[21363] | 1 | /*
|
---|
| 2 | * dlls/rsaenh/mpi.c
|
---|
| 3 | * Multi Precision Integer functions
|
---|
| 4 | *
|
---|
| 5 | * Copyright 2004 Michael Jung
|
---|
| 6 | * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
|
---|
| 7 | *
|
---|
| 8 | * This library is free software; you can redistribute it and/or
|
---|
| 9 | * modify it under the terms of the GNU Lesser General Public
|
---|
| 10 | * License as published by the Free Software Foundation; either
|
---|
| 11 | * version 2.1 of the License, or (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * This library is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
| 16 | * Lesser General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU Lesser General Public
|
---|
| 19 | * License along with this library; if not, write to the Free Software
|
---|
| 20 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
---|
| 21 | */
|
---|
| 22 |
|
---|
| 23 | /*
|
---|
| 24 | * This file contains code from the LibTomCrypt cryptographic
|
---|
| 25 | * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
|
---|
| 26 | * is in the public domain. The code in this file is tailored to
|
---|
| 27 | * special requirements. Take a look at http://libtomcrypt.org for the
|
---|
| 28 | * original version.
|
---|
| 29 | */
|
---|
| 30 |
|
---|
| 31 | #include <stdarg.h>
|
---|
| 32 | #include "tomcrypt.h"
|
---|
| 33 |
|
---|
| 34 | /* Known optimal configurations
|
---|
| 35 | CPU /Compiler /MUL CUTOFF/SQR CUTOFF
|
---|
| 36 | -------------------------------------------------------------
|
---|
| 37 | Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
|
---|
| 38 | */
|
---|
| 39 | static const int KARATSUBA_MUL_CUTOFF = 88, /* Min. number of digits before Karatsuba multiplication is used. */
|
---|
| 40 | KARATSUBA_SQR_CUTOFF = 128; /* Min. number of digits before Karatsuba squaring is used. */
|
---|
| 41 |
|
---|
| 42 | static void bn_reverse(unsigned char *s, int len);
|
---|
| 43 | static int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
|
---|
| 44 | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y);
|
---|
| 45 | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
|
---|
| 46 | static int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
---|
| 47 | static int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
---|
| 48 | static int s_mp_sqr(const mp_int *a, mp_int *b);
|
---|
| 49 | static int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
|
---|
| 50 | static int mp_exptmod_fast(const mp_int *G, const mp_int *X, mp_int *P, mp_int *Y, int mode);
|
---|
| 51 | static int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c);
|
---|
| 52 | static int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
|
---|
| 53 | static int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
|
---|
| 54 |
|
---|
| 55 | /* computes the modular inverse via binary extended euclidean algorithm,
|
---|
| 56 | * that is c = 1/a mod b
|
---|
| 57 | *
|
---|
| 58 | * Based on slow invmod except this is optimized for the case where b is
|
---|
| 59 | * odd as per HAC Note 14.64 on pp. 610
|
---|
| 60 | */
|
---|
| 61 | static int
|
---|
| 62 | fast_mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
| 63 | {
|
---|
| 64 | mp_int x, y, u, v, B, D;
|
---|
| 65 | int res, neg;
|
---|
| 66 |
|
---|
| 67 | /* 2. [modified] b must be odd */
|
---|
| 68 | if (mp_iseven (b) == 1) {
|
---|
| 69 | return MP_VAL;
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | /* init all our temps */
|
---|
| 73 | if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
---|
| 74 | return res;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | /* x == modulus, y == value to invert */
|
---|
| 78 | if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
---|
| 79 | goto __ERR;
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | /* we need y = |a| */
|
---|
| 83 | if ((res = mp_abs (a, &y)) != MP_OKAY) {
|
---|
| 84 | goto __ERR;
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
---|
