source: trunk/src/rsaenh/tomcrypt.h@ 21422

Last change on this file since 21422 was 21422, checked in by dmik, 15 years ago

Attempted to fix broken rsaenh.dll functionality when built by VAC 3 (that doesn't have a 64-bit integer type).

File size: 19.9 KB
Line 
1/*
2 * dlls/rsaenh/tomcrypt.h
3 * Function prototypes, type definitions and constant definitions
4 * for LibTomCrypt code.
5 *
6 * Copyright 2004 Michael Jung
7 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22 */
23
24/*
25 * This file contains code from the LibTomCrypt cryptographic
26 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
27 * is in the public domain. The code in this file is tailored to
28 * special requirements. Take a look at http://libtomcrypt.org for the
29 * original version.
30 */
31
32#ifndef __WINE_TOMCRYPT_H_
33#define __WINE_TOMCRYPT_H_
34
35#include <stdio.h>
36#include <string.h>
37#include <stdlib.h>
38#include <limits.h>
39
40#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
41
42/* provide a better 64-bit integer storage than double */
43typedef struct
44{
45 int lo;
46 int hi;
47} __long_long;
48#define __int64 __long_long
49
50#define XOR_int64(a, b) ((a).hi ^= (b).hi, (a).lo ^= (b).lo)
51#define HI_int64(a) ((a).hi)
52#define LO_int64(a) ((a).lo)
53#define ASSIGN_int64(a, b) ((a).hi = 0, (a).lo = (int)(b))
54
55#else
56
57#define XOR_int64(a, b) ((a) ^= (b))
58#define HI_int64(a) ((a) >> 32)
59#define LO_int64(a) ((a) & 0xFFFFFFFFUL)
60#define ASSIGN_int64(a, b) ((a) = (b))
61
62#endif
63
64#include "basetsd.h"
65
66/* error codes [will be expanded in future releases] */
67enum {
68 CRYPT_OK=0, /* Result OK */
69 CRYPT_ERROR, /* Generic Error */
70 CRYPT_NOP, /* Not a failure but no operation was performed */
71
72 CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
73 CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
74 CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
75
76 CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
77 CRYPT_INVALID_PACKET, /* Invalid input packet given */
78
79 CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
80 CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
81
82 CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
83 CRYPT_INVALID_HASH, /* Invalid hash specified */
84 CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
85
86 CRYPT_MEM, /* Out of memory */
87
88 CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
89 CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
90
91 CRYPT_INVALID_ARG, /* Generic invalid argument */
92 CRYPT_FILE_NOTFOUND, /* File Not Found */
93
94 CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
95 CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
96 CRYPT_PK_DUP, /* Duplicate key already in key ring */
97 CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
98 CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
99
100 CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */
101};
102
103#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
104#define CONST64(a,b) { (b), (a) }
105#else
106#define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
107#endif
108typedef ULONG64 ulong64;
109
110/* this is the "32-bit at least" data type
111 * Re-define it to suit your platform but it must be at least 32-bits
112 */
113typedef ULONG32 ulong32;
114
115/* ---- HELPER MACROS ---- */
116#define STORE32H(x, y) \
117 { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
118 (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
119
120#define LOAD32H(x, y) \
121 { x = ((unsigned long)((y)[0] & 255)<<24) | \
122 ((unsigned long)((y)[1] & 255)<<16) | \
123 ((unsigned long)((y)[2] & 255)<<8) | \
124 ((unsigned long)((y)[3] & 255)); }
125
126#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
127
128static inline unsigned ROR(unsigned word, int i)
129{
130 __asm__("rorl %%cl,%0"
131 :"=r" (word)
132 :"0" (word),"c" (i));
133 return word;
134}
135
136#else
137
138/* rotates the hard way */
139#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
140 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
141
142#endif
143
144#undef MIN
145#define MIN(x, y) ( ((x)<(y))?(x):(y) )
146
147#define byte(x, n) (((x) >> (8 * (n))) & 255)
148
149typedef struct tag_rc2_key {
150 unsigned xkey[64];
151} rc2_key;
152
153typedef struct tag_des_key {
154 ulong32 ek[32], dk[32];
155} des_key;
156
157typedef struct tag_des3_key {
158 ulong32 ek[3][32], dk[3][32];
159} des3_key;
160
161typedef struct tag_aes_key {
162 ulong32 eK[64], dK[64];
163 int Nr;
164} aes_key;
165
166int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey);
167void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key);
168void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key);
169
170int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey);
171void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des_key *key);
172void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des_key *key);
173
174int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey);
175void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des3_key *key);
176void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des3_key *key);
177
178int aes_setup(const unsigned char *key, int keylen, int rounds, aes_key *skey);
179void aes_ecb_encrypt(const unsigned char *pt, unsigned char *ct, aes_key *skey);
180void aes_ecb_decrypt(const unsigned char *ct, unsigned char *pt, aes_key *skey);
181
182typedef struct tag_md2_state {
183 unsigned char chksum[16], X[48], buf[16];
184 unsigned long curlen;
185} md2_state;
186
187int md2_init(md2_state * md);
188int md2_process(md2_state * md, const unsigned char *buf, unsigned long len);
189int md2_done(md2_state * md, unsigned char *hash);
190
191struct rc4_prng {
192 int x, y;
193 unsigned char buf[256];
194};
195
196typedef union Prng_state {
197 struct rc4_prng rc4;
198} prng_state;
199
200int rc4_start(prng_state *prng);
201int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng);
202int rc4_ready(prng_state *prng);
203unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng);
204
205/* some default configurations.
