| 1 | /*
 | 
|---|
| 2 |  * dlls/rsaenh/mpi.c
 | 
|---|
| 3 |  * Multi Precision Integer functions
 | 
|---|
| 4 |  *
 | 
|---|
| 5 |  * Copyright 2004 Michael Jung
 | 
|---|
| 6 |  * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
 | 
|---|
| 7 |  *
 | 
|---|
| 8 |  * This library is free software; you can redistribute it and/or
 | 
|---|
| 9 |  * modify it under the terms of the GNU Lesser General Public
 | 
|---|
| 10 |  * License as published by the Free Software Foundation; either
 | 
|---|
| 11 |  * version 2.1 of the License, or (at your option) any later version.
 | 
|---|
| 12 |  *
 | 
|---|
| 13 |  * This library is distributed in the hope that it will be useful,
 | 
|---|
| 14 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 15 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
|---|
| 16 |  * Lesser General Public License for more details.
 | 
|---|
| 17 |  *
 | 
|---|
| 18 |  * You should have received a copy of the GNU Lesser General Public
 | 
|---|
| 19 |  * License along with this library; if not, write to the Free Software
 | 
|---|
| 20 |  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
 | 
|---|
| 21 |  */
 | 
|---|
| 22 | 
 | 
|---|
| 23 | /*
 | 
|---|
| 24 |  * This file contains code from the LibTomCrypt cryptographic 
 | 
|---|
| 25 |  * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
 | 
|---|
| 26 |  * is in the public domain. The code in this file is tailored to
 | 
|---|
| 27 |  * special requirements. Take a look at http://libtomcrypt.org for the
 | 
|---|
| 28 |  * original version. 
 | 
|---|
| 29 |  */
 | 
|---|
| 30 | 
 | 
|---|
| 31 | #include <stdarg.h>
 | 
|---|
| 32 | #include "tomcrypt.h"
 | 
|---|
| 33 | 
 | 
|---|
| 34 | /* Known optimal configurations
 | 
|---|
| 35 |  CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
 | 
|---|
| 36 | -------------------------------------------------------------
 | 
|---|
| 37 |  Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
 | 
|---|
| 38 | */
 | 
|---|
| 39 | static const int KARATSUBA_MUL_CUTOFF = 88,  /* Min. number of digits before Karatsuba multiplication is used. */
 | 
|---|
| 40 |                  KARATSUBA_SQR_CUTOFF = 128; /* Min. number of digits before Karatsuba squaring is used. */
 | 
|---|
| 41 | 
 | 
|---|
| 42 | static void bn_reverse(unsigned char *s, int len);
 | 
|---|
| 43 | static int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
 | 
|---|
| 44 | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y);
 | 
|---|
| 45 | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
 | 
|---|
| 46 | static int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
 | 
|---|
| 47 | static int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
 | 
|---|
| 48 | static int s_mp_sqr(const mp_int *a, mp_int *b);
 | 
|---|
| 49 | static int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
 | 
|---|
| 50 | static int mp_exptmod_fast(const mp_int *G, const mp_int *X, mp_int *P, mp_int *Y, int mode);
 | 
|---|
| 51 | static int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c);
 | 
|---|
| 52 | static int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
 | 
|---|
| 53 | static int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
 | 
|---|
| 54 | 
 | 
|---|
| 55 | /* computes the modular inverse via binary extended euclidean algorithm, 
 | 
|---|
| 56 |  * that is c = 1/a mod b 
 | 
|---|
| 57 |  *
 | 
|---|
| 58 |  * Based on slow invmod except this is optimized for the case where b is 
 | 
|---|
| 59 |  * odd as per HAC Note 14.64 on pp. 610
 | 
|---|
| 60 |  */
 | 
|---|
| 61 | static int
 | 
|---|
| 62 | fast_mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 63 | {
 | 
|---|
| 64 |   mp_int  x, y, u, v, B, D;
 | 
|---|
| 65 |   int     res, neg;
 | 
|---|
| 66 | 
 | 
|---|
| 67 |   /* 2. [modified] b must be odd   */
 | 
|---|
| 68 |   if (mp_iseven (b) == 1) {
 | 
|---|
| 69 |     return MP_VAL;
 | 
|---|
| 70 |   }
 | 
|---|
| 71 | 
 | 
|---|
| 72 |   /* init all our temps */
 | 
|---|
| 73 |   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
 | 
|---|
| 74 |      return res;
 | 
|---|
| 75 |   }
 | 
|---|
| 76 | 
 | 
|---|
| 77 |   /* x == modulus, y == value to invert */
 | 
|---|
| 78 |   if ((res = mp_copy (b, &x)) != MP_OKAY) {
 | 
|---|
| 79 |     goto __ERR;
 | 
|---|
| 80 |   }
 | 
|---|
| 81 | 
 | 
|---|
| 82 |   /* we need y = |a| */
 | 
|---|
| 83 |   if ((res = mp_abs (a, &y)) != MP_OKAY) {
 | 
|---|
| 84 |     goto __ERR;
 | 
|---|
| 85 |   }
 | 
|---|
| 86 | 
 | 
|---|
| 87 |   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | 
|---|
| 88 |   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | 
|---|
| 89 |     goto __ERR;
 | 
|---|
| 90 |   }
 | 
|---|
| 91 |   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | 
|---|
| 92 |     goto __ERR;
 | 
|---|
| 93 |   }
 | 
|---|
| 94 |   mp_set (&D, 1);
 | 
|---|
| 95 | 
 | 
|---|
| 96 | top:
 | 
|---|
| 97 |   /* 4.  while u is even do */
 | 
|---|
| 98 |   while (mp_iseven (&u) == 1) {
 | 
|---|
| 99 |     /* 4.1 u = u/2 */
 | 
|---|
| 100 |     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | 
|---|
| 101 |       goto __ERR;
 | 
|---|
| 102 |     }
 | 
|---|
| 103 |     /* 4.2 if B is odd then */
 | 
|---|
| 104 |     if (mp_isodd (&B) == 1) {
 | 
|---|
| 105 |       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | 
|---|
| 106 |         goto __ERR;
 | 
|---|
| 107 |       }
 | 
|---|
| 108 |     }
 | 
|---|
| 109 |     /* B = B/2 */
 | 
|---|
| 110 |     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | 
|---|
| 111 |       goto __ERR;
 | 
|---|
| 112 |     }
 | 
|---|
| 113 |   }
 | 
|---|
| 114 | 
 | 
|---|
| 115 |   /* 5.  while v is even do */
 | 
|---|
| 116 |   while (mp_iseven (&v) == 1) {
 | 
|---|
| 117 |     /* 5.1 v = v/2 */
 | 
|---|
| 118 |     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | 
|---|
| 119 |       goto __ERR;
 | 
|---|
| 120 |     }
 | 
|---|
| 121 |     /* 5.2 if D is odd then */
 | 
|---|
| 122 |     if (mp_isodd (&D) == 1) {
 | 
|---|
| 123 |       /* D = (D-x)/2 */
 | 
|---|
| 124 |       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | 
|---|
| 125 |         goto __ERR;
 | 
|---|
| 126 |       }
 | 
|---|
| 127 |     }
 | 
|---|
| 128 |     /* D = D/2 */
 | 
|---|
| 129 |     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | 
|---|
| 130 |       goto __ERR;
 | 
|---|
| 131 |     }
 | 
|---|
| 132 |   }
 | 
|---|
| 133 | 
 | 
|---|
| 134 |   /* 6.  if u >= v then */
 | 
|---|
| 135 |   if (mp_cmp (&u, &v) != MP_LT) {
 | 
|---|
| 136 |     /* u = u - v, B = B - D */
 | 
|---|
| 137 |     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | 
|---|
| 138 |       goto __ERR;
 | 
|---|
| 139 |     }
 | 
|---|
| 140 | 
 | 
|---|
| 141 |     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | 
|---|
| 142 |       goto __ERR;
 | 
|---|
| 143 |     }
 | 
|---|
| 144 |   } else {
 | 
|---|
| 145 |     /* v - v - u, D = D - B */
 | 
|---|
| 146 |     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | 
|---|
| 147 |       goto __ERR;
 | 
|---|
| 148 |     }
 | 
|---|
| 149 | 
 | 
|---|
| 150 |     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | 
|---|
| 151 |       goto __ERR;
 | 
|---|
| 152 |     }
 | 
|---|
| 153 |   }
 | 
|---|
| 154 | 
 | 
|---|
| 155 |   /* if not zero goto step 4 */
 | 
|---|
| 156 |   if (mp_iszero (&u) == 0) {
 | 
|---|
| 157 |     goto top;
 | 
|---|
| 158 |   }
 | 
|---|
| 159 | 
 | 
|---|
| 160 |   /* now a = C, b = D, gcd == g*v */
 | 
|---|
| 161 | 
 | 
|---|
| 162 |   /* if v != 1 then there is no inverse */
 | 
|---|
| 163 |   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | 
|---|
| 164 |     res = MP_VAL;
 | 
|---|
| 165 |     goto __ERR;
 | 
|---|
| 166 |   }
 | 
|---|
| 167 | 
 | 
|---|
| 168 |   /* b is now the inverse */
 | 
|---|
| 169 |   neg = a->sign;
 | 
|---|
| 170 |   while (D.sign == MP_NEG) {
 | 
|---|
| 171 |     if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
 | 
|---|
| 172 |       goto __ERR;
 | 
|---|
| 173 |     }
 | 
|---|
| 174 |   }
 | 
|---|
| 175 |   mp_exch (&D, c);
 | 
|---|
| 176 |   c->sign = neg;
 | 
|---|
| 177 |   res = MP_OKAY;
 | 
|---|
| 178 | 
 | 
|---|
| 179 | __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
 | 
|---|
| 180 |   return res;
 | 
|---|
| 181 | }
 | 
|---|
| 182 | 
 | 
|---|
| 183 | /* computes xR**-1 == x (mod N) via Montgomery Reduction
 | 
|---|
| 184 |  *
 | 
|---|
| 185 |  * This is an optimized implementation of montgomery_reduce
 | 
|---|
| 186 |  * which uses the comba method to quickly calculate the columns of the
 | 
|---|
| 187 |  * reduction.
 | 
|---|
| 188 |  *
 | 
|---|
| 189 |  * Based on Algorithm 14.32 on pp.601 of HAC.
 | 
|---|
| 190 | */
 | 
|---|
| 191 | static int
 | 
|---|
| 192 | fast_mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
 | 
|---|
| 193 | {
 | 
|---|
| 194 |   int     ix, res, olduse;
 | 
|---|
| 195 |   mp_word W[MP_WARRAY];
 | 
|---|
| 196 | 
 | 
|---|
| 197 |   /* get old used count */
 | 
|---|
| 198 |   olduse = x->used;
 | 
|---|
| 199 | 
 | 
|---|
| 200 |   /* grow a as required */
 | 
|---|
| 201 |   if (x->alloc < n->used + 1) {
 | 
|---|
| 202 |     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
 | 
|---|
| 203 |       return res;
 | 
|---|
| 204 |     }
 | 
|---|
| 205 |   }
 | 
|---|
| 206 | 
 | 
|---|
| 207 |   /* first we have to get the digits of the input into
 | 
|---|
| 208 |    * an array of double precision words W[...]
 | 
|---|
| 209 |    */
 | 
|---|
| 210 |   {
 | 
|---|
| 211 |     register mp_word *_W;
 | 
|---|
| 212 |     register mp_digit *tmpx;
 | 
|---|
| 213 | 
 | 
|---|
| 214 |     /* alias for the W[] array */
 | 
|---|
| 215 |     _W   = W;
 | 
|---|
| 216 | 
 | 
|---|
| 217 |     /* alias for the digits of  x*/
 | 
|---|
| 218 |     tmpx = x->dp;
 | 
|---|
| 219 | 
 | 
|---|
| 220 |     /* copy the digits of a into W[0..a->used-1] */
 | 
|---|
| 221 |     for (ix = 0; ix < x->used; ix++) {
 | 
|---|
| 222 |       *_W++ = *tmpx++;
 | 
|---|
| 223 |     }
 | 
|---|
| 224 | 
 | 
|---|
| 225 |     /* zero the high words of W[a->used..m->used*2] */
 | 
|---|
| 226 |     for (; ix < n->used * 2 + 1; ix++) {
 | 
|---|
| 227 |       *_W++ = 0;
 | 
|---|
| 228 |     }
 | 
|---|
| 229 |   }
 | 
|---|
| 230 | 
 | 
|---|
| 231 |   /* now we proceed to zero successive digits
 | 
|---|
| 232 |    * from the least significant upwards
 | 
|---|
| 233 |    */
 | 
|---|
| 234 |   for (ix = 0; ix < n->used; ix++) {
 | 
|---|
| 235 |     /* mu = ai * m' mod b
 | 
|---|
| 236 |      *
 | 
|---|
| 237 |      * We avoid a double precision multiplication (which isn't required)
 | 
|---|
| 238 |      * by casting the value down to a mp_digit.  Note this requires
 | 
|---|
| 239 |      * that W[ix-1] have  the carry cleared (see after the inner loop)
 | 
|---|
| 240 |      */
 | 
|---|
| 241 |     register mp_digit mu;
 | 
|---|
| 242 |     mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
 | 
|---|
| 243 | 
 | 
|---|
| 244 |     /* a = a + mu * m * b**i
 | 
|---|
| 245 |      *
 | 
|---|
| 246 |      * This is computed in place and on the fly.  The multiplication
 | 
|---|
| 247 |      * by b**i is handled by offsetting which columns the results
 | 
|---|
| 248 |      * are added to.
 | 
|---|
| 249 |      *
 | 
|---|
| 250 |      * Note the comba method normally doesn't handle carries in the
 | 
|---|
| 251 |      * inner loop In this case we fix the carry from the previous
 | 
|---|
| 252 |      * column since the Montgomery reduction requires digits of the
 | 
|---|
| 253 |      * result (so far) [see above] to work.  This is
 | 
|---|
| 254 |      * handled by fixing up one carry after the inner loop.  The
 | 
|---|
| 255 |      * carry fixups are done in order so after these loops the
 | 
|---|
| 256 |      * first m->used words of W[] have the carries fixed
 | 
|---|
| 257 |      */
 | 
|---|
| 258 |     {
 | 
|---|
| 259 |       register int iy;
 | 
|---|
| 260 |       register mp_digit *tmpn;
 | 
|---|
| 261 |       register mp_word *_W;
 | 
|---|
| 262 | 
 | 
|---|
| 263 |       /* alias for the digits of the modulus */
 | 
|---|
| 264 |       tmpn = n->dp;
 | 
|---|
| 265 | 
 | 
|---|
| 266 |       /* Alias for the columns set by an offset of ix */
 | 
|---|
| 267 |       _W = W + ix;
 | 
|---|
| 268 | 
 | 
|---|
| 269 |       /* inner loop */
 | 
|---|
| 270 |       for (iy = 0; iy < n->used; iy++) {
 | 
|---|
| 271 |           *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
 | 
|---|
| 272 |       }
 | 
|---|
| 273 |     }
 | 
|---|
| 274 | 
 | 
|---|
| 275 |     /* now fix carry for next digit, W[ix+1] */
 | 
|---|
| 276 |     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
 | 
|---|
| 277 |   }
 | 
|---|
| 278 | 
 | 
|---|
| 279 |   /* now we have to propagate the carries and
 | 
|---|
| 280 |    * shift the words downward [all those least
 | 
|---|
| 281 |    * significant digits we zeroed].
 | 
|---|
| 282 |    */
 | 
|---|
| 283 |   {
 | 
|---|
| 284 |     register mp_digit *tmpx;
 | 
|---|
| 285 |     register mp_word *_W, *_W1;
 | 
|---|
| 286 | 
 | 
|---|
| 287 |     /* nox fix rest of carries */
 | 
|---|
| 288 | 
 | 
|---|
| 289 |     /* alias for current word */
 | 
|---|
| 290 |     _W1 = W + ix;
 | 
|---|
| 291 | 
 | 
|---|
| 292 |     /* alias for next word, where the carry goes */
 | 
|---|
| 293 |     _W = W + ++ix;
 | 
|---|
| 294 | 
 | 
|---|
| 295 |     for (; ix <= n->used * 2 + 1; ix++) {
 | 
|---|
| 296 |       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
 | 
|---|
| 297 |     }
 | 
|---|
| 298 | 
 | 
|---|
| 299 |     /* copy out, A = A/b**n
 | 
|---|
| 300 |      *
 | 
|---|
| 301 |      * The result is A/b**n but instead of converting from an
 | 
|---|
| 302 |      * array of mp_word to mp_digit than calling mp_rshd
 | 
|---|
| 303 |      * we just copy them in the right order
 | 
|---|
| 304 |      */
 | 
|---|
| 305 | 
 | 
|---|
| 306 |     /* alias for destination word */
 | 
|---|
| 307 |     tmpx = x->dp;
 | 
|---|
| 308 | 
 | 
|---|
| 309 |     /* alias for shifted double precision result */
 | 
|---|
| 310 |     _W = W + n->used;
 | 
|---|
| 311 | 
 | 
|---|
| 312 |     for (ix = 0; ix < n->used + 1; ix++) {
 | 
|---|
| 313 |       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
 | 
|---|
| 314 |     }
 | 
|---|
| 315 | 
 | 
|---|
| 316 |     /* zero oldused digits, if the input a was larger than
 | 
|---|
| 317 |      * m->used+1 we'll have to clear the digits
 | 
|---|
| 318 |      */
 | 
|---|
| 319 |     for (; ix < olduse; ix++) {
 | 
|---|
| 320 |       *tmpx++ = 0;
 | 
|---|
| 321 |     }
 | 
|---|
| 322 |   }
 | 
|---|
| 323 | 
 | 
|---|
| 324 |   /* set the max used and clamp */
 | 
|---|
| 325 |   x->used = n->used + 1;
 | 
|---|
| 326 |   mp_clamp (x);
 | 
|---|
| 327 | 
 | 
|---|
| 328 |   /* if A >= m then A = A - m */
 | 
|---|
| 329 |   if (mp_cmp_mag (x, n) != MP_LT) {
 | 
|---|
| 330 |     return s_mp_sub (x, n, x);
 | 
|---|
| 331 |   }
 | 
|---|
| 332 |   return MP_OKAY;
 | 
|---|
| 333 | }
 | 
|---|
| 334 | 
 | 
|---|
| 335 | /* Fast (comba) multiplier
 | 
|---|
| 336 |  *
 | 
|---|
| 337 |  * This is the fast column-array [comba] multiplier.  It is 
 | 
|---|
| 338 |  * designed to compute the columns of the product first 
 | 
|---|
| 339 |  * then handle the carries afterwards.  This has the effect 
 | 
|---|
| 340 |  * of making the nested loops that compute the columns very
 | 
|---|
| 341 |  * simple and schedulable on super-scalar processors.
 | 
|---|
| 342 |  *
 | 
|---|
| 343 |  * This has been modified to produce a variable number of 
 | 
|---|
| 344 |  * digits of output so if say only a half-product is required 
 | 
|---|
| 345 |  * you don't have to compute the upper half (a feature 
 | 
|---|
| 346 |  * required for fast Barrett reduction).
 | 
|---|
| 347 |  *
 | 
|---|
| 348 |  * Based on Algorithm 14.12 on pp.595 of HAC.
 | 
|---|
| 349 |  *
 | 
|---|
| 350 |  */
 | 
|---|
| 351 | static int
 | 
|---|
| 352 | fast_s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
 | 
|---|
| 353 | {
 | 
|---|
| 354 |   int     olduse, res, pa, ix, iz;
 | 
|---|
| 355 |   mp_digit W[MP_WARRAY];
 | 
|---|
| 356 |   register mp_word  _W;
 | 
|---|
| 357 | 
 | 
|---|
| 358 |   /* grow the destination as required */
 | 
|---|
| 359 |   if (c->alloc < digs) {
 | 
|---|
| 360 |     if ((res = mp_grow (c, digs)) != MP_OKAY) {
 | 
|---|
| 361 |       return res;
 | 
|---|
| 362 |     }
 | 
|---|
| 363 |   }
 | 
|---|
| 364 | 
 | 
|---|
| 365 |   /* number of output digits to produce */
 | 
|---|
| 366 |   pa = MIN(digs, a->used + b->used);
 | 
|---|
| 367 | 
 | 
|---|
| 368 |   /* clear the carry */
 | 
|---|
| 369 |   _W = 0;
 | 
|---|
| 370 |   for (ix = 0; ix <= pa; ix++) { 
 | 
|---|
| 371 |       int      tx, ty;
 | 
|---|
| 372 |       int      iy;
 | 
|---|
| 373 |       mp_digit *tmpx, *tmpy;
 | 
|---|
| 374 | 
 | 
|---|
| 375 |       /* get offsets into the two bignums */
 | 
|---|
| 376 |       ty = MIN(b->used-1, ix);
 | 
|---|
| 377 |       tx = ix - ty;
 | 
|---|
| 378 | 
 | 
|---|
| 379 |       /* setup temp aliases */
 | 
|---|
| 380 |       tmpx = a->dp + tx;
 | 
|---|
| 381 |       tmpy = b->dp + ty;
 | 
|---|
| 382 | 
 | 
|---|
| 383 |       /* This is the number of times the loop will iterate, essentially it's
 | 
|---|
| 384 |          while (tx++ < a->used && ty-- >= 0) { ... }
 | 
|---|
| 385 |        */
 | 
|---|
| 386 |       iy = MIN(a->used-tx, ty+1);
 | 
|---|
| 387 | 
 | 
|---|
| 388 |       /* execute loop */
 | 
|---|
| 389 |       for (iz = 0; iz < iy; ++iz) {
 | 
|---|
| 390 |          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | 
|---|
| 391 |       }
 | 
|---|
| 392 | 
 | 
|---|
| 393 |       /* store term */
 | 
|---|
| 394 |       W[ix] = ((mp_digit)_W) & MP_MASK;
 | 
|---|
| 395 | 
 | 
|---|
| 396 |       /* make next carry */
 | 
|---|
| 397 |       _W = _W >> ((mp_word)DIGIT_BIT);
 | 
|---|
| 398 |   }
 | 
|---|
| 399 | 
 | 
|---|
| 400 |   /* setup dest */
 | 
|---|
| 401 |   olduse  = c->used;
 | 
|---|
| 402 |   c->used = digs;
 | 
|---|
| 403 | 
 | 
|---|
| 404 |   {
 | 
|---|
| 405 |     register mp_digit *tmpc;
 | 
|---|
| 406 |     tmpc = c->dp;
 | 
|---|
| 407 |     for (ix = 0; ix < digs; ix++) {
 | 
|---|
| 408 |       /* now extract the previous digit [below the carry] */
 | 
|---|
| 409 |       *tmpc++ = W[ix];
 | 
|---|
| 410 |     }
 | 
|---|
| 411 | 
 | 
|---|
| 412 |     /* clear unused digits [that existed in the old copy of c] */
 | 
|---|
| 413 |     for (; ix < olduse; ix++) {
 | 
|---|
| 414 |       *tmpc++ = 0;
 | 
|---|
| 415 |     }
 | 
|---|
| 416 |   }
 | 
|---|
| 417 |   mp_clamp (c);
 | 
|---|
| 418 |   return MP_OKAY;
 | 
|---|
| 419 | }
 | 
|---|
| 420 | 
 | 
|---|
| 421 | /* this is a modified version of fast_s_mul_digs that only produces
 | 
|---|
| 422 |  * output digits *above* digs.  See the comments for fast_s_mul_digs
 | 
|---|
| 423 |  * to see how it works.
 | 
|---|
| 424 |  *
 | 
|---|
| 425 |  * This is used in the Barrett reduction since for one of the multiplications
 | 
|---|
| 426 |  * only the higher digits were needed.  This essentially halves the work.
 | 
|---|
| 427 |  *
 | 
|---|
| 428 |  * Based on Algorithm 14.12 on pp.595 of HAC.
 | 
|---|
| 429 |  */
 | 
|---|
| 430 | static int
 | 
|---|
| 431 | fast_s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
 | 
|---|
| 432 | {
 | 
|---|
| 433 |   int     olduse, res, pa, ix, iz;
 | 
|---|
| 434 |   mp_digit W[MP_WARRAY];
 | 
|---|
| 435 |   mp_word  _W;
 | 
|---|
| 436 | 
 | 
|---|
| 437 |   /* grow the destination as required */
 | 
|---|
| 438 |   pa = a->used + b->used;
 | 
|---|
| 439 |   if (c->alloc < pa) {
 | 
|---|
| 440 |     if ((res = mp_grow (c, pa)) != MP_OKAY) {
 | 
|---|
| 441 |       return res;
 | 
|---|
| 442 |     }
 | 
|---|
| 443 |   }
 | 
|---|
| 444 | 
 | 
|---|
| 445 |   /* number of output digits to produce */
 | 
|---|
| 446 |   pa = a->used + b->used;
 | 
|---|
| 447 |   _W = 0;
 | 
|---|
| 448 |   for (ix = digs; ix <= pa; ix++) { 
 | 
|---|
| 449 |       int      tx, ty, iy;
 | 
|---|
| 450 |       mp_digit *tmpx, *tmpy;
 | 
|---|
| 451 | 
 | 
|---|
| 452 |       /* get offsets into the two bignums */
 | 
|---|
| 453 |       ty = MIN(b->used-1, ix);
 | 
|---|
| 454 |       tx = ix - ty;
 | 
|---|
| 455 | 
 | 
|---|
| 456 |       /* setup temp aliases */
 | 
|---|
| 457 |       tmpx = a->dp + tx;
 | 
|---|
| 458 |       tmpy = b->dp + ty;
 | 
|---|
| 459 | 
 | 
|---|
| 460 |       /* This is the number of times the loop will iterate, essentially it's
 | 
|---|
| 461 |          while (tx++ < a->used && ty-- >= 0) { ... }
 | 
|---|
| 462 |        */
 | 
|---|
| 463 |       iy = MIN(a->used-tx, ty+1);
 | 
|---|
| 464 | 
 | 
|---|
| 465 |       /* execute loop */
 | 
|---|
| 466 |       for (iz = 0; iz < iy; iz++) {
 | 
|---|
| 467 |          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | 
|---|
| 468 |       }
 | 
|---|
| 469 | 
 | 
|---|
| 470 |       /* store term */
 | 
|---|
| 471 |       W[ix] = ((mp_digit)_W) & MP_MASK;
 | 
|---|
| 472 | 
 | 
|---|
| 473 |       /* make next carry */
 | 
|---|
| 474 |       _W = _W >> ((mp_word)DIGIT_BIT);
 | 
|---|
| 475 |   }
 | 
|---|
| 476 | 
 | 
|---|
| 477 |   /* setup dest */
 | 
|---|
| 478 |   olduse  = c->used;
 | 
|---|
| 479 |   c->used = pa;
 | 
|---|
| 480 | 
 | 
|---|
| 481 |   {
 | 
|---|
| 482 |     register mp_digit *tmpc;
 | 
|---|
| 483 | 
 | 
|---|
| 484 |     tmpc = c->dp + digs;
 | 
|---|
| 485 |     for (ix = digs; ix <= pa; ix++) {
 | 
|---|
| 486 |       /* now extract the previous digit [below the carry] */
 | 
|---|
| 487 |       *tmpc++ = W[ix];
 | 
|---|
| 488 |     }
 | 
|---|
| 489 | 
 | 
|---|
| 490 |     /* clear unused digits [that existed in the old copy of c] */
 | 
|---|
| 491 |     for (; ix < olduse; ix++) {
 | 
|---|
| 492 |       *tmpc++ = 0;
 | 
|---|
| 493 |     }
 | 
|---|
| 494 |   }
 | 
|---|
| 495 |   mp_clamp (c);
 | 
|---|
| 496 |   return MP_OKAY;
 | 
|---|
| 497 | }
 | 
|---|
| 498 | 
 | 
|---|
| 499 | /* fast squaring
 | 
|---|
| 500 |  *
 | 
|---|
| 501 |  * This is the comba method where the columns of the product
 | 
|---|
| 502 |  * are computed first then the carries are computed.  This
 | 
|---|
| 503 |  * has the effect of making a very simple inner loop that
 | 
|---|
| 504 |  * is executed the most
 | 
|---|
| 505 |  *
 | 
|---|
| 506 |  * W2 represents the outer products and W the inner.
 | 
|---|
| 507 |  *
 | 
|---|
| 508 |  * A further optimizations is made because the inner
 | 
|---|
| 509 |  * products are of the form "A * B * 2".  The *2 part does
 | 
|---|
| 510 |  * not need to be computed until the end which is good
 | 
|---|
| 511 |  * because 64-bit shifts are slow!
 | 
|---|
| 512 |  *
 | 
|---|
| 513 |  * Based on Algorithm 14.16 on pp.597 of HAC.
 | 
|---|
| 514 |  *
 | 
|---|
| 515 |  */
 | 
|---|
| 516 | /* the jist of squaring...
 | 
|---|
| 517 | 
 | 
|---|
| 518 | you do like mult except the offset of the tmpx [one that starts closer to zero]
 | 
|---|
| 519 | can't equal the offset of tmpy.  So basically you set up iy like before then you min it with
 | 
|---|
| 520 | (ty-tx) so that it never happens.  You double all those you add in the inner loop
 | 
|---|
| 521 | 
 | 
|---|
| 522 | After that loop you do the squares and add them in.