| 88 | if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
---|
| 89 | goto __ERR;
|
---|
| 90 | }
|
---|
| 91 | if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
---|
| 92 | goto __ERR;
|
---|
| 93 | }
|
---|
| 94 | mp_set (&D, 1);
|
---|
| 95 |
|
---|
| 96 | top:
|
---|
| 97 | /* 4. while u is even do */
|
---|
| 98 | while (mp_iseven (&u) == 1) {
|
---|
| 99 | /* 4.1 u = u/2 */
|
---|
| 100 | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
---|
| 101 | goto __ERR;
|
---|
| 102 | }
|
---|
| 103 | /* 4.2 if B is odd then */
|
---|
| 104 | if (mp_isodd (&B) == 1) {
|
---|
| 105 | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
---|
| 106 | goto __ERR;
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 | /* B = B/2 */
|
---|
| 110 | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
---|
| 111 | goto __ERR;
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | /* 5. while v is even do */
|
---|
| 116 | while (mp_iseven (&v) == 1) {
|
---|
| 117 | /* 5.1 v = v/2 */
|
---|
| 118 | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
---|
| 119 | goto __ERR;
|
---|
| 120 | }
|
---|
| 121 | /* 5.2 if D is odd then */
|
---|
| 122 | if (mp_isodd (&D) == 1) {
|
---|
| 123 | /* D = (D-x)/2 */
|
---|
| 124 | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
---|
| 125 | goto __ERR;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | /* D = D/2 */
|
---|
| 129 | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
---|
| 130 | goto __ERR;
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | /* 6. if u >= v then */
|
---|
| 135 | if (mp_cmp (&u, &v) != MP_LT) {
|
---|
| 136 | /* u = u - v, B = B - D */
|
---|
| 137 | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
---|
| 138 | goto __ERR;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
---|
| 142 | goto __ERR;
|
---|
| 143 | }
|
---|
| 144 | } else {
|
---|
| 145 | /* v - v - u, D = D - B */
|
---|
| 146 | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
---|
| 147 | goto __ERR;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
---|
| 151 | goto __ERR;
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | /* if not zero goto step 4 */
|
---|
| 156 | if (mp_iszero (&u) == 0) {
|
---|
| 157 | goto top;
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | /* now a = C, b = D, gcd == g*v */
|
---|
| 161 |
|
---|
| 162 | /* if v != 1 then there is no inverse */
|
---|
| 163 | if (mp_cmp_d (&v, 1) != MP_EQ) {
|
---|
| 164 | res = MP_VAL;
|
---|
| 165 | goto __ERR;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | /* b is now the inverse */
|
---|
| 169 | neg = a->sign;
|
---|
| 170 | while (D.sign == MP_NEG) {
|
---|
| 171 | if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
---|
| 172 | goto __ERR;
|
---|
| 173 | }
|
---|
| 174 | }
|
---|
| 175 | mp_exch (&D, c);
|
---|
| 176 | c->sign = neg;
|
---|
| 177 | res = MP_OKAY;
|
---|
| 178 |
|
---|
| 179 | __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
|
---|
| 180 | return res;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | /* computes xR**-1 == x (mod N) via Montgomery Reduction
|
---|
| 184 | *
|
---|
| 185 | * This is an optimized implementation of montgomery_reduce
|
---|
| 186 | * which uses the comba method to quickly calculate the columns of the
|
---|
| 187 | * reduction.
|
---|
| 188 | *
|
---|
| 189 | * Based on Algorithm 14.32 on pp.601 of HAC.
|
---|
| 190 | */
|
---|
| 191 | static int
|
---|
| 192 | fast_mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
|
---|
| 193 | {
|
---|
| 194 | int ix, res, olduse;
|
---|
| 195 | mp_word W[MP_WARRAY];
|
---|
| 196 |
|
---|
| 197 | /* get old used count */
|
---|
| 198 | olduse = x->used;
|
---|
| 199 |
|
---|
| 200 | /* grow a as required */
|
---|
| 201 | if (x->alloc < n->used + 1) {
|
---|
| 202 | if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
---|
| 203 | return res;
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | /* first we have to get the digits of the input into
|
---|
| 208 | * an array of double precision words W[...]
