 | sqlitepager_unref(pP1);
|
---|
3002 | return SQLITE_OK;
|
---|
3003 | }
|
---|
3004 |
|
---|
3005 | /*
|
---|
3006 | ** Write meta-information back into the database.
|
---|
3007 | */
|
---|
3008 | static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
|
---|
3009 | PageOne *pP1;
|
---|
3010 | int rc, i;
|
---|
3011 | if( !pBt->inTrans ){
|
---|
3012 | return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
|
---|
3013 | }
|
---|
3014 | pP1 = pBt->page1;
|
---|
3015 | rc = sqlitepager_write(pP1);
|
---|
3016 | if( rc ) return rc;
|
---|
3017 | for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
|
---|
3018 | pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
|
---|
3019 | }
|
---|
3020 | return SQLITE_OK;
|
---|
3021 | }
|
---|
3022 |
|
---|
3023 | /******************************************************************************
|
---|
3024 | ** The complete implementation of the BTree subsystem is above this line.
|
---|
3025 | ** All the code the follows is for testing and troubleshooting the BTree
|
---|
3026 | ** subsystem. None of the code that follows is used during normal operation.
|
---|
3027 | ******************************************************************************/
|
---|
3028 |
|
---|
3029 | /*
|
---|
3030 | ** Print a disassembly of the given page on standard output. This routine
|
---|
3031 | ** is used for debugging and testing only.
|
---|
3032 | */
|
---|
3033 | #ifdef SQLITE_TEST
|
---|
3034 | static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
|
---|
3035 | int rc;
|
---|
3036 | MemPage *pPage;
|
---|
3037 | int i, j;
|
---|
3038 | int nFree;
|
---|
3039 | u16 idx;
|
---|
3040 | char range[20];
|
---|
3041 | unsigned char payload[20];
|
---|
3042 | rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
|
---|
3043 | if( rc ){
|
---|
3044 | return rc;
|
---|
3045 | }
|
---|
3046 | if( recursive ) printf("PAGE %d:\n", pgno);
|
---|
3047 | i = 0;
|
---|
3048 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
3049 | while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
|
---|
3050 | Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
3051 | int sz = cellSize(pBt, pCell);
|
---|
3052 | sprintf(range,"%d..%d", idx, idx+sz-1);
|
---|
3053 | sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
|
---|
3054 | if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
|
---|
3055 | memcpy(payload, pCell->aPayload, sz);
|
---|
3056 | for(j=0; j<sz; j++){
|
---|
3057 | if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
|
---|
3058 | }
|
---|
3059 | payload[sz] = 0;
|
---|
3060 | printf(
|
---|
3061 | "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
|
---|
3062 | i, range, (int)pCell->h.leftChild,
|
---|
3063 | NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
|
---|
3064 | payload
|
---|
3065 | );
|
---|
3066 | if( pPage->isInit && pPage->apCell[i]!=pCell ){
|
---|
3067 | printf("**** apCell[%d] does not match on prior entry ****\n", i);
|
---|
3068 | }
|
---|
3069 | i++;
|
---|
3070 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
3071 | }
|
---|
3072 | if( idx!=0 ){
|
---|
3073 | printf("ERROR: next cell index out of range: %d\n", idx);
|
---|
3074 | }
|
---|
3075 | printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
|
---|
3076 | nFree = 0;
|
---|
3077 | i = 0;
|
---|
3078 | idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
---|
3079 | while( idx>0 && idx<SQLITE_USABLE_SIZE ){
|
---|
3080 | FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
|
---|
3081 | sprintf(range,"%d..%d", idx, idx+p->iSize-1);
|
---|
3082 | nFree += SWAB16(pBt, p->iSize);
|
---|
3083 | printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
|
---|
3084 | i, range, SWAB16(pBt, p->iSize), nFree);
|
---|
3085 | idx = SWAB16(pBt, p->iNext);
|
---|
3086 | i++;
|
---|
3087 | }
|
---|
3088 | if( idx!=0 ){
|
---|
3089 | printf("ERROR: next freeblock index out of range: %d\n", idx);
|
---|
3090 | }
|
---|
3091 | if( recursive && pPage->u.hdr.rightChild!=0 ){
|
---|
3092 | idx = SWAB16(pBt, pPage->u.hdr.firstCell);
|
---|
3093 | while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
|
---|
3094 | Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
|
---|
3095 | fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
|
---|
3096 | idx = SWAB16(pBt, pCell->h.iNext);
|
---|
3097 | }
|
---|
3098 | fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
|
---|
3099 | }
|
---|
3100 | sqlitepager_unref(pPage);
|
---|
3101 | return SQLITE_OK;
|
---|
3102 | }
|
---|
3103 | #endif
|
---|
3104 |
|
---|
3105 | #ifdef SQLITE_TEST
|
---|
3106 | /*
|
---|
3107 | ** Fill aResult[] with information about the entry and page that the
|
---|
3108 | ** cursor is pointing to.
