source: trunk/src/rsaenh/tomcrypt.h@ 22012

Last change on this file since 22012 was 21494, checked in by dmik, 15 years ago

Fixed broken build after r21492 by sorting out a huuuuge wagon of duplicates, wrong include order and other dirty mess.

File size: 19.9 KB
Line 
1/*
2 * dlls/rsaenh/tomcrypt.h
3 * Function prototypes, type definitions and constant definitions
4 * for LibTomCrypt code.
5 *
6 * Copyright 2004 Michael Jung
7 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22 */
23
24/*
25 * This file contains code from the LibTomCrypt cryptographic
26 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
27 * is in the public domain. The code in this file is tailored to
28 * special requirements. Take a look at http://libtomcrypt.org for the
29 * original version.
30 */
31
32#ifndef __WINE_TOMCRYPT_H_
33#define __WINE_TOMCRYPT_H_
34
35#include <stdio.h>
36#include <string.h>
37#include <stdlib.h>
38#include <limits.h>
39
40#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
41
42/* provide a better 64-bit integer storage than double */
43typedef struct
44{
45 int lo;
46 int hi;
47} __long_long;
48
49#ifdef __int64
50#undef __int64
51#endif
52#define __int64 __long_long
53
54#define XOR_int64(a, b) ((a).hi ^= (b).hi, (a).lo ^= (b).lo)
55#define HI_int64(a) ((a).hi)
56#define LO_int64(a) ((a).lo)
57#define ASSIGN_int64(a, b) ((a).hi = 0, (a).lo = (int)(b))
58
59#else
60
61#define XOR_int64(a, b) ((a) ^= (b))
62#define HI_int64(a) ((a) >> 32)
63#define LO_int64(a) ((a) & 0xFFFFFFFFUL)
64#define ASSIGN_int64(a, b) ((a) = (b))
65
66#endif
67
68#include "basetsd.h"
69
70/* error codes [will be expanded in future releases] */
71enum {
72 CRYPT_OK=0, /* Result OK */
73 CRYPT_ERROR, /* Generic Error */
74 CRYPT_NOP, /* Not a failure but no operation was performed */
75
76 CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
77 CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
78 CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
79
80 CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
81 CRYPT_INVALID_PACKET, /* Invalid input packet given */
82
83 CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
84 CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
85
86 CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
87 CRYPT_INVALID_HASH, /* Invalid hash specified */
88 CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
89
90 CRYPT_MEM, /* Out of memory */
91
92 CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
93 CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
94
95 CRYPT_INVALID_ARG, /* Generic invalid argument */
96 CRYPT_FILE_NOTFOUND, /* File Not Found */
97
98 CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
99 CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
100 CRYPT_PK_DUP, /* Duplicate key already in key ring */
101 CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
102 CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
103
104 CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */
105};
106
107#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
108#define CONST64(a,b) { (b), (a) }
109#else
110#define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
111#endif
112typedef ULONG64 ulong64;
113
114/* this is the "32-bit at least" data type
115 * Re-define it to suit your platform but it must be at least 32-bits
116 */
117typedef ULONG32 ulong32;
118
119/* ---- HELPER MACROS ---- */
120#define STORE32H(x, y) \
121 { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
122 (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
123
124#define LOAD32H(x, y) \
125 { x = ((unsigned long)((y)[0] & 255)<<24) | \
126 ((unsigned long)((y)[1] & 255)<<16) | \
127 ((unsigned long)((y)[2] & 255)<<8) | \
128 ((unsigned long)((y)[3] & 255)); }
129
130#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
131
132static inline unsigned ROR(unsigned word, int i)
133{
134 __asm__("rorl %%cl,%0"
135 :"=r" (word)
136 :"0" (word),"c" (i));
137 return word;
138}
139
140#else
141
142/* rotates the hard way */
143#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
144 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
145
146#endif
147
148#undef MIN
149#define MIN(x, y) ( ((x)<(y))?(x):(y) )
150
151#define byte(x, n) (((x) >> (8 * (n))) & 255)
152
153typedef struct tag_rc2_key {
154 unsigned xkey[64];
155} rc2_key;
156
157typedef struct tag_des_key {
158 ulong32 ek[32], dk[32];
159} des_key;
160
161typedef struct tag_des3_key {
162 ulong32 ek[3][32], dk[3][32];
163} des3_key;
164
165typedef struct tag_aes_key {
166 ulong32 eK[64], dK[64];
167 int Nr;
168} aes_key;
169
170int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey);
171void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key);
172void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key);
173
174int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey);
175void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des_key *key);
176void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des_key *key);
177
178int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey);
179void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des3_key *key);
180void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des3_key *key);
181
182int aes_setup(const unsigned char *key, int keylen, int rounds, aes_key *skey);
183void aes_ecb_encrypt(const unsigned char *pt, unsigned char *ct, aes_key *skey);
184void aes_ecb_decrypt(const unsigned char *ct, unsigned char *pt, aes_key *skey);
185
186typedef struct tag_md2_state {
187 unsigned char chksum[16], X[48], buf[16];
188 unsigned long curlen;
189} md2_state;
190
191int md2_init(md2_state * md);
192int md2_process(md2_state * md, const unsigned char *buf, unsigned long len);
193int md2_done(md2_state * md, unsigned char *hash);
194
195struct rc4_prng {
196 int x, y;
197 unsigned char buf[256];
198};
199
200typedef union Prng_state {
201 struct rc4_prng rc4;
202} prng_state;
203
204int rc4_start(prng_state *prng);
205int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng);
206int rc4_ready(prng_state *prng);
207unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng);
208
209/* some default configurations.
