source: trunk/src/rsaenh/tomcrypt.h@ 21363

Last change on this file since 21363 was 21363, checked in by vladest, 16 years ago
  • Added RSA security interface
File size: 18.7 KB
Line 
1/*
2 * dlls/rsaenh/tomcrypt.h
3 * Function prototypes, type definitions and constant definitions
4 * for LibTomCrypt code.
5 *
6 * Copyright 2004 Michael Jung
7 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
22 */
23
24/*
25 * This file contains code from the LibTomCrypt cryptographic
26 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
27 * is in the public domain. The code in this file is tailored to
28 * special requirements. Take a look at http://libtomcrypt.org for the
29 * original version.
30 */
31
32#ifndef __WINE_TOMCRYPT_H_
33#define __WINE_TOMCRYPT_H_
34
35#include <stdio.h>
36#include <string.h>
37#include <stdlib.h>
38#include <limits.h>
39#include "basetsd.h"
40
41/* error codes [will be expanded in future releases] */
42enum {
43 CRYPT_OK=0, /* Result OK */
44 CRYPT_ERROR, /* Generic Error */
45 CRYPT_NOP, /* Not a failure but no operation was performed */
46
47 CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
48 CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
49 CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
50
51 CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
52 CRYPT_INVALID_PACKET, /* Invalid input packet given */
53
54 CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
55 CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
56
57 CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
58 CRYPT_INVALID_HASH, /* Invalid hash specified */
59 CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
60
61 CRYPT_MEM, /* Out of memory */
62
63 CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
64 CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
65
66 CRYPT_INVALID_ARG, /* Generic invalid argument */
67 CRYPT_FILE_NOTFOUND, /* File Not Found */
68
69 CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
70 CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
71 CRYPT_PK_DUP, /* Duplicate key already in key ring */
72 CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
73 CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
74
75 CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */
76};
77
78#define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
79typedef ULONG64 ulong64;
80
81/* this is the "32-bit at least" data type
82 * Re-define it to suit your platform but it must be at least 32-bits
83 */
84typedef ULONG32 ulong32;
85
86/* ---- HELPER MACROS ---- */
87#define STORE32H(x, y) \
88 { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
89 (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
90
91#define LOAD32H(x, y) \
92 { x = ((unsigned long)((y)[0] & 255)<<24) | \
93 ((unsigned long)((y)[1] & 255)<<16) | \
94 ((unsigned long)((y)[2] & 255)<<8) | \
95 ((unsigned long)((y)[3] & 255)); }
96
97#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
98
99static inline unsigned ROR(unsigned word, int i)
100{
101 __asm__("rorl %%cl,%0"
102 :"=r" (word)
103 :"0" (word),"c" (i));
104 return word;
105}
106
107#else
108
109/* rotates the hard way */
110#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
111 ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
112
113#endif
114
115#undef MIN
116#define MIN(x, y) ( ((x)<(y))?(x):(y) )
117
118#define byte(x, n) (((x) >> (8 * (n))) & 255)
119
120typedef struct tag_rc2_key {
121 unsigned xkey[64];
122} rc2_key;
123
124typedef struct tag_des_key {
125 ulong32 ek[32], dk[32];
126} des_key;
127
128typedef struct tag_des3_key {
129 ulong32 ek[3][32], dk[3][32];
130} des3_key;
131
132typedef struct tag_aes_key {
133 ulong32 eK[64], dK[64];
134 int Nr;
135} aes_key;
136
137int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey);
138void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key);
139void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key);
140
141int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey);
142void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des_key *key);
143void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des_key *key);
144
145int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey);
146void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des3_key *key);
147void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des3_key *key);
148
149int aes_setup(const unsigned char *key, int keylen, int rounds, aes_key *skey);
150void aes_ecb_encrypt(const unsigned char *pt, unsigned char *ct, aes_key *skey);
151void aes_ecb_decrypt(const unsigned char *ct, unsigned char *pt, aes_key *skey);
152
153typedef struct tag_md2_state {
154 unsigned char chksum[16], X[48], buf[16];
155 unsigned long curlen;
156} md2_state;
157
158int md2_init(md2_state * md);
159int md2_process(md2_state * md, const unsigned char *buf, unsigned long len);
160int md2_done(md2_state * md, unsigned char *hash);
161
162struct rc4_prng {
163 int x, y;
164 unsigned char buf[256];
165};
166
167typedef union Prng_state {
168 struct rc4_prng rc4;
169} prng_state;
170
171int rc4_start(prng_state *prng);
172int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng);
173int rc4_ready(prng_state *prng);
174unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng);
175
176/* some default configurations.