|
---|
3109 | **
|
---|
3110 | ** aResult[0] = The page number
|
---|
3111 | ** aResult[1] = The entry number
|
---|
3112 | ** aResult[2] = Total number of entries on this page
|
---|
3113 | ** aResult[3] = Size of this entry
|
---|
3114 | ** aResult[4] = Number of free bytes on this page
|
---|
3115 | ** aResult[5] = Number of free blocks on the page
|
---|
3116 | ** aResult[6] = Page number of the left child of this entry
|
---|
3117 | ** aResult[7] = Page number of the right child for the whole page
|
---|
3118 | **
|
---|
3119 | ** This routine is used for testing and debugging only.
|
---|
3120 | */
|
---|
3121 | static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
|
---|
3122 | int cnt, idx;
|
---|
3123 | MemPage *pPage = pCur->pPage;
|
---|
3124 | Btree *pBt = pCur->pBt;
|
---|
3125 | aResult[0] = sqlitepager_pagenumber(pPage);
|
---|
3126 | aResult[1] = pCur->idx;
|
---|
3127 | aResult[2] = pPage->nCell;
|
---|
3128 | if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
|
---|
3129 | aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
|
---|
3130 | aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
|
---|
3131 | }else{
|
---|
3132 | aResult[3] = 0;
|
---|
3133 | aResult[6] = 0;
|
---|
3134 | }
|
---|
3135 | aResult[4] = pPage->nFree;
|
---|
3136 | cnt = 0;
|
---|
3137 | idx = SWAB16(pBt, pPage->u.hdr.firstFree);
|
---|
3138 | while( idx>0 && idx<SQLITE_USABLE_SIZE ){
|
---|
3139 | cnt++;
|
---|
3140 | idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
|
---|
3141 | }
|
---|
3142 | aResult[5] = cnt;
|
---|
3143 | aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
|
---|
3144 | return SQLITE_OK;
|
---|
3145 | }
|
---|
3146 | #endif
|
---|
3147 |
|
---|
3148 | /*
|
---|
3149 | ** Return the pager associated with a BTree. This routine is used for
|
---|
3150 | ** testing and debugging only.
|
---|
3151 | */
|
---|
3152 | static Pager *fileBtreePager(Btree *pBt){
|
---|
3153 | return pBt->pPager;
|
---|
3154 | }
|
---|
3155 |
|
---|
3156 | /*
|
---|
3157 | ** This structure is passed around through all the sanity checking routines
|
---|
3158 | ** in order to keep track of some global state information.
|
---|
3159 | */
|
---|
3160 | typedef struct IntegrityCk IntegrityCk;
|
---|
3161 | struct IntegrityCk {
|
---|
3162 | Btree *pBt; /* The tree being checked out */
|
---|
3163 | Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
|
---|
3164 | int nPage; /* Number of pages in the database */
|
---|
3165 | int *anRef; /* Number of times each page is referenced */
|
---|
3166 | char *zErrMsg; /* An error message. NULL of no errors seen. */
|
---|
3167 | };
|
---|
3168 |
|
---|
3169 | /*
|
---|
3170 | ** Append a message to the error message string.