 | 
|---|
| 523 | 
 | 
|---|
| 524 | Remove W2 and don't memset W
 | 
|---|
| 525 | 
 | 
|---|
| 526 | */
 | 
|---|
| 527 | 
 | 
|---|
| 528 | static int fast_s_mp_sqr (const mp_int * a, mp_int * b)
 | 
|---|
| 529 | {
 | 
|---|
| 530 |   int       olduse, res, pa, ix, iz;
 | 
|---|
| 531 |   mp_digit   W[MP_WARRAY], *tmpx;
 | 
|---|
| 532 |   mp_word   W1;
 | 
|---|
| 533 | 
 | 
|---|
| 534 |   /* grow the destination as required */
 | 
|---|
| 535 |   pa = a->used + a->used;
 | 
|---|
| 536 |   if (b->alloc < pa) {
 | 
|---|
| 537 |     if ((res = mp_grow (b, pa)) != MP_OKAY) {
 | 
|---|
| 538 |       return res;
 | 
|---|
| 539 |     }
 | 
|---|
| 540 |   }
 | 
|---|
| 541 | 
 | 
|---|
| 542 |   /* number of output digits to produce */
 | 
|---|
| 543 |   W1 = 0;
 | 
|---|
| 544 |   for (ix = 0; ix <= pa; ix++) { 
 | 
|---|
| 545 |       int      tx, ty, iy;
 | 
|---|
| 546 |       mp_word  _W;
 | 
|---|
| 547 |       mp_digit *tmpy;
 | 
|---|
| 548 | 
 | 
|---|
| 549 |       /* clear counter */
 | 
|---|
| 550 |       _W = 0;
 | 
|---|
| 551 | 
 | 
|---|
| 552 |       /* get offsets into the two bignums */
 | 
|---|
| 553 |       ty = MIN(a->used-1, ix);
 | 
|---|
| 554 |       tx = ix - ty;
 | 
|---|
| 555 | 
 | 
|---|
| 556 |       /* setup temp aliases */
 | 
|---|
| 557 |       tmpx = a->dp + tx;
 | 
|---|
| 558 |       tmpy = a->dp + ty;
 | 
|---|
| 559 | 
 | 
|---|
| 560 |       /* This is the number of times the loop will iterate, essentially it's
 | 
|---|
| 561 |          while (tx++ < a->used && ty-- >= 0) { ... }
 | 
|---|
| 562 |        */
 | 
|---|
| 563 |       iy = MIN(a->used-tx, ty+1);
 | 
|---|
| 564 | 
 | 
|---|
| 565 |       /* now for squaring tx can never equal ty 
 | 
|---|
| 566 |        * we halve the distance since they approach at a rate of 2x
 | 
|---|
| 567 |        * and we have to round because odd cases need to be executed
 | 
|---|
| 568 |        */
 | 
|---|
| 569 |       iy = MIN(iy, (ty-tx+1)>>1);
 | 
|---|
| 570 | 
 | 
|---|
| 571 |       /* execute loop */
 | 
|---|
| 572 |       for (iz = 0; iz < iy; iz++) {
 | 
|---|
| 573 |          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | 
|---|
| 574 |       }
 | 
|---|
| 575 | 
 | 
|---|
| 576 |       /* double the inner product and add carry */
 | 
|---|
| 577 |       _W = _W + _W + W1;
 | 
|---|
| 578 | 
 | 
|---|
| 579 |       /* even columns have the square term in them */
 | 
|---|
| 580 |       if ((ix&1) == 0) {
 | 
|---|
| 581 |          _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
 | 
|---|
| 582 |       }
 | 
|---|
| 583 | 
 | 
|---|
| 584 |       /* store it */
 | 
|---|
| 585 |       W[ix] = _W;
 | 
|---|
| 586 | 
 | 
|---|
| 587 |       /* make next carry */
 | 
|---|
| 588 |       W1 = _W >> ((mp_word)DIGIT_BIT);
 | 
|---|
| 589 |   }
 | 
|---|
| 590 | 
 | 
|---|
| 591 |   /* setup dest */
 | 
|---|
| 592 |   olduse  = b->used;
 | 
|---|
| 593 |   b->used = a->used+a->used;
 | 
|---|
| 594 | 
 | 
|---|
| 595 |   {
 | 
|---|
| 596 |     mp_digit *tmpb;
 | 
|---|
| 597 |     tmpb = b->dp;
 | 
|---|
| 598 |     for (ix = 0; ix < pa; ix++) {
 | 
|---|
| 599 |       *tmpb++ = W[ix] & MP_MASK;
 | 
|---|
| 600 |     }
 | 
|---|
| 601 | 
 | 
|---|
| 602 |     /* clear unused digits [that existed in the old copy of c] */
 | 
|---|
| 603 |     for (; ix < olduse; ix++) {
 | 
|---|
| 604 |       *tmpb++ = 0;
 | 
|---|
| 605 |     }
 | 
|---|
| 606 |   }
 | 
|---|
| 607 |   mp_clamp (b);
 | 
|---|
| 608 |   return MP_OKAY;
 | 
|---|
| 609 | }
 | 
|---|
| 610 | 
 | 
|---|
| 611 | /* computes a = 2**b 
 | 
|---|
| 612 |  *
 | 
|---|
| 613 |  * Simple algorithm which zeroes the int, grows it then just sets one bit
 | 
|---|
| 614 |  * as required.
 | 
|---|
| 615 |  */
 | 
|---|
| 616 | int
 | 
|---|
| 617 | mp_2expt (mp_int * a, int b)
 | 
|---|
| 618 | {
 | 
|---|
| 619 |   int     res;
 | 
|---|
| 620 | 
 | 
|---|
| 621 |   /* zero a as per default */
 | 
|---|
| 622 |   mp_zero (a);
 | 
|---|
| 623 | 
 | 
|---|
| 624 |   /* grow a to accommodate the single bit */
 | 
|---|
| 625 |   if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
 | 
|---|
| 626 |     return res;
 | 
|---|
| 627 |   }
 | 
|---|
| 628 | 
 | 
|---|
| 629 |   /* set the used count of where the bit will go */
 | 
|---|
| 630 |   a->used = b / DIGIT_BIT + 1;
 | 
|---|
| 631 | 
 | 
|---|
| 632 |   /* put the single bit in its place */
 | 
|---|
| 633 |   a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
 | 
|---|
| 634 | 
 | 
|---|
| 635 |   return MP_OKAY;
 | 
|---|
| 636 | }
 | 
|---|
| 637 | 
 | 
|---|
| 638 | /* b = |a| 
 | 
|---|
| 639 |  *
 | 
|---|
| 640 |  * Simple function copies the input and fixes the sign to positive
 | 
|---|
| 641 |  */
 | 
|---|
| 642 | int
 | 
|---|
| 643 | mp_abs (const mp_int * a, mp_int * b)
 | 
|---|
| 644 | {
 | 
|---|
| 645 |   int     res;
 | 
|---|
| 646 | 
 | 
|---|
| 647 |   /* copy a to b */
 | 
|---|
| 648 |   if (a != b) {
 | 
|---|
| 649 |      if ((res = mp_copy (a, b)) != MP_OKAY) {
 | 
|---|
| 650 |        return res;
 | 
|---|
| 651 |      }
 | 
|---|
| 652 |   }
 | 
|---|
| 653 | 
 | 
|---|
| 654 |   /* force the sign of b to positive */
 | 
|---|
| 655 |   b->sign = MP_ZPOS;
 | 
|---|
| 656 | 
 | 
|---|
| 657 |   return MP_OKAY;
 | 
|---|
| 658 | }
 | 
|---|
| 659 | 
 | 
|---|
| 660 | /* high level addition (handles signs) */
 | 
|---|
| 661 | int mp_add (mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 662 | {
 | 
|---|
| 663 |   int     sa, sb, res;
 | 
|---|
| 664 | 
 | 
|---|
| 665 |   /* get sign of both inputs */
 | 
|---|
| 666 |   sa = a->sign;
 | 
|---|
| 667 |   sb = b->sign;
 | 
|---|
| 668 | 
 | 
|---|
| 669 |   /* handle two cases, not four */
 | 
|---|
| 670 |   if (sa == sb) {
 | 
|---|
| 671 |     /* both positive or both negative */
 | 
|---|
| 672 |     /* add their magnitudes, copy the sign */
 | 
|---|
| 673 |     c->sign = sa;
 | 
|---|
| 674 |     res = s_mp_add (a, b, c);
 | 
|---|
| 675 |   } else {
 | 
|---|
| 676 |     /* one positive, the other negative */
 | 
|---|
| 677 |     /* subtract the one with the greater magnitude from */
 | 
|---|
| 678 |     /* the one of the lesser magnitude.  The result gets */
 | 
|---|
| 679 |     /* the sign of the one with the greater magnitude. */
 | 
|---|
| 680 |     if (mp_cmp_mag (a, b) == MP_LT) {
 | 
|---|
| 681 |       c->sign = sb;
 | 
|---|
| 682 |       res = s_mp_sub (b, a, c);
 | 
|---|
| 683 |     } else {
 | 
|---|
| 684 |       c->sign = sa;
 | 
|---|
| 685 |       res = s_mp_sub (a, b, c);
 | 
|---|
| 686 |     }
 | 
|---|
| 687 |   }
 | 
|---|
| 688 |   return res;
 | 
|---|
| 689 | }
 | 
|---|
| 690 | 
 | 
|---|
| 691 | 
 | 
|---|
| 692 | /* single digit addition */
 | 
|---|
| 693 | int
 | 
|---|
| 694 | mp_add_d (mp_int * a, mp_digit b, mp_int * c)
 | 
|---|
| 695 | {
 | 
|---|
| 696 |   int     res, ix, oldused;
 | 
|---|
| 697 |   mp_digit *tmpa, *tmpc, mu;
 | 
|---|
| 698 | 
 | 
|---|
| 699 |   /* grow c as required */
 | 
|---|
| 700 |   if (c->alloc < a->used + 1) {
 | 
|---|
| 701 |      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
 | 
|---|
| 702 |         return res;
 | 
|---|
| 703 |      }
 | 
|---|
| 704 |   }
 | 
|---|
| 705 | 
 | 
|---|
| 706 |   /* if a is negative and |a| >= b, call c = |a| - b */
 | 
|---|
| 707 |   if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
 | 
|---|
| 708 |      /* temporarily fix sign of a */
 | 
|---|
| 709 |      a->sign = MP_ZPOS;
 | 
|---|
| 710 | 
 | 
|---|
| 711 |      /* c = |a| - b */
 | 
|---|
| 712 |      res = mp_sub_d(a, b, c);
 | 
|---|
| 713 | 
 | 
|---|
| 714 |      /* fix sign  */
 | 
|---|
| 715 |      a->sign = c->sign = MP_NEG;
 | 
|---|
| 716 | 
 | 
|---|
| 717 |      return res;
 | 
|---|
| 718 |   }
 | 
|---|
| 719 | 
 | 
|---|
| 720 |   /* old number of used digits in c */
 | 
|---|
| 721 |   oldused = c->used;
 | 
|---|
| 722 | 
 | 
|---|
| 723 |   /* sign always positive */
 | 
|---|
| 724 |   c->sign = MP_ZPOS;
 | 
|---|
| 725 | 
 | 
|---|
| 726 |   /* source alias */
 | 
|---|
| 727 |   tmpa    = a->dp;
 | 
|---|
| 728 | 
 | 
|---|
| 729 |   /* destination alias */
 | 
|---|
| 730 |   tmpc    = c->dp;
 | 
|---|
| 731 | 
 | 
|---|
| 732 |   /* if a is positive */
 | 
|---|
| 733 |   if (a->sign == MP_ZPOS) {
 | 
|---|
| 734 |      /* add digit, after this we're propagating
 | 
|---|
| 735 |       * the carry.
 | 
|---|
| 736 |       */
 | 
|---|
| 737 |      *tmpc   = *tmpa++ + b;
 | 
|---|
| 738 |      mu      = *tmpc >> DIGIT_BIT;
 | 
|---|
| 739 |      *tmpc++ &= MP_MASK;
 | 
|---|
| 740 | 
 | 
|---|
| 741 |      /* now handle rest of the digits */
 | 
|---|
| 742 |      for (ix = 1; ix < a->used; ix++) {
 | 
|---|
| 743 |         *tmpc   = *tmpa++ + mu;
 | 
|---|
| 744 |         mu      = *tmpc >> DIGIT_BIT;
 | 
|---|
| 745 |         *tmpc++ &= MP_MASK;
 | 
|---|
| 746 |      }
 | 
|---|
| 747 |      /* set final carry */
 | 
|---|
| 748 |      ix++;
 | 
|---|
| 749 |      *tmpc++  = mu;
 | 
|---|
| 750 | 
 | 
|---|
| 751 |      /* setup size */
 | 
|---|
| 752 |      c->used = a->used + 1;
 | 
|---|
| 753 |   } else {
 | 
|---|
| 754 |      /* a was negative and |a| < b */
 | 
|---|
| 755 |      c->used  = 1;
 | 
|---|
| 756 | 
 | 
|---|
| 757 |      /* the result is a single digit */
 | 
|---|
| 758 |      if (a->used == 1) {
 | 
|---|
| 759 |         *tmpc++  =  b - a->dp[0];
 | 
|---|
| 760 |      } else {
 | 
|---|
| 761 |         *tmpc++  =  b;
 | 
|---|
| 762 |      }
 | 
|---|
| 763 | 
 | 
|---|
| 764 |      /* setup count so the clearing of oldused
 | 
|---|
| 765 |       * can fall through correctly
 | 
|---|
| 766 |       */
 | 
|---|
| 767 |      ix       = 1;
 | 
|---|
| 768 |   }
 | 
|---|
| 769 | 
 | 
|---|
| 770 |   /* now zero to oldused */
 | 
|---|
| 771 |   while (ix++ < oldused) {
 | 
|---|
| 772 |      *tmpc++ = 0;
 | 
|---|
| 773 |   }
 | 
|---|
| 774 |   mp_clamp(c);
 | 
|---|
| 775 | 
 | 
|---|
| 776 |   return MP_OKAY;
 | 
|---|
| 777 | }
 | 
|---|
| 778 | 
 | 
|---|
| 779 | /* trim unused digits 
 | 
|---|
| 780 |  *
 | 
|---|
| 781 |  * This is used to ensure that leading zero digits are
 | 
|---|
| 782 |  * trimed and the leading "used" digit will be non-zero
 | 
|---|
| 783 |  * Typically very fast.  Also fixes the sign if there
 | 
|---|
| 784 |  * are no more leading digits
 | 
|---|
| 785 |  */
 | 
|---|
| 786 | void
 | 
|---|
| 787 | mp_clamp (mp_int * a)
 | 
|---|
| 788 | {
 | 
|---|
| 789 |   /* decrease used while the most significant digit is
 | 
|---|
| 790 |    * zero.
 | 
|---|
| 791 |    */
 | 
|---|
| 792 |   while (a->used > 0 && a->dp[a->used - 1] == 0) {
 | 
|---|
| 793 |     --(a->used);
 | 
|---|
| 794 |   }
 | 
|---|
| 795 | 
 | 
|---|
| 796 |   /* reset the sign flag if used == 0 */
 | 
|---|
| 797 |   if (a->used == 0) {
 | 
|---|
| 798 |     a->sign = MP_ZPOS;
 | 
|---|
| 799 |   }
 | 
|---|
| 800 | }
 | 
|---|
| 801 | 
 | 
|---|
| 802 | /* clear one (frees)  */
 | 
|---|
| 803 | void
 | 
|---|
| 804 | mp_clear (mp_int * a)
 | 
|---|
| 805 | {
 | 
|---|
| 806 |   int i;
 | 
|---|
| 807 | 
 | 
|---|
| 808 |   /* only do anything if a hasn't been freed previously */
 | 
|---|
| 809 |   if (a->dp != NULL) {
 | 
|---|
| 810 |     /* first zero the digits */
 | 
|---|
| 811 |     for (i = 0; i < a->used; i++) {
 | 
|---|
| 812 |         a->dp[i] = 0;
 | 
|---|
| 813 |     }
 | 
|---|
| 814 | 
 | 
|---|
| 815 |     /* free ram */
 | 
|---|
| 816 |     free(a->dp);
 | 
|---|
| 817 | 
 | 
|---|
| 818 |     /* reset members to make debugging easier */
 | 
|---|
| 819 |     a->dp    = NULL;
 | 
|---|
| 820 |     a->alloc = a->used = 0;
 | 
|---|
| 821 |     a->sign  = MP_ZPOS;
 | 
|---|
| 822 |   }
 | 
|---|
| 823 | }
 | 
|---|
| 824 | 
 | 
|---|
| 825 | 
 | 
|---|
| 826 | void mp_clear_multi(mp_int *mp, ...) 
 | 
|---|
| 827 | {
 | 
|---|
| 828 |     mp_int* next_mp = mp;
 | 
|---|
| 829 |     va_list args;
 | 
|---|
| 830 |     va_start(args, mp);
 | 
|---|
| 831 |     while (next_mp != NULL) {
 | 
|---|
| 832 |         mp_clear(next_mp);
 | 
|---|
| 833 |         next_mp = va_arg(args, mp_int*);
 | 
|---|
| 834 |     }
 | 
|---|
| 835 |     va_end(args);
 | 
|---|
| 836 | }
 | 
|---|
| 837 | 
 | 
|---|
| 838 | /* compare two ints (signed)*/
 | 
|---|
| 839 | int
 | 
|---|
| 840 | mp_cmp (const mp_int * a, const mp_int * b)
 | 
|---|
| 841 | {
 | 
|---|
| 842 |   /* compare based on sign */
 | 
|---|
| 843 |   if (a->sign != b->sign) {
 | 
|---|
| 844 |      if (a->sign == MP_NEG) {
 | 
|---|
| 845 |         return MP_LT;
 | 
|---|
| 846 |      } else {
 | 
|---|
| 847 |         return MP_GT;
 | 
|---|
| 848 |      }
 | 
|---|
| 849 |   }
 | 
|---|
| 850 |   
 | 
|---|
| 851 |   /* compare digits */
 | 
|---|
| 852 |   if (a->sign == MP_NEG) {
 | 
|---|
| 853 |      /* if negative compare opposite direction */
 | 
|---|
| 854 |      return mp_cmp_mag(b, a);
 | 
|---|
| 855 |   } else {
 | 
|---|
| 856 |      return mp_cmp_mag(a, b);
 | 
|---|
| 857 |   }
 | 
|---|
| 858 | }
 | 
|---|
| 859 | 
 | 
|---|
| 860 | /* compare a digit */
 | 
|---|
| 861 | int mp_cmp_d(const mp_int * a, mp_digit b)
 | 
|---|
| 862 | {
 | 
|---|
| 863 |   /* compare based on sign */
 | 
|---|
| 864 |   if (a->sign == MP_NEG) {
 | 
|---|
| 865 |     return MP_LT;
 | 
|---|
| 866 |   }
 | 
|---|
| 867 | 
 | 
|---|
| 868 |   /* compare based on magnitude */
 | 
|---|
| 869 |   if (a->used > 1) {
 | 
|---|
| 870 |     return MP_GT;
 | 
|---|
| 871 |   }
 | 
|---|
| 872 | 
 | 
|---|
| 873 |   /* compare the only digit of a to b */
 | 
|---|
| 874 |   if (a->dp[0] > b) {
 | 
|---|
| 875 |     return MP_GT;
 | 
|---|
| 876 |   } else if (a->dp[0] < b) {
 | 
|---|
| 877 |     return MP_LT;
 | 
|---|
| 878 |   } else {
 | 
|---|
| 879 |     return MP_EQ;
 | 
|---|
| 880 |   }
 | 
|---|
| 881 | }
 | 
|---|
| 882 | 
 | 
|---|
| 883 | /* compare maginitude of two ints (unsigned) */
 | 
|---|
| 884 | int mp_cmp_mag (const mp_int * a, const mp_int * b)
 | 
|---|
| 885 | {
 | 
|---|
| 886 |   int     n;
 | 
|---|
| 887 |   mp_digit *tmpa, *tmpb;
 | 
|---|
| 888 | 
 | 
|---|
| 889 |   /* compare based on # of non-zero digits */
 | 
|---|
| 890 |   if (a->used > b->used) {
 | 
|---|
| 891 |     return MP_GT;
 | 
|---|
| 892 |   }
 | 
|---|
| 893 |   
 | 
|---|
| 894 |   if (a->used < b->used) {
 | 
|---|
| 895 |     return MP_LT;
 | 
|---|
| 896 |   }
 | 
|---|
| 897 | 
 | 
|---|
| 898 |   /* alias for a */
 | 
|---|
| 899 |   tmpa = a->dp + (a->used - 1);
 | 
|---|
| 900 | 
 | 
|---|
| 901 |   /* alias for b */
 | 
|---|
| 902 |   tmpb = b->dp + (a->used - 1);
 | 
|---|
| 903 | 
 | 
|---|
| 904 |   /* compare based on digits  */
 | 
|---|
| 905 |   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
 | 
|---|
| 906 |     if (*tmpa > *tmpb) {
 | 
|---|
| 907 |       return MP_GT;
 | 
|---|
| 908 |     }
 | 
|---|
| 909 | 
 | 
|---|
| 910 |     if (*tmpa < *tmpb) {
 | 
|---|
| 911 |       return MP_LT;
 | 
|---|
| 912 |     }
 | 
|---|
| 913 |   }
 | 
|---|
| 914 |   return MP_EQ;
 | 
|---|
| 915 | }
 | 
|---|
| 916 | 
 | 
|---|
| 917 | static const int lnz[16] = { 
 | 
|---|
| 918 |    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
 | 
|---|
| 919 | };
 | 
|---|
| 920 | 
 | 
|---|
| 921 | /* Counts the number of lsbs which are zero before the first zero bit */
 | 
|---|
| 922 | int mp_cnt_lsb(const mp_int *a)
 | 
|---|
| 923 | {
 | 
|---|
| 924 |    int x;
 | 
|---|
| 925 |    mp_digit q, qq;
 | 
|---|
| 926 | 
 | 
|---|
| 927 |    /* easy out */
 | 
|---|
| 928 |    if (mp_iszero(a) == 1) {
 | 
|---|
| 929 |       return 0;
 | 
|---|
| 930 |    }
 | 
|---|
| 931 | 
 | 
|---|
| 932 |    /* scan lower digits until non-zero */
 | 
|---|
| 933 |    for (x = 0; x < a->used && a->dp[x] == 0; x++);
 | 
|---|
| 934 |    q = a->dp[x];
 | 
|---|
| 935 |    x *= DIGIT_BIT;
 | 
|---|
| 936 | 
 | 
|---|
| 937 |    /* now scan this digit until a 1 is found */
 | 
|---|
| 938 |    if ((q & 1) == 0) {
 | 
|---|
| 939 |       do {
 | 
|---|
| 940 |          qq  = q & 15;
 | 
|---|
| 941 |          x  += lnz[qq];
 | 
|---|
| 942 |          q >>= 4;
 | 
|---|
| 943 |       } while (qq == 0);
 | 
|---|
| 944 |    }
 | 
|---|
| 945 |    return x;
 | 
|---|
| 946 | }
 | 
|---|
| 947 | 
 | 
|---|
| 948 | /* copy, b = a */
 | 
|---|
| 949 | int
 | 
|---|
| 950 | mp_copy (const mp_int * a, mp_int * b)
 | 
|---|
| 951 | {
 | 
|---|
| 952 |   int     res, n;
 | 
|---|
| 953 | 
 | 
|---|
| 954 |   /* if dst == src do nothing */
 | 
|---|
| 955 |   if (a == b) {
 | 
|---|
| 956 |     return MP_OKAY;
 | 
|---|
| 957 |   }
 | 
|---|
| 958 | 
 | 
|---|
| 959 |   /* grow dest */
 | 
|---|
| 960 |   if (b->alloc < a->used) {
 | 
|---|
| 961 |      if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | 
|---|
| 962 |         return res;
 | 
|---|
| 963 |      }
 | 
|---|
| 964 |   }
 | 
|---|
| 965 | 
 | 
|---|
| 966 |   /* zero b and copy the parameters over */
 | 
|---|
| 967 |   {
 | 
|---|
| 968 |     register mp_digit *tmpa, *tmpb;
 | 
|---|
| 969 | 
 | 
|---|
| 970 |     /* pointer aliases */
 | 
|---|
| 971 | 
 | 
|---|
| 972 |     /* source */
 | 
|---|
| 973 |     tmpa = a->dp;
 | 
|---|
| 974 | 
 | 
|---|
| 975 |     /* destination */
 | 
|---|
| 976 |     tmpb = b->dp;
 | 
|---|
| 977 | 
 | 
|---|
| 978 |     /* copy all the digits */
 | 
|---|
| 979 |     for (n = 0; n < a->used; n++) {
 | 
|---|
| 980 |       *tmpb++ = *tmpa++;
 | 
|---|
| 981 |     }
 | 
|---|
| 982 | 
 | 
|---|
| 983 |     /* clear high digits */
 | 
|---|
| 984 |     for (; n < b->used; n++) {
 | 
|---|
| 985 |       *tmpb++ = 0;
 | 
|---|
| 986 |     }
 | 
|---|
| 987 |   }
 | 
|---|
| 988 | 
 | 
|---|
| 989 |   /* copy used count and sign */
 | 
|---|
| 990 |   b->used = a->used;
 | 
|---|
| 991 |   b->sign = a->sign;
 | 
|---|
| 992 |   return MP_OKAY;
 | 
|---|
| 993 | }
 | 
|---|
| 994 | 
 | 
|---|
| 995 | /* returns the number of bits in an int */
 | 
|---|
| 996 | int
 | 
|---|
| 997 | mp_count_bits (const mp_int * a)
 | 
|---|
| 998 | {
 | 
|---|
| 999 |   int     r;
 | 
|---|
| 1000 |   mp_digit q;
 | 
|---|
| 1001 | 
 | 
|---|
| 1002 |   /* shortcut */
 | 
|---|
| 1003 |   if (a->used == 0) {
 | 
|---|
| 1004 |     return 0;
 | 
|---|
| 1005 |   }
 | 
|---|
| 1006 | 
 | 
|---|
| 1007 |   /* get number of digits and add that */
 | 
|---|
| 1008 |   r = (a->used - 1) * DIGIT_BIT;
 | 
|---|
| 1009 |   
 | 
|---|
| 1010 |   /* take the last digit and count the bits in it */
 | 
|---|
| 1011 |   q = a->dp[a->used - 1];
 | 
|---|
| 1012 |   while (q > ((mp_digit) 0)) {
 | 
|---|
| 1013 |     ++r;
 | 
|---|
| 1014 |     q >>= ((mp_digit) 1);
 | 
|---|
| 1015 |   }
 | 
|---|
| 1016 |   return r;
 | 
|---|
| 1017 | }
 | 
|---|
| 1018 | 
 | 
|---|
| 1019 | /* integer signed division. 
 | 
|---|
| 1020 |  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 | 
|---|
| 1021 |  * HAC pp.598 Algorithm 14.20
 | 
|---|
| 1022 |  *
 | 
|---|
| 1023 |  * Note that the description in HAC is horribly 
 | 
|---|
| 1024 |  * incomplete.  For example, it doesn't consider 
 | 
|---|
| 1025 |  * the case where digits are removed from 'x' in 
 | 
|---|
| 1026 |  * the inner loop.  It also doesn't consider the 
 | 
|---|
| 1027 |  * case that y has fewer than three digits, etc..
 | 
|---|
| 1028 |  *
 | 
|---|
| 1029 |  * The overall algorithm is as described as 
 | 
|---|
| 1030 |  * 14.20 from HAC but fixed to treat these cases.