|
---|
| 209 | */
|
---|
| 210 | {
|
---|
| 211 | register mp_word *_W;
|
---|
| 212 | register mp_digit *tmpx;
|
---|
| 213 |
|
---|
| 214 | /* alias for the W[] array */
|
---|
| 215 | _W = W;
|
---|
| 216 |
|
---|
| 217 | /* alias for the digits of x*/
|
---|
| 218 | tmpx = x->dp;
|
---|
| 219 |
|
---|
| 220 | /* copy the digits of a into W[0..a->used-1] */
|
---|
| 221 | for (ix = 0; ix < x->used; ix++) {
|
---|
| 222 | *_W++ = *tmpx++;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | /* zero the high words of W[a->used..m->used*2] */
|
---|
| 226 | for (; ix < n->used * 2 + 1; ix++) {
|
---|
| 227 | *_W++ = 0;
|
---|
| 228 | }
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | /* now we proceed to zero successive digits
|
---|
| 232 | * from the least significant upwards
|
---|
| 233 | */
|
---|
| 234 | for (ix = 0; ix < n->used; ix++) {
|
---|
| 235 | /* mu = ai * m' mod b
|
---|
| 236 | *
|
---|
| 237 | * We avoid a double precision multiplication (which isn't required)
|
---|
| 238 | * by casting the value down to a mp_digit. Note this requires
|
---|
| 239 | * that W[ix-1] have the carry cleared (see after the inner loop)
|
---|
| 240 | */
|
---|
| 241 | register mp_digit mu;
|
---|
| 242 | mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
|
---|
| 243 |
|
---|
| 244 | /* a = a + mu * m * b**i
|
---|
| 245 | *
|
---|
| 246 | * This is computed in place and on the fly. The multiplication
|
---|
| 247 | * by b**i is handled by offsetting which columns the results
|
---|
| 248 | * are added to.
|
---|
| 249 | *
|
---|
| 250 | * Note the comba method normally doesn't handle carries in the
|
---|
| 251 | * inner loop In this case we fix the carry from the previous
|
---|
| 252 | * column since the Montgomery reduction requires digits of the
|
---|
| 253 | * result (so far) [see above] to work. This is
|
---|
| 254 | * handled by fixing up one carry after the inner loop. The
|
---|
| 255 | * carry fixups are done in order so after these loops the
|
---|
| 256 | * first m->used words of W[] have the carries fixed
|
---|
| 257 | */
|
---|
| 258 | {
|
---|
| 259 | register int iy;
|
---|
| 260 | register mp_digit *tmpn;
|
---|
| 261 | register mp_word *_W;
|
---|
| 262 |
|
---|
| 263 | /* alias for the digits of the modulus */
|
---|
| 264 | tmpn = n->dp;
|
---|
| 265 |
|
---|
| 266 | /* Alias for the columns set by an offset of ix */
|
---|
| 267 | _W = W + ix;
|
---|
| 268 |
|
---|
| 269 | /* inner loop */
|
---|
| 270 | for (iy = 0; iy < n->used; iy++) {
|
---|
| 271 | *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
|
---|
| 272 | }
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | /* now fix carry for next digit, W[ix+1] */
|
---|
| 276 | W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 | /* now we have to propagate the carries and
|
---|
| 280 | * shift the words downward [all those least
|
---|
| 281 | * significant digits we zeroed].