177 *
178 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
179 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
180 *
181 * At the very least a mp_digit must be able to hold 7 bits
182 * [any size beyond that is ok provided it doesn't overflow the data type]
183 */
184typedef unsigned long mp_digit;
185typedef ulong64 mp_word;
186#define DIGIT_BIT 28
187
188#define MP_DIGIT_BIT DIGIT_BIT
189#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
190#define MP_DIGIT_MAX MP_MASK
191
192/* equalities */
193#define MP_LT -1 /* less than */
194#define MP_EQ 0 /* equal to */
195#define MP_GT 1 /* greater than */
196
197#define MP_ZPOS 0 /* positive integer */
198#define MP_NEG 1 /* negative */
199
200#define MP_OKAY 0 /* ok result */
201#define MP_MEM -2 /* out of mem */
202#define MP_VAL -3 /* invalid input */
203#define MP_RANGE MP_VAL
204
205#define MP_YES 1 /* yes response */
206#define MP_NO 0 /* no response */
207
208/* Primality generation flags */
209#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
210#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
211#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
212#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
213
214typedef int mp_err;
215
216/* define this to use lower memory usage routines (exptmods mostly) */
217/* #define MP_LOW_MEM */
218
219#define MP_PREC 64 /* default digits of precision */
220
221/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
222#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
223
224/* the infamous mp_int structure */
225typedef struct {
226 int used, alloc, sign;
227 mp_digit *dp;
228} mp_int;
229
230/* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */
231typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
232
233#define DIGIT(m,k) ((m)->dp[(k)])
234
235/* error code to char* string */
236char *mp_error_to_string(int code);
237
238/* ---> init and deinit bignum functions <--- */
239/* init a bignum */
240int mp_init(mp_int *a);
241
242/* free a bignum */
243void mp_clear(mp_int *a);
244
245/* init a null terminated series of arguments */
246int mp_init_multi(mp_int *mp, ...);
247
248/* clear a null terminated series of arguments */
249void mp_clear_multi(mp_int *mp, ...);
250
251/* exchange two ints */
252void mp_exch(mp_int *a, mp_int *b);
253
254/* shrink ram required for a bignum */
255int mp_shrink(mp_int *a);
256
257/* grow an int to a given size */
258int mp_grow(mp_int *a, int size);
259
260/* init to a given number of digits */
261int mp_init_size(mp_int *a, int size);
262
263/* ---> Basic Manipulations <--- */
264#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
265#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
266#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
267
268/* set to zero */
269void mp_zero(mp_int *a);
270
271/* set to a digit */
272void mp_set(mp_int *a, mp_digit b);
273
274/* set a 32-bit const */
275int mp_set_int(mp_int *a, unsigned long b);
276
277/* get a 32-bit value */
278unsigned long mp_get_int(const mp_int * a);
279
280/* initialize and set a digit */
281int mp_init_set (mp_int * a, mp_digit b);
282
283/* initialize and set 32-bit value */
284int mp_init_set_int (mp_int * a, unsigned long b);
285
286/* copy, b = a */
287int mp_copy(const mp_int *a, mp_int *b);
288
289/* inits and copies, a = b */
290int mp_init_copy(mp_int *a, const mp_int *b);
291
292/* trim unused digits */
293void mp_clamp(mp_int *a);
294
295/* ---> digit manipulation <--- */
296
297/* right shift by "b" digits */
298void mp_rshd(mp_int *a, int b);
299
300/* left shift by "b" digits */
301int mp_lshd(mp_int *a, int b);
302
303/* c = a / 2**b */
304int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
305
306/* b = a/2 */
307int mp_div_2(const mp_int *a, mp_int *b);
308
309/* c = a * 2**b */
310int mp_mul_2d(const mp_int *a, int b, mp_int *c);
311
312/* b = a*2 */
313int mp_mul_2(const mp_int *a, mp_int *b);
314
315/* c = a mod 2**d */
316int mp_mod_2d(const mp_int *a, int b, mp_int *c);