 | 
|---|
| 1031 | */
 | 
|---|
| 1032 | int mp_div (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
 | 
|---|
| 1033 | {
 | 
|---|
| 1034 |   mp_int  q, x, y, t1, t2;
 | 
|---|
| 1035 |   int     res, n, t, i, norm, neg;
 | 
|---|
| 1036 | 
 | 
|---|
| 1037 |   /* is divisor zero ? */
 | 
|---|
| 1038 |   if (mp_iszero (b) == 1) {
 | 
|---|
| 1039 |     return MP_VAL;
 | 
|---|
| 1040 |   }
 | 
|---|
| 1041 | 
 | 
|---|
| 1042 |   /* if a < b then q=0, r = a */
 | 
|---|
| 1043 |   if (mp_cmp_mag (a, b) == MP_LT) {
 | 
|---|
| 1044 |     if (d != NULL) {
 | 
|---|
| 1045 |       res = mp_copy (a, d);
 | 
|---|
| 1046 |     } else {
 | 
|---|
| 1047 |       res = MP_OKAY;
 | 
|---|
| 1048 |     }
 | 
|---|
| 1049 |     if (c != NULL) {
 | 
|---|
| 1050 |       mp_zero (c);
 | 
|---|
| 1051 |     }
 | 
|---|
| 1052 |     return res;
 | 
|---|
| 1053 |   }
 | 
|---|
| 1054 | 
 | 
|---|
| 1055 |   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
 | 
|---|
| 1056 |     return res;
 | 
|---|
| 1057 |   }
 | 
|---|
| 1058 |   q.used = a->used + 2;
 | 
|---|
| 1059 | 
 | 
|---|
| 1060 |   if ((res = mp_init (&t1)) != MP_OKAY) {
 | 
|---|
| 1061 |     goto __Q;
 | 
|---|
| 1062 |   }
 | 
|---|
| 1063 | 
 | 
|---|
| 1064 |   if ((res = mp_init (&t2)) != MP_OKAY) {
 | 
|---|
| 1065 |     goto __T1;
 | 
|---|
| 1066 |   }
 | 
|---|
| 1067 | 
 | 
|---|
| 1068 |   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
 | 
|---|
| 1069 |     goto __T2;
 | 
|---|
| 1070 |   }
 | 
|---|
| 1071 | 
 | 
|---|
| 1072 |   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
 | 
|---|
| 1073 |     goto __X;
 | 
|---|
| 1074 |   }
 | 
|---|
| 1075 | 
 | 
|---|
| 1076 |   /* fix the sign */
 | 
|---|
| 1077 |   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | 
|---|
| 1078 |   x.sign = y.sign = MP_ZPOS;
 | 
|---|
| 1079 | 
 | 
|---|
| 1080 |   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
 | 
|---|
| 1081 |   norm = mp_count_bits(&y) % DIGIT_BIT;
 | 
|---|
| 1082 |   if (norm < DIGIT_BIT-1) {
 | 
|---|
| 1083 |      norm = (DIGIT_BIT-1) - norm;
 | 
|---|
| 1084 |      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
 | 
|---|
| 1085 |        goto __Y;
 | 
|---|
| 1086 |      }
 | 
|---|
| 1087 |      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
 | 
|---|
| 1088 |        goto __Y;
 | 
|---|
| 1089 |      }
 | 
|---|
| 1090 |   } else {
 | 
|---|
| 1091 |      norm = 0;
 | 
|---|
| 1092 |   }
 | 
|---|
| 1093 | 
 | 
|---|
| 1094 |   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
 | 
|---|
| 1095 |   n = x.used - 1;
 | 
|---|
| 1096 |   t = y.used - 1;
 | 
|---|
| 1097 | 
 | 
|---|
| 1098 |   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
 | 
|---|
| 1099 |   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
 | 
|---|
| 1100 |     goto __Y;
 | 
|---|
| 1101 |   }
 | 
|---|
| 1102 | 
 | 
|---|
| 1103 |   while (mp_cmp (&x, &y) != MP_LT) {
 | 
|---|
| 1104 |     ++(q.dp[n - t]);
 | 
|---|
| 1105 |     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
 | 
|---|
| 1106 |       goto __Y;
 | 
|---|
| 1107 |     }
 | 
|---|
| 1108 |   }
 | 
|---|
| 1109 | 
 | 
|---|
| 1110 |   /* reset y by shifting it back down */
 | 
|---|
| 1111 |   mp_rshd (&y, n - t);
 | 
|---|
| 1112 | 
 | 
|---|
| 1113 |   /* step 3. for i from n down to (t + 1) */
 | 
|---|
| 1114 |   for (i = n; i >= (t + 1); i--) {
 | 
|---|
| 1115 |     if (i > x.used) {
 | 
|---|
| 1116 |       continue;
 | 
|---|
| 1117 |     }
 | 
|---|
| 1118 | 
 | 
|---|
| 1119 |     /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
 | 
|---|
| 1120 |      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
 | 
|---|
| 1121 |     if (x.dp[i] == y.dp[t]) {
 | 
|---|
| 1122 |       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
 | 
|---|
| 1123 |     } else {
 | 
|---|
| 1124 |       mp_word tmp;
 | 
|---|
| 1125 |       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
 | 
|---|
| 1126 |       tmp |= ((mp_word) x.dp[i - 1]);
 | 
|---|
| 1127 |       tmp /= ((mp_word) y.dp[t]);
 | 
|---|
| 1128 |       if (tmp > (mp_word) MP_MASK)
 | 
|---|
| 1129 |         tmp = MP_MASK;
 | 
|---|
| 1130 |       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
 | 
|---|
| 1131 |     }
 | 
|---|
| 1132 | 
 | 
|---|
| 1133 |     /* while (q{i-t-1} * (yt * b + y{t-1})) > 
 | 
|---|
| 1134 |              xi * b**2 + xi-1 * b + xi-2 
 | 
|---|
| 1135 |      
 | 
|---|
| 1136 |        do q{i-t-1} -= 1; 
 | 
|---|
| 1137 |     */
 | 
|---|
| 1138 |     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
 | 
|---|
| 1139 |     do {
 | 
|---|
| 1140 |       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
 | 
|---|
| 1141 | 
 | 
|---|
| 1142 |       /* find left hand */
 | 
|---|
| 1143 |       mp_zero (&t1);
 | 
|---|
| 1144 |       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
 | 
|---|
| 1145 |       t1.dp[1] = y.dp[t];
 | 
|---|
| 1146 |       t1.used = 2;
 | 
|---|
| 1147 |       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | 
|---|
| 1148 |         goto __Y;
 | 
|---|
| 1149 |       }
 | 
|---|
| 1150 | 
 | 
|---|
| 1151 |       /* find right hand */
 | 
|---|
| 1152 |       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
 | 
|---|
| 1153 |       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
 | 
|---|
| 1154 |       t2.dp[2] = x.dp[i];
 | 
|---|
| 1155 |       t2.used = 3;
 | 
|---|
| 1156 |     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
 | 
|---|
| 1157 | 
 | 
|---|
| 1158 |     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
 | 
|---|
| 1159 |     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | 
|---|
| 1160 |       goto __Y;
 | 
|---|
| 1161 |     }
 | 
|---|
| 1162 | 
 | 
|---|
| 1163 |     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | 
|---|
| 1164 |       goto __Y;
 | 
|---|
| 1165 |     }
 | 
|---|
| 1166 | 
 | 
|---|
| 1167 |     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
 | 
|---|
| 1168 |       goto __Y;
 | 
|---|
| 1169 |     }
 | 
|---|
| 1170 | 
 | 
|---|
| 1171 |     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
 | 
|---|
| 1172 |     if (x.sign == MP_NEG) {
 | 
|---|
| 1173 |       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
 | 
|---|
| 1174 |         goto __Y;
 | 
|---|
| 1175 |       }
 | 
|---|
| 1176 |       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | 
|---|
| 1177 |         goto __Y;
 | 
|---|
| 1178 |       }
 | 
|---|
| 1179 |       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
 | 
|---|
| 1180 |         goto __Y;
 | 
|---|
| 1181 |       }
 | 
|---|
| 1182 | 
 | 
|---|
| 1183 |       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
 | 
|---|
| 1184 |     }
 | 
|---|
| 1185 |   }
 | 
|---|
| 1186 | 
 | 
|---|
| 1187 |   /* now q is the quotient and x is the remainder 
 | 
|---|
| 1188 |    * [which we have to normalize] 
 | 
|---|
| 1189 |    */
 | 
|---|
| 1190 |   
 | 
|---|
| 1191 |   /* get sign before writing to c */
 | 
|---|
| 1192 |   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 | 
|---|
| 1193 | 
 | 
|---|
| 1194 |   if (c != NULL) {
 | 
|---|
| 1195 |     mp_clamp (&q);
 | 
|---|
| 1196 |     mp_exch (&q, c);
 | 
|---|
| 1197 |     c->sign = neg;
 | 
|---|
| 1198 |   }
 | 
|---|
| 1199 | 
 | 
|---|
| 1200 |   if (d != NULL) {
 | 
|---|
| 1201 |     mp_div_2d (&x, norm, &x, NULL);
 | 
|---|
| 1202 |     mp_exch (&x, d);
 | 
|---|
| 1203 |   }
 | 
|---|
| 1204 | 
 | 
|---|
| 1205 |   res = MP_OKAY;
 | 
|---|
| 1206 | 
 | 
|---|
| 1207 | __Y:mp_clear (&y);
 | 
|---|
| 1208 | __X:mp_clear (&x);
 | 
|---|
| 1209 | __T2:mp_clear (&t2);
 | 
|---|
| 1210 | __T1:mp_clear (&t1);
 | 
|---|
| 1211 | __Q:mp_clear (&q);
 | 
|---|
| 1212 |   return res;
 | 
|---|
| 1213 | }
 | 
|---|
| 1214 | 
 | 
|---|
| 1215 | /* b = a/2 */
 | 
|---|
| 1216 | int mp_div_2(const mp_int * a, mp_int * b)
 | 
|---|
| 1217 | {
 | 
|---|
| 1218 |   int     x, res, oldused;
 | 
|---|
| 1219 | 
 | 
|---|
| 1220 |   /* copy */
 | 
|---|
| 1221 |   if (b->alloc < a->used) {
 | 
|---|
| 1222 |     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | 
|---|
| 1223 |       return res;
 | 
|---|
| 1224 |     }
 | 
|---|
| 1225 |   }
 | 
|---|
| 1226 | 
 | 
|---|
| 1227 |   oldused = b->used;
 | 
|---|
| 1228 |   b->used = a->used;
 | 
|---|
| 1229 |   {
 | 
|---|
| 1230 |     register mp_digit r, rr, *tmpa, *tmpb;
 | 
|---|
| 1231 | 
 | 
|---|
| 1232 |     /* source alias */
 | 
|---|
| 1233 |     tmpa = a->dp + b->used - 1;
 | 
|---|
| 1234 | 
 | 
|---|
| 1235 |     /* dest alias */
 | 
|---|
| 1236 |     tmpb = b->dp + b->used - 1;
 | 
|---|
| 1237 | 
 | 
|---|
| 1238 |     /* carry */
 | 
|---|
| 1239 |     r = 0;
 | 
|---|
| 1240 |     for (x = b->used - 1; x >= 0; x--) {
 | 
|---|
| 1241 |       /* get the carry for the next iteration */
 | 
|---|
| 1242 |       rr = *tmpa & 1;
 | 
|---|
| 1243 | 
 | 
|---|
| 1244 |       /* shift the current digit, add in carry and store */
 | 
|---|
| 1245 |       *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
 | 
|---|
| 1246 | 
 | 
|---|
| 1247 |       /* forward carry to next iteration */
 | 
|---|
| 1248 |       r = rr;
 | 
|---|
| 1249 |     }
 | 
|---|
| 1250 | 
 | 
|---|
| 1251 |     /* zero excess digits */
 | 
|---|
| 1252 |     tmpb = b->dp + b->used;
 | 
|---|
| 1253 |     for (x = b->used; x < oldused; x++) {
 | 
|---|
| 1254 |       *tmpb++ = 0;
 | 
|---|
| 1255 |     }
 | 
|---|
| 1256 |   }
 | 
|---|
| 1257 |   b->sign = a->sign;
 | 
|---|
| 1258 |   mp_clamp (b);
 | 
|---|
| 1259 |   return MP_OKAY;
 | 
|---|
| 1260 | }
 | 
|---|
| 1261 | 
 | 
|---|
| 1262 | /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
 | 
|---|
| 1263 | int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
 | 
|---|
| 1264 | {
 | 
|---|
| 1265 |   mp_digit D, r, rr;
 | 
|---|
| 1266 |   int     x, res;
 | 
|---|
| 1267 |   mp_int  t;
 | 
|---|
| 1268 | 
 | 
|---|
| 1269 | 
 | 
|---|
| 1270 |   /* if the shift count is <= 0 then we do no work */
 | 
|---|
| 1271 |   if (b <= 0) {
 | 
|---|
| 1272 |     res = mp_copy (a, c);
 | 
|---|
| 1273 |     if (d != NULL) {
 | 
|---|
| 1274 |       mp_zero (d);
 | 
|---|
| 1275 |     }
 | 
|---|
| 1276 |     return res;
 | 
|---|
| 1277 |   }
 | 
|---|
| 1278 | 
 | 
|---|
| 1279 |   if ((res = mp_init (&t)) != MP_OKAY) {
 | 
|---|
| 1280 |     return res;
 | 
|---|
| 1281 |   }
 | 
|---|
| 1282 | 
 | 
|---|
| 1283 |   /* get the remainder */
 | 
|---|
| 1284 |   if (d != NULL) {
 | 
|---|
| 1285 |     if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
 | 
|---|
| 1286 |       mp_clear (&t);
 | 
|---|
| 1287 |       return res;
 | 
|---|
| 1288 |     }
 | 
|---|
| 1289 |   }
 | 
|---|
| 1290 | 
 | 
|---|
| 1291 |   /* copy */
 | 
|---|
| 1292 |   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | 
|---|
| 1293 |     mp_clear (&t);
 | 
|---|
| 1294 |     return res;
 | 
|---|
| 1295 |   }
 | 
|---|
| 1296 | 
 | 
|---|
| 1297 |   /* shift by as many digits in the bit count */
 | 
|---|
| 1298 |   if (b >= DIGIT_BIT) {
 | 
|---|
| 1299 |     mp_rshd (c, b / DIGIT_BIT);
 | 
|---|
| 1300 |   }
 | 
|---|
| 1301 | 
 | 
|---|
| 1302 |   /* shift any bit count < DIGIT_BIT */
 | 
|---|
| 1303 |   D = (mp_digit) (b % DIGIT_BIT);
 | 
|---|
| 1304 |   if (D != 0) {
 | 
|---|
| 1305 |     register mp_digit *tmpc, mask, shift;
 | 
|---|
| 1306 | 
 | 
|---|
| 1307 |     /* mask */
 | 
|---|
| 1308 |     mask = (((mp_digit)1) << D) - 1;
 | 
|---|
| 1309 | 
 | 
|---|
| 1310 |     /* shift for lsb */
 | 
|---|
| 1311 |     shift = DIGIT_BIT - D;
 | 
|---|
| 1312 | 
 | 
|---|
| 1313 |     /* alias */
 | 
|---|
| 1314 |     tmpc = c->dp + (c->used - 1);
 | 
|---|
| 1315 | 
 | 
|---|
| 1316 |     /* carry */
 | 
|---|
| 1317 |     r = 0;
 | 
|---|
| 1318 |     for (x = c->used - 1; x >= 0; x--) {
 | 
|---|
| 1319 |       /* get the lower  bits of this word in a temp */
 | 
|---|
| 1320 |       rr = *tmpc & mask;
 | 
|---|
| 1321 | 
 | 
|---|
| 1322 |       /* shift the current word and mix in the carry bits from the previous word */
 | 
|---|
| 1323 |       *tmpc = (*tmpc >> D) | (r << shift);
 | 
|---|
| 1324 |       --tmpc;
 | 
|---|
| 1325 | 
 | 
|---|
| 1326 |       /* set the carry to the carry bits of the current word found above */
 | 
|---|
| 1327 |       r = rr;
 | 
|---|
| 1328 |     }
 | 
|---|
| 1329 |   }
 | 
|---|
| 1330 |   mp_clamp (c);
 | 
|---|
| 1331 |   if (d != NULL) {
 | 
|---|
| 1332 |     mp_exch (&t, d);
 | 
|---|
| 1333 |   }
 | 
|---|
| 1334 |   mp_clear (&t);
 | 
|---|
| 1335 |   return MP_OKAY;
 | 
|---|
| 1336 | }
 | 
|---|
| 1337 | 
 | 
|---|
| 1338 | static int s_is_power_of_two(mp_digit b, int *p)
 | 
|---|
| 1339 | {
 | 
|---|
| 1340 |    int x;
 | 
|---|
| 1341 | 
 | 
|---|
| 1342 |    for (x = 1; x < DIGIT_BIT; x++) {
 | 
|---|
| 1343 |       if (b == (((mp_digit)1)<<x)) {
 | 
|---|
| 1344 |          *p = x;
 | 
|---|
| 1345 |          return 1;
 | 
|---|
| 1346 |       }
 | 
|---|
| 1347 |    }
 | 
|---|
| 1348 |    return 0;
 | 
|---|
| 1349 | }
 | 
|---|
| 1350 | 
 | 
|---|
| 1351 | /* single digit division (based on routine from MPI) */
 | 
|---|
| 1352 | int mp_div_d (const mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
 | 
|---|
| 1353 | {
 | 
|---|
| 1354 |   mp_int  q;
 | 
|---|
| 1355 |   mp_word w;
 | 
|---|
| 1356 |   mp_digit t;
 | 
|---|
| 1357 |   int     res, ix;
 | 
|---|
| 1358 | 
 | 
|---|
| 1359 |   /* cannot divide by zero */
 | 
|---|
| 1360 |   if (b == 0) {
 | 
|---|
| 1361 |      return MP_VAL;
 | 
|---|
| 1362 |   }
 | 
|---|
| 1363 | 
 | 
|---|
| 1364 |   /* quick outs */
 | 
|---|
| 1365 |   if (b == 1 || mp_iszero(a) == 1) {
 | 
|---|
| 1366 |      if (d != NULL) {
 | 
|---|
| 1367 |         *d = 0;
 | 
|---|
| 1368 |      }
 | 
|---|
| 1369 |      if (c != NULL) {
 | 
|---|
| 1370 |         return mp_copy(a, c);
 | 
|---|
| 1371 |      }
 | 
|---|
| 1372 |      return MP_OKAY;
 | 
|---|
| 1373 |   }
 | 
|---|
| 1374 | 
 | 
|---|
| 1375 |   /* power of two ? */
 | 
|---|
| 1376 |   if (s_is_power_of_two(b, &ix) == 1) {
 | 
|---|
| 1377 |      if (d != NULL) {
 | 
|---|
| 1378 |         *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
 | 
|---|
| 1379 |      }
 | 
|---|
| 1380 |      if (c != NULL) {
 | 
|---|
| 1381 |         return mp_div_2d(a, ix, c, NULL);
 | 
|---|
| 1382 |      }
 | 
|---|
| 1383 |      return MP_OKAY;
 | 
|---|
| 1384 |   }
 | 
|---|
| 1385 | 
 | 
|---|
| 1386 |   /* no easy answer [c'est la vie].  Just division */
 | 
|---|
| 1387 |   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
 | 
|---|
| 1388 |      return res;
 | 
|---|
| 1389 |   }
 | 
|---|
| 1390 |   
 | 
|---|
| 1391 |   q.used = a->used;
 | 
|---|
| 1392 |   q.sign = a->sign;
 | 
|---|
| 1393 |   w = 0;
 | 
|---|
| 1394 |   for (ix = a->used - 1; ix >= 0; ix--) {
 | 
|---|
| 1395 |      w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
 | 
|---|
| 1396 |      
 | 
|---|
| 1397 |      if (w >= b) {
 | 
|---|
| 1398 |         t = (mp_digit)(w / b);
 | 
|---|
| 1399 |         w -= ((mp_word)t) * ((mp_word)b);
 | 
|---|
| 1400 |       } else {
 | 
|---|
| 1401 |         t = 0;
 | 
|---|
| 1402 |       }
 | 
|---|
| 1403 |       q.dp[ix] = t;
 | 
|---|
| 1404 |   }
 | 
|---|
| 1405 | 
 | 
|---|
| 1406 |   if (d != NULL) {
 | 
|---|
| 1407 |      *d = (mp_digit)w;
 | 
|---|
| 1408 |   }
 | 
|---|
| 1409 |   
 | 
|---|
| 1410 |   if (c != NULL) {
 | 
|---|
| 1411 |      mp_clamp(&q);
 | 
|---|
| 1412 |      mp_exch(&q, c);
 | 
|---|
| 1413 |   }
 | 
|---|
| 1414 |   mp_clear(&q);
 | 
|---|
| 1415 |   
 | 
|---|
| 1416 |   return res;
 | 
|---|
| 1417 | }
 | 
|---|
| 1418 | 
 | 
|---|
| 1419 | /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 | 
|---|
| 1420 |  *
 | 
|---|
| 1421 |  * Based on algorithm from the paper
 | 
|---|
| 1422 |  *
 | 
|---|
| 1423 |  * "Generating Efficient Primes for Discrete Log Cryptosystems"
 | 
|---|
| 1424 |  *                 Chae Hoon Lim, Pil Loong Lee,
 | 
|---|
| 1425 |  *          POSTECH Information Research Laboratories
 | 
|---|
| 1426 |  *
 | 
|---|
| 1427 |  * The modulus must be of a special format [see manual]
 | 
|---|
| 1428 |  *
 | 
|---|
| 1429 |  * Has been modified to use algorithm 7.10 from the LTM book instead
 | 
|---|
| 1430 |  *
 | 
|---|
| 1431 |  * Input x must be in the range 0 <= x <= (n-1)**2
 | 
|---|
| 1432 |  */
 | 
|---|
| 1433 | int
 | 
|---|
| 1434 | mp_dr_reduce (mp_int * x, const mp_int * n, mp_digit k)
 | 
|---|
| 1435 | {
 | 
|---|
| 1436 |   int      err, i, m;
 | 
|---|
| 1437 |   mp_word  r;
 | 
|---|
| 1438 |   mp_digit mu, *tmpx1, *tmpx2;
 | 
|---|
| 1439 | 
 | 
|---|
| 1440 |   /* m = digits in modulus */
 | 
|---|
| 1441 |   m = n->used;
 | 
|---|
| 1442 | 
 | 
|---|
| 1443 |   /* ensure that "x" has at least 2m digits */
 | 
|---|
| 1444 |   if (x->alloc < m + m) {
 | 
|---|
| 1445 |     if ((err = mp_grow (x, m + m)) != MP_OKAY) {
 | 
|---|
| 1446 |       return err;
 | 
|---|
| 1447 |     }
 | 
|---|
| 1448 |   }
 | 
|---|
| 1449 | 
 | 
|---|
| 1450 | /* top of loop, this is where the code resumes if
 | 
|---|
| 1451 |  * another reduction pass is required.
 | 
|---|
| 1452 |  */
 | 
|---|
| 1453 | top:
 | 
|---|
| 1454 |   /* aliases for digits */
 | 
|---|
| 1455 |   /* alias for lower half of x */
 | 
|---|
| 1456 |   tmpx1 = x->dp;
 | 
|---|
| 1457 | 
 | 
|---|
| 1458 |   /* alias for upper half of x, or x/B**m */
 | 
|---|
| 1459 |   tmpx2 = x->dp + m;
 | 
|---|
| 1460 | 
 | 
|---|
| 1461 |   /* set carry to zero */
 | 
|---|
| 1462 |   mu = 0;
 | 
|---|
| 1463 | 
 | 
|---|
| 1464 |   /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
 | 
|---|
| 1465 |   for (i = 0; i < m; i++) {
 | 
|---|
| 1466 |       r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
 | 
|---|
| 1467 |       *tmpx1++  = (mp_digit)(r & MP_MASK);
 | 
|---|
| 1468 |       mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
 | 
|---|
| 1469 |   }
 | 
|---|
| 1470 | 
 | 
|---|
| 1471 |   /* set final carry */
 | 
|---|
| 1472 |   *tmpx1++ = mu;
 | 
|---|
| 1473 | 
 | 
|---|
| 1474 |   /* zero words above m */
 | 
|---|
| 1475 |   for (i = m + 1; i < x->used; i++) {
 | 
|---|
| 1476 |       *tmpx1++ = 0;
 | 
|---|
| 1477 |   }
 | 
|---|
| 1478 | 
 | 
|---|
| 1479 |   /* clamp, sub and return */
 | 
|---|
| 1480 |   mp_clamp (x);
 | 
|---|
| 1481 | 
 | 
|---|
| 1482 |   /* if x >= n then subtract and reduce again
 | 
|---|
| 1483 |    * Each successive "recursion" makes the input smaller and smaller.
 | 
|---|
| 1484 |    */
 | 
|---|
| 1485 |   if (mp_cmp_mag (x, n) != MP_LT) {
 | 
|---|
| 1486 |     s_mp_sub(x, n, x);
 | 
|---|
| 1487 |     goto top;
 | 
|---|
| 1488 |   }
 | 
|---|
| 1489 |   return MP_OKAY;
 | 
|---|
| 1490 | }
 | 
|---|
| 1491 | 
 | 
|---|
| 1492 | /* determines the setup value */
 | 
|---|
| 1493 | void mp_dr_setup(const mp_int *a, mp_digit *d)
 | 
|---|
| 1494 | {
 | 
|---|
| 1495 |    /* the casts are required if DIGIT_BIT is one less than
 | 
|---|
| 1496 |     * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
 | 
|---|
| 1497 |     */
 | 
|---|
| 1498 |    *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
 | 
|---|
| 1499 |         ((mp_word)a->dp[0]));
 | 
|---|
| 1500 | }
 | 
|---|
| 1501 | 
 | 
|---|
| 1502 | /* swap the elements of two integers, for cases where you can't simply swap the 
 | 
|---|
| 1503 |  * mp_int pointers around
 | 
|---|
| 1504 |  */
 | 
|---|
| 1505 | void
 | 
|---|
| 1506 | mp_exch (mp_int * a, mp_int * b)
 | 
|---|
| 1507 | {
 | 
|---|
| 1508 |   mp_int  t;
 | 
|---|
| 1509 | 
 | 
|---|
| 1510 |   t  = *a;
 | 
|---|
| 1511 |   *a = *b;
 | 
|---|
| 1512 |   *b = t;
 | 
|---|
| 1513 | }
 | 
|---|
| 1514 | 
 | 
|---|
| 1515 | /* this is a shell function that calls either the normal or Montgomery
 | 
|---|
| 1516 |  * exptmod functions.  Originally the call to the montgomery code was
 | 
|---|
| 1517 |  * embedded in the normal function but that wasted a lot of stack space
 | 
|---|
| 1518 |  * for nothing (since 99% of the time the Montgomery code would be called)
 | 
|---|
| 1519 |  */
 | 
|---|
| 1520 | int mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
 | 
|---|
| 1521 | {
 | 
|---|
| 1522 |   int dr;
 | 
|---|
| 1523 | 
 | 
|---|
| 1524 |   /* modulus P must be positive */
 | 
|---|
| 1525 |   if (P->sign == MP_NEG) {
 | 
|---|
| 1526 |      return MP_VAL;
 | 
|---|
| 1527 |   }
 | 
|---|
| 1528 | 
 | 
|---|
| 1529 |   /* if exponent X is negative we have to recurse */
 | 
|---|
| 1530 |   if (X->sign == MP_NEG) {
 | 
|---|
| 1531 |      mp_int tmpG, tmpX;
 | 
|---|
| 1532 |      int err;
 | 
|---|
| 1533 | 
 | 
|---|
| 1534 |      /* first compute 1/G mod P */
 | 
|---|
| 1535 |      if ((err = mp_init(&tmpG)) != MP_OKAY) {
 | 
|---|
| 1536 |         return err;
 | 
|---|
| 1537 |      }
 | 
|---|
| 1538 |      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | 
|---|
| 1539 |         mp_clear(&tmpG);
 | 
|---|
| 1540 |         return err;
 | 
|---|
| 1541 |      }
 | 
|---|
| 1542 | 
 | 
|---|
| 1543 |      /* now get |X| */
 | 
|---|
| 1544 |      if ((err = mp_init(&tmpX)) != MP_OKAY) {
 | 
|---|
| 1545 |         mp_clear(&tmpG);
 | 
|---|
| 1546 |         return err;
 | 
|---|
| 1547 |      }
 | 
|---|
| 1548 |      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | 
|---|
| 1549 |         mp_clear_multi(&tmpG, &tmpX, NULL);
 | 
|---|
| 1550 |         return err;
 | 
|---|
| 1551 |      }
 | 
|---|
| 1552 | 
 | 
|---|
| 1553 |      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | 
|---|
| 1554 |      err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | 
|---|
| 1555 |      mp_clear_multi(&tmpG, &tmpX, NULL);
 | 
|---|
| 1556 |      return err;
 | 
|---|
| 1557 |   }
 | 
|---|
| 1558 | 
 | 
|---|
| 1559 |   dr = 0;
 | 
|---|
| 1560 | 
 | 
|---|
| 1561 |   /* if the modulus is odd or dr != 0 use the fast method */
 | 
|---|
| 1562 |   if (mp_isodd (P) == 1 || dr !=  0) {
 | 
|---|
| 1563 |     return mp_exptmod_fast (G, X, P, Y, dr);
 | 
|---|
| 1564 |   } else {
 | 
|---|
| 1565 |     /* otherwise use the generic Barrett reduction technique */
 | 
|---|
| 1566 |     return s_mp_exptmod (G, X, P, Y);
 | 
|---|
| 1567 |   }
 | 
|---|
| 1568 | }
 | 
|---|
| 1569 | 
 | 
|---|
| 1570 | /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 | 
|---|
| 1571 |  *
 | 
|---|
| 1572 |  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 | 
|---|
| 1573 |  * The value of k changes based on the size of the exponent.
 | 
|---|
| 1574 |  *
 | 
|---|
| 1575 |  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 | 
|---|
| 1576 |  */
 | 
|---|
| 1577 | 
 | 
|---|
| 1578 | int
 | 
|---|
| 1579 | mp_exptmod_fast (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | 
|---|
| 1580 | {
 | 
|---|
| 1581 |   mp_int  M[256], res;
 | 
|---|
| 1582 |   mp_digit buf, mp;
 | 
|---|
| 1583 |   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | 
|---|
| 1584 | 
 | 
|---|
| 1585 |   /* use a pointer to the reduction algorithm.  This allows us to use
 | 
|---|
| 1586 |    * one of many reduction algorithms without modding the guts of
 | 
|---|
| 1587 |    * the code with if statements everywhere.