|
---|
| 282 | */
|
---|
| 283 | {
|
---|
| 284 | register mp_digit *tmpx;
|
---|
| 285 | register mp_word *_W, *_W1;
|
---|
| 286 |
|
---|
| 287 | /* nox fix rest of carries */
|
---|
| 288 |
|
---|
| 289 | /* alias for current word */
|
---|
| 290 | _W1 = W + ix;
|
---|
| 291 |
|
---|
| 292 | /* alias for next word, where the carry goes */
|
---|
| 293 | _W = W + ++ix;
|
---|
| 294 |
|
---|
| 295 | for (; ix <= n->used * 2 + 1; ix++) {
|
---|
| 296 | *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
---|
| 297 | }
|
---|
| 298 |
|
---|
| 299 | /* copy out, A = A/b**n
|
---|
| 300 | *
|
---|
| 301 | * The result is A/b**n but instead of converting from an
|
---|
| 302 | * array of mp_word to mp_digit than calling mp_rshd
|
---|
| 303 | * we just copy them in the right order
|
---|
| 304 | */
|
---|
| 305 |
|
---|
| 306 | /* alias for destination word */
|
---|
| 307 | tmpx = x->dp;
|
---|
| 308 |
|
---|
| 309 | /* alias for shifted double precision result */
|
---|
| 310 | _W = W + n->used;
|
---|
| 311 |
|
---|
| 312 | for (ix = 0; ix < n->used + 1; ix++) {
|
---|
| 313 | *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
|
---|
| 314 | }
|
---|
| 315 |
|
---|
| 316 | /* zero oldused digits, if the input a was larger than
|
---|
| 317 | * m->used+1 we'll have to clear the digits
|
---|
| 318 | */
|
---|
| 319 | for (; ix < olduse; ix++) {
|
---|
| 320 | *tmpx++ = 0;
|
---|
| 321 | }
|
---|
| 322 | }
|
---|
| 323 |
|
---|
| 324 | /* set the max used and clamp */
|
---|
| 325 | x->used = n->used + 1;
|
---|
| 326 | mp_clamp (x);
|
---|
| 327 |
|
---|
| 328 | /* if A >= m then A = A - m */
|
---|
| 329 | if (mp_cmp_mag (x, n) != MP_LT) {
|
---|
| 330 | return s_mp_sub (x, n, x);
|
---|
| 331 | }
|
---|
| 332 | return MP_OKAY;
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 | /* Fast (comba) multiplier
|
---|
| 336 | *
|
---|
| 337 | * This is the fast column-array [comba] multiplier. It is
|
---|
| 338 | * designed to compute the columns of the product first
|
---|
| 339 | * then handle the carries afterwards. This has the effect
|
---|
| 340 | * of making the nested loops that compute the columns very
|
---|
| 341 | * simple and schedulable on super-scalar processors.
|
---|
| 342 | *
|
---|
| 343 | * This has been modified to produce a variable number of
|
---|
| 344 | * digits of output so if say only a half-product is required
|
---|
| 345 | * you don't have to compute the upper half (a feature
|
---|
| 346 | * required for fast Barrett reduction).
|
---|
| 347 | *
|
---|
| 348 | * Based on Algorithm 14.12 on pp.595 of HAC.