|
---|
3171 | */
|
---|
3172 | static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
|
---|
3173 | if( pCheck->zErrMsg ){
|
---|
3174 | char *zOld = pCheck->zErrMsg;
|
---|
3175 | pCheck->zErrMsg = 0;
|
---|
3176 | sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
|
---|
3177 | sqliteFree(zOld);
|
---|
3178 | }else{
|
---|
3179 | sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
|
---|
3180 | }
|
---|
3181 | }
|
---|
3182 |
|
---|
3183 | /*
|
---|
3184 | ** Add 1 to the reference count for page iPage. If this is the second
|
---|
3185 | ** reference to the page, add an error message to pCheck->zErrMsg.
|
---|
3186 | ** Return 1 if there are 2 ore more references to the page and 0 if
|
---|
3187 | ** if this is the first reference to the page.
|
---|
3188 | **
|
---|
3189 | ** Also check that the page number is in bounds.
|
---|
3190 | */
|
---|
3191 | static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
|
---|
3192 | if( iPage==0 ) return 1;
|
---|
3193 | if( iPage>pCheck->nPage || iPage<0 ){
|
---|
3194 | char zBuf[100];
|
---|
3195 | sprintf(zBuf, "invalid page number %d", iPage);
|
---|
3196 | checkAppendMsg(pCheck, zContext, zBuf);
|
---|
3197 | return 1;
|
---|
3198 | }
|
---|
3199 | if( pCheck->anRef[iPage]==1 ){
|
---|
3200 | char zBuf[100];
|
---|
3201 | sprintf(zBuf, "2nd reference to page %d", iPage);
|
---|
3202 | checkAppendMsg(pCheck, zContext, zBuf);
|
---|
3203 | return 1;
|
---|
3204 | }
|
---|
3205 | return (pCheck->anRef[iPage]++)>1;
|
---|
3206 | }
|
---|
3207 |
|
---|
3208 | /*
|
---|
3209 | ** Check the integrity of the freelist or of an overflow page list.
|
---|
3210 | ** Verify that the number of pages on the list is N.
|
---|
3211 | */
|
---|
3212 | static void checkList(
|
---|
3213 | IntegrityCk *pCheck, /* Integrity checking context */
|
---|
3214 | int isFreeList, /* True for a freelist. False for overflow page list */
|
---|
3215 | int iPage, /* Page number for first page in the list */
|
---|
3216 | int N, /* Expected number of pages in the list */
|
---|
3217 | char *zContext /* Context for error messages */
|
---|
3218 | ){
|
---|
3219 | int i;
|
---|
3220 | char zMsg[100];
|
---|
3221 | while( N-- > 0 ){
|
---|
3222 | OverflowPage *pOvfl;
|
---|
3223 | if( iPage<1 ){
|
---|
3224 | sprintf(zMsg, "%d pages missing from overflow list", N+1);
|
---|
3225 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
3226 | break;
|
---|
3227 | }
|
---|
3228 | if( checkRef(pCheck, iPage, zContext) ) break;
|
---|
3229 | if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
|
---|
3230 | sprintf(zMsg, "failed to get page %d", iPage);
|
---|
3231 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
3232 | break;
|
---|
3233 | }
|
---|
3234 | if( isFreeList ){
|
---|
3235 | FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
|
---|
3236 | int n = SWAB32(pCheck->pBt, pInfo->nFree);
|
---|
3237 | for(i=0; i<n; i++){
|
---|
3238 | checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
|
---|
3239 | }
|
---|
3240 | N -= n;
|
---|
3241 | }
|
---|
3242 | iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
|
---|
3243 | sqlitepager_unref(pOvfl);
|
---|
3244 | }
|
---|
3245 | }
|
---|
3246 |
|
---|
3247 | /*
|
---|
3248 | ** Return negative if zKey1<zKey2.
|
---|
3249 | ** Return zero if zKey1==zKey2.
|
---|
3250 | ** Return positive if zKey1>zKey2.
|
---|
3251 | */
|
---|
3252 | static int keyCompare(
|
---|
3253 | const char *zKey1, int nKey1,
|
---|
3254 | const char *zKey2, int nKey2
|
---|
3255 | ){
|
---|
3256 | int min = nKey1>nKey2 ? nKey2 : nKey1;
|
---|
3257 | int c = memcmp(zKey1, zKey2, min);
|
---|
3258 | if( c==0 ){
|
---|
3259 | c = nKey1 - nKey2;
|
---|
3260 | }
|
---|
3261 | return c;
|
---|
3262 | }
|
---|
3263 |
|
---|
3264 | /*
|
---|
3265 | ** Do various sanity checks on a single page of a tree. Return
|
---|
3266 | ** the tree depth. Root pages return 0. Parents of root pages
|
---|
3267 | ** return 1, and so forth.