317
318/* computes a = 2**b */
319int mp_2expt(mp_int *a, int b);
320
321/* Counts the number of lsbs which are zero before the first zero bit */
322int mp_cnt_lsb(const mp_int *a);
323
324/* I Love Earth! */
325
326/* makes a pseudo-random int of a given size */
327int mp_rand(mp_int *a, int digits);
328
329/* ---> binary operations <--- */
330/* c = a XOR b */
331int mp_xor(mp_int *a, mp_int *b, mp_int *c);
332
333/* c = a OR b */
334int mp_or(mp_int *a, mp_int *b, mp_int *c);
335
336/* c = a AND b */
337int mp_and(mp_int *a, mp_int *b, mp_int *c);
338
339/* ---> Basic arithmetic <--- */
340
341/* b = -a */
342int mp_neg(mp_int *a, mp_int *b);
343
344/* b = |a| */
345int mp_abs(const mp_int *a, mp_int *b);
346
347/* compare a to b */
348int mp_cmp(const mp_int *a, const mp_int *b);
349
350/* compare |a| to |b| */
351int mp_cmp_mag(const mp_int *a, const mp_int *b);
352
353/* c = a + b */
354int mp_add(mp_int *a, mp_int *b, mp_int *c);
355
356/* c = a - b */
357int mp_sub(mp_int *a, mp_int *b, mp_int *c);
358
359/* c = a * b */
360int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
361
362/* b = a*a */
363int mp_sqr(const mp_int *a, mp_int *b);
364
365/* a/b => cb + d == a */
366int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
367
368/* c = a mod b, 0 <= c < b */
369int mp_mod(const mp_int *a, mp_int *b, mp_int *c);
370
371/* ---> single digit functions <--- */
372
373/* compare against a single digit */
374int mp_cmp_d(const mp_int *a, mp_digit b);
375
376/* c = a + b */
377int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
378
379/* c = a - b */
380int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
381
382/* c = a * b */
383int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
384
385/* a/b => cb + d == a */
386int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
387
388/* a/3 => 3c + d == a */
389int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
390
391/* c = a**b */
392int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
393
394/* c = a mod b, 0 <= c < b */
395int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
396
397/* ---> number theory <--- */
398
399/* d = a + b (mod c) */
400int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
401
402/* d = a - b (mod c) */
403int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
404
405/* d = a * b (mod c) */
406int mp_mulmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
407
408/* c = a * a (mod b) */
409int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c);
410
411/* c = 1/a (mod b) */
412int mp_invmod(const mp_int *a, mp_int *b, mp_int *c);
413
414/* c = (a, b) */
415int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
416
417/* produces value such that U1*a + U2*b = U3 */
418int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
419
420/* c = [a, b] or (a*b)/(a, b) */
421int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
422
423/* finds one of the b'th root of a, such that |c|**b <= |a|
424 *
425 * returns error if a < 0 and b is even
426 */
427int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
428
429/* special sqrt algo */
430int mp_sqrt(mp_int *arg, mp_int *ret);
431
432/* is number a square? */
433int mp_is_square(mp_int *arg, int *ret);
434
435/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
436int mp_jacobi(mp_int *a, mp_int *n, int *c);
437
438/* used to setup the Barrett reduction for a given modulus b */
439int mp_reduce_setup(mp_int *a, const mp_int *b);
440
441/* Barrett Reduction, computes a (mod b) with a precomputed value c
442 *
443 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
444 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
445 */
446int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
447
448/* setups the montgomery reduction */
449int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
450
451/* computes a = B**n mod b without division or multiplication useful for
452 * normalizing numbers in a Montgomery system.