|
---|
| 349 | *
|
---|
| 350 | */
|
---|
| 351 | static int
|
---|
| 352 | fast_s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
| 353 | {
|
---|
| 354 | int olduse, res, pa, ix, iz;
|
---|
| 355 | mp_digit W[MP_WARRAY];
|
---|
| 356 | register mp_word _W;
|
---|
| 357 |
|
---|
| 358 | /* grow the destination as required */
|
---|
| 359 | if (c->alloc < digs) {
|
---|
| 360 | if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
---|
| 361 | return res;
|
---|
| 362 | }
|
---|
| 363 | }
|
---|
| 364 |
|
---|
| 365 | /* number of output digits to produce */
|
---|
| 366 | pa = MIN(digs, a->used + b->used);
|
---|
| 367 |
|
---|
| 368 | /* clear the carry */
|
---|
| 369 | _W = 0;
|
---|
| 370 | for (ix = 0; ix <= pa; ix++) {
|
---|
| 371 | int tx, ty;
|
---|
| 372 | int iy;
|
---|
| 373 | mp_digit *tmpx, *tmpy;
|
---|
| 374 |
|
---|
| 375 | /* get offsets into the two bignums */
|
---|
| 376 | ty = MIN(b->used-1, ix);
|
---|
| 377 | tx = ix - ty;
|
---|
| 378 |
|
---|
| 379 | /* setup temp aliases */
|
---|
| 380 | tmpx = a->dp + tx;
|
---|
| 381 | tmpy = b->dp + ty;
|
---|
| 382 |
|
---|
| 383 | /* This is the number of times the loop will iterate, essentially it's
|
---|
| 384 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
| 385 | */
|
---|
| 386 | iy = MIN(a->used-tx, ty+1);
|
---|
| 387 |
|
---|
| 388 | /* execute loop */
|
---|
| 389 | for (iz = 0; iz < iy; ++iz) {
|
---|
| 390 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
| 391 | }
|
---|
| 392 |
|
---|
| 393 | /* store term */
|
---|
| 394 | W[ix] = ((mp_digit)_W) & MP_MASK;
|
---|
| 395 |
|
---|
| 396 | /* make next carry */
|
---|
| 397 | _W = _W >> ((mp_word)DIGIT_BIT);
|
---|
| 398 | }
|
---|
| 399 |
|
---|
| 400 | /* setup dest */
|
---|
| 401 | olduse = c->used;
|
---|
| 402 | c->used = digs;
|
---|
| 403 |
|
---|
| 404 | {
|
---|
| 405 | register mp_digit *tmpc;
|
---|
| 406 | tmpc = c->dp;
|
---|
| 407 | for (ix = 0; ix < digs; ix++) {
|
---|
| 408 | /* now extract the previous digit [below the carry] */
|
---|
| 409 | *tmpc++ = W[ix];
|
---|
| 410 | }
|
---|
| 411 |
|
---|
| 412 | /* clear unused digits [that existed in the old copy of c] */
|
---|
| 413 | for (; ix < olduse; ix++) {
|
---|
| 414 | *tmpc++ = 0;
|
---|
| 415 | }
|
---|
| 416 | }
|
---|
| 417 | mp_clamp (c);
|
---|
| 418 | return MP_OKAY;
|
---|
| 419 | }
|
---|
| 420 |
|
---|
| 421 | /* this is a modified version of fast_s_mul_digs that only produces
|
---|
| 422 | * output digits *above* digs. See the comments for fast_s_mul_digs
|
---|
| 423 | * to see how it works.
|
---|
| 424 | *
|
---|
| 425 | * This is used in the Barrett reduction since for one of the multiplications
|
---|
| 426 | * only the higher digits were needed. This essentially halves the work.
|
---|
| 427 | *
|
---|
| 428 | * Based on Algorithm 14.12 on pp.595 of HAC.