 | 
|---|
| 1588 |    */
 | 
|---|
| 1589 |   int     (*redux)(mp_int*,const mp_int*,mp_digit);
 | 
|---|
| 1590 | 
 | 
|---|
| 1591 |   /* find window size */
 | 
|---|
| 1592 |   x = mp_count_bits (X);
 | 
|---|
| 1593 |   if (x <= 7) {
 | 
|---|
| 1594 |     winsize = 2;
 | 
|---|
| 1595 |   } else if (x <= 36) {
 | 
|---|
| 1596 |     winsize = 3;
 | 
|---|
| 1597 |   } else if (x <= 140) {
 | 
|---|
| 1598 |     winsize = 4;
 | 
|---|
| 1599 |   } else if (x <= 450) {
 | 
|---|
| 1600 |     winsize = 5;
 | 
|---|
| 1601 |   } else if (x <= 1303) {
 | 
|---|
| 1602 |     winsize = 6;
 | 
|---|
| 1603 |   } else if (x <= 3529) {
 | 
|---|
| 1604 |     winsize = 7;
 | 
|---|
| 1605 |   } else {
 | 
|---|
| 1606 |     winsize = 8;
 | 
|---|
| 1607 |   }
 | 
|---|
| 1608 | 
 | 
|---|
| 1609 |   /* init M array */
 | 
|---|
| 1610 |   /* init first cell */
 | 
|---|
| 1611 |   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | 
|---|
| 1612 |      return err;
 | 
|---|
| 1613 |   }
 | 
|---|
| 1614 | 
 | 
|---|
| 1615 |   /* now init the second half of the array */
 | 
|---|
| 1616 |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
|---|
| 1617 |     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | 
|---|
| 1618 |       for (y = 1<<(winsize-1); y < x; y++) {
 | 
|---|
| 1619 |         mp_clear (&M[y]);
 | 
|---|
| 1620 |       }
 | 
|---|
| 1621 |       mp_clear(&M[1]);
 | 
|---|
| 1622 |       return err;
 | 
|---|
| 1623 |     }
 | 
|---|
| 1624 |   }
 | 
|---|
| 1625 | 
 | 
|---|
| 1626 |   /* determine and setup reduction code */
 | 
|---|
| 1627 |   if (redmode == 0) {
 | 
|---|
| 1628 |      /* now setup montgomery  */
 | 
|---|
| 1629 |      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
 | 
|---|
| 1630 |         goto __M;
 | 
|---|
| 1631 |      }
 | 
|---|
| 1632 | 
 | 
|---|
| 1633 |      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
 | 
|---|
| 1634 |      if (((P->used * 2 + 1) < MP_WARRAY) &&
 | 
|---|
| 1635 |           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
|---|
| 1636 |         redux = fast_mp_montgomery_reduce;
 | 
|---|
| 1637 |      } else {
 | 
|---|
| 1638 |         /* use slower baseline Montgomery method */
 | 
|---|
| 1639 |         redux = mp_montgomery_reduce;
 | 
|---|
| 1640 |      }
 | 
|---|
| 1641 |   } else if (redmode == 1) {
 | 
|---|
| 1642 |      /* setup DR reduction for moduli of the form B**k - b */
 | 
|---|
| 1643 |      mp_dr_setup(P, &mp);
 | 
|---|
| 1644 |      redux = mp_dr_reduce;
 | 
|---|
| 1645 |   } else {
 | 
|---|
| 1646 |      /* setup DR reduction for moduli of the form 2**k - b */
 | 
|---|
| 1647 |      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
 | 
|---|
| 1648 |         goto __M;
 | 
|---|
| 1649 |      }
 | 
|---|
| 1650 |      redux = mp_reduce_2k;
 | 
|---|
| 1651 |   }
 | 
|---|
| 1652 | 
 | 
|---|
| 1653 |   /* setup result */
 | 
|---|
| 1654 |   if ((err = mp_init (&res)) != MP_OKAY) {
 | 
|---|
| 1655 |     goto __M;
 | 
|---|
| 1656 |   }
 | 
|---|
| 1657 | 
 | 
|---|
| 1658 |   /* create M table
 | 
|---|
| 1659 |    *
 | 
|---|
| 1660 | 
 | 
|---|
| 1661 |    *
 | 
|---|
| 1662 |    * The first half of the table is not computed though accept for M[0] and M[1]
 | 
|---|
| 1663 |    */
 | 
|---|
| 1664 | 
 | 
|---|
| 1665 |   if (redmode == 0) {
 | 
|---|
| 1666 |      /* now we need R mod m */
 | 
|---|
| 1667 |      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
 | 
|---|
| 1668 |        goto __RES;
 | 
|---|
| 1669 |      }
 | 
|---|
| 1670 | 
 | 
|---|
| 1671 |      /* now set M[1] to G * R mod m */
 | 
|---|
| 1672 |      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
 | 
|---|
| 1673 |        goto __RES;
 | 
|---|
| 1674 |      }
 | 
|---|
| 1675 |   } else {
 | 
|---|
| 1676 |      mp_set(&res, 1);
 | 
|---|
| 1677 |      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
 | 
|---|
| 1678 |         goto __RES;
 | 
|---|
| 1679 |      }
 | 
|---|
| 1680 |   }
 | 
|---|
| 1681 | 
 | 
|---|
| 1682 |   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
 | 
|---|
| 1683 |   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
|---|
| 1684 |     goto __RES;
 | 
|---|
| 1685 |   }
 | 
|---|
| 1686 | 
 | 
|---|
| 1687 |   for (x = 0; x < (winsize - 1); x++) {
 | 
|---|
| 1688 |     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
|---|
| 1689 |       goto __RES;
 | 
|---|
| 1690 |     }
 | 
|---|
| 1691 |     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
 | 
|---|
| 1692 |       goto __RES;
 | 
|---|
| 1693 |     }
 | 
|---|
| 1694 |   }
 | 
|---|
| 1695 | 
 | 
|---|
| 1696 |   /* create upper table */
 | 
|---|
| 1697 |   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | 
|---|
| 1698 |     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | 
|---|
| 1699 |       goto __RES;
 | 
|---|
| 1700 |     }
 | 
|---|
| 1701 |     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
 | 
|---|
| 1702 |       goto __RES;
 | 
|---|
| 1703 |     }
 | 
|---|
| 1704 |   }
 | 
|---|
| 1705 | 
 | 
|---|
| 1706 |   /* set initial mode and bit cnt */
 | 
|---|
| 1707 |   mode   = 0;
 | 
|---|
| 1708 |   bitcnt = 1;
 | 
|---|
| 1709 |   buf    = 0;
 | 
|---|
| 1710 |   digidx = X->used - 1;
 | 
|---|
| 1711 |   bitcpy = 0;
 | 
|---|
| 1712 |   bitbuf = 0;
 | 
|---|
| 1713 | 
 | 
|---|
| 1714 |   for (;;) {
 | 
|---|
| 1715 |     /* grab next digit as required */
 | 
|---|
| 1716 |     if (--bitcnt == 0) {
 | 
|---|
| 1717 |       /* if digidx == -1 we are out of digits so break */
 | 
|---|
| 1718 |       if (digidx == -1) {
 | 
|---|
| 1719 |         break;
 | 
|---|
| 1720 |       }
 | 
|---|
| 1721 |       /* read next digit and reset bitcnt */
 | 
|---|
| 1722 |       buf    = X->dp[digidx--];
 | 
|---|
| 1723 |       bitcnt = DIGIT_BIT;
 | 
|---|
| 1724 |     }
 | 
|---|
| 1725 | 
 | 
|---|
| 1726 |     /* grab the next msb from the exponent */
 | 
|---|
| 1727 |     y     = (buf >> (DIGIT_BIT - 1)) & 1;
 | 
|---|
| 1728 |     buf <<= (mp_digit)1;
 | 
|---|
| 1729 | 
 | 
|---|
| 1730 |     /* if the bit is zero and mode == 0 then we ignore it
 | 
|---|
| 1731 |      * These represent the leading zero bits before the first 1 bit
 | 
|---|
| 1732 |      * in the exponent.  Technically this opt is not required but it
 | 
|---|
| 1733 |      * does lower the # of trivial squaring/reductions used
 | 
|---|
| 1734 |      */
 | 
|---|
| 1735 |     if (mode == 0 && y == 0) {
 | 
|---|
| 1736 |       continue;
 | 
|---|
| 1737 |     }
 | 
|---|
| 1738 | 
 | 
|---|
| 1739 |     /* if the bit is zero and mode == 1 then we square */
 | 
|---|
| 1740 |     if (mode == 1 && y == 0) {
 | 
|---|
| 1741 |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
|---|
| 1742 |         goto __RES;
 | 
|---|
| 1743 |       }
 | 
|---|
| 1744 |       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
|---|
| 1745 |         goto __RES;
 | 
|---|
| 1746 |       }
 | 
|---|
| 1747 |       continue;
 | 
|---|
| 1748 |     }
 | 
|---|
| 1749 | 
 | 
|---|
| 1750 |     /* else we add it to the window */
 | 
|---|
| 1751 |     bitbuf |= (y << (winsize - ++bitcpy));
 | 
|---|
| 1752 |     mode    = 2;
 | 
|---|
| 1753 | 
 | 
|---|
| 1754 |     if (bitcpy == winsize) {
 | 
|---|
| 1755 |       /* ok window is filled so square as required and multiply  */
 | 
|---|
| 1756 |       /* square first */
 | 
|---|
| 1757 |       for (x = 0; x < winsize; x++) {
 | 
|---|
| 1758 |         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
|---|
| 1759 |           goto __RES;
 | 
|---|
| 1760 |         }
 | 
|---|
| 1761 |         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
|---|
| 1762 |           goto __RES;
 | 
|---|
| 1763 |         }
 | 
|---|
| 1764 |       }
 | 
|---|
| 1765 | 
 | 
|---|
| 1766 |       /* then multiply */
 | 
|---|
| 1767 |       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | 
|---|
| 1768 |         goto __RES;
 | 
|---|
| 1769 |       }
 | 
|---|
| 1770 |       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
|---|
| 1771 |         goto __RES;
 | 
|---|
| 1772 |       }
 | 
|---|
| 1773 | 
 | 
|---|
| 1774 |       /* empty window and reset */
 | 
|---|
| 1775 |       bitcpy = 0;
 | 
|---|
| 1776 |       bitbuf = 0;
 | 
|---|
| 1777 |       mode   = 1;
 | 
|---|
| 1778 |     }
 | 
|---|
| 1779 |   }
 | 
|---|
| 1780 | 
 | 
|---|
| 1781 |   /* if bits remain then square/multiply */
 | 
|---|
| 1782 |   if (mode == 2 && bitcpy > 0) {
 | 
|---|
| 1783 |     /* square then multiply if the bit is set */
 | 
|---|
| 1784 |     for (x = 0; x < bitcpy; x++) {
 | 
|---|
| 1785 |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
|---|
| 1786 |         goto __RES;
 | 
|---|
| 1787 |       }
 | 
|---|
| 1788 |       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
|---|
| 1789 |         goto __RES;
 | 
|---|
| 1790 |       }
 | 
|---|
| 1791 | 
 | 
|---|
| 1792 |       /* get next bit of the window */
 | 
|---|
| 1793 |       bitbuf <<= 1;
 | 
|---|
| 1794 |       if ((bitbuf & (1 << winsize)) != 0) {
 | 
|---|
| 1795 |         /* then multiply */
 | 
|---|
| 1796 |         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | 
|---|
| 1797 |           goto __RES;
 | 
|---|
| 1798 |         }
 | 
|---|
| 1799 |         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
|---|
| 1800 |           goto __RES;
 | 
|---|
| 1801 |         }
 | 
|---|
| 1802 |       }
 | 
|---|
| 1803 |     }
 | 
|---|
| 1804 |   }
 | 
|---|
| 1805 | 
 | 
|---|
| 1806 |   if (redmode == 0) {
 | 
|---|
| 1807 |      /* fixup result if Montgomery reduction is used
 | 
|---|
| 1808 |       * recall that any value in a Montgomery system is
 | 
|---|
| 1809 |       * actually multiplied by R mod n.  So we have
 | 
|---|
| 1810 |       * to reduce one more time to cancel out the factor
 | 
|---|
| 1811 |       * of R.
 | 
|---|
| 1812 |       */
 | 
|---|
| 1813 |      if ((err = redux(&res, P, mp)) != MP_OKAY) {
 | 
|---|
| 1814 |        goto __RES;
 | 
|---|
| 1815 |      }
 | 
|---|
| 1816 |   }
 | 
|---|
| 1817 | 
 | 
|---|
| 1818 |   /* swap res with Y */
 | 
|---|
| 1819 |   mp_exch (&res, Y);
 | 
|---|
| 1820 |   err = MP_OKAY;
 | 
|---|
| 1821 | __RES:mp_clear (&res);
 | 
|---|
| 1822 | __M:
 | 
|---|
| 1823 |   mp_clear(&M[1]);
 | 
|---|
| 1824 |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
|---|
| 1825 |     mp_clear (&M[x]);
 | 
|---|
| 1826 |   }
 | 
|---|
| 1827 |   return err;
 | 
|---|
| 1828 | }
 | 
|---|
| 1829 | 
 | 
|---|
| 1830 | /* Greatest Common Divisor using the binary method */
 | 
|---|
| 1831 | int mp_gcd (const mp_int * a, const mp_int * b, mp_int * c)
 | 
|---|
| 1832 | {
 | 
|---|
| 1833 |   mp_int  u, v;
 | 
|---|
| 1834 |   int     k, u_lsb, v_lsb, res;
 | 
|---|
| 1835 | 
 | 
|---|
| 1836 |   /* either zero than gcd is the largest */
 | 
|---|
| 1837 |   if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
 | 
|---|
| 1838 |     return mp_abs (b, c);
 | 
|---|
| 1839 |   }
 | 
|---|
| 1840 |   if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
 | 
|---|
| 1841 |     return mp_abs (a, c);
 | 
|---|
| 1842 |   }
 | 
|---|
| 1843 | 
 | 
|---|
| 1844 |   /* optimized.  At this point if a == 0 then
 | 
|---|
| 1845 |    * b must equal zero too
 | 
|---|
| 1846 |    */
 | 
|---|
| 1847 |   if (mp_iszero (a) == 1) {
 | 
|---|
| 1848 |     mp_zero(c);
 | 
|---|
| 1849 |     return MP_OKAY;
 | 
|---|
| 1850 |   }
 | 
|---|
| 1851 | 
 | 
|---|
| 1852 |   /* get copies of a and b we can modify */
 | 
|---|
| 1853 |   if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
 | 
|---|
| 1854 |     return res;
 | 
|---|
| 1855 |   }
 | 
|---|
| 1856 | 
 | 
|---|
| 1857 |   if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
 | 
|---|
| 1858 |     goto __U;
 | 
|---|
| 1859 |   }
 | 
|---|
| 1860 | 
 | 
|---|
| 1861 |   /* must be positive for the remainder of the algorithm */
 | 
|---|
| 1862 |   u.sign = v.sign = MP_ZPOS;
 | 
|---|
| 1863 | 
 | 
|---|
| 1864 |   /* B1.  Find the common power of two for u and v */
 | 
|---|
| 1865 |   u_lsb = mp_cnt_lsb(&u);
 | 
|---|
| 1866 |   v_lsb = mp_cnt_lsb(&v);
 | 
|---|
| 1867 |   k     = MIN(u_lsb, v_lsb);
 | 
|---|
| 1868 | 
 | 
|---|
| 1869 |   if (k > 0) {
 | 
|---|
| 1870 |      /* divide the power of two out */
 | 
|---|
| 1871 |      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
 | 
|---|
| 1872 |         goto __V;
 | 
|---|
| 1873 |      }
 | 
|---|
| 1874 | 
 | 
|---|
| 1875 |      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
 | 
|---|
| 1876 |         goto __V;
 | 
|---|
| 1877 |      }
 | 
|---|
| 1878 |   }
 | 
|---|
| 1879 | 
 | 
|---|
| 1880 |   /* divide any remaining factors of two out */
 | 
|---|
| 1881 |   if (u_lsb != k) {
 | 
|---|
| 1882 |      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
 | 
|---|
| 1883 |         goto __V;
 | 
|---|
| 1884 |      }
 | 
|---|
| 1885 |   }
 | 
|---|
| 1886 | 
 | 
|---|
| 1887 |   if (v_lsb != k) {
 | 
|---|
| 1888 |      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
 | 
|---|
| 1889 |         goto __V;
 | 
|---|
| 1890 |      }
 | 
|---|
| 1891 |   }
 | 
|---|
| 1892 | 
 | 
|---|
| 1893 |   while (mp_iszero(&v) == 0) {
 | 
|---|
| 1894 |      /* make sure v is the largest */
 | 
|---|
| 1895 |      if (mp_cmp_mag(&u, &v) == MP_GT) {
 | 
|---|
| 1896 |         /* swap u and v to make sure v is >= u */
 | 
|---|
| 1897 |         mp_exch(&u, &v);
 | 
|---|
| 1898 |      }
 | 
|---|
| 1899 |      
 | 
|---|
| 1900 |      /* subtract smallest from largest */
 | 
|---|
| 1901 |      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
 | 
|---|
| 1902 |         goto __V;
 | 
|---|
| 1903 |      }
 | 
|---|
| 1904 |      
 | 
|---|
| 1905 |      /* Divide out all factors of two */
 | 
|---|
| 1906 |      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
 | 
|---|
| 1907 |         goto __V;
 | 
|---|
| 1908 |      } 
 | 
|---|
| 1909 |   } 
 | 
|---|
| 1910 | 
 | 
|---|
| 1911 |   /* multiply by 2**k which we divided out at the beginning */
 | 
|---|
| 1912 |   if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
 | 
|---|
| 1913 |      goto __V;
 | 
|---|
| 1914 |   }
 | 
|---|
| 1915 |   c->sign = MP_ZPOS;
 | 
|---|
| 1916 |   res = MP_OKAY;
 | 
|---|
| 1917 | __V:mp_clear (&u);
 | 
|---|
| 1918 | __U:mp_clear (&v);
 | 
|---|
| 1919 |   return res;
 | 
|---|
| 1920 | }
 | 
|---|
| 1921 | 
 | 
|---|
| 1922 | /* get the lower 32-bits of an mp_int */
 | 
|---|
| 1923 | unsigned long mp_get_int(const mp_int * a)
 | 
|---|
| 1924 | {
 | 
|---|
| 1925 |   int i;
 | 
|---|
| 1926 |   unsigned long res;
 | 
|---|
| 1927 | 
 | 
|---|
| 1928 |   if (a->used == 0) {
 | 
|---|
| 1929 |      return 0;
 | 
|---|
| 1930 |   }
 | 
|---|
| 1931 | 
 | 
|---|
| 1932 |   /* get number of digits of the lsb we have to read */
 | 
|---|
| 1933 |   i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
 | 
|---|
| 1934 | 
 | 
|---|
| 1935 |   /* get most significant digit of result */
 | 
|---|
| 1936 |   res = DIGIT(a,i);
 | 
|---|
| 1937 |    
 | 
|---|
| 1938 |   while (--i >= 0) {
 | 
|---|
| 1939 |     res = (res << DIGIT_BIT) | DIGIT(a,i);
 | 
|---|
| 1940 |   }
 | 
|---|
| 1941 | 
 | 
|---|
| 1942 |   /* force result to 32-bits always so it is consistent on non 32-bit platforms */
 | 
|---|
| 1943 |   return res & 0xFFFFFFFFUL;
 | 
|---|
| 1944 | }
 | 
|---|
| 1945 | 
 | 
|---|
| 1946 | /* grow as required */
 | 
|---|
| 1947 | int mp_grow (mp_int * a, int size)
 | 
|---|
| 1948 | {
 | 
|---|
| 1949 |   int     i;
 | 
|---|
| 1950 |   mp_digit *tmp;
 | 
|---|
| 1951 | 
 | 
|---|
| 1952 |   /* if the alloc size is smaller alloc more ram */
 | 
|---|
| 1953 |   if (a->alloc < size) {
 | 
|---|
| 1954 |     /* ensure there are always at least MP_PREC digits extra on top */
 | 
|---|
| 1955 |     size += (MP_PREC * 2) - (size % MP_PREC);
 | 
|---|
| 1956 | 
 | 
|---|
| 1957 |     /* reallocate the array a->dp
 | 
|---|
| 1958 |      *
 | 
|---|
| 1959 |      * We store the return in a temporary variable
 | 
|---|
| 1960 |      * in case the operation failed we don't want
 | 
|---|
| 1961 |      * to overwrite the dp member of a.
 | 
|---|
| 1962 |      */
 | 
|---|
| 1963 |     tmp = realloc (a->dp, sizeof (mp_digit) * size);
 | 
|---|
| 1964 |     if (tmp == NULL) {
 | 
|---|
| 1965 |       /* reallocation failed but "a" is still valid [can be freed] */
 | 
|---|
| 1966 |       return MP_MEM;
 | 
|---|
| 1967 |     }
 | 
|---|
| 1968 | 
 | 
|---|
| 1969 |     /* reallocation succeeded so set a->dp */
 | 
|---|
| 1970 |     a->dp = tmp;
 | 
|---|
| 1971 | 
 | 
|---|
| 1972 |     /* zero excess digits */
 | 
|---|
| 1973 |     i        = a->alloc;
 | 
|---|
| 1974 |     a->alloc = size;
 | 
|---|
| 1975 |     for (; i < a->alloc; i++) {
 | 
|---|
| 1976 |       a->dp[i] = 0;
 | 
|---|
| 1977 |     }
 | 
|---|
| 1978 |   }
 | 
|---|
| 1979 |   return MP_OKAY;
 | 
|---|
| 1980 | }
 | 
|---|
| 1981 | 
 | 
|---|
| 1982 | /* init a new mp_int */
 | 
|---|
| 1983 | int mp_init (mp_int * a)
 | 
|---|
| 1984 | {
 | 
|---|
| 1985 |   int i;
 | 
|---|
| 1986 | 
 | 
|---|
| 1987 |   /* allocate memory required and clear it */
 | 
|---|
| 1988 |   a->dp = malloc (sizeof (mp_digit) * MP_PREC);
 | 
|---|
| 1989 |   if (a->dp == NULL) {
 | 
|---|
| 1990 |     return MP_MEM;
 | 
|---|
| 1991 |   }
 | 
|---|
| 1992 | 
 | 
|---|
| 1993 |   /* set the digits to zero */
 | 
|---|
| 1994 |   for (i = 0; i < MP_PREC; i++) {
 | 
|---|
| 1995 |       a->dp[i] = 0;
 | 
|---|
| 1996 |   }
 | 
|---|
| 1997 | 
 | 
|---|
| 1998 |   /* set the used to zero, allocated digits to the default precision
 | 
|---|
| 1999 |    * and sign to positive */
 | 
|---|
| 2000 |   a->used  = 0;
 | 
|---|
| 2001 |   a->alloc = MP_PREC;
 | 
|---|
| 2002 |   a->sign  = MP_ZPOS;
 | 
|---|
| 2003 | 
 | 
|---|
| 2004 |   return MP_OKAY;
 | 
|---|
| 2005 | }
 | 
|---|
| 2006 | 
 | 
|---|
| 2007 | /* creates "a" then copies b into it */
 | 
|---|
| 2008 | int mp_init_copy (mp_int * a, const mp_int * b)
 | 
|---|
| 2009 | {
 | 
|---|
| 2010 |   int     res;
 | 
|---|
| 2011 | 
 | 
|---|
| 2012 |   if ((res = mp_init (a)) != MP_OKAY) {
 | 
|---|
| 2013 |     return res;
 | 
|---|
| 2014 |   }
 | 
|---|
| 2015 |   return mp_copy (b, a);
 | 
|---|
| 2016 | }
 | 
|---|
| 2017 | 
 | 
|---|
| 2018 | int mp_init_multi(mp_int *mp, ...) 
 | 
|---|
| 2019 | {
 | 
|---|
| 2020 |     mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
 | 
|---|
| 2021 |     int n = 0;                 /* Number of ok inits */
 | 
|---|
| 2022 |     mp_int* cur_arg = mp;
 | 
|---|
| 2023 |     va_list args;
 | 
|---|
| 2024 | 
 | 
|---|
| 2025 |     va_start(args, mp);        /* init args to next argument from caller */
 | 
|---|
| 2026 |     while (cur_arg != NULL) {
 | 
|---|
| 2027 |         if (mp_init(cur_arg) != MP_OKAY) {
 | 
|---|
| 2028 |             /* Oops - error! Back-track and mp_clear what we already
 | 
|---|
| 2029 |                succeeded in init-ing, then return error.
 | 
|---|
| 2030 |             */
 | 
|---|
| 2031 |             va_list clean_args;
 | 
|---|
| 2032 |             
 | 
|---|
| 2033 |             /* end the current list */
 | 
|---|
| 2034 |             va_end(args);
 | 
|---|
| 2035 |             
 | 
|---|
| 2036 |             /* now start cleaning up */            
 | 
|---|
| 2037 |             cur_arg = mp;
 | 
|---|
| 2038 |             va_start(clean_args, mp);
 | 
|---|
| 2039 |             while (n--) {
 | 
|---|
| 2040 |                 mp_clear(cur_arg);
 | 
|---|
| 2041 |                 cur_arg = va_arg(clean_args, mp_int*);
 | 
|---|
| 2042 |             }
 | 
|---|
| 2043 |             va_end(clean_args);
 | 
|---|
| 2044 |             res = MP_MEM;
 | 
|---|
| 2045 |             break;
 | 
|---|
| 2046 |         }
 | 
|---|
| 2047 |         n++;
 | 
|---|
| 2048 |         cur_arg = va_arg(args, mp_int*);
 | 
|---|
| 2049 |     }
 | 
|---|
| 2050 |     va_end(args);
 | 
|---|
| 2051 |     return res;                /* Assumed ok, if error flagged above. */
 | 
|---|
| 2052 | }
 | 
|---|
| 2053 | 
 | 
|---|
| 2054 | /* init an mp_init for a given size */
 | 
|---|
| 2055 | int mp_init_size (mp_int * a, int size)
 | 
|---|
| 2056 | {
 | 
|---|
| 2057 |   int x;
 | 
|---|
| 2058 | 
 | 
|---|
| 2059 |   /* pad size so there are always extra digits */
 | 
|---|
| 2060 |   size += (MP_PREC * 2) - (size % MP_PREC);    
 | 
|---|
| 2061 |   
 | 
|---|
| 2062 |   /* alloc mem */
 | 
|---|
| 2063 |   a->dp = malloc (sizeof (mp_digit) * size);
 | 
|---|
| 2064 |   if (a->dp == NULL) {
 | 
|---|
| 2065 |     return MP_MEM;
 | 
|---|
| 2066 |   }
 | 
|---|
| 2067 | 
 | 
|---|
| 2068 |   /* set the members */
 | 
|---|
| 2069 |   a->used  = 0;
 | 
|---|
| 2070 |   a->alloc = size;
 | 
|---|
| 2071 |   a->sign  = MP_ZPOS;
 | 
|---|
| 2072 | 
 | 
|---|
| 2073 |   /* zero the digits */
 | 
|---|
| 2074 |   for (x = 0; x < size; x++) {
 | 
|---|
| 2075 |       a->dp[x] = 0;
 | 
|---|
| 2076 |   }
 | 
|---|
| 2077 | 
 | 
|---|
| 2078 |   return MP_OKAY;
 | 
|---|
| 2079 | }
 | 
|---|
| 2080 | 
 | 
|---|
| 2081 | /* hac 14.61, pp608 */
 | 
|---|
| 2082 | int mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 2083 | {
 | 
|---|
| 2084 |   /* b cannot be negative */
 | 
|---|
| 2085 |   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | 
|---|
| 2086 |     return MP_VAL;
 | 
|---|
| 2087 |   }
 | 
|---|
| 2088 | 
 | 
|---|
| 2089 |   /* if the modulus is odd we can use a faster routine instead */
 | 
|---|
| 2090 |   if (mp_isodd (b) == 1) {
 | 
|---|
| 2091 |     return fast_mp_invmod (a, b, c);
 | 
|---|
| 2092 |   }
 | 
|---|
| 2093 |   
 | 
|---|
| 2094 |   return mp_invmod_slow(a, b, c);
 | 
|---|
| 2095 | }
 | 
|---|
| 2096 | 
 | 
|---|
| 2097 | /* hac 14.61, pp608 */
 | 
|---|
| 2098 | int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 2099 | {
 | 
|---|
| 2100 |   mp_int  x, y, u, v, A, B, C, D;
 | 
|---|
| 2101 |   int     res;
 | 
|---|
| 2102 | 
 | 
|---|
| 2103 |   /* b cannot be negative */
 | 
|---|
| 2104 |   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | 
|---|
| 2105 |     return MP_VAL;
 | 
|---|
| 2106 |   }
 | 
|---|
| 2107 | 
 | 
|---|
| 2108 |   /* init temps */
 | 
|---|
| 2109 |   if ((res = mp_init_multi(&x, &y, &u, &v, 
 | 
|---|
| 2110 |                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
 | 
|---|
| 2111 |      return res;
 | 
|---|
| 2112 |   }
 | 
|---|
| 2113 | 
 | 
|---|
| 2114 |   /* x = a, y = b */
 | 
|---|
| 2115 |   if ((res = mp_copy (a, &x)) != MP_OKAY) {
 | 
|---|
| 2116 |     goto __ERR;
 | 
|---|
| 2117 |   }
 | 
|---|
| 2118 |   if ((res = mp_copy (b, &y)) != MP_OKAY) {
 | 
|---|
| 2119 |     goto __ERR;
 | 
|---|
| 2120 |   }
 | 
|---|
| 2121 | 
 | 
|---|
| 2122 |   /* 2. [modified] if x,y are both even then return an error! */
 | 
|---|
| 2123 |   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
 | 
|---|
| 2124 |     res = MP_VAL;
 | 
|---|
| 2125 |     goto __ERR;
 | 
|---|
| 2126 |   }
 | 
|---|
| 2127 | 
 | 
|---|
| 2128 |   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | 
|---|
| 2129 |   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | 
|---|
| 2130 |     goto __ERR;
 | 
|---|
| 2131 |   }
 | 
|---|
| 2132 |   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | 
|---|
| 2133 |     goto __ERR;
 | 
|---|
| 2134 |   }
 | 
|---|
| 2135 |   mp_set (&A, 1);
 | 
|---|
| 2136 |   mp_set (&D, 1);
 | 
|---|
| 2137 | 
 | 
|---|
| 2138 | top:
 | 
|---|
| 2139 |   /* 4.  while u is even do */
 | 
|---|
| 2140 |   while (mp_iseven (&u) == 1) {
 | 
|---|
| 2141 |     /* 4.1 u = u/2 */
 | 
|---|
| 2142 |     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | 
|---|
| 2143 |       goto __ERR;
 | 
|---|
| 2144 |     }
 | 
|---|
| 2145 |     /* 4.2 if A or B is odd then */
 | 
|---|
| 2146 |     if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
 | 
|---|
| 2147 |       /* A = (A+y)/2, B = (B-x)/2 */
 | 
|---|
| 2148 |       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
 | 
|---|
| 2149 |          goto __ERR;
 | 
|---|
| 2150 |       }
 | 
|---|
| 2151 |       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | 
|---|
| 2152 |          goto __ERR;
 | 
|---|
| 2153 |       }
 | 
|---|
| 2154 |     }
 | 
|---|
| 2155 |     /* A = A/2, B = B/2 */
 | 
|---|
| 2156 |     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
 | 
|---|
| 2157 |       goto __ERR;
 | 
|---|
| 2158 |     }
 | 
|---|
| 2159 |     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | 
|---|
| 2160 |       goto __ERR;
 | 
|---|
| 2161 |     }
 | 
|---|
| 2162 |   }
 | 
|---|
| 2163 | 
 | 
|---|
| 2164 |   /* 5.  while v is even do */
 | 
|---|
| 2165 |   while (mp_iseven (&v) == 1) {
 | 
|---|
| 2166 |     /* 5.1 v = v/2 */
 | 
|---|
| 2167 |     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | 
|---|
| 2168 |       goto __ERR;
 | 
|---|
| 2169 |     }
 | 
|---|
| 2170 |     /* 5.2 if C or D is odd then */
 | 
|---|
| 2171 |     if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
 | 
|---|
| 2172 |       /* C = (C+y)/2, D = (D-x)/2 */
 | 
|---|
| 2173 |       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
 | 
|---|
| 2174 |          goto __ERR;
 | 
|---|
| 2175 |       }
 | 
|---|
| 2176 |       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | 
|---|
| 2177 |          goto __ERR;
 | 
|---|
| 2178 |       }
 | 
|---|
| 2179 |     }
 | 
|---|
| 2180 |     /* C = C/2, D = D/2 */
 | 
|---|
| 2181 |     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
 | 
|---|
| 2182 |       goto __ERR;
 | 
|---|
| 2183 |     }
 | 
|---|
| 2184 |     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | 
|---|
| 2185 |       goto __ERR;
 | 
|---|
| 2186 |     }
 | 
|---|
| 2187 |   }
 | 
|---|
| 2188 | 
 | 
|---|
| 2189 |   /* 6.  if u >= v then */
 | 
|---|
| 2190 |   if (mp_cmp (&u, &v) != MP_LT) {
 | 
|---|
| 2191 |     /* u = u - v, A = A - C, B = B - D */
 | 
|---|
| 2192 |     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | 
|---|
| 2193 |       goto __ERR;
 | 
|---|
| 2194 |     }
 | 
|---|
| 2195 | 
 | 
|---|
| 2196 |     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
 | 
|---|
| 2197 |       goto __ERR;
 | 
|---|
| 2198 |     }
 | 
|---|
| 2199 | 
 | 
|---|
| 2200 |     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | 
|---|
| 2201 |       goto __ERR;
 | 
|---|
| 2202 |     }
 | 
|---|
| 2203 |   } else {
 | 
|---|
| 2204 |     /* v - v - u, C = C - A, D = D - B */
 | 
|---|
| 2205 |     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | 
|---|
| 2206 |       goto __ERR;
 | 
|---|
| 2207 |     }
 | 
|---|
| 2208 | 
 | 
|---|
| 2209 |     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
 | 
|---|
| 2210 |       goto __ERR;
 | 
|---|
| 2211 |     }
 | 
|---|
| 2212 | 
 | 
|---|
| 2213 |     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | 
|---|
| 2214 |       goto __ERR;
 | 
|---|
| 2215 |     }
 | 
|---|
| 2216 |   }
 | 
|---|
| 2217 | 
 | 
|---|
| 2218 |   /* if not zero goto step 4 */
 | 
|---|
| 2219 |   if (mp_iszero (&u) == 0)
 | 
|---|
| 2220 |     goto top;
 | 
|---|
| 2221 | 
 | 
|---|
| 2222 |   /* now a = C, b = D, gcd == g*v */
 | 
|---|
| 2223 | 
 | 
|---|
| 2224 |   /* if v != 1 then there is no inverse */
 | 
|---|
| 2225 |   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | 
|---|
| 2226 |     res = MP_VAL;
 | 
|---|
| 2227 |     goto __ERR;
 | 
|---|
| 2228 |   }
 | 
|---|
| 2229 | 
 | 
|---|
| 2230 |   /* if its too low */
 | 
|---|
| 2231 |   while (mp_cmp_d(&C, 0) == MP_LT) {
 | 
|---|
| 2232 |       if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
 | 
|---|
| 2233 |          goto __ERR;
 | 
|---|
| 2234 |       }
 | 
|---|
| 2235 |   }
 | 
|---|
| 2236 |   
 | 
|---|
| 2237 |   /* too big */
 | 
|---|
| 2238 |   while (mp_cmp_mag(&C, b) != MP_LT) {
 | 
|---|
| 2239 |       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
 | 
|---|
| 2240 |          goto __ERR;
 | 
|---|
| 2241 |       }
 | 
|---|
| 2242 |   }
 | 
|---|
| 2243 |   
 | 
|---|
| 2244 |   /* C is now the inverse */
 | 
|---|
| 2245 |   mp_exch (&C, c);
 | 
|---|
| 2246 |   res = MP_OKAY;
 | 
|---|
| 2247 | __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
 | 
|---|
| 2248 |   return res;
 | 
|---|
| 2249 | }
 | 
|---|
| 2250 | 
 | 
|---|
| 2251 | /* c = |a| * |b| using Karatsuba Multiplication using 
 | 
|---|
| 2252 |  * three half size multiplications
 | 
|---|
| 2253 |  *
 | 
|---|
| 2254 |  * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 | 
|---|
| 2255 |  * let n represent half of the number of digits in 
 | 
|---|
| 2256 |  * the min(a,b)
 | 
|---|
| 2257 |  *
 | 
|---|
| 2258 |  * a = a1 * B**n + a0
 | 
|---|
| 2259 |  * b = b1 * B**n + b0
 | 
|---|
| 2260 |  *
 | 
|---|
| 2261 |  * Then, a * b => 
 | 
|---|
| 2262 |    a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
 | 
|---|
| 2263 |  *
 | 
|---|
| 2264 |  * Note that a1b1 and a0b0 are used twice and only need to be 
 | 
|---|
| 2265 |  * computed once.  So in total three half size (half # of 
 | 
|---|
| 2266 |  * digit) multiplications are performed, a0b0, a1b1 and 
 | 
|---|
| 2267 |  * (a1-b1)(a0-b0)
 | 
|---|
| 2268 |  *
 | 
|---|
| 2269 |  * Note that a multiplication of half the digits requires
 | 
|---|
| 2270 |  * 1/4th the number of single precision multiplications so in 
 | 
|---|
| 2271 |  * total after one call 25% of the single precision multiplications 
 | 
|---|
| 2272 |  * are saved.  Note also that the call to mp_mul can end up back 
 | 
|---|
| 2273 |  * in this function if the a0, a1, b0, or b1 are above the threshold.  