210 *
211 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
212 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
213 *
214 * At the very least a mp_digit must be able to hold 7 bits
215 * [any size beyond that is ok provided it doesn't overflow the data type]
216 */
217#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
218typedef unsigned short mp_digit;
219typedef unsigned long mp_word;
220#define DIGIT_BIT 14
221#else
222typedef unsigned long mp_digit;
223typedef ulong64 mp_word;
224#define DIGIT_BIT 28
225#endif
226
227#define MP_DIGIT_BIT DIGIT_BIT
228#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
229#define MP_DIGIT_MAX MP_MASK
230
231/* equalities */
232#define MP_LT -1 /* less than */
233#define MP_EQ 0 /* equal to */
234#define MP_GT 1 /* greater than */
235
236#define MP_ZPOS 0 /* positive integer */
237#define MP_NEG 1 /* negative */
238
239#define MP_OKAY 0 /* ok result */
240#define MP_MEM -2 /* out of mem */
241#define MP_VAL -3 /* invalid input */
242#define MP_RANGE MP_VAL
243
244#define MP_YES 1 /* yes response */
245#define MP_NO 0 /* no response */
246
247/* Primality generation flags */
248#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
249#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
250#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
251#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
252
253typedef int mp_err;
254
255/* define this to use lower memory usage routines (exptmods mostly) */
256/* #define MP_LOW_MEM */
257
258#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
259#define MP_PREC 128 /* default digits of precision */
260#else
261#define MP_PREC 64 /* default digits of precision */
262#endif
263
264/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
265#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
266
267/* the infamous mp_int structure */
268typedef struct {
269 int used, alloc, sign;
270 mp_digit *dp;
271} mp_int;
272
273/* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */
274typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
275
276#define DIGIT(m,k) ((m)->dp[(k)])
277
278/* error code to char* string */
279char *mp_error_to_string(int code);
280
281/* ---> init and deinit bignum functions <--- */
282/* init a bignum */
283int mp_init(mp_int *a);
284
285/* free a bignum */
286void mp_clear(mp_int *a);
287
288/* init a null terminated series of arguments */
289int mp_init_multi(mp_int *mp, ...);
290
291/* clear a null terminated series of arguments */
292void mp_clear_multi(mp_int *mp, ...);
293
294/* exchange two ints */
295void mp_exch(mp_int *a, mp_int *b);
296
297/* shrink ram required for a bignum */
298int mp_shrink(mp_int *a);
299
300/* grow an int to a given size */
301int mp_grow(mp_int *a, int size);
302
303/* init to a given number of digits */
304int mp_init_size(mp_int *a, int size);
305
306/* ---> Basic Manipulations <--- */
307#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
308#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
309#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
310
311/* set to zero */
312void mp_zero(mp_int *a);
313
314/* set to a digit */
315void mp_set(mp_int *a, mp_digit b);
316
317/* set a 32-bit const */
318int mp_set_int(mp_int *a, unsigned long b);
319
320/* get a 32-bit value */
321unsigned long mp_get_int(const mp_int * a);
322
323/* initialize and set a digit */
324int mp_init_set (mp_int * a, mp_digit b);
325
326/* initialize and set 32-bit value */
327int mp_init_set_int (mp_int * a, unsigned long b);
328
329/* copy, b = a */
330int mp_copy(const mp_int *a, mp_int *b);
331
332/* inits and copies, a = b */
333int mp_init_copy(mp_int *a, const mp_int *b);
334
335/* trim unused digits */
336void mp_clamp(mp_int *a);
337
338/* ---> digit manipulation <--- */
339
340/* right shift by "b" digits */
341void mp_rshd(mp_int *a, int b);
342
343/* left shift by "b" digits */
344int mp_lshd(mp_int *a, int b);
345
346/* c = a / 2**b */
347int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
348
349/* b = a/2 */
350int mp_div_2(const mp_int *a, mp_int *b);
351
352/* c = a * 2**b */