|
---|
| 429 | */
|
---|
| 430 | static int
|
---|
| 431 | fast_s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
| 432 | {
|
---|
| 433 | int olduse, res, pa, ix, iz;
|
---|
| 434 | mp_digit W[MP_WARRAY];
|
---|
| 435 | mp_word _W;
|
---|
| 436 |
|
---|
| 437 | /* grow the destination as required */
|
---|
| 438 | pa = a->used + b->used;
|
---|
| 439 | if (c->alloc < pa) {
|
---|
| 440 | if ((res = mp_grow (c, pa)) != MP_OKAY) {
|
---|
| 441 | return res;
|
---|
| 442 | }
|
---|
| 443 | }
|
---|
| 444 |
|
---|
| 445 | /* number of output digits to produce */
|
---|
| 446 | pa = a->used + b->used;
|
---|
| 447 | _W = 0;
|
---|
| 448 | for (ix = digs; ix <= pa; ix++) {
|
---|
| 449 | int tx, ty, iy;
|
---|
| 450 | mp_digit *tmpx, *tmpy;
|
---|
| 451 |
|
---|
| 452 | /* get offsets into the two bignums */
|
---|
| 453 | ty = MIN(b->used-1, ix);
|
---|
| 454 | tx = ix - ty;
|
---|
| 455 |
|
---|
| 456 | /* setup temp aliases */
|
---|
| 457 | tmpx = a->dp + tx;
|
---|
| 458 | tmpy = b->dp + ty;
|
---|
| 459 |
|
---|
| 460 | /* This is the number of times the loop will iterate, essentially it's
|
---|
| 461 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
| 462 | */
|
---|
| 463 | iy = MIN(a->used-tx, ty+1);
|
---|
| 464 |
|
---|
| 465 | /* execute loop */
|
---|
| 466 | for (iz = 0; iz < iy; iz++) {
|
---|
| 467 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
| 468 | }
|
---|
| 469 |
|
---|
| 470 | /* store term */
|
---|
| 471 | W[ix] = ((mp_digit)_W) & MP_MASK;
|
---|
| 472 |
|
---|
| 473 | /* make next carry */
|
---|
| 474 | _W = _W >> ((mp_word)DIGIT_BIT);
|
---|
| 475 | }
|
---|
| 476 |
|
---|
| 477 | /* setup dest */
|
---|
| 478 | olduse = c->used;
|
---|
| 479 | c->used = pa;
|
---|
| 480 |
|
---|
| 481 | {
|
---|
| 482 | register mp_digit *tmpc;
|
---|
| 483 |
|
---|
| 484 | tmpc = c->dp + digs;
|
---|
| 485 | for (ix = digs; ix <= pa; ix++) {
|
---|
| 486 | /* now extract the previous digit [below the carry] */
|
---|
| 487 | *tmpc++ = W[ix];
|
---|
| 488 | }
|
---|
| 489 |
|
---|
| 490 | /* clear unused digits [that existed in the old copy of c] */
|
---|
| 491 | for (; ix < olduse; ix++) {
|
---|
| 492 | *tmpc++ = 0;
|
---|
| 493 | }
|
---|
| 494 | }
|
---|
| 495 | mp_clamp (c);
|
---|
| 496 | return MP_OKAY;
|
---|
| 497 | }
|
---|
| 498 |
|
---|
| 499 | /* fast squaring
|
---|
| 500 | *
|
---|
| 501 | * This is the comba method where the columns of the product
|
---|
| 502 | * are computed first then the carries are computed. This
|
---|
| 503 | * has the effect of making a very simple inner loop that
|
---|
| 504 | * is executed the most
|
---|
| 505 | *
|
---|
| 506 | * W2 represents the outer products and W the inner.
|
---|
| 507 | *
|
---|
| 508 | * A further optimizations is made because the inner
|
---|
| 509 | * products are of the form "A * B * 2". The *2 part does
|
---|
| 510 | * not need to be computed until the end which is good
|
---|
| 511 | * because 64-bit shifts are slow!
|
---|
| 512 | *
|
---|
| 513 | * Based on Algorithm 14.16 on pp.597 of HAC.
|
---|
| 514 | *
|
---|
| 515 | */
|
---|
| 516 | /* the jist of squaring...
|
---|
| 517 |
|
---|
| 518 | you do like mult except the offset of the tmpx [one that starts closer to zero]
|
---|
| 519 | can't equal the offset of tmpy. So basically you set up iy like before then you min it with
|
---|
| 520 | (ty-tx) so that it never happens. You double all those you add in the inner loop
|
---|
| 521 |
|
---|
| 522 | After that loop you do the squares and add them in.