 | 
|---|
| 2274 |  * This is known as divide-and-conquer and leads to the famous 
 | 
|---|
| 2275 |  * O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than
 | 
|---|
| 2276 |  * the standard O(N**2) that the baseline/comba methods use.  
 | 
|---|
| 2277 |  * Generally though the overhead of this method doesn't pay off 
 | 
|---|
| 2278 |  * until a certain size (N ~ 80) is reached.
 | 
|---|
| 2279 |  */
 | 
|---|
| 2280 | int mp_karatsuba_mul (const mp_int * a, const mp_int * b, mp_int * c)
 | 
|---|
| 2281 | {
 | 
|---|
| 2282 |   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
 | 
|---|
| 2283 |   int     B, err;
 | 
|---|
| 2284 | 
 | 
|---|
| 2285 |   /* default the return code to an error */
 | 
|---|
| 2286 |   err = MP_MEM;
 | 
|---|
| 2287 | 
 | 
|---|
| 2288 |   /* min # of digits */
 | 
|---|
| 2289 |   B = MIN (a->used, b->used);
 | 
|---|
| 2290 | 
 | 
|---|
| 2291 |   /* now divide in two */
 | 
|---|
| 2292 |   B = B >> 1;
 | 
|---|
| 2293 | 
 | 
|---|
| 2294 |   /* init copy all the temps */
 | 
|---|
| 2295 |   if (mp_init_size (&x0, B) != MP_OKAY)
 | 
|---|
| 2296 |     goto ERR;
 | 
|---|
| 2297 |   if (mp_init_size (&x1, a->used - B) != MP_OKAY)
 | 
|---|
| 2298 |     goto X0;
 | 
|---|
| 2299 |   if (mp_init_size (&y0, B) != MP_OKAY)
 | 
|---|
| 2300 |     goto X1;
 | 
|---|
| 2301 |   if (mp_init_size (&y1, b->used - B) != MP_OKAY)
 | 
|---|
| 2302 |     goto Y0;
 | 
|---|
| 2303 | 
 | 
|---|
| 2304 |   /* init temps */
 | 
|---|
| 2305 |   if (mp_init_size (&t1, B * 2) != MP_OKAY)
 | 
|---|
| 2306 |     goto Y1;
 | 
|---|
| 2307 |   if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
 | 
|---|
| 2308 |     goto T1;
 | 
|---|
| 2309 |   if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
 | 
|---|
| 2310 |     goto X0Y0;
 | 
|---|
| 2311 | 
 | 
|---|
| 2312 |   /* now shift the digits */
 | 
|---|
| 2313 |   x0.used = y0.used = B;
 | 
|---|
| 2314 |   x1.used = a->used - B;
 | 
|---|
| 2315 |   y1.used = b->used - B;
 | 
|---|
| 2316 | 
 | 
|---|
| 2317 |   {
 | 
|---|
| 2318 |     register int x;
 | 
|---|
| 2319 |     register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
 | 
|---|
| 2320 | 
 | 
|---|
| 2321 |     /* we copy the digits directly instead of using higher level functions
 | 
|---|
| 2322 |      * since we also need to shift the digits
 | 
|---|
| 2323 |      */
 | 
|---|
| 2324 |     tmpa = a->dp;
 | 
|---|
| 2325 |     tmpb = b->dp;
 | 
|---|
| 2326 | 
 | 
|---|
| 2327 |     tmpx = x0.dp;
 | 
|---|
| 2328 |     tmpy = y0.dp;
 | 
|---|
| 2329 |     for (x = 0; x < B; x++) {
 | 
|---|
| 2330 |       *tmpx++ = *tmpa++;
 | 
|---|
| 2331 |       *tmpy++ = *tmpb++;
 | 
|---|
| 2332 |     }
 | 
|---|
| 2333 | 
 | 
|---|
| 2334 |     tmpx = x1.dp;
 | 
|---|
| 2335 |     for (x = B; x < a->used; x++) {
 | 
|---|
| 2336 |       *tmpx++ = *tmpa++;
 | 
|---|
| 2337 |     }
 | 
|---|
| 2338 | 
 | 
|---|
| 2339 |     tmpy = y1.dp;
 | 
|---|
| 2340 |     for (x = B; x < b->used; x++) {
 | 
|---|
| 2341 |       *tmpy++ = *tmpb++;
 | 
|---|
| 2342 |     }
 | 
|---|
| 2343 |   }
 | 
|---|
| 2344 | 
 | 
|---|
| 2345 |   /* only need to clamp the lower words since by definition the 
 | 
|---|
| 2346 |    * upper words x1/y1 must have a known number of digits
 | 
|---|
| 2347 |    */
 | 
|---|
| 2348 |   mp_clamp (&x0);
 | 
|---|
| 2349 |   mp_clamp (&y0);
 | 
|---|
| 2350 | 
 | 
|---|
| 2351 |   /* now calc the products x0y0 and x1y1 */
 | 
|---|
| 2352 |   /* after this x0 is no longer required, free temp [x0==t2]! */
 | 
|---|
| 2353 |   if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
 | 
|---|
| 2354 |     goto X1Y1;          /* x0y0 = x0*y0 */
 | 
|---|
| 2355 |   if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
 | 
|---|
| 2356 |     goto X1Y1;          /* x1y1 = x1*y1 */
 | 
|---|
| 2357 | 
 | 
|---|
| 2358 |   /* now calc x1-x0 and y1-y0 */
 | 
|---|
| 2359 |   if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
 | 
|---|
| 2360 |     goto X1Y1;          /* t1 = x1 - x0 */
 | 
|---|
| 2361 |   if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
 | 
|---|
| 2362 |     goto X1Y1;          /* t2 = y1 - y0 */
 | 
|---|
| 2363 |   if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
 | 
|---|
| 2364 |     goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */
 | 
|---|
| 2365 | 
 | 
|---|
| 2366 |   /* add x0y0 */
 | 
|---|
| 2367 |   if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
 | 
|---|
| 2368 |     goto X1Y1;          /* t2 = x0y0 + x1y1 */
 | 
|---|
| 2369 |   if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
 | 
|---|
| 2370 |     goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
 | 
|---|
| 2371 | 
 | 
|---|
| 2372 |   /* shift by B */
 | 
|---|
| 2373 |   if (mp_lshd (&t1, B) != MP_OKAY)
 | 
|---|
| 2374 |     goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
 | 
|---|
| 2375 |   if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
 | 
|---|
| 2376 |     goto X1Y1;          /* x1y1 = x1y1 << 2*B */
 | 
|---|
| 2377 | 
 | 
|---|
| 2378 |   if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
 | 
|---|
| 2379 |     goto X1Y1;          /* t1 = x0y0 + t1 */
 | 
|---|
| 2380 |   if (mp_add (&t1, &x1y1, c) != MP_OKAY)
 | 
|---|
| 2381 |     goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
 | 
|---|
| 2382 | 
 | 
|---|
| 2383 |   /* Algorithm succeeded set the return code to MP_OKAY */
 | 
|---|
| 2384 |   err = MP_OKAY;
 | 
|---|
| 2385 | 
 | 
|---|
| 2386 | X1Y1:mp_clear (&x1y1);
 | 
|---|
| 2387 | X0Y0:mp_clear (&x0y0);
 | 
|---|
| 2388 | T1:mp_clear (&t1);
 | 
|---|
| 2389 | Y1:mp_clear (&y1);
 | 
|---|
| 2390 | Y0:mp_clear (&y0);
 | 
|---|
| 2391 | X1:mp_clear (&x1);
 | 
|---|
| 2392 | X0:mp_clear (&x0);
 | 
|---|
| 2393 | ERR:
 | 
|---|
| 2394 |   return err;
 | 
|---|
| 2395 | }
 | 
|---|
| 2396 | 
 | 
|---|
| 2397 | /* Karatsuba squaring, computes b = a*a using three 
 | 
|---|
| 2398 |  * half size squarings
 | 
|---|
| 2399 |  *
 | 
|---|
| 2400 |  * See comments of karatsuba_mul for details.  It 
 | 
|---|
| 2401 |  * is essentially the same algorithm but merely 
 | 
|---|
| 2402 |  * tuned to perform recursive squarings.
 | 
|---|
| 2403 |  */
 | 
|---|
| 2404 | int mp_karatsuba_sqr (const mp_int * a, mp_int * b)
 | 
|---|
| 2405 | {
 | 
|---|
| 2406 |   mp_int  x0, x1, t1, t2, x0x0, x1x1;
 | 
|---|
| 2407 |   int     B, err;
 | 
|---|
| 2408 | 
 | 
|---|
| 2409 |   err = MP_MEM;
 | 
|---|
| 2410 | 
 | 
|---|
| 2411 |   /* min # of digits */
 | 
|---|
| 2412 |   B = a->used;
 | 
|---|
| 2413 | 
 | 
|---|
| 2414 |   /* now divide in two */
 | 
|---|
| 2415 |   B = B >> 1;
 | 
|---|
| 2416 | 
 | 
|---|
| 2417 |   /* init copy all the temps */
 | 
|---|
| 2418 |   if (mp_init_size (&x0, B) != MP_OKAY)
 | 
|---|
| 2419 |     goto ERR;
 | 
|---|
| 2420 |   if (mp_init_size (&x1, a->used - B) != MP_OKAY)
 | 
|---|
| 2421 |     goto X0;
 | 
|---|
| 2422 | 
 | 
|---|
| 2423 |   /* init temps */
 | 
|---|
| 2424 |   if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
 | 
|---|
| 2425 |     goto X1;
 | 
|---|
| 2426 |   if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
 | 
|---|
| 2427 |     goto T1;
 | 
|---|
| 2428 |   if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
 | 
|---|
| 2429 |     goto T2;
 | 
|---|
| 2430 |   if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
 | 
|---|
| 2431 |     goto X0X0;
 | 
|---|
| 2432 | 
 | 
|---|
| 2433 |   {
 | 
|---|
| 2434 |     register int x;
 | 
|---|
| 2435 |     register mp_digit *dst, *src;
 | 
|---|
| 2436 | 
 | 
|---|
| 2437 |     src = a->dp;
 | 
|---|
| 2438 | 
 | 
|---|
| 2439 |     /* now shift the digits */
 | 
|---|
| 2440 |     dst = x0.dp;
 | 
|---|
| 2441 |     for (x = 0; x < B; x++) {
 | 
|---|
| 2442 |       *dst++ = *src++;
 | 
|---|
| 2443 |     }
 | 
|---|
| 2444 | 
 | 
|---|
| 2445 |     dst = x1.dp;
 | 
|---|
| 2446 |     for (x = B; x < a->used; x++) {
 | 
|---|
| 2447 |       *dst++ = *src++;
 | 
|---|
| 2448 |     }
 | 
|---|
| 2449 |   }
 | 
|---|
| 2450 | 
 | 
|---|
| 2451 |   x0.used = B;
 | 
|---|
| 2452 |   x1.used = a->used - B;
 | 
|---|
| 2453 | 
 | 
|---|
| 2454 |   mp_clamp (&x0);
 | 
|---|
| 2455 | 
 | 
|---|
| 2456 |   /* now calc the products x0*x0 and x1*x1 */
 | 
|---|
| 2457 |   if (mp_sqr (&x0, &x0x0) != MP_OKAY)
 | 
|---|
| 2458 |     goto X1X1;           /* x0x0 = x0*x0 */
 | 
|---|
| 2459 |   if (mp_sqr (&x1, &x1x1) != MP_OKAY)
 | 
|---|
| 2460 |     goto X1X1;           /* x1x1 = x1*x1 */
 | 
|---|
| 2461 | 
 | 
|---|
| 2462 |   /* now calc (x1-x0)**2 */
 | 
|---|
| 2463 |   if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
 | 
|---|
| 2464 |     goto X1X1;           /* t1 = x1 - x0 */
 | 
|---|
| 2465 |   if (mp_sqr (&t1, &t1) != MP_OKAY)
 | 
|---|
| 2466 |     goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
 | 
|---|
| 2467 | 
 | 
|---|
| 2468 |   /* add x0y0 */
 | 
|---|
| 2469 |   if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
 | 
|---|
| 2470 |     goto X1X1;           /* t2 = x0x0 + x1x1 */
 | 
|---|
| 2471 |   if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
 | 
|---|
| 2472 |     goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
 | 
|---|
| 2473 | 
 | 
|---|
| 2474 |   /* shift by B */
 | 
|---|
| 2475 |   if (mp_lshd (&t1, B) != MP_OKAY)
 | 
|---|
| 2476 |     goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
 | 
|---|
| 2477 |   if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
 | 
|---|
| 2478 |     goto X1X1;           /* x1x1 = x1x1 << 2*B */
 | 
|---|
| 2479 | 
 | 
|---|
| 2480 |   if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
 | 
|---|
| 2481 |     goto X1X1;           /* t1 = x0x0 + t1 */
 | 
|---|
| 2482 |   if (mp_add (&t1, &x1x1, b) != MP_OKAY)
 | 
|---|
| 2483 |     goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
 | 
|---|
| 2484 | 
 | 
|---|
| 2485 |   err = MP_OKAY;
 | 
|---|
| 2486 | 
 | 
|---|
| 2487 | X1X1:mp_clear (&x1x1);
 | 
|---|
| 2488 | X0X0:mp_clear (&x0x0);
 | 
|---|
| 2489 | T2:mp_clear (&t2);
 | 
|---|
| 2490 | T1:mp_clear (&t1);
 | 
|---|
| 2491 | X1:mp_clear (&x1);
 | 
|---|
| 2492 | X0:mp_clear (&x0);
 | 
|---|
| 2493 | ERR:
 | 
|---|
| 2494 |   return err;
 | 
|---|
| 2495 | }
 | 
|---|
| 2496 | 
 | 
|---|
| 2497 | /* computes least common multiple as |a*b|/(a, b) */
 | 
|---|
| 2498 | int mp_lcm (const mp_int * a, const mp_int * b, mp_int * c)
 | 
|---|
| 2499 | {
 | 
|---|
| 2500 |   int     res;
 | 
|---|
| 2501 |   mp_int  t1, t2;
 | 
|---|
| 2502 | 
 | 
|---|
| 2503 | 
 | 
|---|
| 2504 |   if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
 | 
|---|
| 2505 |     return res;
 | 
|---|
| 2506 |   }
 | 
|---|
| 2507 | 
 | 
|---|
| 2508 |   /* t1 = get the GCD of the two inputs */
 | 
|---|
| 2509 |   if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
 | 
|---|
| 2510 |     goto __T;
 | 
|---|
| 2511 |   }
 | 
|---|
| 2512 | 
 | 
|---|
| 2513 |   /* divide the smallest by the GCD */
 | 
|---|
| 2514 |   if (mp_cmp_mag(a, b) == MP_LT) {
 | 
|---|
| 2515 |      /* store quotient in t2 such that t2 * b is the LCM */
 | 
|---|
| 2516 |      if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
 | 
|---|
| 2517 |         goto __T;
 | 
|---|
| 2518 |      }
 | 
|---|
| 2519 |      res = mp_mul(b, &t2, c);
 | 
|---|
| 2520 |   } else {
 | 
|---|
| 2521 |      /* store quotient in t2 such that t2 * a is the LCM */
 | 
|---|
| 2522 |      if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
 | 
|---|
| 2523 |         goto __T;
 | 
|---|
| 2524 |      }
 | 
|---|
| 2525 |      res = mp_mul(a, &t2, c);
 | 
|---|
| 2526 |   }
 | 
|---|
| 2527 | 
 | 
|---|
| 2528 |   /* fix the sign to positive */
 | 
|---|
| 2529 |   c->sign = MP_ZPOS;
 | 
|---|
| 2530 | 
 | 
|---|
| 2531 | __T:
 | 
|---|
| 2532 |   mp_clear_multi (&t1, &t2, NULL);
 | 
|---|
| 2533 |   return res;
 | 
|---|
| 2534 | }
 | 
|---|
| 2535 | 
 | 
|---|
| 2536 | /* shift left a certain amount of digits */
 | 
|---|
| 2537 | int mp_lshd (mp_int * a, int b)
 | 
|---|
| 2538 | {
 | 
|---|
| 2539 |   int     x, res;
 | 
|---|
| 2540 | 
 | 
|---|
| 2541 |   /* if its less than zero return */
 | 
|---|
| 2542 |   if (b <= 0) {
 | 
|---|
| 2543 |     return MP_OKAY;
 | 
|---|
| 2544 |   }
 | 
|---|
| 2545 | 
 | 
|---|
| 2546 |   /* grow to fit the new digits */
 | 
|---|
| 2547 |   if (a->alloc < a->used + b) {
 | 
|---|
| 2548 |      if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
 | 
|---|
| 2549 |        return res;
 | 
|---|
| 2550 |      }
 | 
|---|
| 2551 |   }
 | 
|---|
| 2552 | 
 | 
|---|
| 2553 |   {
 | 
|---|
| 2554 |     register mp_digit *top, *bottom;
 | 
|---|
| 2555 | 
 | 
|---|
| 2556 |     /* increment the used by the shift amount then copy upwards */
 | 
|---|
| 2557 |     a->used += b;
 | 
|---|
| 2558 | 
 | 
|---|
| 2559 |     /* top */
 | 
|---|
| 2560 |     top = a->dp + a->used - 1;
 | 
|---|
| 2561 | 
 | 
|---|
| 2562 |     /* base */
 | 
|---|
| 2563 |     bottom = a->dp + a->used - 1 - b;
 | 
|---|
| 2564 | 
 | 
|---|
| 2565 |     /* much like mp_rshd this is implemented using a sliding window
 | 
|---|
| 2566 |      * except the window goes the otherway around.  Copying from
 | 
|---|
| 2567 |      * the bottom to the top.  see bn_mp_rshd.c for more info.
 | 
|---|
| 2568 |      */
 | 
|---|
| 2569 |     for (x = a->used - 1; x >= b; x--) {
 | 
|---|
| 2570 |       *top-- = *bottom--;
 | 
|---|
| 2571 |     }
 | 
|---|
| 2572 | 
 | 
|---|
| 2573 |     /* zero the lower digits */
 | 
|---|
| 2574 |     top = a->dp;
 | 
|---|
| 2575 |     for (x = 0; x < b; x++) {
 | 
|---|
| 2576 |       *top++ = 0;
 | 
|---|
| 2577 |     }
 | 
|---|
| 2578 |   }
 | 
|---|
| 2579 |   return MP_OKAY;
 | 
|---|
| 2580 | }
 | 
|---|
| 2581 | 
 | 
|---|
| 2582 | /* c = a mod b, 0 <= c < b */
 | 
|---|
| 2583 | int
 | 
|---|
| 2584 | mp_mod (const mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 2585 | {
 | 
|---|
| 2586 |   mp_int  t;
 | 
|---|
| 2587 |   int     res;
 | 
|---|
| 2588 | 
 | 
|---|
| 2589 |   if ((res = mp_init (&t)) != MP_OKAY) {
 | 
|---|
| 2590 |     return res;
 | 
|---|
| 2591 |   }
 | 
|---|
| 2592 | 
 | 
|---|
| 2593 |   if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
 | 
|---|
| 2594 |     mp_clear (&t);
 | 
|---|
| 2595 |     return res;
 | 
|---|
| 2596 |   }
 | 
|---|
| 2597 | 
 | 
|---|
| 2598 |   if (t.sign != b->sign) {
 | 
|---|
| 2599 |     res = mp_add (b, &t, c);
 | 
|---|
| 2600 |   } else {
 | 
|---|
| 2601 |     res = MP_OKAY;
 | 
|---|
| 2602 |     mp_exch (&t, c);
 | 
|---|
| 2603 |   }
 | 
|---|
| 2604 | 
 | 
|---|
| 2605 |   mp_clear (&t);
 | 
|---|
| 2606 |   return res;
 | 
|---|
| 2607 | }
 | 
|---|
| 2608 | 
 | 
|---|
| 2609 | /* calc a value mod 2**b */
 | 
|---|
| 2610 | int
 | 
|---|
| 2611 | mp_mod_2d (const mp_int * a, int b, mp_int * c)
 | 
|---|
| 2612 | {
 | 
|---|
| 2613 |   int     x, res;
 | 
|---|
| 2614 | 
 | 
|---|
| 2615 |   /* if b is <= 0 then zero the int */
 | 
|---|
| 2616 |   if (b <= 0) {
 | 
|---|
| 2617 |     mp_zero (c);
 | 
|---|
| 2618 |     return MP_OKAY;
 | 
|---|
| 2619 |   }
 | 
|---|
| 2620 | 
 | 
|---|
| 2621 |   /* if the modulus is larger than the value than return */
 | 
|---|
| 2622 |   if (b > a->used * DIGIT_BIT) {
 | 
|---|
| 2623 |     res = mp_copy (a, c);
 | 
|---|
| 2624 |     return res;
 | 
|---|
| 2625 |   }
 | 
|---|
| 2626 | 
 | 
|---|
| 2627 |   /* copy */
 | 
|---|
| 2628 |   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | 
|---|
| 2629 |     return res;
 | 
|---|
| 2630 |   }
 | 
|---|
| 2631 | 
 | 
|---|
| 2632 |   /* zero digits above the last digit of the modulus */
 | 
|---|
| 2633 |   for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
 | 
|---|
| 2634 |     c->dp[x] = 0;
 | 
|---|
| 2635 |   }
 | 
|---|
| 2636 |   /* clear the digit that is not completely outside/inside the modulus */
 | 
|---|
| 2637 |   c->dp[b / DIGIT_BIT] &= (1 << ((mp_digit)b % DIGIT_BIT)) - 1;
 | 
|---|
| 2638 |   mp_clamp (c);
 | 
|---|
| 2639 |   return MP_OKAY;
 | 
|---|
| 2640 | }
 | 
|---|
| 2641 | 
 | 
|---|
| 2642 | int
 | 
|---|
| 2643 | mp_mod_d (const mp_int * a, mp_digit b, mp_digit * c)
 | 
|---|
| 2644 | {
 | 
|---|
| 2645 |   return mp_div_d(a, b, NULL, c);
 | 
|---|
| 2646 | }
 | 
|---|
| 2647 | 
 | 
|---|
| 2648 | /*
 | 
|---|
| 2649 |  * shifts with subtractions when the result is greater than b.
 | 
|---|
| 2650 |  *
 | 
|---|
| 2651 |  * The method is slightly modified to shift B unconditionally up to just under
 | 
|---|
| 2652 |  * the leading bit of b.  This saves a lot of multiple precision shifting.
 | 
|---|
| 2653 |  */
 | 
|---|
| 2654 | int mp_montgomery_calc_normalization (mp_int * a, const mp_int * b)
 | 
|---|
| 2655 | {
 | 
|---|
| 2656 |   int     x, bits, res;
 | 
|---|
| 2657 | 
 | 
|---|
| 2658 |   /* how many bits of last digit does b use */
 | 
|---|
| 2659 |   bits = mp_count_bits (b) % DIGIT_BIT;
 | 
|---|
| 2660 | 
 | 
|---|
| 2661 | 
 | 
|---|
| 2662 |   if (b->used > 1) {
 | 
|---|
| 2663 |      if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
 | 
|---|
| 2664 |         return res;
 | 
|---|
| 2665 |      }
 | 
|---|
| 2666 |   } else {
 | 
|---|
| 2667 |      mp_set(a, 1);
 | 
|---|
| 2668 |      bits = 1;
 | 
|---|
| 2669 |   }
 | 
|---|
| 2670 | 
 | 
|---|
| 2671 | 
 | 
|---|
| 2672 |   /* now compute C = A * B mod b */
 | 
|---|
| 2673 |   for (x = bits - 1; x < DIGIT_BIT; x++) {
 | 
|---|
| 2674 |     if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
 | 
|---|
| 2675 |       return res;
 | 
|---|
| 2676 |     }
 | 
|---|
| 2677 |     if (mp_cmp_mag (a, b) != MP_LT) {
 | 
|---|
| 2678 |       if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
 | 
|---|
| 2679 |         return res;
 | 
|---|
| 2680 |       }
 | 
|---|
| 2681 |     }
 | 
|---|
| 2682 |   }
 | 
|---|
| 2683 | 
 | 
|---|
| 2684 |   return MP_OKAY;
 | 
|---|
| 2685 | }
 | 
|---|
| 2686 | 
 | 
|---|
| 2687 | /* computes xR**-1 == x (mod N) via Montgomery Reduction */
 | 
|---|
| 2688 | int
 | 
|---|
| 2689 | mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
 | 
|---|
| 2690 | {
 | 
|---|
| 2691 |   int     ix, res, digs;
 | 
|---|
| 2692 |   mp_digit mu;
 | 
|---|
| 2693 | 
 | 
|---|
| 2694 |   /* can the fast reduction [comba] method be used?
 | 
|---|
| 2695 |    *
 | 
|---|
| 2696 |    * Note that unlike in mul you're safely allowed *less*
 | 
|---|
| 2697 |    * than the available columns [255 per default] since carries
 | 
|---|
| 2698 |    * are fixed up in the inner loop.
 | 
|---|
| 2699 |    */
 | 
|---|
| 2700 |   digs = n->used * 2 + 1;
 | 
|---|
| 2701 |   if ((digs < MP_WARRAY) &&
 | 
|---|
| 2702 |       n->used <
 | 
|---|
| 2703 |       (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
|---|
| 2704 |     return fast_mp_montgomery_reduce (x, n, rho);
 | 
|---|
| 2705 |   }
 | 
|---|
| 2706 | 
 | 
|---|
| 2707 |   /* grow the input as required */
 | 
|---|
| 2708 |   if (x->alloc < digs) {
 | 
|---|
| 2709 |     if ((res = mp_grow (x, digs)) != MP_OKAY) {
 | 
|---|
| 2710 |       return res;
 | 
|---|
| 2711 |     }
 | 
|---|
| 2712 |   }
 | 
|---|
| 2713 |   x->used = digs;
 | 
|---|
| 2714 | 
 | 
|---|
| 2715 |   for (ix = 0; ix < n->used; ix++) {
 | 
|---|
| 2716 |     /* mu = ai * rho mod b
 | 
|---|
| 2717 |      *
 | 
|---|
| 2718 |      * The value of rho must be precalculated via
 | 
|---|
| 2719 |      * montgomery_setup() such that
 | 
|---|
| 2720 |      * it equals -1/n0 mod b this allows the
 | 
|---|
| 2721 |      * following inner loop to reduce the
 | 
|---|
| 2722 |      * input one digit at a time
 | 
|---|
| 2723 |      */
 | 
|---|
| 2724 |     mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
 | 
|---|
| 2725 | 
 | 
|---|
| 2726 |     /* a = a + mu * m * b**i */
 | 
|---|
| 2727 |     {
 | 
|---|
| 2728 |       register int iy;
 | 
|---|
| 2729 |       register mp_digit *tmpn, *tmpx, u;
 | 
|---|
| 2730 |       register mp_word r;
 | 
|---|
| 2731 | 
 | 
|---|
| 2732 |       /* alias for digits of the modulus */
 | 
|---|
| 2733 |       tmpn = n->dp;
 | 
|---|
| 2734 | 
 | 
|---|
| 2735 |       /* alias for the digits of x [the input] */
 | 
|---|
| 2736 |       tmpx = x->dp + ix;
 | 
|---|
| 2737 | 
 | 
|---|
| 2738 |       /* set the carry to zero */
 | 
|---|
| 2739 |       u = 0;
 | 
|---|
| 2740 | 
 | 
|---|
| 2741 |       /* Multiply and add in place */
 | 
|---|
| 2742 |       for (iy = 0; iy < n->used; iy++) {
 | 
|---|
| 2743 |         /* compute product and sum */
 | 
|---|
| 2744 |         r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
 | 
|---|
| 2745 |                   ((mp_word) u) + ((mp_word) * tmpx);
 | 
|---|
| 2746 | 
 | 
|---|
| 2747 |         /* get carry */
 | 
|---|
| 2748 |         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | 
|---|
| 2749 | 
 | 
|---|
| 2750 |         /* fix digit */
 | 
|---|
| 2751 |         *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
 | 
|---|
| 2752 |       }
 | 
|---|
| 2753 |       /* At this point the ix'th digit of x should be zero */
 | 
|---|
| 2754 | 
 | 
|---|
| 2755 | 
 | 
|---|
| 2756 |       /* propagate carries upwards as required*/
 | 
|---|
| 2757 |       while (u) {
 | 
|---|
| 2758 |         *tmpx   += u;
 | 
|---|
| 2759 |         u        = *tmpx >> DIGIT_BIT;
 | 
|---|
| 2760 |         *tmpx++ &= MP_MASK;
 | 
|---|
| 2761 |       }
 | 
|---|
| 2762 |     }
 | 
|---|
| 2763 |   }
 | 
|---|
| 2764 | 
 | 
|---|
| 2765 |   /* at this point the n.used'th least
 | 
|---|
| 2766 |    * significant digits of x are all zero
 | 
|---|
| 2767 |    * which means we can shift x to the
 | 
|---|
| 2768 |    * right by n.used digits and the
 | 
|---|
| 2769 |    * residue is unchanged.