353int mp_mul_2d(const mp_int *a, int b, mp_int *c);
354
355/* b = a*2 */
356int mp_mul_2(const mp_int *a, mp_int *b);
357
358/* c = a mod 2**d */
359int mp_mod_2d(const mp_int *a, int b, mp_int *c);
360
361/* computes a = 2**b */
362int mp_2expt(mp_int *a, int b);
363
364/* Counts the number of lsbs which are zero before the first zero bit */
365int mp_cnt_lsb(const mp_int *a);
366
367/* I Love Earth! */
368
369/* makes a pseudo-random int of a given size */
370int mp_rand(mp_int *a, int digits);
371
372/* ---> binary operations <--- */
373/* c = a XOR b */
374int mp_xor(mp_int *a, mp_int *b, mp_int *c);
375
376/* c = a OR b */
377int mp_or(mp_int *a, mp_int *b, mp_int *c);
378
379/* c = a AND b */
380int mp_and(mp_int *a, mp_int *b, mp_int *c);
381
382/* ---> Basic arithmetic <--- */
383
384/* b = -a */
385int mp_neg(mp_int *a, mp_int *b);
386
387/* b = |a| */
388int mp_abs(const mp_int *a, mp_int *b);
389
390/* compare a to b */
391int mp_cmp(const mp_int *a, const mp_int *b);
392
393/* compare |a| to |b| */
394int mp_cmp_mag(const mp_int *a, const mp_int *b);
395
396/* c = a + b */
397int mp_add(mp_int *a, mp_int *b, mp_int *c);
398
399/* c = a - b */
400int mp_sub(mp_int *a, mp_int *b, mp_int *c);
401
402/* c = a * b */
403int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
404
405/* b = a*a */
406int mp_sqr(const mp_int *a, mp_int *b);
407
408/* a/b => cb + d == a */
409int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
410
411/* c = a mod b, 0 <= c < b */
412int mp_mod(const mp_int *a, mp_int *b, mp_int *c);
413
414/* ---> single digit functions <--- */
415
416/* compare against a single digit */
417int mp_cmp_d(const mp_int *a, mp_digit b);
418
419/* c = a + b */
420int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
421
422/* c = a - b */
423int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
424
425/* c = a * b */
426int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
427
428/* a/b => cb + d == a */
429int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
430
431/* a/3 => 3c + d == a */
432int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
433
434/* c = a**b */
435int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
436
437/* c = a mod b, 0 <= c < b */
438int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
439
440/* ---> number theory <--- */
441
442/* d = a + b (mod c) */
443int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
444
445/* d = a - b (mod c) */
446int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
447
448/* d = a * b (mod c) */
449int mp_mulmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
450
451/* c = a * a (mod b) */
452int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c);
453
454/* c = 1/a (mod b) */
455int mp_invmod(const mp_int *a, mp_int *b, mp_int *c);
456
457/* c = (a, b) */
458int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
459
460/* produces value such that U1*a + U2*b = U3 */
461int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
462
463/* c = [a, b] or (a*b)/(a, b) */
464int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
465
466/* finds one of the b'th root of a, such that |c|**b <= |a|
467 *
468 * returns error if a < 0 and b is even
469 */
470int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
471
472/* special sqrt algo */
473int mp_sqrt(mp_int *arg, mp_int *ret);
474
475/* is number a square? */
476int mp_is_square(mp_int *arg, int *ret);
477
478/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
479int mp_jacobi(mp_int *a, mp_int *n, int *c);
480
481/* used to setup the Barrett reduction for a given modulus b */
482int mp_reduce_setup(mp_int *a, const mp_int *b);
483
484/* Barrett Reduction, computes a (mod b) with a precomputed value c
485 *
486 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
487 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
488 */
489int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
490
491/* setups the montgomery reduction */
492int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
493
494/* computes a = B**n mod b without division or multiplication useful for
495 * normalizing numbers in a Montgomery system.