|
---|
3268 | **
|
---|
3269 | ** These checks are done:
|
---|
3270 | **
|
---|
3271 | ** 1. Make sure that cells and freeblocks do not overlap
|
---|
3272 | ** but combine to completely cover the page.
|
---|
3273 | ** 2. Make sure cell keys are in order.
|
---|
3274 | ** 3. Make sure no key is less than or equal to zLowerBound.
|
---|
3275 | ** 4. Make sure no key is greater than or equal to zUpperBound.
|
---|
3276 | ** 5. Check the integrity of overflow pages.
|
---|
3277 | ** 6. Recursively call checkTreePage on all children.
|
---|
3278 | ** 7. Verify that the depth of all children is the same.
|
---|
3279 | ** 8. Make sure this page is at least 33% full or else it is
|
---|
3280 | ** the root of the tree.
|
---|
3281 | */
|
---|
3282 | static int checkTreePage(
|
---|
3283 | IntegrityCk *pCheck, /* Context for the sanity check */
|
---|
3284 | int iPage, /* Page number of the page to check */
|
---|
3285 | MemPage *pParent, /* Parent page */
|
---|
3286 | char *zParentContext, /* Parent context */
|
---|
3287 | char *zLowerBound, /* All keys should be greater than this, if not NULL */
|
---|
3288 | int nLower, /* Number of characters in zLowerBound */
|
---|
3289 | char *zUpperBound, /* All keys should be less than this, if not NULL */
|
---|
3290 | int nUpper /* Number of characters in zUpperBound */
|
---|
3291 | ){
|
---|
3292 | MemPage *pPage;
|
---|
3293 | int i, rc, depth, d2, pgno;
|
---|
3294 | char *zKey1, *zKey2;
|
---|
3295 | int nKey1, nKey2;
|
---|
3296 | BtCursor cur;
|
---|
3297 | Btree *pBt;
|
---|
3298 | char zMsg[100];
|
---|
3299 | char zContext[100];
|
---|
3300 | char hit[SQLITE_USABLE_SIZE];
|
---|
3301 |
|
---|
3302 | /* Check that the page exists
|
---|
3303 | */
|
---|
3304 | cur.pBt = pBt = pCheck->pBt;
|
---|
3305 | if( iPage==0 ) return 0;
|
---|
3306 | if( checkRef(pCheck, iPage, zParentContext) ) return 0;
|
---|
3307 | sprintf(zContext, "On tree page %d: ", iPage);
|
---|
3308 | if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
|
---|
3309 | sprintf(zMsg, "unable to get the page. error code=%d", rc);
|
---|
3310 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
3311 | return 0;
|
---|
3312 | }
|
---|
3313 | if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
|
---|
3314 | sprintf(zMsg, "initPage() returns error code %d", rc);
|
---|
3315 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
3316 | sqlitepager_unref(pPage);
|
---|
3317 | return 0;
|
---|
3318 | }
|
---|
3319 |
|
---|
3320 | /* Check out all the cells.