 | 
|---|
| 2770 |    */
 | 
|---|
| 2771 | 
 | 
|---|
| 2772 |   /* x = x/b**n.used */
 | 
|---|
| 2773 |   mp_clamp(x);
 | 
|---|
| 2774 |   mp_rshd (x, n->used);
 | 
|---|
| 2775 | 
 | 
|---|
| 2776 |   /* if x >= n then x = x - n */
 | 
|---|
| 2777 |   if (mp_cmp_mag (x, n) != MP_LT) {
 | 
|---|
| 2778 |     return s_mp_sub (x, n, x);
 | 
|---|
| 2779 |   }
 | 
|---|
| 2780 | 
 | 
|---|
| 2781 |   return MP_OKAY;
 | 
|---|
| 2782 | }
 | 
|---|
| 2783 | 
 | 
|---|
| 2784 | /* setups the montgomery reduction stuff */
 | 
|---|
| 2785 | int
 | 
|---|
| 2786 | mp_montgomery_setup (const mp_int * n, mp_digit * rho)
 | 
|---|
| 2787 | {
 | 
|---|
| 2788 |   mp_digit x, b;
 | 
|---|
| 2789 | 
 | 
|---|
| 2790 | /* fast inversion mod 2**k
 | 
|---|
| 2791 |  *
 | 
|---|
| 2792 |  * Based on the fact that
 | 
|---|
| 2793 |  *
 | 
|---|
| 2794 |  * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
 | 
|---|
| 2795 |  *                    =>  2*X*A - X*X*A*A = 1
 | 
|---|
| 2796 |  *                    =>  2*(1) - (1)     = 1
 | 
|---|
| 2797 |  */
 | 
|---|
| 2798 |   b = n->dp[0];
 | 
|---|
| 2799 | 
 | 
|---|
| 2800 |   if ((b & 1) == 0) {
 | 
|---|
| 2801 |     return MP_VAL;
 | 
|---|
| 2802 |   }
 | 
|---|
| 2803 | 
 | 
|---|
| 2804 |   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
 | 
|---|
| 2805 |   x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
 | 
|---|
| 2806 |   x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
 | 
|---|
| 2807 |   x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
 | 
|---|
| 2808 | 
 | 
|---|
| 2809 |   /* rho = -1/m mod b */
 | 
|---|
| 2810 |   *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
 | 
|---|
| 2811 | 
 | 
|---|
| 2812 |   return MP_OKAY;
 | 
|---|
| 2813 | }
 | 
|---|
| 2814 | 
 | 
|---|
| 2815 | /* high level multiplication (handles sign) */
 | 
|---|
| 2816 | int mp_mul (const mp_int * a, const mp_int * b, mp_int * c)
 | 
|---|
| 2817 | {
 | 
|---|
| 2818 |   int     res, neg;
 | 
|---|
| 2819 |   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | 
|---|
| 2820 | 
 | 
|---|
| 2821 |   /* use Karatsuba? */
 | 
|---|
| 2822 |   if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
 | 
|---|
| 2823 |     res = mp_karatsuba_mul (a, b, c);
 | 
|---|
| 2824 |   } else 
 | 
|---|
| 2825 |   {
 | 
|---|
| 2826 |     /* can we use the fast multiplier?
 | 
|---|
| 2827 |      *
 | 
|---|
| 2828 |      * The fast multiplier can be used if the output will 
 | 
|---|
| 2829 |      * have less than MP_WARRAY digits and the number of 
 | 
|---|
| 2830 |      * digits won't affect carry propagation
 | 
|---|
| 2831 |      */
 | 
|---|
| 2832 |     int     digs = a->used + b->used + 1;
 | 
|---|
| 2833 | 
 | 
|---|
| 2834 |     if ((digs < MP_WARRAY) &&
 | 
|---|
| 2835 |         MIN(a->used, b->used) <= 
 | 
|---|
| 2836 |         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
|---|
| 2837 |       res = fast_s_mp_mul_digs (a, b, c, digs);
 | 
|---|
| 2838 |     } else 
 | 
|---|
| 2839 |       res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
 | 
|---|
| 2840 |   }
 | 
|---|
| 2841 |   c->sign = (c->used > 0) ? neg : MP_ZPOS;
 | 
|---|
| 2842 |   return res;
 | 
|---|
| 2843 | }
 | 
|---|
| 2844 | 
 | 
|---|
| 2845 | /* b = a*2 */
 | 
|---|
| 2846 | int mp_mul_2(const mp_int * a, mp_int * b)
 | 
|---|
| 2847 | {
 | 
|---|
| 2848 |   int     x, res, oldused;
 | 
|---|
| 2849 | 
 | 
|---|
| 2850 |   /* grow to accommodate result */
 | 
|---|
| 2851 |   if (b->alloc < a->used + 1) {
 | 
|---|
| 2852 |     if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
 | 
|---|
| 2853 |       return res;
 | 
|---|
| 2854 |     }
 | 
|---|
| 2855 |   }
 | 
|---|
| 2856 | 
 | 
|---|
| 2857 |   oldused = b->used;
 | 
|---|
| 2858 |   b->used = a->used;
 | 
|---|
| 2859 | 
 | 
|---|
| 2860 |   {
 | 
|---|
| 2861 |     register mp_digit r, rr, *tmpa, *tmpb;
 | 
|---|
| 2862 | 
 | 
|---|
| 2863 |     /* alias for source */
 | 
|---|
| 2864 |     tmpa = a->dp;
 | 
|---|
| 2865 |     
 | 
|---|
| 2866 |     /* alias for dest */
 | 
|---|
| 2867 |     tmpb = b->dp;
 | 
|---|
| 2868 | 
 | 
|---|
| 2869 |     /* carry */
 | 
|---|
| 2870 |     r = 0;
 | 
|---|
| 2871 |     for (x = 0; x < a->used; x++) {
 | 
|---|
| 2872 |     
 | 
|---|
| 2873 |       /* get what will be the *next* carry bit from the 
 | 
|---|
| 2874 |        * MSB of the current digit 
 | 
|---|
| 2875 |        */
 | 
|---|
| 2876 |       rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
 | 
|---|
| 2877 |       
 | 
|---|
| 2878 |       /* now shift up this digit, add in the carry [from the previous] */
 | 
|---|
| 2879 |       *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
 | 
|---|
| 2880 |       
 | 
|---|
| 2881 |       /* copy the carry that would be from the source 
 | 
|---|
| 2882 |        * digit into the next iteration 
 | 
|---|
| 2883 |        */
 | 
|---|
| 2884 |       r = rr;
 | 
|---|
| 2885 |     }
 | 
|---|
| 2886 | 
 | 
|---|
| 2887 |     /* new leading digit? */
 | 
|---|
| 2888 |     if (r != 0) {
 | 
|---|
| 2889 |       /* add a MSB which is always 1 at this point */
 | 
|---|
| 2890 |       *tmpb = 1;
 | 
|---|
| 2891 |       ++(b->used);
 | 
|---|
| 2892 |     }
 | 
|---|
| 2893 | 
 | 
|---|
| 2894 |     /* now zero any excess digits on the destination 
 | 
|---|
| 2895 |      * that we didn't write to 
 | 
|---|
| 2896 |      */
 | 
|---|
| 2897 |     tmpb = b->dp + b->used;
 | 
|---|
| 2898 |     for (x = b->used; x < oldused; x++) {
 | 
|---|
| 2899 |       *tmpb++ = 0;
 | 
|---|
| 2900 |     }
 | 
|---|
| 2901 |   }
 | 
|---|
| 2902 |   b->sign = a->sign;
 | 
|---|
| 2903 |   return MP_OKAY;
 | 
|---|
| 2904 | }
 | 
|---|
| 2905 | 
 | 
|---|
| 2906 | /* shift left by a certain bit count */
 | 
|---|
| 2907 | int mp_mul_2d (const mp_int * a, int b, mp_int * c)
 | 
|---|
| 2908 | {
 | 
|---|
| 2909 |   mp_digit d;
 | 
|---|
| 2910 |   int      res;
 | 
|---|
| 2911 | 
 | 
|---|
| 2912 |   /* copy */
 | 
|---|
| 2913 |   if (a != c) {
 | 
|---|
| 2914 |      if ((res = mp_copy (a, c)) != MP_OKAY) {
 | 
|---|
| 2915 |        return res;
 | 
|---|
| 2916 |      }
 | 
|---|
| 2917 |   }
 | 
|---|
| 2918 | 
 | 
|---|
| 2919 |   if (c->alloc < c->used + b/DIGIT_BIT + 1) {
 | 
|---|
| 2920 |      if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
 | 
|---|
| 2921 |        return res;
 | 
|---|
| 2922 |      }
 | 
|---|
| 2923 |   }
 | 
|---|
| 2924 | 
 | 
|---|
| 2925 |   /* shift by as many digits in the bit count */
 | 
|---|
| 2926 |   if (b >= DIGIT_BIT) {
 | 
|---|
| 2927 |     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
 | 
|---|
| 2928 |       return res;
 | 
|---|
| 2929 |     }
 | 
|---|
| 2930 |   }
 | 
|---|
| 2931 | 
 | 
|---|
| 2932 |   /* shift any bit count < DIGIT_BIT */
 | 
|---|
| 2933 |   d = (mp_digit) (b % DIGIT_BIT);
 | 
|---|
| 2934 |   if (d != 0) {
 | 
|---|
| 2935 |     register mp_digit *tmpc, shift, mask, r, rr;
 | 
|---|
| 2936 |     register int x;
 | 
|---|
| 2937 | 
 | 
|---|
| 2938 |     /* bitmask for carries */
 | 
|---|
| 2939 |     mask = (((mp_digit)1) << d) - 1;
 | 
|---|
| 2940 | 
 | 
|---|
| 2941 |     /* shift for msbs */
 | 
|---|
| 2942 |     shift = DIGIT_BIT - d;
 | 
|---|
| 2943 | 
 | 
|---|
| 2944 |     /* alias */
 | 
|---|
| 2945 |     tmpc = c->dp;
 | 
|---|
| 2946 | 
 | 
|---|
| 2947 |     /* carry */
 | 
|---|
| 2948 |     r    = 0;
 | 
|---|
| 2949 |     for (x = 0; x < c->used; x++) {
 | 
|---|
| 2950 |       /* get the higher bits of the current word */
 | 
|---|
| 2951 |       rr = (*tmpc >> shift) & mask;
 | 
|---|
| 2952 | 
 | 
|---|
| 2953 |       /* shift the current word and OR in the carry */
 | 
|---|
| 2954 |       *tmpc = ((*tmpc << d) | r) & MP_MASK;
 | 
|---|
| 2955 |       ++tmpc;
 | 
|---|
| 2956 | 
 | 
|---|
| 2957 |       /* set the carry to the carry bits of the current word */
 | 
|---|
| 2958 |       r = rr;
 | 
|---|
| 2959 |     }
 | 
|---|
| 2960 |     
 | 
|---|
| 2961 |     /* set final carry */
 | 
|---|
| 2962 |     if (r != 0) {
 | 
|---|
| 2963 |        c->dp[(c->used)++] = r;
 | 
|---|
| 2964 |     }
 | 
|---|
| 2965 |   }
 | 
|---|
| 2966 |   mp_clamp (c);
 | 
|---|
| 2967 |   return MP_OKAY;
 | 
|---|
| 2968 | }
 | 
|---|
| 2969 | 
 | 
|---|
| 2970 | /* multiply by a digit */
 | 
|---|
| 2971 | int
 | 
|---|
| 2972 | mp_mul_d (const mp_int * a, mp_digit b, mp_int * c)
 | 
|---|
| 2973 | {
 | 
|---|
| 2974 |   mp_digit u, *tmpa, *tmpc;
 | 
|---|
| 2975 |   mp_word  r;
 | 
|---|
| 2976 |   int      ix, res, olduse;
 | 
|---|
| 2977 | 
 | 
|---|
| 2978 |   /* make sure c is big enough to hold a*b */
 | 
|---|
| 2979 |   if (c->alloc < a->used + 1) {
 | 
|---|
| 2980 |     if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
 | 
|---|
| 2981 |       return res;
 | 
|---|
| 2982 |     }
 | 
|---|
| 2983 |   }
 | 
|---|
| 2984 | 
 | 
|---|
| 2985 |   /* get the original destinations used count */
 | 
|---|
| 2986 |   olduse = c->used;
 | 
|---|
| 2987 | 
 | 
|---|
| 2988 |   /* set the sign */
 | 
|---|
| 2989 |   c->sign = a->sign;
 | 
|---|
| 2990 | 
 | 
|---|
| 2991 |   /* alias for a->dp [source] */
 | 
|---|
| 2992 |   tmpa = a->dp;
 | 
|---|
| 2993 | 
 | 
|---|
| 2994 |   /* alias for c->dp [dest] */
 | 
|---|
| 2995 |   tmpc = c->dp;
 | 
|---|
| 2996 | 
 | 
|---|
| 2997 |   /* zero carry */
 | 
|---|
| 2998 |   u = 0;
 | 
|---|
| 2999 | 
 | 
|---|
| 3000 |   /* compute columns */
 | 
|---|
| 3001 |   for (ix = 0; ix < a->used; ix++) {
 | 
|---|
| 3002 |     /* compute product and carry sum for this term */
 | 
|---|
| 3003 |     r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
 | 
|---|
| 3004 | 
 | 
|---|
| 3005 |     /* mask off higher bits to get a single digit */
 | 
|---|
| 3006 |     *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
|---|
| 3007 | 
 | 
|---|
| 3008 |     /* send carry into next iteration */
 | 
|---|
| 3009 |     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | 
|---|
| 3010 |   }
 | 
|---|
| 3011 | 
 | 
|---|
| 3012 |   /* store final carry [if any] */
 | 
|---|
| 3013 |   *tmpc++ = u;
 | 
|---|
| 3014 | 
 | 
|---|
| 3015 |   /* now zero digits above the top */
 | 
|---|
| 3016 |   while (ix++ < olduse) {
 | 
|---|
| 3017 |      *tmpc++ = 0;
 | 
|---|
| 3018 |   }
 | 
|---|
| 3019 | 
 | 
|---|
| 3020 |   /* set used count */
 | 
|---|
| 3021 |   c->used = a->used + 1;
 | 
|---|
| 3022 |   mp_clamp(c);
 | 
|---|
| 3023 | 
 | 
|---|
| 3024 |   return MP_OKAY;
 | 
|---|
| 3025 | }
 | 
|---|
| 3026 | 
 | 
|---|
| 3027 | /* d = a * b (mod c) */
 | 
|---|
| 3028 | int
 | 
|---|
| 3029 | mp_mulmod (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
 | 
|---|
| 3030 | {
 | 
|---|
| 3031 |   int     res;
 | 
|---|
| 3032 |   mp_int  t;
 | 
|---|
| 3033 | 
 | 
|---|
| 3034 |   if ((res = mp_init (&t)) != MP_OKAY) {
 | 
|---|
| 3035 |     return res;
 | 
|---|
| 3036 |   }
 | 
|---|
| 3037 | 
 | 
|---|
| 3038 |   if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
 | 
|---|
| 3039 |     mp_clear (&t);
 | 
|---|
| 3040 |     return res;
 | 
|---|
| 3041 |   }
 | 
|---|
| 3042 |   res = mp_mod (&t, c, d);
 | 
|---|
| 3043 |   mp_clear (&t);
 | 
|---|
| 3044 |   return res;
 | 
|---|
| 3045 | }
 | 
|---|
| 3046 | 
 | 
|---|
| 3047 | /* table of first PRIME_SIZE primes */
 | 
|---|
| 3048 | static const mp_digit __prime_tab[] = {
 | 
|---|
| 3049 |   0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
 | 
|---|
| 3050 |   0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
 | 
|---|
| 3051 |   0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
 | 
|---|
| 3052 |   0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
 | 
|---|
| 3053 |   0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
 | 
|---|
| 3054 |   0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
 | 
|---|
| 3055 |   0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
 | 
|---|
| 3056 |   0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
 | 
|---|
| 3057 | 
 | 
|---|
| 3058 |   0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
 | 
|---|
| 3059 |   0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
 | 
|---|
| 3060 |   0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
 | 
|---|
| 3061 |   0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
 | 
|---|
| 3062 |   0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
 | 
|---|
| 3063 |   0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
 | 
|---|
| 3064 |   0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
 | 
|---|
| 3065 |   0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
 | 
|---|
| 3066 | 
 | 
|---|
| 3067 |   0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
 | 
|---|
| 3068 |   0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
 | 
|---|
| 3069 |   0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
 | 
|---|
| 3070 |   0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
 | 
|---|
| 3071 |   0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
 | 
|---|
| 3072 |   0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
 | 
|---|
| 3073 |   0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
 | 
|---|
| 3074 |   0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
 | 
|---|
| 3075 | 
 | 
|---|
| 3076 |   0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
 | 
|---|
| 3077 |   0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
 | 
|---|
| 3078 |   0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
 | 
|---|
| 3079 |   0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
 | 
|---|
| 3080 |   0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
 | 
|---|
| 3081 |   0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
 | 
|---|
| 3082 |   0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
 | 
|---|
| 3083 |   0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
 | 
|---|
| 3084 | };
 | 
|---|
| 3085 | 
 | 
|---|
| 3086 | /* determines if an integers is divisible by one 
 | 
|---|
| 3087 |  * of the first PRIME_SIZE primes or not
 | 
|---|
| 3088 |  *
 | 
|---|
| 3089 |  * sets result to 0 if not, 1 if yes
 | 
|---|
| 3090 |  */
 | 
|---|
| 3091 | int mp_prime_is_divisible (const mp_int * a, int *result)
 | 
|---|
| 3092 | {
 | 
|---|
| 3093 |   int     err, ix;
 | 
|---|
| 3094 |   mp_digit res;
 | 
|---|
| 3095 | 
 | 
|---|
| 3096 |   /* default to not */
 | 
|---|
| 3097 |   *result = MP_NO;
 | 
|---|
| 3098 | 
 | 
|---|
| 3099 |   for (ix = 0; ix < PRIME_SIZE; ix++) {
 | 
|---|
| 3100 |     /* what is a mod __prime_tab[ix] */
 | 
|---|
| 3101 |     if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
 | 
|---|
| 3102 |       return err;
 | 
|---|
| 3103 |     }
 | 
|---|
| 3104 | 
 | 
|---|
| 3105 |     /* is the residue zero? */
 | 
|---|
| 3106 |     if (res == 0) {
 | 
|---|
| 3107 |       *result = MP_YES;
 | 
|---|
| 3108 |       return MP_OKAY;
 | 
|---|
| 3109 |     }
 | 
|---|
| 3110 |   }
 | 
|---|
| 3111 | 
 | 
|---|
| 3112 |   return MP_OKAY;
 | 
|---|
| 3113 | }
 | 
|---|
| 3114 | 
 | 
|---|
| 3115 | /* performs a variable number of rounds of Miller-Rabin
 | 
|---|
| 3116 |  *
 | 
|---|
| 3117 |  * Probability of error after t rounds is no more than
 | 
|---|
| 3118 | 
 | 
|---|
| 3119 |  *
 | 
|---|
| 3120 |  * Sets result to 1 if probably prime, 0 otherwise
 | 
|---|
| 3121 |  */
 | 
|---|
| 3122 | int mp_prime_is_prime (mp_int * a, int t, int *result)
 | 
|---|
| 3123 | {
 | 
|---|
| 3124 |   mp_int  b;
 | 
|---|
| 3125 |   int     ix, err, res;
 | 
|---|
| 3126 | 
 | 
|---|
| 3127 |   /* default to no */
 | 
|---|
| 3128 |   *result = MP_NO;
 | 
|---|
| 3129 | 
 | 
|---|
| 3130 |   /* valid value of t? */
 | 
|---|
| 3131 |   if (t <= 0 || t > PRIME_SIZE) {
 | 
|---|
| 3132 |     return MP_VAL;
 | 
|---|
| 3133 |   }
 | 
|---|
| 3134 | 
 | 
|---|
| 3135 |   /* is the input equal to one of the primes in the table? */
 | 
|---|
| 3136 |   for (ix = 0; ix < PRIME_SIZE; ix++) {
 | 
|---|
| 3137 |       if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
 | 
|---|
| 3138 |          *result = 1;
 | 
|---|
| 3139 |          return MP_OKAY;
 | 
|---|
| 3140 |       }
 | 
|---|
| 3141 |   }
 | 
|---|
| 3142 | 
 | 
|---|
| 3143 |   /* first perform trial division */
 | 
|---|
| 3144 |   if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
 | 
|---|
| 3145 |     return err;
 | 
|---|
| 3146 |   }
 | 
|---|
| 3147 | 
 | 
|---|
| 3148 |   /* return if it was trivially divisible */
 | 
|---|
| 3149 |   if (res == MP_YES) {
 | 
|---|
| 3150 |     return MP_OKAY;
 | 
|---|
| 3151 |   }
 | 
|---|
| 3152 | 
 | 
|---|
| 3153 |   /* now perform the miller-rabin rounds */
 | 
|---|
| 3154 |   if ((err = mp_init (&b)) != MP_OKAY) {
 | 
|---|
| 3155 |     return err;
 | 
|---|
| 3156 |   }
 | 
|---|
| 3157 | 
 | 
|---|
| 3158 |   for (ix = 0; ix < t; ix++) {
 | 
|---|
| 3159 |     /* set the prime */
 | 
|---|
| 3160 |     mp_set (&b, __prime_tab[ix]);
 | 
|---|
| 3161 | 
 | 
|---|
| 3162 |     if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
 | 
|---|
| 3163 |       goto __B;
 | 
|---|
| 3164 |     }
 | 
|---|
| 3165 | 
 | 
|---|
| 3166 |     if (res == MP_NO) {
 | 
|---|
| 3167 |       goto __B;
 | 
|---|
| 3168 |     }
 | 
|---|
| 3169 |   }
 | 
|---|
| 3170 | 
 | 
|---|
| 3171 |   /* passed the test */
 | 
|---|
| 3172 |   *result = MP_YES;
 | 
|---|
| 3173 | __B:mp_clear (&b);
 | 
|---|
| 3174 |   return err;
 | 
|---|
| 3175 | }
 | 
|---|
| 3176 | 
 | 
|---|
| 3177 | /* Miller-Rabin test of "a" to the base of "b" as described in 
 | 
|---|
| 3178 |  * HAC pp. 139 Algorithm 4.24
 | 
|---|
| 3179 |  *
 | 
|---|
| 3180 |  * Sets result to 0 if definitely composite or 1 if probably prime.
 | 
|---|
| 3181 |  * Randomly the chance of error is no more than 1/4 and often 
 | 
|---|
| 3182 |  * very much lower.
 | 
|---|
| 3183 |  */
 | 
|---|
| 3184 | int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result)
 | 
|---|
| 3185 | {
 | 
|---|
| 3186 |   mp_int  n1, y, r;
 | 
|---|
| 3187 |   int     s, j, err;
 | 
|---|
| 3188 | 
 | 
|---|
| 3189 |   /* default */
 | 
|---|
| 3190 |   *result = MP_NO;
 | 
|---|
| 3191 | 
 | 
|---|
| 3192 |   /* ensure b > 1 */
 | 
|---|
| 3193 |   if (mp_cmp_d(b, 1) != MP_GT) {
 | 
|---|
| 3194 |      return MP_VAL;
 | 
|---|
| 3195 |   }     
 | 
|---|
| 3196 | 
 | 
|---|
| 3197 |   /* get n1 = a - 1 */
 | 
|---|
| 3198 |   if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
 | 
|---|
| 3199 |     return err;
 | 
|---|
| 3200 |   }
 | 
|---|
| 3201 |   if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
 | 
|---|
| 3202 |     goto __N1;
 | 
|---|
| 3203 |   }
 | 
|---|
| 3204 | 
 | 
|---|
| 3205 |   /* set 2**s * r = n1 */
 | 
|---|
| 3206 |   if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
 | 
|---|
| 3207 |     goto __N1;
 | 
|---|
| 3208 |   }
 | 
|---|
| 3209 | 
 | 
|---|
| 3210 |   /* count the number of least significant bits
 | 
|---|
| 3211 |    * which are zero
 | 
|---|
| 3212 |    */
 | 
|---|
| 3213 |   s = mp_cnt_lsb(&r);
 | 
|---|
| 3214 | 
 | 
|---|
| 3215 |   /* now divide n - 1 by 2**s */
 | 
|---|
| 3216 |   if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
 | 
|---|
| 3217 |     goto __R;
 | 
|---|
| 3218 |   }
 | 
|---|
| 3219 | 
 | 
|---|
| 3220 |   /* compute y = b**r mod a */
 | 
|---|
| 3221 |   if ((err = mp_init (&y)) != MP_OKAY) {
 | 
|---|
| 3222 |     goto __R;
 | 
|---|
| 3223 |   }
 | 
|---|
| 3224 |   if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
 | 
|---|
| 3225 |     goto __Y;
 | 
|---|
| 3226 |   }
 | 
|---|
| 3227 | 
 | 
|---|
| 3228 |   /* if y != 1 and y != n1 do */
 | 
|---|
| 3229 |   if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
 | 
|---|
| 3230 |     j = 1;
 | 
|---|
| 3231 |     /* while j <= s-1 and y != n1 */
 | 
|---|
| 3232 |     while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
 | 
|---|
| 3233 |       if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
 | 
|---|
| 3234 |          goto __Y;
 | 
|---|
| 3235 |       }
 | 
|---|
| 3236 | 
 | 
|---|
| 3237 |       /* if y == 1 then composite */
 | 
|---|
| 3238 |       if (mp_cmp_d (&y, 1) == MP_EQ) {
 | 
|---|
| 3239 |          goto __Y;
 | 
|---|
| 3240 |       }
 | 
|---|
| 3241 | 
 | 
|---|
| 3242 |       ++j;
 | 
|---|
| 3243 |     }
 | 
|---|
| 3244 | 
 | 
|---|
| 3245 |     /* if y != n1 then composite */
 | 
|---|
| 3246 |     if (mp_cmp (&y, &n1) != MP_EQ) {
 | 
|---|
| 3247 |       goto __Y;
 | 
|---|
| 3248 |     }
 | 
|---|
| 3249 |   }
 | 
|---|
| 3250 | 
 | 
|---|
| 3251 |   /* probably prime now */
 | 
|---|
| 3252 |   *result = MP_YES;
 | 
|---|
| 3253 | __Y:mp_clear (&y);
 | 
|---|
| 3254 | __R:mp_clear (&r);
 | 
|---|
| 3255 | __N1:mp_clear (&n1);
 | 
|---|
| 3256 |   return err;
 | 
|---|
| 3257 | }
 | 
|---|
| 3258 | 
 | 
|---|
| 3259 | static const struct {
 | 
|---|
| 3260 |    int k, t;
 | 
|---|
| 3261 | } sizes[] = {
 | 
|---|
| 3262 | {   128,    28 },
 | 
|---|
| 3263 | {   256,    16 },
 | 
|---|
| 3264 | {   384,    10 },
 | 
|---|
| 3265 | {   512,     7 },
 | 
|---|
| 3266 | {   640,     6 },
 | 
|---|
| 3267 | {   768,     5 },
 | 
|---|
| 3268 | {   896,     4 },
 | 
|---|
| 3269 | {  1024,     4 }
 | 
|---|
| 3270 | };
 | 
|---|
| 3271 | 
 | 
|---|
| 3272 | /* returns # of RM trials required for a given bit size */
 | 
|---|
| 3273 | int mp_prime_rabin_miller_trials(int size)
 | 
|---|
| 3274 | {
 | 
|---|
| 3275 |    int x;
 | 
|---|
| 3276 | 
 | 
|---|
| 3277 |    for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
 | 
|---|
| 3278 |        if (sizes[x].k == size) {
 | 
|---|
| 3279 |           return sizes[x].t;
 | 
|---|
| 3280 |        } else if (sizes[x].k > size) {
 | 
|---|
| 3281 |           return (x == 0) ? sizes[0].t : sizes[x - 1].t;
 | 
|---|
| 3282 |        }
 | 
|---|
| 3283 |    }
 | 
|---|
| 3284 |    return sizes[x-1].t + 1;
 | 
|---|
| 3285 | }
 | 
|---|
| 3286 | 
 | 
|---|
| 3287 | /* makes a truly random prime of a given size (bits),
 | 
|---|
| 3288 |  *
 | 
|---|
| 3289 |  * Flags are as follows:
 | 
|---|
| 3290 |  * 
 | 
|---|
| 3291 |  *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 | 
|---|
| 3292 |  *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 | 
|---|
| 3293 |  *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 | 
|---|
| 3294 |  *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 | 
|---|
| 3295 |  *
 | 
|---|
| 3296 |  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 | 
|---|
| 3297 |  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 | 
|---|
| 3298 |  * so it can be NULL
 | 
|---|
| 3299 |  *
 | 
|---|
| 3300 |  */
 | 
|---|
| 3301 | 
 | 
|---|
| 3302 | /* This is possibly the mother of all prime generation functions, muahahahahaha! */
 | 
|---|
| 3303 | int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
 | 
|---|
| 3304 | {
 | 
|---|
| 3305 |    unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
 | 
|---|
| 3306 |    int res, err, bsize, maskOR_msb_offset;
 | 
|---|
| 3307 | 
 | 
|---|
| 3308 |    /* sanity check the input */
 | 
|---|
| 3309 |    if (size <= 1 || t <= 0) {
 | 
|---|
| 3310 |       return MP_VAL;
 | 
|---|
| 3311 |    }
 | 
|---|
| 3312 | 
 | 
|---|
| 3313 |    /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
 | 
|---|
| 3314 |    if (flags & LTM_PRIME_SAFE) {
 | 
|---|
| 3315 |       flags |= LTM_PRIME_BBS;
 | 
|---|
| 3316 |    }
 | 
|---|
| 3317 | 
 | 
|---|
| 3318 |    /* calc the byte size */
 | 
|---|
| 3319 |    bsize = (size>>3)+((size&7)?1:0);
 | 
|---|
| 3320 | 
 | 
|---|
| 3321 |    /* we need a buffer of bsize bytes */
 | 
|---|
| 3322 |    tmp = malloc(bsize);
 | 
|---|
| 3323 |    if (tmp == NULL) {
 | 
|---|
| 3324 |       return MP_MEM;
 | 
|---|
| 3325 |    }
 | 
|---|
| 3326 | 
 | 
|---|
| 3327 |    /* calc the maskAND value for the MSbyte*/
 | 
|---|
| 3328 |    maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7))); 
 | 
|---|
| 3329 | 
 | 
|---|
| 3330 |    /* calc the maskOR_msb */
 | 
|---|
| 3331 |    maskOR_msb        = 0;
 | 
|---|
| 3332 |    maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
 | 
|---|
| 3333 |    if (flags & LTM_PRIME_2MSB_ON) {
 | 
|---|
| 3334 |       maskOR_msb     |= 1 << ((size - 2) & 7);
 | 
|---|
| 3335 |    } else if (flags & LTM_PRIME_2MSB_OFF) {
 | 
|---|
| 3336 |       maskAND        &= ~(1 << ((size - 2) & 7));
 | 
|---|
| 3337 |    }
 | 
|---|
| 3338 | 
 | 
|---|
| 3339 |    /* get the maskOR_lsb */
 | 
|---|
| 3340 |    maskOR_lsb         = 0;
 | 
|---|
| 3341 |    if (flags & LTM_PRIME_BBS) {
 | 
|---|
| 3342 |       maskOR_lsb     |= 3;
 | 
|---|
| 3343 |    }
 | 
|---|
| 3344 | 
 | 
|---|
| 3345 |    do {
 | 
|---|
| 3346 |       /* read the bytes */
 | 
|---|
| 3347 |       if (cb(tmp, bsize, dat) != bsize) {
 | 
|---|
| 3348 |          err = MP_VAL;
 | 
|---|
| 3349 |          goto error;
 | 
|---|
| 3350 |       }
 | 
|---|
| 3351 |  
 | 
|---|
| 3352 |       /* work over the MSbyte */
 | 
|---|
| 3353 |       tmp[0]    &= maskAND;
 | 
|---|
| 3354 |       tmp[0]    |= 1 << ((size - 1) & 7);
 | 
|---|
| 3355 | 
 | 
|---|
| 3356 |       /* mix in the maskORs */
 | 
|---|
| 3357 |       tmp[maskOR_msb_offset]   |= maskOR_msb;
 | 
|---|
| 3358 |       tmp[bsize-1]             |= maskOR_lsb;
 | 
|---|
| 3359 | 
 | 
|---|
| 3360 |       /* read it in */
 | 
|---|
| 3361 |       if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY)     { goto error; }
 | 
|---|
| 3362 | 
 | 
|---|
| 3363 |       /* is it prime? */
 | 
|---|
| 3364 |       if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; }
 | 
|---|
| 3365 |       if (res == MP_NO) {  
 | 
|---|
| 3366 |          continue;
 | 
|---|
| 3367 |       }
 | 
|---|
| 3368 | 
 | 
|---|
| 3369 |       if (flags & LTM_PRIME_SAFE) {
 | 
|---|
| 3370 |          /* see if (a-1)/2 is prime */
 | 
|---|
| 3371 |          if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; }
 | 
|---|
| 3372 |          if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; }
 | 
|---|
| 3373 |  
 | 
|---|
| 3374 |          /* is it prime? */
 | 
|---|
| 3375 |          if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; }
 | 
|---|
| 3376 |       }
 | 
|---|
| 3377 |    } while (res == MP_NO);
 | 
|---|
| 3378 | 
 | 
|---|
| 3379 |    if (flags & LTM_PRIME_SAFE) {
 | 
|---|
| 3380 |       /* restore a to the original value */
 | 
|---|
| 3381 |       if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; }
 | 
|---|
| 3382 |       if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; }
 | 
|---|
| 3383 |    }
 | 
|---|
| 3384 | 
 | 
|---|
| 3385 |    err = MP_OKAY;
 | 
|---|
| 3386 | error:
 | 
|---|
| 3387 |    free(tmp);
 | 
|---|
| 3388 |    return err;
 | 
|---|
| 3389 | }
 | 
|---|
| 3390 | 
 | 
|---|
| 3391 | /* reads an unsigned char array, assumes the msb is stored first [big endian] */
 | 
|---|
| 3392 | int
 | 
|---|
| 3393 | mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
 | 
|---|
| 3394 | {
 | 
|---|
| 3395 |   int     res;
 | 
|---|
| 3396 | 
 | 
|---|
| 3397 |   /* make sure there are at least two digits */
 | 
|---|
| 3398 |   if (a->alloc < 2) {
 | 
|---|
| 3399 |      if ((res = mp_grow(a, 2)) != MP_OKAY) {
 | 
|---|
| 3400 |         return res;
 | 
|---|
| 3401 |      }
 | 
|---|
| 3402 |   }
 | 
|---|
| 3403 | 
 | 
|---|
| 3404 |   /* zero the int */
 | 
|---|
| 3405 |   mp_zero (a);
 | 
|---|
| 3406 | 
 | 
|---|
| 3407 |   /* read the bytes in */
 | 
|---|
| 3408 |   while (c-- > 0) {
 | 
|---|
| 3409 |     if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
 | 
|---|
| 3410 |       return res;
 | 
|---|
| 3411 |     }
 | 
|---|
| 3412 | 
 | 
|---|
| 3413 |       a->dp[0] |= *b++;
 | 
|---|
| 3414 |       a->used += 1;
 | 
|---|
| 3415 |   }
 | 
|---|
| 3416 |   mp_clamp (a);
 | 
|---|
| 3417 |   return MP_OKAY;
 | 
|---|
| 3418 | }
 | 
|---|
| 3419 | 
 | 
|---|
| 3420 | /* reduces x mod m, assumes 0 < x < m**2, mu is 
 | 
|---|
| 3421 |  * precomputed via mp_reduce_setup.