206 *
207 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
208 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
209 *
210 * At the very least a mp_digit must be able to hold 7 bits
211 * [any size beyond that is ok provided it doesn't overflow the data type]
212 */
213#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
214typedef unsigned short mp_digit;
215typedef unsigned long mp_word;
216#define DIGIT_BIT 14
217#else
218typedef unsigned long mp_digit;
219typedef ulong64 mp_word;
220#define DIGIT_BIT 28
221#endif
222
223#define MP_DIGIT_BIT DIGIT_BIT
224#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
225#define MP_DIGIT_MAX MP_MASK
226
227/* equalities */
228#define MP_LT -1 /* less than */
229#define MP_EQ 0 /* equal to */
230#define MP_GT 1 /* greater than */
231
232#define MP_ZPOS 0 /* positive integer */
233#define MP_NEG 1 /* negative */
234
235#define MP_OKAY 0 /* ok result */
236#define MP_MEM -2 /* out of mem */
237#define MP_VAL -3 /* invalid input */
238#define MP_RANGE MP_VAL
239
240#define MP_YES 1 /* yes response */
241#define MP_NO 0 /* no response */
242
243/* Primality generation flags */
244#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
245#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
246#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
247#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
248
249typedef int mp_err;
250
251/* define this to use lower memory usage routines (exptmods mostly) */
252/* #define MP_LOW_MEM */
253
254#if defined(__WIN32OS2__) && (__IBMC__ < 400) && (__IBMCPP__ < 360) && !defined(__WATCOMC__) && !defined(__EMX__)
255#define MP_PREC 128 /* default digits of precision */
256#else
257#define MP_PREC 64 /* default digits of precision */
258#endif
259
260/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
261#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
262
263/* the infamous mp_int structure */
264typedef struct {
265 int used, alloc, sign;
266 mp_digit *dp;
267} mp_int;
268
269/* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */
270typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
271
272#define DIGIT(m,k) ((m)->dp[(k)])
273
274/* error code to char* string */
275char *mp_error_to_string(int code);
276
277/* ---> init and deinit bignum functions <--- */
278/* init a bignum */
279int mp_init(mp_int *a);
280
281/* free a bignum */
282void mp_clear(mp_int *a);
283
284/* init a null terminated series of arguments */
285int mp_init_multi(mp_int *mp, ...);
286
287/* clear a null terminated series of arguments */
288void mp_clear_multi(mp_int *mp, ...);
289
290/* exchange two ints */
291void mp_exch(mp_int *a, mp_int *b);
292
293/* shrink ram required for a bignum */
294int mp_shrink(mp_int *a);
295
296/* grow an int to a given size */
297int mp_grow(mp_int *a, int size);
298
299/* init to a given number of digits */
300int mp_init_size(mp_int *a, int size);
301
302/* ---> Basic Manipulations <--- */
303#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
304#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
305#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
306
307/* set to zero */
308void mp_zero(mp_int *a);
309
310/* set to a digit */
311void mp_set(mp_int *a, mp_digit b);
312
313/* set a 32-bit const */
314int mp_set_int(mp_int *a, unsigned long b);
315
316/* get a 32-bit value */
317unsigned long mp_get_int(const mp_int * a);
318
319/* initialize and set a digit */
320int mp_init_set (mp_int * a, mp_digit b);
321
322/* initialize and set 32-bit value */
323int mp_init_set_int (mp_int * a, unsigned long b);
324
325/* copy, b = a */
326int mp_copy(const mp_int *a, mp_int *b);
327
328/* inits and copies, a = b */
329int mp_init_copy(mp_int *a, const mp_int *b);
330
331/* trim unused digits */
332void mp_clamp(mp_int *a);
333
334/* ---> digit manipulation <--- */
335
336/* right shift by "b" digits */
337void mp_rshd(mp_int *a, int b);
338
339/* left shift by "b" digits */
340int mp_lshd(mp_int *a, int b);
341
342/* c = a / 2**b */
343int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
344
345/* b = a/2 */
346int mp_div_2(const mp_int *a, mp_int *b);
347
348/* c = a * 2**b */