|
---|
3321 | */
|
---|
3322 | depth = 0;
|
---|
3323 | if( zLowerBound ){
|
---|
3324 | zKey1 = sqliteMalloc( nLower+1 );
|
---|
3325 | memcpy(zKey1, zLowerBound, nLower);
|
---|
3326 | zKey1[nLower] = 0;
|
---|
3327 | }else{
|
---|
3328 | zKey1 = 0;
|
---|
3329 | }
|
---|
3330 | nKey1 = nLower;
|
---|
3331 | cur.pPage = pPage;
|
---|
3332 | for(i=0; i<pPage->nCell; i++){
|
---|
3333 | Cell *pCell = pPage->apCell[i];
|
---|
3334 | int sz;
|
---|
3335 |
|
---|
3336 | /* Check payload overflow pages
|
---|
3337 | */
|
---|
3338 | nKey2 = NKEY(pBt, pCell->h);
|
---|
3339 | sz = nKey2 + NDATA(pBt, pCell->h);
|
---|
3340 | sprintf(zContext, "On page %d cell %d: ", iPage, i);
|
---|
3341 | if( sz>MX_LOCAL_PAYLOAD ){
|
---|
3342 | int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
|
---|
3343 | checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
|
---|
3344 | }
|
---|
3345 |
|
---|
3346 | /* Check that keys are in the right order
|
---|
3347 | */
|
---|
3348 | cur.idx = i;
|
---|
3349 | zKey2 = sqliteMallocRaw( nKey2+1 );
|
---|
3350 | getPayload(&cur, 0, nKey2, zKey2);
|
---|
3351 | if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
|
---|
3352 | checkAppendMsg(pCheck, zContext, "Key is out of order");
|
---|
3353 | }
|
---|
3354 |
|
---|
3355 | /* Check sanity of left child page.
|
---|
3356 | */
|
---|
3357 | pgno = SWAB32(pBt, pCell->h.leftChild);
|
---|
3358 | d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
|
---|
3359 | if( i>0 && d2!=depth ){
|
---|
3360 | checkAppendMsg(pCheck, zContext, "Child page depth differs");
|
---|
3361 | }
|
---|
3362 | depth = d2;
|
---|
3363 | sqliteFree(zKey1);
|
---|
3364 | zKey1 = zKey2;
|
---|
3365 | nKey1 = nKey2;
|
---|
3366 | }
|
---|
3367 | pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
|
---|
3368 | sprintf(zContext, "On page %d at right child: ", iPage);
|
---|
3369 | checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
|
---|
3370 | sqliteFree(zKey1);
|
---|
3371 |
|
---|
3372 | /* Check for complete coverage of the page
|
---|
3373 | */
|
---|
3374 | memset(hit, 0, sizeof(hit));
|
---|
3375 | memset(hit, 1, sizeof(PageHdr));
|
---|
3376 | for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
|
---|
3377 | Cell *pCell = (Cell*)&pPage->u.aDisk[i];
|
---|
3378 | int j;
|
---|
3379 | for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
|
---|
3380 | i = SWAB16(pBt, pCell->h.iNext);
|
---|
3381 | }
|
---|
3382 | for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
|
---|
3383 | FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
|
---|
3384 | int j;
|
---|
3385 | for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
|
---|
3386 | i = SWAB16(pBt,pFBlk->iNext);
|
---|
3387 | }
|
---|
3388 | for(i=0; i<SQLITE_USABLE_SIZE; i++){
|
---|
3389 | if( hit[i]==0 ){
|
---|
3390 | sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
|
---|
3391 | checkAppendMsg(pCheck, zMsg, 0);
|
---|
3392 | break;
|
---|
3393 | }else if( hit[i]>1 ){
|
---|
3394 | sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
|
---|
3395 | checkAppendMsg(pCheck, zMsg, 0);
|
---|
3396 | break;
|
---|
3397 | }
|
---|
3398 | }
|
---|
3399 |
|
---|
3400 | /* Check that free space is kept to a minimum
|
---|
3401 | */
|
---|
3402 | #if 0
|
---|
3403 | if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
|
---|
3404 | sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
|
---|
3405 | SQLITE_USABLE_SIZE/3);
|
---|
3406 | checkAppendMsg(pCheck, zContext, zMsg);
|
---|
3407 | }
|
---|
3408 | #endif
|
---|
3409 |
|
---|
3410 | sqlitepager_unref(pPage);
|
---|
3411 | return depth;
|
---|
3412 | }
|
---|
3413 |
|
---|
3414 | /*
|
---|
3415 | ** This routine does a complete check of the given BTree file. aRoot[] is
|
---|
3416 | ** an array of pages numbers were each page number is the root page of
|
---|
3417 | ** a table. nRoot is the number of entries in aRoot.
|
---|
3418 | **
|
---|
3419 | ** If everything checks out, this routine returns NULL. If something is
|
---|
3420 | ** amiss, an error message is written into memory obtained from malloc()
|
---|
3421 | ** and a pointer to that error message is returned. The calling function
|
---|
3422 | ** is responsible for freeing the error message when it is done.