 | 
|---|
| 3422 |  * From HAC pp.604 Algorithm 14.42
 | 
|---|
| 3423 |  */
 | 
|---|
| 3424 | int
 | 
|---|
| 3425 | mp_reduce (mp_int * x, const mp_int * m, const mp_int * mu)
 | 
|---|
| 3426 | {
 | 
|---|
| 3427 |   mp_int  q;
 | 
|---|
| 3428 |   int     res, um = m->used;
 | 
|---|
| 3429 | 
 | 
|---|
| 3430 |   /* q = x */
 | 
|---|
| 3431 |   if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
 | 
|---|
| 3432 |     return res;
 | 
|---|
| 3433 |   }
 | 
|---|
| 3434 | 
 | 
|---|
| 3435 |   /* q1 = x / b**(k-1)  */
 | 
|---|
| 3436 |   mp_rshd (&q, um - 1);         
 | 
|---|
| 3437 | 
 | 
|---|
| 3438 |   /* according to HAC this optimization is ok */
 | 
|---|
| 3439 |   if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
 | 
|---|
| 3440 |     if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
 | 
|---|
| 3441 |       goto CLEANUP;
 | 
|---|
| 3442 |     }
 | 
|---|
| 3443 |   } else {
 | 
|---|
| 3444 |     if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
 | 
|---|
| 3445 |       goto CLEANUP;
 | 
|---|
| 3446 |     }
 | 
|---|
| 3447 |   }
 | 
|---|
| 3448 | 
 | 
|---|
| 3449 |   /* q3 = q2 / b**(k+1) */
 | 
|---|
| 3450 |   mp_rshd (&q, um + 1);         
 | 
|---|
| 3451 | 
 | 
|---|
| 3452 |   /* x = x mod b**(k+1), quick (no division) */
 | 
|---|
| 3453 |   if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
 | 
|---|
| 3454 |     goto CLEANUP;
 | 
|---|
| 3455 |   }
 | 
|---|
| 3456 | 
 | 
|---|
| 3457 |   /* q = q * m mod b**(k+1), quick (no division) */
 | 
|---|
| 3458 |   if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
 | 
|---|
| 3459 |     goto CLEANUP;
 | 
|---|
| 3460 |   }
 | 
|---|
| 3461 | 
 | 
|---|
| 3462 |   /* x = x - q */
 | 
|---|
| 3463 |   if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
 | 
|---|
| 3464 |     goto CLEANUP;
 | 
|---|
| 3465 |   }
 | 
|---|
| 3466 | 
 | 
|---|
| 3467 |   /* If x < 0, add b**(k+1) to it */
 | 
|---|
| 3468 |   if (mp_cmp_d (x, 0) == MP_LT) {
 | 
|---|
| 3469 |     mp_set (&q, 1);
 | 
|---|
| 3470 |     if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
 | 
|---|
| 3471 |       goto CLEANUP;
 | 
|---|
| 3472 |     if ((res = mp_add (x, &q, x)) != MP_OKAY)
 | 
|---|
| 3473 |       goto CLEANUP;
 | 
|---|
| 3474 |   }
 | 
|---|
| 3475 | 
 | 
|---|
| 3476 |   /* Back off if it's too big */
 | 
|---|
| 3477 |   while (mp_cmp (x, m) != MP_LT) {
 | 
|---|
| 3478 |     if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
 | 
|---|
| 3479 |       goto CLEANUP;
 | 
|---|
| 3480 |     }
 | 
|---|
| 3481 |   }
 | 
|---|
| 3482 |   
 | 
|---|
| 3483 | CLEANUP:
 | 
|---|
| 3484 |   mp_clear (&q);
 | 
|---|
| 3485 | 
 | 
|---|
| 3486 |   return res;
 | 
|---|
| 3487 | }
 | 
|---|
| 3488 | 
 | 
|---|
| 3489 | /* reduces a modulo n where n is of the form 2**p - d */
 | 
|---|
| 3490 | int
 | 
|---|
| 3491 | mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
 | 
|---|
| 3492 | {
 | 
|---|
| 3493 |    mp_int q;
 | 
|---|
| 3494 |    int    p, res;
 | 
|---|
| 3495 |    
 | 
|---|
| 3496 |    if ((res = mp_init(&q)) != MP_OKAY) {
 | 
|---|
| 3497 |       return res;
 | 
|---|
| 3498 |    }
 | 
|---|
| 3499 |    
 | 
|---|
| 3500 |    p = mp_count_bits(n);    
 | 
|---|
| 3501 | top:
 | 
|---|
| 3502 |    /* q = a/2**p, a = a mod 2**p */
 | 
|---|
| 3503 |    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
 | 
|---|
| 3504 |       goto ERR;
 | 
|---|
| 3505 |    }
 | 
|---|
| 3506 |    
 | 
|---|
| 3507 |    if (d != 1) {
 | 
|---|
| 3508 |       /* q = q * d */
 | 
|---|
| 3509 |       if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { 
 | 
|---|
| 3510 |          goto ERR;
 | 
|---|
| 3511 |       }
 | 
|---|
| 3512 |    }
 | 
|---|
| 3513 |    
 | 
|---|
| 3514 |    /* a = a + q */
 | 
|---|
| 3515 |    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
 | 
|---|
| 3516 |       goto ERR;
 | 
|---|
| 3517 |    }
 | 
|---|
| 3518 |    
 | 
|---|
| 3519 |    if (mp_cmp_mag(a, n) != MP_LT) {
 | 
|---|
| 3520 |       s_mp_sub(a, n, a);
 | 
|---|
| 3521 |       goto top;
 | 
|---|
| 3522 |    }
 | 
|---|
| 3523 |    
 | 
|---|
| 3524 | ERR:
 | 
|---|
| 3525 |    mp_clear(&q);
 | 
|---|
| 3526 |    return res;
 | 
|---|
| 3527 | }
 | 
|---|
| 3528 | 
 | 
|---|
| 3529 | /* determines the setup value */
 | 
|---|
| 3530 | int 
 | 
|---|
| 3531 | mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
 | 
|---|
| 3532 | {
 | 
|---|
| 3533 |    int res, p;
 | 
|---|
| 3534 |    mp_int tmp;
 | 
|---|
| 3535 |    
 | 
|---|
| 3536 |    if ((res = mp_init(&tmp)) != MP_OKAY) {
 | 
|---|
| 3537 |       return res;
 | 
|---|
| 3538 |    }
 | 
|---|
| 3539 |    
 | 
|---|
| 3540 |    p = mp_count_bits(a);
 | 
|---|
| 3541 |    if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
 | 
|---|
| 3542 |       mp_clear(&tmp);
 | 
|---|
| 3543 |       return res;
 | 
|---|
| 3544 |    }
 | 
|---|
| 3545 |    
 | 
|---|
| 3546 |    if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
 | 
|---|
| 3547 |       mp_clear(&tmp);
 | 
|---|
| 3548 |       return res;
 | 
|---|
| 3549 |    }
 | 
|---|
| 3550 |    
 | 
|---|
| 3551 |    *d = tmp.dp[0];
 | 
|---|
| 3552 |    mp_clear(&tmp);
 | 
|---|
| 3553 |    return MP_OKAY;
 | 
|---|
| 3554 | }
 | 
|---|
| 3555 | 
 | 
|---|
| 3556 | /* pre-calculate the value required for Barrett reduction
 | 
|---|
| 3557 |  * For a given modulus "b" it calulates the value required in "a"
 | 
|---|
| 3558 |  */
 | 
|---|
| 3559 | int mp_reduce_setup (mp_int * a, const mp_int * b)
 | 
|---|
| 3560 | {
 | 
|---|
| 3561 |   int     res;
 | 
|---|
| 3562 | 
 | 
|---|
| 3563 |   if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
 | 
|---|
| 3564 |     return res;
 | 
|---|
| 3565 |   }
 | 
|---|
| 3566 |   return mp_div (a, b, a, NULL);
 | 
|---|
| 3567 | }
 | 
|---|
| 3568 | 
 | 
|---|
| 3569 | /* shift right a certain amount of digits */
 | 
|---|
| 3570 | void mp_rshd (mp_int * a, int b)
 | 
|---|
| 3571 | {
 | 
|---|
| 3572 |   int     x;
 | 
|---|
| 3573 | 
 | 
|---|
| 3574 |   /* if b <= 0 then ignore it */
 | 
|---|
| 3575 |   if (b <= 0) {
 | 
|---|
| 3576 |     return;
 | 
|---|
| 3577 |   }
 | 
|---|
| 3578 | 
 | 
|---|
| 3579 |   /* if b > used then simply zero it and return */
 | 
|---|
| 3580 |   if (a->used <= b) {
 | 
|---|
| 3581 |     mp_zero (a);
 | 
|---|
| 3582 |     return;
 | 
|---|
| 3583 |   }
 | 
|---|
| 3584 | 
 | 
|---|
| 3585 |   {
 | 
|---|
| 3586 |     register mp_digit *bottom, *top;
 | 
|---|
| 3587 | 
 | 
|---|
| 3588 |     /* shift the digits down */
 | 
|---|
| 3589 | 
 | 
|---|
| 3590 |     /* bottom */
 | 
|---|
| 3591 |     bottom = a->dp;
 | 
|---|
| 3592 | 
 | 
|---|
| 3593 |     /* top [offset into digits] */
 | 
|---|
| 3594 |     top = a->dp + b;
 | 
|---|
| 3595 | 
 | 
|---|
| 3596 |     /* this is implemented as a sliding window where 
 | 
|---|
| 3597 |      * the window is b-digits long and digits from 
 | 
|---|
| 3598 |      * the top of the window are copied to the bottom
 | 
|---|
| 3599 |      *
 | 
|---|
| 3600 |      * e.g.
 | 
|---|
| 3601 | 
 | 
|---|
| 3602 |      b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
 | 
|---|
| 3603 |                  /\                   |      ---->
 | 
|---|
| 3604 |                   \-------------------/      ---->
 | 
|---|
| 3605 |      */
 | 
|---|
| 3606 |     for (x = 0; x < (a->used - b); x++) {
 | 
|---|
| 3607 |       *bottom++ = *top++;
 | 
|---|
| 3608 |     }
 | 
|---|
| 3609 | 
 | 
|---|
| 3610 |     /* zero the top digits */
 | 
|---|
| 3611 |     for (; x < a->used; x++) {
 | 
|---|
| 3612 |       *bottom++ = 0;
 | 
|---|
| 3613 |     }
 | 
|---|
| 3614 |   }
 | 
|---|
| 3615 |   
 | 
|---|
| 3616 |   /* remove excess digits */
 | 
|---|
| 3617 |   a->used -= b;
 | 
|---|
| 3618 | }
 | 
|---|
| 3619 | 
 | 
|---|
| 3620 | /* set to a digit */
 | 
|---|
| 3621 | void mp_set (mp_int * a, mp_digit b)
 | 
|---|
| 3622 | {
 | 
|---|
| 3623 |   mp_zero (a);
 | 
|---|
| 3624 |   a->dp[0] = b & MP_MASK;
 | 
|---|
| 3625 |   a->used  = (a->dp[0] != 0) ? 1 : 0;
 | 
|---|
| 3626 | }
 | 
|---|
| 3627 | 
 | 
|---|
| 3628 | /* set a 32-bit const */
 | 
|---|
| 3629 | int mp_set_int (mp_int * a, unsigned long b)
 | 
|---|
| 3630 | {
 | 
|---|
| 3631 |   int     x, res;
 | 
|---|
| 3632 | 
 | 
|---|
| 3633 |   mp_zero (a);
 | 
|---|
| 3634 |   
 | 
|---|
| 3635 |   /* set four bits at a time */
 | 
|---|
| 3636 |   for (x = 0; x < 8; x++) {
 | 
|---|
| 3637 |     /* shift the number up four bits */
 | 
|---|
| 3638 |     if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
 | 
|---|
| 3639 |       return res;
 | 
|---|
| 3640 |     }
 | 
|---|
| 3641 | 
 | 
|---|
| 3642 |     /* OR in the top four bits of the source */
 | 
|---|
| 3643 |     a->dp[0] |= (b >> 28) & 15;
 | 
|---|
| 3644 | 
 | 
|---|
| 3645 |     /* shift the source up to the next four bits */
 | 
|---|
| 3646 |     b <<= 4;
 | 
|---|
| 3647 | 
 | 
|---|
| 3648 |     /* ensure that digits are not clamped off */
 | 
|---|
| 3649 |     a->used += 1;
 | 
|---|
| 3650 |   }
 | 
|---|
| 3651 |   mp_clamp (a);
 | 
|---|
| 3652 |   return MP_OKAY;
 | 
|---|
| 3653 | }
 | 
|---|
| 3654 | 
 | 
|---|
| 3655 | /* shrink a bignum */
 | 
|---|
| 3656 | int mp_shrink (mp_int * a)
 | 
|---|
| 3657 | {
 | 
|---|
| 3658 |   mp_digit *tmp;
 | 
|---|
| 3659 |   if (a->alloc != a->used && a->used > 0) {
 | 
|---|
| 3660 |     if ((tmp = realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
 | 
|---|
| 3661 |       return MP_MEM;
 | 
|---|
| 3662 |     }
 | 
|---|
| 3663 |     a->dp    = tmp;
 | 
|---|
| 3664 |     a->alloc = a->used;
 | 
|---|
| 3665 |   }
 | 
|---|
| 3666 |   return MP_OKAY;
 | 
|---|
| 3667 | }
 | 
|---|
| 3668 | 
 | 
|---|
| 3669 | /* get the size for an signed equivalent */
 | 
|---|
| 3670 | int mp_signed_bin_size (const mp_int * a)
 | 
|---|
| 3671 | {
 | 
|---|
| 3672 |   return 1 + mp_unsigned_bin_size (a);
 | 
|---|
| 3673 | }
 | 
|---|
| 3674 | 
 | 
|---|
| 3675 | /* computes b = a*a */
 | 
|---|
| 3676 | int
 | 
|---|
| 3677 | mp_sqr (const mp_int * a, mp_int * b)
 | 
|---|
| 3678 | {
 | 
|---|
| 3679 |   int     res;
 | 
|---|
| 3680 | 
 | 
|---|
| 3681 | if (a->used >= KARATSUBA_SQR_CUTOFF) {
 | 
|---|
| 3682 |     res = mp_karatsuba_sqr (a, b);
 | 
|---|
| 3683 |   } else 
 | 
|---|
| 3684 |   {
 | 
|---|
| 3685 |     /* can we use the fast comba multiplier? */
 | 
|---|
| 3686 |     if ((a->used * 2 + 1) < MP_WARRAY && 
 | 
|---|
| 3687 |          a->used < 
 | 
|---|
| 3688 |          (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
 | 
|---|
| 3689 |       res = fast_s_mp_sqr (a, b);
 | 
|---|
| 3690 |     } else
 | 
|---|
| 3691 |       res = s_mp_sqr (a, b);
 | 
|---|
| 3692 |   }
 | 
|---|
| 3693 |   b->sign = MP_ZPOS;
 | 
|---|
| 3694 |   return res;
 | 
|---|
| 3695 | }
 | 
|---|
| 3696 | 
 | 
|---|
| 3697 | /* c = a * a (mod b) */
 | 
|---|
| 3698 | int
 | 
|---|
| 3699 | mp_sqrmod (const mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 3700 | {
 | 
|---|
| 3701 |   int     res;
 | 
|---|
| 3702 |   mp_int  t;
 | 
|---|
| 3703 | 
 | 
|---|
| 3704 |   if ((res = mp_init (&t)) != MP_OKAY) {
 | 
|---|
| 3705 |     return res;
 | 
|---|
| 3706 |   }
 | 
|---|
| 3707 | 
 | 
|---|
| 3708 |   if ((res = mp_sqr (a, &t)) != MP_OKAY) {
 | 
|---|
| 3709 |     mp_clear (&t);
 | 
|---|
| 3710 |     return res;
 | 
|---|
| 3711 |   }
 | 
|---|
| 3712 |   res = mp_mod (&t, b, c);
 | 
|---|
| 3713 |   mp_clear (&t);
 | 
|---|
| 3714 |   return res;
 | 
|---|
| 3715 | }
 | 
|---|
| 3716 | 
 | 
|---|
| 3717 | /* high level subtraction (handles signs) */
 | 
|---|
| 3718 | int
 | 
|---|
| 3719 | mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 3720 | {
 | 
|---|
| 3721 |   int     sa, sb, res;
 | 
|---|
| 3722 | 
 | 
|---|
| 3723 |   sa = a->sign;
 | 
|---|
| 3724 |   sb = b->sign;
 | 
|---|
| 3725 | 
 | 
|---|
| 3726 |   if (sa != sb) {
 | 
|---|
| 3727 |     /* subtract a negative from a positive, OR */
 | 
|---|
| 3728 |     /* subtract a positive from a negative. */
 | 
|---|
| 3729 |     /* In either case, ADD their magnitudes, */
 | 
|---|
| 3730 |     /* and use the sign of the first number. */
 | 
|---|
| 3731 |     c->sign = sa;
 | 
|---|
| 3732 |     res = s_mp_add (a, b, c);
 | 
|---|
| 3733 |   } else {
 | 
|---|
| 3734 |     /* subtract a positive from a positive, OR */
 | 
|---|
| 3735 |     /* subtract a negative from a negative. */
 | 
|---|
| 3736 |     /* First, take the difference between their */
 | 
|---|
| 3737 |     /* magnitudes, then... */
 | 
|---|
| 3738 |     if (mp_cmp_mag (a, b) != MP_LT) {
 | 
|---|
| 3739 |       /* Copy the sign from the first */
 | 
|---|
| 3740 |       c->sign = sa;
 | 
|---|
| 3741 |       /* The first has a larger or equal magnitude */
 | 
|---|
| 3742 |       res = s_mp_sub (a, b, c);
 | 
|---|
| 3743 |     } else {
 | 
|---|
| 3744 |       /* The result has the *opposite* sign from */
 | 
|---|
| 3745 |       /* the first number. */
 | 
|---|
| 3746 |       c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | 
|---|
| 3747 |       /* The second has a larger magnitude */
 | 
|---|
| 3748 |       res = s_mp_sub (b, a, c);
 | 
|---|
| 3749 |     }
 | 
|---|
| 3750 |   }
 | 
|---|
| 3751 |   return res;
 | 
|---|
| 3752 | }
 | 
|---|
| 3753 | 
 | 
|---|
| 3754 | /* single digit subtraction */
 | 
|---|
| 3755 | int
 | 
|---|
| 3756 | mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
 | 
|---|
| 3757 | {
 | 
|---|
| 3758 |   mp_digit *tmpa, *tmpc, mu;
 | 
|---|
| 3759 |   int       res, ix, oldused;
 | 
|---|
| 3760 | 
 | 
|---|
| 3761 |   /* grow c as required */
 | 
|---|
| 3762 |   if (c->alloc < a->used + 1) {
 | 
|---|
| 3763 |      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
 | 
|---|
| 3764 |         return res;
 | 
|---|
| 3765 |      }
 | 
|---|
| 3766 |   }
 | 
|---|
| 3767 | 
 | 
|---|
| 3768 |   /* if a is negative just do an unsigned
 | 
|---|
| 3769 |    * addition [with fudged signs]
 | 
|---|
| 3770 |    */
 | 
|---|
| 3771 |   if (a->sign == MP_NEG) {
 | 
|---|
| 3772 |      a->sign = MP_ZPOS;
 | 
|---|
| 3773 |      res     = mp_add_d(a, b, c);
 | 
|---|
| 3774 |      a->sign = c->sign = MP_NEG;
 | 
|---|
| 3775 |      return res;
 | 
|---|
| 3776 |   }
 | 
|---|
| 3777 | 
 | 
|---|
| 3778 |   /* setup regs */
 | 
|---|
| 3779 |   oldused = c->used;
 | 
|---|
| 3780 |   tmpa    = a->dp;
 | 
|---|
| 3781 |   tmpc    = c->dp;
 | 
|---|
| 3782 | 
 | 
|---|
| 3783 |   /* if a <= b simply fix the single digit */
 | 
|---|
| 3784 |   if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
 | 
|---|
| 3785 |      if (a->used == 1) {
 | 
|---|
| 3786 |         *tmpc++ = b - *tmpa;
 | 
|---|
| 3787 |      } else {
 | 
|---|
| 3788 |         *tmpc++ = b;
 | 
|---|
| 3789 |      }
 | 
|---|
| 3790 |      ix      = 1;
 | 
|---|
| 3791 | 
 | 
|---|
| 3792 |      /* negative/1digit */
 | 
|---|
| 3793 |      c->sign = MP_NEG;
 | 
|---|
| 3794 |      c->used = 1;
 | 
|---|
| 3795 |   } else {
 | 
|---|
| 3796 |      /* positive/size */
 | 
|---|
| 3797 |      c->sign = MP_ZPOS;
 | 
|---|
| 3798 |      c->used = a->used;
 | 
|---|
| 3799 | 
 | 
|---|
| 3800 |      /* subtract first digit */
 | 
|---|
| 3801 |      *tmpc    = *tmpa++ - b;
 | 
|---|
| 3802 |      mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
 | 
|---|
| 3803 |      *tmpc++ &= MP_MASK;
 | 
|---|
| 3804 | 
 | 
|---|
| 3805 |      /* handle rest of the digits */
 | 
|---|
| 3806 |      for (ix = 1; ix < a->used; ix++) {
 | 
|---|
| 3807 |         *tmpc    = *tmpa++ - mu;
 | 
|---|
| 3808 |         mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
 | 
|---|
| 3809 |         *tmpc++ &= MP_MASK;
 | 
|---|
| 3810 |      }
 | 
|---|
| 3811 |   }
 | 
|---|
| 3812 | 
 | 
|---|
| 3813 |   /* zero excess digits */
 | 
|---|
| 3814 |   while (ix++ < oldused) {
 | 
|---|
| 3815 |      *tmpc++ = 0;
 | 
|---|
| 3816 |   }
 | 
|---|
| 3817 |   mp_clamp(c);
 | 
|---|
| 3818 |   return MP_OKAY;
 | 
|---|
| 3819 | }
 | 
|---|
| 3820 | 
 | 
|---|
| 3821 | /* store in unsigned [big endian] format */
 | 
|---|
| 3822 | int
 | 
|---|
| 3823 | mp_to_unsigned_bin (const mp_int * a, unsigned char *b)
 | 
|---|
| 3824 | {
 | 
|---|
| 3825 |   int     x, res;
 | 
|---|
| 3826 |   mp_int  t;
 | 
|---|
| 3827 | 
 | 
|---|
| 3828 |   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | 
|---|
| 3829 |     return res;
 | 
|---|
| 3830 |   }
 | 
|---|
| 3831 | 
 | 
|---|
| 3832 |   x = 0;
 | 
|---|
| 3833 |   while (mp_iszero (&t) == 0) {
 | 
|---|
| 3834 |     b[x++] = (unsigned char) (t.dp[0] & 255);
 | 
|---|
| 3835 |     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
 | 
|---|
| 3836 |       mp_clear (&t);
 | 
|---|
| 3837 |       return res;
 | 
|---|
| 3838 |     }
 | 
|---|
| 3839 |   }
 | 
|---|
| 3840 |   bn_reverse (b, x);
 | 
|---|
| 3841 |   mp_clear (&t);
 | 
|---|
| 3842 |   return MP_OKAY;
 | 
|---|
| 3843 | }
 | 
|---|
| 3844 | 
 | 
|---|
| 3845 | /* get the size for an unsigned equivalent */
 | 
|---|
| 3846 | int
 | 
|---|
| 3847 | mp_unsigned_bin_size (const mp_int * a)
 | 
|---|
| 3848 | {
 | 
|---|
| 3849 |   int     size = mp_count_bits (a);
 | 
|---|
| 3850 |   return (size / 8 + ((size & 7) != 0 ? 1 : 0));
 | 
|---|
| 3851 | }
 | 
|---|
| 3852 | 
 | 
|---|
| 3853 | /* set to zero */
 | 
|---|
| 3854 | void
 | 
|---|
| 3855 | mp_zero (mp_int * a)
 | 
|---|
| 3856 | {
 | 
|---|
| 3857 |   a->sign = MP_ZPOS;
 | 
|---|
| 3858 |   a->used = 0;
 | 
|---|
| 3859 |   memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
 | 
|---|
| 3860 | }
 | 
|---|
| 3861 | 
 | 
|---|
| 3862 | /* reverse an array, used for radix code */
 | 
|---|
| 3863 | static void
 | 
|---|
| 3864 | bn_reverse (unsigned char *s, int len)
 | 
|---|
| 3865 | {
 | 
|---|
| 3866 |   int     ix, iy;
 | 
|---|
| 3867 |   unsigned char t;
 | 
|---|
| 3868 | 
 | 
|---|
| 3869 |   ix = 0;
 | 
|---|
| 3870 |   iy = len - 1;
 | 
|---|
| 3871 |   while (ix < iy) {
 | 
|---|
| 3872 |     t     = s[ix];
 | 
|---|
| 3873 |     s[ix] = s[iy];
 | 
|---|
| 3874 |     s[iy] = t;
 | 
|---|
| 3875 |     ++ix;
 | 
|---|
| 3876 |     --iy;
 | 
|---|
| 3877 |   }
 | 
|---|
| 3878 | }
 | 
|---|
| 3879 | 
 | 
|---|
| 3880 | /* low level addition, based on HAC pp.594, Algorithm 14.7 */
 | 
|---|
| 3881 | static int
 | 
|---|
| 3882 | s_mp_add (mp_int * a, mp_int * b, mp_int * c)
 | 
|---|
| 3883 | {
 | 
|---|
| 3884 |   mp_int *x;
 | 
|---|
| 3885 |   int     olduse, res, min, max;
 | 
|---|
| 3886 | 
 | 
|---|
| 3887 |   /* find sizes, we let |a| <= |b| which means we have to sort
 | 
|---|
| 3888 |    * them.  "x" will point to the input with the most digits
 | 
|---|
| 3889 |    */
 | 
|---|
| 3890 |   if (a->used > b->used) {
 | 
|---|
| 3891 |     min = b->used;
 | 
|---|
| 3892 |     max = a->used;
 | 
|---|
| 3893 |     x = a;
 | 
|---|
| 3894 |   } else {
 | 
|---|
| 3895 |     min = a->used;
 | 
|---|
| 3896 |     max = b->used;
 | 
|---|
| 3897 |     x = b;
 | 
|---|
| 3898 |   }
 | 
|---|
| 3899 | 
 | 
|---|
| 3900 |   /* init result */
 | 
|---|
| 3901 |   if (c->alloc < max + 1) {
 | 
|---|
| 3902 |     if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
 | 
|---|
| 3903 |       return res;
 | 
|---|
| 3904 |     }
 | 
|---|
| 3905 |   }
 | 
|---|
| 3906 | 
 | 
|---|
| 3907 |   /* get old used digit count and set new one */
 | 
|---|
| 3908 |   olduse = c->used;
 | 
|---|
| 3909 |   c->used = max + 1;
 | 
|---|
| 3910 | 
 | 
|---|
| 3911 |   {
 | 
|---|
| 3912 |     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | 
|---|
| 3913 |     register int i;
 | 
|---|
| 3914 | 
 | 
|---|
| 3915 |     /* alias for digit pointers */
 | 
|---|
| 3916 | 
 | 
|---|
| 3917 |     /* first input */
 | 
|---|
| 3918 |     tmpa = a->dp;
 | 
|---|
| 3919 | 
 | 
|---|
| 3920 |     /* second input */
 | 
|---|
| 3921 |     tmpb = b->dp;
 | 
|---|
| 3922 | 
 | 
|---|
| 3923 |     /* destination */
 | 
|---|
| 3924 |     tmpc = c->dp;
 | 
|---|
| 3925 | 
 | 
|---|
| 3926 |     /* zero the carry */
 | 
|---|
| 3927 |     u = 0;
 | 
|---|
| 3928 |     for (i = 0; i < min; i++) {
 | 
|---|
| 3929 |       /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
 | 
|---|
| 3930 |       *tmpc = *tmpa++ + *tmpb++ + u;
 | 
|---|
| 3931 | 
 | 
|---|
| 3932 |       /* U = carry bit of T[i] */
 | 
|---|
| 3933 |       u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | 
|---|
| 3934 | 
 | 
|---|
| 3935 |       /* take away carry bit from T[i] */
 | 
|---|
| 3936 |       *tmpc++ &= MP_MASK;
 | 
|---|
| 3937 |     }
 | 
|---|
| 3938 | 
 | 
|---|
| 3939 |     /* now copy higher words if any, that is in A+B 
 | 
|---|
| 3940 |      * if A or B has more digits add those in 
 | 
|---|
| 3941 |      */
 | 
|---|
| 3942 |     if (min != max) {
 | 
|---|
| 3943 |       for (; i < max; i++) {
 | 
|---|
| 3944 |         /* T[i] = X[i] + U */
 | 
|---|
| 3945 |         *tmpc = x->dp[i] + u;
 | 
|---|
| 3946 | 
 | 
|---|
| 3947 |         /* U = carry bit of T[i] */
 | 
|---|