349int mp_mul_2d(const mp_int *a, int b, mp_int *c);
350
351/* b = a*2 */
352int mp_mul_2(const mp_int *a, mp_int *b);
353
354/* c = a mod 2**d */
355int mp_mod_2d(const mp_int *a, int b, mp_int *c);
356
357/* computes a = 2**b */
358int mp_2expt(mp_int *a, int b);
359
360/* Counts the number of lsbs which are zero before the first zero bit */
361int mp_cnt_lsb(const mp_int *a);
362
363/* I Love Earth! */
364
365/* makes a pseudo-random int of a given size */
366int mp_rand(mp_int *a, int digits);
367
368/* ---> binary operations <--- */
369/* c = a XOR b */
370int mp_xor(mp_int *a, mp_int *b, mp_int *c);
371
372/* c = a OR b */
373int mp_or(mp_int *a, mp_int *b, mp_int *c);
374
375/* c = a AND b */
376int mp_and(mp_int *a, mp_int *b, mp_int *c);
377
378/* ---> Basic arithmetic <--- */
379
380/* b = -a */
381int mp_neg(mp_int *a, mp_int *b);
382
383/* b = |a| */
384int mp_abs(const mp_int *a, mp_int *b);
385
386/* compare a to b */
387int mp_cmp(const mp_int *a, const mp_int *b);
388
389/* compare |a| to |b| */
390int mp_cmp_mag(const mp_int *a, const mp_int *b);
391
392/* c = a + b */
393int mp_add(mp_int *a, mp_int *b, mp_int *c);
394
395/* c = a - b */
396int mp_sub(mp_int *a, mp_int *b, mp_int *c);
397
398/* c = a * b */
399int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
400
401/* b = a*a */
402int mp_sqr(const mp_int *a, mp_int *b);
403
404/* a/b => cb + d == a */
405int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
406
407/* c = a mod b, 0 <= c < b */
408int mp_mod(const mp_int *a, mp_int *b, mp_int *c);
409
410/* ---> single digit functions <--- */
411
412/* compare against a single digit */
413int mp_cmp_d(const mp_int *a, mp_digit b);
414
415/* c = a + b */
416int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
417
418/* c = a - b */
419int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
420
421/* c = a * b */
422int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
423
424/* a/b => cb + d == a */
425int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
426
427/* a/3 => 3c + d == a */
428int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
429
430/* c = a**b */
431int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
432
433/* c = a mod b, 0 <= c < b */
434int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
435
436/* ---> number theory <--- */
437
438/* d = a + b (mod c) */
439int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
440
441/* d = a - b (mod c) */
442int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
443
444/* d = a * b (mod c) */
445int mp_mulmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
446
447/* c = a * a (mod b) */
448int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c);
449
450/* c = 1/a (mod b) */
451int mp_invmod(const mp_int *a, mp_int *b, mp_int *c);
452
453/* c = (a, b) */
454int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
455
456/* produces value such that U1*a + U2*b = U3 */
457int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
458
459/* c = [a, b] or (a*b)/(a, b) */
460int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
461
462/* finds one of the b'th root of a, such that |c|**b <= |a|
463 *
464 * returns error if a < 0 and b is even
465 */
466int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
467
468/* special sqrt algo */
469int mp_sqrt(mp_int *arg, mp_int *ret);
470
471/* is number a square? */
472int mp_is_square(mp_int *arg, int *ret);
473
474/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
475int mp_jacobi(mp_int *a, mp_int *n, int *c);
476
477/* used to setup the Barrett reduction for a given modulus b */
478int mp_reduce_setup(mp_int *a, const mp_int *b);
479
480/* Barrett Reduction, computes a (mod b) with a precomputed value c
481 *
482 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
483 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
484 */
485int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
486
487/* setups the montgomery reduction */
488int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
489
490/* computes a = B**n mod b without division or multiplication useful for
491 * normalizing numbers in a Montgomery system.