|
---|
3423 | */
|
---|
3424 | char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
|
---|
3425 | int i;
|
---|
3426 | int nRef;
|
---|
3427 | IntegrityCk sCheck;
|
---|
3428 |
|
---|
3429 | nRef = *sqlitepager_stats(pBt->pPager);
|
---|
3430 | if( lockBtree(pBt)!=SQLITE_OK ){
|
---|
3431 | return sqliteStrDup("Unable to acquire a read lock on the database");
|
---|
3432 | }
|
---|
3433 | sCheck.pBt = pBt;
|
---|
3434 | sCheck.pPager = pBt->pPager;
|
---|
3435 | sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
|
---|
3436 | if( sCheck.nPage==0 ){
|
---|
3437 | unlockBtreeIfUnused(pBt);
|
---|
3438 | return 0;
|
---|
3439 | }
|
---|
3440 | sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
|
---|
3441 | sCheck.anRef[1] = 1;
|
---|
3442 | for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
|
---|
3443 | sCheck.zErrMsg = 0;
|
---|
3444 |
|
---|
3445 | /* Check the integrity of the freelist
|
---|
3446 | */
|
---|
3447 | checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
|
---|
3448 | SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
|
---|
3449 |
|
---|
3450 | /* Check all the tables.
|
---|
3451 | */
|
---|
3452 | for(i=0; i<nRoot; i++){
|
---|
3453 | if( aRoot[i]==0 ) continue;
|
---|
3454 | checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
|
---|
3455 | }
|
---|
3456 |
|
---|
3457 | /* Make sure every page in the file is referenced
|
---|
3458 | */
|
---|
3459 | for(i=1; i<=sCheck.nPage; i++){
|
---|
3460 | if( sCheck.anRef[i]==0 ){
|
---|
3461 | char zBuf[100];
|
---|
3462 | sprintf(zBuf, "Page %d is never used", i);
|
---|
3463 | checkAppendMsg(&sCheck, zBuf, 0);
|
---|
3464 | }
|
---|
3465 | }
|
---|
3466 |
|
---|
3467 | /* Make sure this analysis did not leave any unref() pages
|
---|
3468 | */
|
---|
3469 | unlockBtreeIfUnused(pBt);
|
---|
3470 | if( nRef != *sqlitepager_stats(pBt->pPager) ){
|
---|
3471 | char zBuf[100];
|
---|
3472 | sprintf(zBuf,
|
---|
3473 | "Outstanding page count goes from %d to %d during this analysis",
|
---|
3474 | nRef, *sqlitepager_stats(pBt->pPager)
|
---|
3475 | );
|
---|
3476 | checkAppendMsg(&sCheck, zBuf, 0);
|
---|
3477 | }
|
---|
3478 |
|
---|
3479 | /* Clean up and report errors.
|
---|
3480 | */
|
---|
3481 | sqliteFree(sCheck.anRef);
|
---|
3482 | return sCheck.zErrMsg;
|
---|
3483 | }
|
---|
3484 |
|
---|
3485 | /*
|
---|
3486 | ** Return the full pathname of the underlying database file.
|
---|
3487 | */
|
---|
3488 | static const char *fileBtreeGetFilename(Btree *pBt){
|
---|
3489 | assert( pBt->pPager!=0 );
|
---|
3490 | return sqlitepager_filename(pBt->pPager);
|
---|
3491 | }
|
---|
3492 |
|
---|
3493 | /*
|
---|
3494 | ** Copy the complete content of pBtFrom into pBtTo. A transaction
|
---|
3495 | ** must be active for both files.
|
---|
3496 | **
|
---|
3497 | ** The size of file pBtFrom may be reduced by this operation.
|
---|
3498 | ** If anything goes wrong, the transaction on pBtFrom is rolled back.