| 3948 |         u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | 
|---|
| 3949 | 
 | 
|---|
| 3950 |         /* take away carry bit from T[i] */
 | 
|---|
| 3951 |         *tmpc++ &= MP_MASK;
 | 
|---|
| 3952 |       }
 | 
|---|
| 3953 |     }
 | 
|---|
| 3954 | 
 | 
|---|
| 3955 |     /* add carry */
 | 
|---|
| 3956 |     *tmpc++ = u;
 | 
|---|
| 3957 | 
 | 
|---|
| 3958 |     /* clear digits above oldused */
 | 
|---|
| 3959 |     for (i = c->used; i < olduse; i++) {
 | 
|---|
| 3960 |       *tmpc++ = 0;
 | 
|---|
| 3961 |     }
 | 
|---|
| 3962 |   }
 | 
|---|
| 3963 | 
 | 
|---|
| 3964 |   mp_clamp (c);
 | 
|---|
| 3965 |   return MP_OKAY;
 | 
|---|
| 3966 | }
 | 
|---|
| 3967 | 
 | 
|---|
| 3968 | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
 | 
|---|
| 3969 | {
 | 
|---|
| 3970 |   mp_int  M[256], res, mu;
 | 
|---|
| 3971 |   mp_digit buf;
 | 
|---|
| 3972 |   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | 
|---|
| 3973 | 
 | 
|---|
| 3974 |   /* find window size */
 | 
|---|
| 3975 |   x = mp_count_bits (X);
 | 
|---|
| 3976 |   if (x <= 7) {
 | 
|---|
| 3977 |     winsize = 2;
 | 
|---|
| 3978 |   } else if (x <= 36) {
 | 
|---|
| 3979 |     winsize = 3;
 | 
|---|
| 3980 |   } else if (x <= 140) {
 | 
|---|
| 3981 |     winsize = 4;
 | 
|---|
| 3982 |   } else if (x <= 450) {
 | 
|---|
| 3983 |     winsize = 5;
 | 
|---|
| 3984 |   } else if (x <= 1303) {
 | 
|---|
| 3985 |     winsize = 6;
 | 
|---|
| 3986 |   } else if (x <= 3529) {
 | 
|---|
| 3987 |     winsize = 7;
 | 
|---|
| 3988 |   } else {
 | 
|---|
| 3989 |     winsize = 8;
 | 
|---|
| 3990 |   }
 | 
|---|
| 3991 | 
 | 
|---|
| 3992 |   /* init M array */
 | 
|---|
| 3993 |   /* init first cell */
 | 
|---|
| 3994 |   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | 
|---|
| 3995 |      return err; 
 | 
|---|
| 3996 |   }
 | 
|---|
| 3997 | 
 | 
|---|
| 3998 |   /* now init the second half of the array */
 | 
|---|
| 3999 |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
|---|
| 4000 |     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | 
|---|
| 4001 |       for (y = 1<<(winsize-1); y < x; y++) {
 | 
|---|
| 4002 |         mp_clear (&M[y]);
 | 
|---|
| 4003 |       }
 | 
|---|
| 4004 |       mp_clear(&M[1]);
 | 
|---|
| 4005 |       return err;
 | 
|---|
| 4006 |     }
 | 
|---|
| 4007 |   }
 | 
|---|
| 4008 | 
 | 
|---|
| 4009 |   /* create mu, used for Barrett reduction */
 | 
|---|
| 4010 |   if ((err = mp_init (&mu)) != MP_OKAY) {
 | 
|---|
| 4011 |     goto __M;
 | 
|---|
| 4012 |   }
 | 
|---|
| 4013 |   if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 | 
|---|
| 4014 |     goto __MU;
 | 
|---|
| 4015 |   }
 | 
|---|
| 4016 | 
 | 
|---|
| 4017 |   /* create M table
 | 
|---|
| 4018 |    *
 | 
|---|
| 4019 |    * The M table contains powers of the base, 
 | 
|---|
| 4020 |    * e.g. M[x] = G**x mod P
 | 
|---|
| 4021 |    *
 | 
|---|
| 4022 |    * The first half of the table is not 
 | 
|---|
| 4023 |    * computed though accept for M[0] and M[1]
 | 
|---|
| 4024 |    */
 | 
|---|
| 4025 |   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 | 
|---|
| 4026 |     goto __MU;
 | 
|---|
| 4027 |   }
 | 
|---|
| 4028 | 
 | 
|---|
| 4029 |   /* compute the value at M[1<<(winsize-1)] by squaring 
 | 
|---|
| 4030 |    * M[1] (winsize-1) times 
 | 
|---|
| 4031 |    */
 | 
|---|
| 4032 |   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
|---|
| 4033 |     goto __MU;
 | 
|---|
| 4034 |   }
 | 
|---|
| 4035 | 
 | 
|---|
| 4036 |   for (x = 0; x < (winsize - 1); x++) {
 | 
|---|
| 4037 |     if ((err = mp_sqr (&M[1 << (winsize - 1)], 
 | 
|---|
| 4038 |                        &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
|---|
| 4039 |       goto __MU;
 | 
|---|
| 4040 |     }
 | 
|---|
| 4041 |     if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
 | 
|---|
| 4042 |       goto __MU;
 | 
|---|
| 4043 |     }
 | 
|---|
| 4044 |   }
 | 
|---|
| 4045 | 
 | 
|---|
| 4046 |   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
 | 
|---|
| 4047 |    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
 | 
|---|
| 4048 |    */
 | 
|---|
| 4049 |   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | 
|---|
| 4050 |     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | 
|---|
| 4051 |       goto __MU;
 | 
|---|
| 4052 |     }
 | 
|---|
| 4053 |     if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
 | 
|---|
| 4054 |       goto __MU;
 | 
|---|
| 4055 |     }
 | 
|---|
| 4056 |   }
 | 
|---|
| 4057 | 
 | 
|---|
| 4058 |   /* setup result */
 | 
|---|
| 4059 |   if ((err = mp_init (&res)) != MP_OKAY) {
 | 
|---|
| 4060 |     goto __MU;
 | 
|---|
| 4061 |   }
 | 
|---|
| 4062 |   mp_set (&res, 1);
 | 
|---|
| 4063 | 
 | 
|---|
| 4064 |   /* set initial mode and bit cnt */
 | 
|---|
| 4065 |   mode   = 0;
 | 
|---|
| 4066 |   bitcnt = 1;
 | 
|---|
| 4067 |   buf    = 0;
 | 
|---|
| 4068 |   digidx = X->used - 1;
 | 
|---|
| 4069 |   bitcpy = 0;
 | 
|---|
| 4070 |   bitbuf = 0;
 | 
|---|
| 4071 | 
 | 
|---|
| 4072 |   for (;;) {
 | 
|---|
| 4073 |     /* grab next digit as required */
 | 
|---|
| 4074 |     if (--bitcnt == 0) {
 | 
|---|
| 4075 |       /* if digidx == -1 we are out of digits */
 | 
|---|
| 4076 |       if (digidx == -1) {
 | 
|---|
| 4077 |         break;
 | 
|---|
| 4078 |       }
 | 
|---|
| 4079 |       /* read next digit and reset the bitcnt */
 | 
|---|
| 4080 |       buf    = X->dp[digidx--];
 | 
|---|
| 4081 |       bitcnt = DIGIT_BIT;
 | 
|---|
| 4082 |     }
 | 
|---|
| 4083 | 
 | 
|---|
| 4084 |     /* grab the next msb from the exponent */
 | 
|---|
| 4085 |     y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
 | 
|---|
| 4086 |     buf <<= (mp_digit)1;
 | 
|---|
| 4087 | 
 | 
|---|
| 4088 |     /* if the bit is zero and mode == 0 then we ignore it
 | 
|---|
| 4089 |      * These represent the leading zero bits before the first 1 bit
 | 
|---|
| 4090 |      * in the exponent.  Technically this opt is not required but it
 | 
|---|
| 4091 |      * does lower the # of trivial squaring/reductions used
 | 
|---|
| 4092 |      */
 | 
|---|
| 4093 |     if (mode == 0 && y == 0) {
 | 
|---|
| 4094 |       continue;
 | 
|---|
| 4095 |     }
 | 
|---|
| 4096 | 
 | 
|---|
| 4097 |     /* if the bit is zero and mode == 1 then we square */
 | 
|---|
| 4098 |     if (mode == 1 && y == 0) {
 | 
|---|
| 4099 |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
|---|
| 4100 |         goto __RES;
 | 
|---|
| 4101 |       }
 | 
|---|
| 4102 |       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | 
|---|
| 4103 |         goto __RES;
 | 
|---|
| 4104 |       }
 | 
|---|
| 4105 |       continue;
 | 
|---|
| 4106 |     }
 | 
|---|
| 4107 | 
 | 
|---|
| 4108 |     /* else we add it to the window */
 | 
|---|
| 4109 |     bitbuf |= (y << (winsize - ++bitcpy));
 | 
|---|
| 4110 |     mode    = 2;
 | 
|---|
| 4111 | 
 | 
|---|
| 4112 |     if (bitcpy == winsize) {
 | 
|---|
| 4113 |       /* ok window is filled so square as required and multiply  */
 | 
|---|
| 4114 |       /* square first */
 | 
|---|
| 4115 |       for (x = 0; x < winsize; x++) {
 | 
|---|
| 4116 |         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
|---|
| 4117 |           goto __RES;
 | 
|---|
| 4118 |         }
 | 
|---|
| 4119 |         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | 
|---|
| 4120 |           goto __RES;
 | 
|---|
| 4121 |         }
 | 
|---|
| 4122 |       }
 | 
|---|
| 4123 | 
 | 
|---|
| 4124 |       /* then multiply */
 | 
|---|
| 4125 |       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | 
|---|
| 4126 |         goto __RES;
 | 
|---|
| 4127 |       }
 | 
|---|
| 4128 |       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | 
|---|
| 4129 |         goto __RES;
 | 
|---|
| 4130 |       }
 | 
|---|
| 4131 | 
 | 
|---|
| 4132 |       /* empty window and reset */
 | 
|---|
| 4133 |       bitcpy = 0;
 | 
|---|
| 4134 |       bitbuf = 0;
 | 
|---|
| 4135 |       mode   = 1;
 | 
|---|
| 4136 |     }
 | 
|---|
| 4137 |   }
 | 
|---|
| 4138 | 
 | 
|---|
| 4139 |   /* if bits remain then square/multiply */
 | 
|---|
| 4140 |   if (mode == 2 && bitcpy > 0) {
 | 
|---|
| 4141 |     /* square then multiply if the bit is set */
 | 
|---|
| 4142 |     for (x = 0; x < bitcpy; x++) {
 | 
|---|
| 4143 |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
|---|
| 4144 |         goto __RES;
 | 
|---|
| 4145 |       }
 | 
|---|
| 4146 |       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | 
|---|
| 4147 |         goto __RES;
 | 
|---|
| 4148 |       }
 | 
|---|
| 4149 | 
 | 
|---|
| 4150 |       bitbuf <<= 1;
 | 
|---|
| 4151 |       if ((bitbuf & (1 << winsize)) != 0) {
 | 
|---|
| 4152 |         /* then multiply */
 | 
|---|
| 4153 |         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | 
|---|
| 4154 |           goto __RES;
 | 
|---|
| 4155 |         }
 | 
|---|
| 4156 |         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | 
|---|
| 4157 |           goto __RES;
 | 
|---|
| 4158 |         }
 | 
|---|
| 4159 |       }
 | 
|---|
| 4160 |     }
 | 
|---|
| 4161 |   }
 | 
|---|
| 4162 | 
 | 
|---|
| 4163 |   mp_exch (&res, Y);
 | 
|---|
| 4164 |   err = MP_OKAY;
 | 
|---|
| 4165 | __RES:mp_clear (&res);
 | 
|---|
| 4166 | __MU:mp_clear (&mu);
 | 
|---|
| 4167 | __M:
 | 
|---|
| 4168 |   mp_clear(&M[1]);
 | 
|---|
| 4169 |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
|---|
| 4170 |     mp_clear (&M[x]);
 | 
|---|
| 4171 |   }
 | 
|---|
| 4172 |   return err;
 | 
|---|
| 4173 | }
 | 
|---|
| 4174 | 
 | 
|---|
| 4175 | /* multiplies |a| * |b| and only computes up to digs digits of result
 | 
|---|
| 4176 |  * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 | 
|---|
| 4177 |  * many digits of output are created.
 | 
|---|
| 4178 |  */
 | 
|---|
| 4179 | static int
 | 
|---|
| 4180 | s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
 | 
|---|
| 4181 | {
 | 
|---|
| 4182 |   mp_int  t;
 | 
|---|
| 4183 |   int     res, pa, pb, ix, iy;
 | 
|---|
| 4184 |   mp_digit u;
 | 
|---|
| 4185 |   mp_word r;
 | 
|---|
| 4186 |   mp_digit tmpx, *tmpt, *tmpy;
 | 
|---|
| 4187 | 
 | 
|---|
| 4188 |   /* can we use the fast multiplier? */
 | 
|---|
| 4189 |   if (((digs) < MP_WARRAY) &&
 | 
|---|
| 4190 |       MIN (a->used, b->used) < 
 | 
|---|
| 4191 |           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
|---|
| 4192 |     return fast_s_mp_mul_digs (a, b, c, digs);
 | 
|---|
| 4193 |   }
 | 
|---|
| 4194 | 
 | 
|---|
| 4195 |   if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
 | 
|---|
| 4196 |     return res;
 | 
|---|
| 4197 |   }
 | 
|---|
| 4198 |   t.used = digs;
 | 
|---|
| 4199 | 
 | 
|---|
| 4200 |   /* compute the digits of the product directly */
 | 
|---|
| 4201 |   pa = a->used;
 | 
|---|
| 4202 |   for (ix = 0; ix < pa; ix++) {
 | 
|---|
| 4203 |     /* set the carry to zero */
 | 
|---|
| 4204 |     u = 0;
 | 
|---|
| 4205 | 
 | 
|---|
| 4206 |     /* limit ourselves to making digs digits of output */
 | 
|---|
| 4207 |     pb = MIN (b->used, digs - ix);
 | 
|---|
| 4208 | 
 | 
|---|
| 4209 |     /* setup some aliases */
 | 
|---|
| 4210 |     /* copy of the digit from a used within the nested loop */
 | 
|---|
| 4211 |     tmpx = a->dp[ix];
 | 
|---|
| 4212 |     
 | 
|---|
| 4213 |     /* an alias for the destination shifted ix places */
 | 
|---|
| 4214 |     tmpt = t.dp + ix;
 | 
|---|
| 4215 |     
 | 
|---|
| 4216 |     /* an alias for the digits of b */
 | 
|---|
| 4217 |     tmpy = b->dp;
 | 
|---|
| 4218 | 
 | 
|---|
| 4219 |     /* compute the columns of the output and propagate the carry */
 | 
|---|
| 4220 |     for (iy = 0; iy < pb; iy++) {
 | 
|---|
| 4221 |       /* compute the column as a mp_word */
 | 
|---|
| 4222 |       r       = ((mp_word)*tmpt) +
 | 
|---|
| 4223 |                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | 
|---|
| 4224 |                 ((mp_word) u);
 | 
|---|
| 4225 | 
 | 
|---|
| 4226 |       /* the new column is the lower part of the result */
 | 
|---|
| 4227 |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
|---|
| 4228 | 
 | 
|---|
| 4229 |       /* get the carry word from the result */
 | 
|---|
| 4230 |       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | 
|---|
| 4231 |     }
 | 
|---|
| 4232 |     /* set carry if it is placed below digs */
 | 
|---|
| 4233 |     if (ix + iy < digs) {
 | 
|---|
| 4234 |       *tmpt = u;
 | 
|---|
| 4235 |     }
 | 
|---|
| 4236 |   }
 | 
|---|
| 4237 | 
 | 
|---|
| 4238 |   mp_clamp (&t);
 | 
|---|
| 4239 |   mp_exch (&t, c);
 | 
|---|
| 4240 | 
 | 
|---|
| 4241 |   mp_clear (&t);
 | 
|---|
| 4242 |   return MP_OKAY;
 | 
|---|
| 4243 | }
 | 
|---|
| 4244 | 
 | 
|---|
| 4245 | /* multiplies |a| * |b| and does not compute the lower digs digits
 | 
|---|
| 4246 |  * [meant to get the higher part of the product]
 | 
|---|
| 4247 |  */
 | 
|---|
| 4248 | static int
 | 
|---|
| 4249 | s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
 | 
|---|
| 4250 | {
 | 
|---|
| 4251 |   mp_int  t;
 | 
|---|
| 4252 |   int     res, pa, pb, ix, iy;
 | 
|---|
| 4253 |   mp_digit u;
 | 
|---|
| 4254 |   mp_word r;
 | 
|---|
| 4255 |   mp_digit tmpx, *tmpt, *tmpy;
 | 
|---|
| 4256 | 
 | 
|---|
| 4257 |   /* can we use the fast multiplier? */
 | 
|---|
| 4258 |   if (((a->used + b->used + 1) < MP_WARRAY)
 | 
|---|
| 4259 |       && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
|---|
| 4260 |     return fast_s_mp_mul_high_digs (a, b, c, digs);
 | 
|---|
| 4261 |   }
 | 
|---|
| 4262 | 
 | 
|---|
| 4263 |   if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
 | 
|---|
| 4264 |     return res;
 | 
|---|
| 4265 |   }
 | 
|---|
| 4266 |   t.used = a->used + b->used + 1;
 | 
|---|
| 4267 | 
 | 
|---|
| 4268 |   pa = a->used;
 | 
|---|
| 4269 |   pb = b->used;
 | 
|---|
| 4270 |   for (ix = 0; ix < pa; ix++) {
 | 
|---|
| 4271 |     /* clear the carry */
 | 
|---|
| 4272 |     u = 0;
 | 
|---|
| 4273 | 
 | 
|---|
| 4274 |     /* left hand side of A[ix] * B[iy] */
 | 
|---|
| 4275 |     tmpx = a->dp[ix];
 | 
|---|
| 4276 | 
 | 
|---|
| 4277 |     /* alias to the address of where the digits will be stored */
 | 
|---|
| 4278 |     tmpt = &(t.dp[digs]);
 | 
|---|
| 4279 | 
 | 
|---|
| 4280 |     /* alias for where to read the right hand side from */
 | 
|---|
| 4281 |     tmpy = b->dp + (digs - ix);
 | 
|---|
| 4282 | 
 | 
|---|
| 4283 |     for (iy = digs - ix; iy < pb; iy++) {
 | 
|---|
| 4284 |       /* calculate the double precision result */
 | 
|---|
| 4285 |       r       = ((mp_word)*tmpt) +
 | 
|---|
| 4286 |                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | 
|---|
| 4287 |                 ((mp_word) u);
 | 
|---|
| 4288 | 
 | 
|---|
| 4289 |       /* get the lower part */
 | 
|---|
| 4290 |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
|---|
| 4291 | 
 | 
|---|
| 4292 |       /* carry the carry */
 | 
|---|
| 4293 |       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | 
|---|
| 4294 |     }
 | 
|---|
| 4295 |     *tmpt = u;
 | 
|---|
| 4296 |   }
 | 
|---|
| 4297 |   mp_clamp (&t);
 | 
|---|
| 4298 |   mp_exch (&t, c);
 | 
|---|
| 4299 |   mp_clear (&t);
 | 
|---|
| 4300 |   return MP_OKAY;
 | 
|---|
| 4301 | }
 | 
|---|
| 4302 | 
 | 
|---|
| 4303 | /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
 | 
|---|
| 4304 | static int
 | 
|---|
| 4305 | s_mp_sqr (const mp_int * a, mp_int * b)
 | 
|---|
| 4306 | {
 | 
|---|
| 4307 |   mp_int  t;
 | 
|---|
| 4308 |   int     res, ix, iy, pa;
 | 
|---|
| 4309 |   mp_word r;
 | 
|---|
| 4310 |   mp_digit u, tmpx, *tmpt;
 | 
|---|
| 4311 | 
 | 
|---|
| 4312 |   pa = a->used;
 | 
|---|
| 4313 |   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
 | 
|---|
| 4314 |     return res;
 | 
|---|
| 4315 |   }
 | 
|---|
| 4316 | 
 | 
|---|
| 4317 |   /* default used is maximum possible size */
 | 
|---|
| 4318 |   t.used = 2*pa + 1;
 | 
|---|
| 4319 | 
 | 
|---|
| 4320 |   for (ix = 0; ix < pa; ix++) {
 | 
|---|
| 4321 |     /* first calculate the digit at 2*ix */
 | 
|---|
| 4322 |     /* calculate double precision result */
 | 
|---|
| 4323 |     r = ((mp_word) t.dp[2*ix]) +
 | 
|---|
| 4324 |         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 | 
|---|
| 4325 | 
 | 
|---|
| 4326 |     /* store lower part in result */
 | 
|---|
| 4327 |     t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
|---|
| 4328 | 
 | 
|---|
| 4329 |     /* get the carry */
 | 
|---|
| 4330 |     u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | 
|---|
| 4331 | 
 | 
|---|
| 4332 |     /* left hand side of A[ix] * A[iy] */
 | 
|---|
| 4333 |     tmpx        = a->dp[ix];
 | 
|---|
| 4334 | 
 | 
|---|
| 4335 |     /* alias for where to store the results */
 | 
|---|
| 4336 |     tmpt        = t.dp + (2*ix + 1);
 | 
|---|
| 4337 |     
 | 
|---|
| 4338 |     for (iy = ix + 1; iy < pa; iy++) {
 | 
|---|
| 4339 |       /* first calculate the product */
 | 
|---|
| 4340 |       r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 | 
|---|
| 4341 | 
 | 
|---|
| 4342 |       /* now calculate the double precision result, note we use
 | 
|---|
| 4343 |        * addition instead of *2 since it's easier to optimize
 | 
|---|
| 4344 |        */
 | 
|---|
| 4345 |       r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
 | 
|---|
| 4346 | 
 | 
|---|
| 4347 |       /* store lower part */
 | 
|---|
| 4348 |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
|---|
| 4349 | 
 | 
|---|
| 4350 |       /* get carry */
 | 
|---|
| 4351 |       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | 
|---|
| 4352 |     }
 | 
|---|
| 4353 |     /* propagate upwards */
 | 
|---|
| 4354 |     while (u != ((mp_digit) 0)) {
 | 
|---|
| 4355 |       r       = ((mp_word) *tmpt) + ((mp_word) u);
 | 
|---|
| 4356 |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
|---|
| 4357 |       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | 
|---|
| 4358 |     }
 | 
|---|
| 4359 |   }
 | 
|---|
| 4360 | 
 | 
|---|
| 4361 |   mp_clamp (&t);
 | 
|---|
| 4362 |   mp_exch (&t, b);
 | 
|---|
| 4363 |   mp_clear (&t);
 | 
|---|
| 4364 |   return MP_OKAY;
 | 
|---|
| 4365 | }
 | 
|---|
| 4366 | 
 | 
|---|
| 4367 | /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
 | 
|---|
| 4368 | int
 | 
|---|
| 4369 | s_mp_sub (const mp_int * a, const mp_int * b, mp_int * c)
 | 
|---|
| 4370 | {
 | 
|---|
| 4371 |   int     olduse, res, min, max;
 | 
|---|
| 4372 | 
 | 
|---|
| 4373 |   /* find sizes */
 | 
|---|
| 4374 |   min = b->used;
 | 
|---|
| 4375 |   max = a->used;
 | 
|---|
| 4376 | 
 | 
|---|
| 4377 |   /* init result */
 | 
|---|
| 4378 |   if (c->alloc < max) {
 | 
|---|
| 4379 |     if ((res = mp_grow (c, max)) != MP_OKAY) {
 | 
|---|
| 4380 |       return res;
 | 
|---|
| 4381 |     }
 | 
|---|
| 4382 |   }
 | 
|---|
| 4383 |   olduse = c->used;
 | 
|---|
| 4384 |   c->used = max;
 | 
|---|
| 4385 | 
 | 
|---|
| 4386 |   {
 | 
|---|
| 4387 |     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | 
|---|
| 4388 |     register int i;
 | 
|---|
| 4389 | 
 | 
|---|
| 4390 |     /* alias for digit pointers */
 | 
|---|
| 4391 |     tmpa = a->dp;
 | 
|---|
| 4392 |     tmpb = b->dp;
 | 
|---|
| 4393 |     tmpc = c->dp;
 | 
|---|
| 4394 | 
 | 
|---|
| 4395 |     /* set carry to zero */
 | 
|---|
| 4396 |     u = 0;
 | 
|---|
| 4397 |     for (i = 0; i < min; i++) {
 | 
|---|
| 4398 |       /* T[i] = A[i] - B[i] - U */
 | 
|---|
| 4399 |       *tmpc = *tmpa++ - *tmpb++ - u;
 | 
|---|
| 4400 | 
 | 
|---|
| 4401 |       /* U = carry bit of T[i]
 | 
|---|
| 4402 |        * Note this saves performing an AND operation since
 | 
|---|
| 4403 |        * if a carry does occur it will propagate all the way to the
 | 
|---|
| 4404 |        * MSB.  As a result a single shift is enough to get the carry
 | 
|---|
| 4405 |        */
 | 
|---|
| 4406 |       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | 
|---|
| 4407 | 
 | 
|---|
| 4408 |       /* Clear carry from T[i] */
 | 
|---|
| 4409 |       *tmpc++ &= MP_MASK;
 | 
|---|
| 4410 |     }
 | 
|---|
| 4411 | 
 | 
|---|
| 4412 |     /* now copy higher words if any, e.g. if A has more digits than B  */
 | 
|---|
| 4413 |     for (; i < max; i++) {
 | 
|---|
| 4414 |       /* T[i] = A[i] - U */
 | 
|---|
| 4415 |       *tmpc = *tmpa++ - u;
 | 
|---|
| 4416 | 
 | 
|---|
| 4417 |       /* U = carry bit of T[i] */
 | 
|---|
| 4418 |       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | 
|---|
| 4419 | 
 | 
|---|
| 4420 |       /* Clear carry from T[i] */
 | 
|---|
| 4421 |       *tmpc++ &= MP_MASK;
 | 
|---|
| 4422 |     }
 | 
|---|
| 4423 | 
 | 
|---|
| 4424 |     /* clear digits above used (since we may not have grown result above) */
 | 
|---|
| 4425 |     for (i = c->used; i < olduse; i++) {
 | 
|---|
| 4426 |       *tmpc++ = 0;
 | 
|---|
| 4427 |     }
 | 
|---|
| 4428 |   }
 | 
|---|
| 4429 | 
 | 
|---|
| 4430 |   mp_clamp (c);
 | 
|---|
| 4431 |   return MP_OKAY;
 | 
|---|
| 4432 | }
 | 
|---|