492 */
493int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
494
495/* computes x/R == x (mod N) via Montgomery Reduction */
496int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
497
498/* returns 1 if a is a valid DR modulus */
499int mp_dr_is_modulus(mp_int *a);
500
501/* sets the value of "d" required for mp_dr_reduce */
502void mp_dr_setup(const mp_int *a, mp_digit *d);
503
504/* reduces a modulo b using the Diminished Radix method */
505int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
506
507/* returns true if a can be reduced with mp_reduce_2k */
508int mp_reduce_is_2k(mp_int *a);
509
510/* determines k value for 2k reduction */
511int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
512
513/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
514int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
515
516/* d = a**b (mod c) */
517int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
518
519/* ---> Primes <--- */
520
521/* number of primes */
522#define PRIME_SIZE 256
523
524/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
525int mp_prime_is_divisible(const mp_int *a, int *result);
526
527/* performs one Fermat test of "a" using base "b".
528 * Sets result to 0 if composite or 1 if probable prime
529 */
530int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
531
532/* performs one Miller-Rabin test of "a" using base "b".
533 * Sets result to 0 if composite or 1 if probable prime
534 */
535int mp_prime_miller_rabin(mp_int *a, const mp_int *b, int *result);
536
537/* This gives [for a given bit size] the number of trials required
538 * such that Miller-Rabin gives a prob of failure lower than 2^-96
539 */
540int mp_prime_rabin_miller_trials(int size);
541
542/* performs t rounds of Miller-Rabin on "a" using the first
543 * t prime bases. Also performs an initial sieve of trial
544 * division. Determines if "a" is prime with probability
545 * of error no more than (1/4)**t.
546 *
547 * Sets result to 1 if probably prime, 0 otherwise
548 */
549int mp_prime_is_prime(mp_int *a, int t, int *result);
550
551/* finds the next prime after the number "a" using "t" trials
552 * of Miller-Rabin.
553 *
554 * bbs_style = 1 means the prime must be congruent to 3 mod 4
555 */
556int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
557
558/* makes a truly random prime of a given size (bytes),
559 * call with bbs = 1 if you want it to be congruent to 3 mod 4
560 *
561 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
562 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
563 * so it can be NULL
564 *
565 * The prime generated will be larger than 2^(8*size).
566 */
567#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
568
569/* makes a truly random prime of a given size (bits),
570 *
571 * Flags are as follows:
572 *
573 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
574 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
575 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
576 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
577 *
578 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
579 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
580 * so it can be NULL
581 *
582 */
583int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
584
585/* ---> radix conversion <--- */
586int mp_count_bits(const mp_int *a);
587
588int mp_unsigned_bin_size(const mp_int *a);
589int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
590int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
591
592int mp_signed_bin_size(const mp_int *a);
593int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
594int mp_to_signed_bin(mp_int *a, unsigned char *b);
595
596int mp_read_radix(mp_int *a, char *str, int radix);
597int mp_toradix(mp_int *a, char *str, int radix);
598int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
599int mp_radix_size(mp_int *a, int radix, int *size);
600
601int mp_fread(mp_int *a, int radix, FILE *stream);
602int mp_fwrite(mp_int *a, int radix, FILE *stream);
603
604#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
605#define mp_raw_size(mp) mp_signed_bin_size(mp)
606#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
607#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
608#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
609#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
610
611#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
612#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
613#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
614#define mp_tohex(M, S) mp_toradix((M), (S), 16)
615
616extern const char *mp_s_rmap;
617
618#define PK_PRIVATE 0 /* PK private keys */
619#define PK_PUBLIC 1 /* PK public keys */
620
621/* Min and Max RSA key sizes (in bits) */
622#define MIN_RSA_SIZE 384
623#define MAX_RSA_SIZE 16384
624
625typedef struct Rsa_key {
626 int type;
627 mp_int e, d, N, p, q, qP, dP, dQ;
628} rsa_key;
629
630int rsa_make_key(int size, long e, rsa_key *key);
631
632int rsa_exptmod(const unsigned char *in, unsigned long inlen,
633 unsigned char *out, unsigned long *outlen, int which,
634 rsa_key *key);
635
636void rsa_free(rsa_key *key);
637
638#endif /* __WINE_TOMCRYPT_H_ */
Note: See TracBrowser for help on using the repository browser.