|
---|
3499 | */
|
---|
3500 | static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
|
---|
3501 | int rc = SQLITE_OK;
|
---|
3502 | Pgno i, nPage, nToPage;
|
---|
3503 |
|
---|
3504 | if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
|
---|
3505 | if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
|
---|
3506 | if( pBtTo->pCursor ) return SQLITE_BUSY;
|
---|
3507 | memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
|
---|
3508 | rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
|
---|
3509 | nToPage = sqlitepager_pagecount(pBtTo->pPager);
|
---|
3510 | nPage = sqlitepager_pagecount(pBtFrom->pPager);
|
---|
3511 | for(i=2; rc==SQLITE_OK && i<=nPage; i++){
|
---|
3512 | void *pPage;
|
---|
3513 | rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
|
---|
3514 | if( rc ) break;
|
---|
3515 | rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
|
---|
3516 | if( rc ) break;
|
---|
3517 | sqlitepager_unref(pPage);
|
---|
3518 | }
|
---|
3519 | for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
|
---|
3520 | void *pPage;
|
---|
3521 | rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
|
---|
3522 | if( rc ) break;
|
---|
3523 | rc = sqlitepager_write(pPage);
|
---|
3524 | sqlitepager_unref(pPage);
|
---|
3525 | sqlitepager_dont_write(pBtTo->pPager, i);
|
---|
3526 | }
|
---|
3527 | if( !rc && nPage<nToPage ){
|
---|
3528 | rc = sqlitepager_truncate(pBtTo->pPager, nPage);
|
---|
3529 | }
|
---|
3530 | if( rc ){
|
---|
3531 | fileBtreeRollback(pBtTo);
|
---|
3532 | }
|
---|
3533 | return rc;
|
---|
3534 | }
|
---|
3535 |
|
---|
3536 | /*
|
---|
3537 | ** The following tables contain pointers to all of the interface
|
---|
3538 | ** routines for this implementation of the B*Tree backend. To
|
---|
3539 | ** substitute a different implemention of the backend, one has merely
|
---|
3540 | ** to provide pointers to alternative functions in similar tables.
|
---|
3541 | */
|
---|
3542 | static BtOps sqliteBtreeOps = {
|
---|
3543 | fileBtreeClose,
|
---|
3544 | fileBtreeSetCacheSize,
|
---|
3545 | fileBtreeSetSafetyLevel,
|
---|
3546 | fileBtreeBeginTrans,
|
---|
3547 | fileBtreeCommit,
|
---|
3548 | fileBtreeRollback,
|
---|
3549 | fileBtreeBeginCkpt,
|
---|
3550 | fileBtreeCommitCkpt,
|
---|
3551 | fileBtreeRollbackCkpt,
|
---|
3552 | fileBtreeCreateTable,
|
---|
3553 | fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
|
---|
3554 | fileBtreeDropTable,
|
---|
3555 | fileBtreeClearTable,
|
---|
3556 | fileBtreeCursor,
|
---|
3557 | fileBtreeGetMeta,
|
---|
3558 | fileBtreeUpdateMeta,
|
---|
3559 | fileBtreeIntegrityCheck,
|
---|
3560 | fileBtreeGetFilename,
|
---|
3561 | fileBtreeCopyFile,
|
---|
3562 | fileBtreePager,
|
---|
3563 | #ifdef SQLITE_TEST
|
---|
3564 | fileBtreePageDump,
|
---|
3565 | #endif
|
---|
3566 | };
|
---|
3567 | static BtCursorOps sqliteBtreeCursorOps = {
|
---|
3568 | fileBtreeMoveto,
|
---|
3569 | fileBtreeDelete,
|
---|
3570 | fileBtreeInsert,
|
---|
3571 | fileBtreeFirst,
|
---|
3572 | fileBtreeLast,
|
---|
3573 | fileBtreeNext,
|
---|
3574 | fileBtreePrevious,
|
---|
3575 | fileBtreeKeySize,
|
---|
3576 | fileBtreeKey,
|
---|
3577 | fileBtreeKeyCompare,
|
---|
3578 | fileBtreeDataSize,
|
---|
3579 | fileBtreeData,
|
---|
3580 | fileBtreeCloseCursor,
|
---|
3581 | #ifdef SQLITE_TEST
|
---|
3582 | fileBtreeCursorDump,
|
---|
3583 | #endif
|
---|
3584 | };
|
---|