496 */
497int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
498
499/* computes x/R == x (mod N) via Montgomery Reduction */
500int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
501
502/* returns 1 if a is a valid DR modulus */
503int mp_dr_is_modulus(mp_int *a);
504
505/* sets the value of "d" required for mp_dr_reduce */
506void mp_dr_setup(const mp_int *a, mp_digit *d);
507
508/* reduces a modulo b using the Diminished Radix method */
509int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
510
511/* returns true if a can be reduced with mp_reduce_2k */
512int mp_reduce_is_2k(mp_int *a);
513
514/* determines k value for 2k reduction */
515int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
516
517/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
518int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
519
520/* d = a**b (mod c) */
521int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
522
523/* ---> Primes <--- */
524
525/* number of primes */
526#define PRIME_SIZE 256
527
528/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
529int mp_prime_is_divisible(const mp_int *a, int *result);
530
531/* performs one Fermat test of "a" using base "b".
532 * Sets result to 0 if composite or 1 if probable prime
533 */
534int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
535
536/* performs one Miller-Rabin test of "a" using base "b".
537 * Sets result to 0 if composite or 1 if probable prime
538 */
539int mp_prime_miller_rabin(mp_int *a, const mp_int *b, int *result);
540
541/* This gives [for a given bit size] the number of trials required
542 * such that Miller-Rabin gives a prob of failure lower than 2^-96
543 */
544int mp_prime_rabin_miller_trials(int size);
545
546/* performs t rounds of Miller-Rabin on "a" using the first
547 * t prime bases. Also performs an initial sieve of trial
548 * division. Determines if "a" is prime with probability
549 * of error no more than (1/4)**t.
550 *
551 * Sets result to 1 if probably prime, 0 otherwise
552 */
553int mp_prime_is_prime(mp_int *a, int t, int *result);
554
555/* finds the next prime after the number "a" using "t" trials
556 * of Miller-Rabin.
557 *
558 * bbs_style = 1 means the prime must be congruent to 3 mod 4
559 */
560int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
561
562/* makes a truly random prime of a given size (bytes),
563 * call with bbs = 1 if you want it to be congruent to 3 mod 4
564 *
565 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
566 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
567 * so it can be NULL
568 *
569 * The prime generated will be larger than 2^(8*size).
570 */
571#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
572
573/* makes a truly random prime of a given size (bits),
574 *
575 * Flags are as follows:
576 *
577 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
578 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
579 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
580 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
581 *
582 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
583 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
584 * so it can be NULL
585 *
586 */
587int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
588
589/* ---> radix conversion <--- */
590int mp_count_bits(const mp_int *a);
591
592int mp_unsigned_bin_size(const mp_int *a);
593int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
594int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
595
596int mp_signed_bin_size(const mp_int *a);
597int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
598int mp_to_signed_bin(mp_int *a, unsigned char *b);
599
600int mp_read_radix(mp_int *a, char *str, int radix);
601int mp_toradix(mp_int *a, char *str, int radix);
602int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
603int mp_radix_size(mp_int *a, int radix, int *size);
604
605int mp_fread(mp_int *a, int radix, FILE *stream);
606int mp_fwrite(mp_int *a, int radix, FILE *stream);
607
608#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
609#define mp_raw_size(mp) mp_signed_bin_size(mp)
610#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
611#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
612#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
613#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
614
615#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
616#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
617#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
618#define mp_tohex(M, S) mp_toradix((M), (S), 16)
619
620extern const char *mp_s_rmap;
621
622#define PK_PRIVATE 0 /* PK private keys */
623#define PK_PUBLIC 1 /* PK public keys */
624
625/* Min and Max RSA key sizes (in bits) */
626#define MIN_RSA_SIZE 384
627#define MAX_RSA_SIZE 16384
628
629typedef struct Rsa_key {
630 int type;
631 mp_int e, d, N, p, q, qP, dP, dQ;
632} rsa_key;
633
634int rsa_make_key(int size, long e, rsa_key *key);
635
636int rsa_exptmod(const unsigned char *in, unsigned long inlen,
637 unsigned char *out, unsigned long *outlen, int which,
638 rsa_key *key);
639
640void rsa_free(rsa_key *key);
641
642#endif /* __WINE_TOMCRYPT_H_ */
Note: See TracBrowser for help on using the repository browser.