453 */
454int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
455
456/* computes x/R == x (mod N) via Montgomery Reduction */
457int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
458
459/* returns 1 if a is a valid DR modulus */
460int mp_dr_is_modulus(mp_int *a);
461
462/* sets the value of "d" required for mp_dr_reduce */
463void mp_dr_setup(const mp_int *a, mp_digit *d);
464
465/* reduces a modulo b using the Diminished Radix method */
466int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
467
468/* returns true if a can be reduced with mp_reduce_2k */
469int mp_reduce_is_2k(mp_int *a);
470
471/* determines k value for 2k reduction */
472int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
473
474/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
475int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
476
477/* d = a**b (mod c) */
478int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
479
480/* ---> Primes <--- */
481
482/* number of primes */
483#define PRIME_SIZE 256
484
485/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
486int mp_prime_is_divisible(const mp_int *a, int *result);
487
488/* performs one Fermat test of "a" using base "b".
489 * Sets result to 0 if composite or 1 if probable prime
490 */
491int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
492
493/* performs one Miller-Rabin test of "a" using base "b".
494 * Sets result to 0 if composite or 1 if probable prime
495 */
496int mp_prime_miller_rabin(mp_int *a, const mp_int *b, int *result);
497
498/* This gives [for a given bit size] the number of trials required
499 * such that Miller-Rabin gives a prob of failure lower than 2^-96
500 */
501int mp_prime_rabin_miller_trials(int size);
502
503/* performs t rounds of Miller-Rabin on "a" using the first
504 * t prime bases. Also performs an initial sieve of trial
505 * division. Determines if "a" is prime with probability
506 * of error no more than (1/4)**t.
507 *
508 * Sets result to 1 if probably prime, 0 otherwise
509 */
510int mp_prime_is_prime(mp_int *a, int t, int *result);
511
512/* finds the next prime after the number "a" using "t" trials
513 * of Miller-Rabin.
514 *
515 * bbs_style = 1 means the prime must be congruent to 3 mod 4
516 */
517int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
518
519/* makes a truly random prime of a given size (bytes),
520 * call with bbs = 1 if you want it to be congruent to 3 mod 4
521 *
522 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
523 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
524 * so it can be NULL
525 *
526 * The prime generated will be larger than 2^(8*size).
527 */
528#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
529
530/* makes a truly random prime of a given size (bits),
531 *
532 * Flags are as follows:
533 *
534 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
535 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
536 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
537 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
538 *
539 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
540 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
541 * so it can be NULL
542 *
543 */
544int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
545
546/* ---> radix conversion <--- */
547int mp_count_bits(const mp_int *a);
548
549int mp_unsigned_bin_size(const mp_int *a);
550int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
551int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
552
553int mp_signed_bin_size(const mp_int *a);
554int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
555int mp_to_signed_bin(mp_int *a, unsigned char *b);
556
557int mp_read_radix(mp_int *a, char *str, int radix);
558int mp_toradix(mp_int *a, char *str, int radix);
559int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
560int mp_radix_size(mp_int *a, int radix, int *size);
561
562int mp_fread(mp_int *a, int radix, FILE *stream);
563int mp_fwrite(mp_int *a, int radix, FILE *stream);
564
565#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
566#define mp_raw_size(mp) mp_signed_bin_size(mp)
567#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
568#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
569#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
570#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
571
572#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
573#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
574#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
575#define mp_tohex(M, S) mp_toradix((M), (S), 16)
576
577extern const char *mp_s_rmap;
578
579#define PK_PRIVATE 0 /* PK private keys */
580#define PK_PUBLIC 1 /* PK public keys */
581
582/* Min and Max RSA key sizes (in bits) */
583#define MIN_RSA_SIZE 384
584#define MAX_RSA_SIZE 16384
585
586typedef struct Rsa_key {
587 int type;
588 mp_int e, d, N, p, q, qP, dP, dQ;
589} rsa_key;
590
591int rsa_make_key(int size, long e, rsa_key *key);
592
593int rsa_exptmod(const unsigned char *in, unsigned long inlen,
594 unsigned char *out, unsigned long *outlen, int which,
595 rsa_key *key);
596
597void rsa_free(rsa_key *key);
598
599#endif /* __WINE_TOMCRYPT_H_ */
Note: See TracBrowser for help on using the repository browser.