|
---|
| 523 |
|
---|
| 524 | Remove W2 and don't memset W
|
---|
| 525 |
|
---|
| 526 | */
|
---|
| 527 |
|
---|
| 528 | static int fast_s_mp_sqr (const mp_int * a, mp_int * b)
|
---|
| 529 | {
|
---|
| 530 | int olduse, res, pa, ix, iz;
|
---|
| 531 | mp_digit W[MP_WARRAY], *tmpx;
|
---|
| 532 | mp_word W1;
|
---|
| 533 |
|
---|
| 534 | /* grow the destination as required */
|
---|
| 535 | pa = a->used + a->used;
|
---|
| 536 | if (b->alloc < pa) {
|
---|
| 537 | if ((res = mp_grow (b, pa)) != MP_OKAY) {
|
---|
| 538 | return res;
|
---|
| 539 | }
|
---|
| 540 | }
|
---|
| 541 |
|
---|
| 542 | /* number of output digits to produce */
|
---|
| 543 | W1 = 0;
|
---|
| 544 | for (ix = 0; ix <= pa; ix++) {
|
---|
| 545 | int tx, ty, iy;
|
---|
| 546 | mp_word _W;
|
---|
| 547 | mp_digit *tmpy;
|
---|
| 548 |
|
---|
| 549 | /* clear counter */
|
---|
| 550 | _W = 0;
|
---|
| 551 |
|
---|
| 552 | /* get offsets into the two bignums */
|
---|
| 553 | ty = MIN(a->used-1, ix);
|
---|
| 554 | tx = ix - ty;
|
---|
| 555 |
|
---|
| 556 | /* setup temp aliases */
|
---|
| 557 | tmpx = a->dp + tx;
|
---|
| 558 | tmpy = a->dp + ty;
|
---|
| 559 |
|
---|
| 560 | /* This is the number of times the loop will iterate, essentially it's
|
---|
| 561 | while (tx++ < a->used && ty-- >= 0) { ... }
|
---|
| 562 | */
|
---|
| 563 | iy = MIN(a->used-tx, ty+1);
|
---|
| 564 |
|
---|
| 565 | /* now for squaring tx can never equal ty
|
---|
| 566 | * we halve the distance since they approach at a rate of 2x
|
---|
| 567 | * and we have to round because odd cases need to be executed
|
---|
| 568 | */
|
---|
| 569 | iy = MIN(iy, (ty-tx+1)>>1);
|
---|
| 570 |
|
---|
| 571 | /* execute loop */
|
---|
| 572 | for (iz = 0; iz < iy; iz++) {
|
---|
| 573 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
---|
| 574 | }
|
---|
| 575 |
|
---|
| 576 | /* double the inner product and add carry */
|
---|
| 577 | _W = _W + _W + W1;
|
---|
| 578 |
|
---|
| 579 | /* even columns have the square term in them */
|
---|
| 580 | if ((ix&1) == 0) {
|
---|
| 581 | _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
|
---|
| 582 | }
|
---|
| 583 |
|
---|
| 584 | /* store it */
|
---|
| 585 | W[ix] = _W;
|
---|
| 586 |
|
---|
| 587 | /* make next carry */
|
---|
| 588 | W1 = _W >> ((mp_word)DIGIT_BIT);
|
---|
| 589 | }
|
---|
| 590 |
|
---|
| 591 | /* setup dest */
|
---|
| 592 | olduse = b->used;
|
---|
| 593 | b->used = a->used+a->used;
|
---|
| 594 |
|
---|
| 595 | {
|
---|
| 596 | mp_digit *tmpb;
|
---|
| 597 | tmpb = b->dp;
|
---|
| 598 | for (ix = 0; ix < pa; ix++) {
|
---|
| 599 | *tmpb++ = W[ix] & MP_MASK;
|
---|
| 600 | }
|
---|
| 601 |
|
---|
| 602 | /* clear unused digits [that existed in the old copy of c] */
|
---|
| 603 | for (; ix < olduse; ix++) {
|
---|
| 604 | *tmpb++ = 0;
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 | mp_clamp (b);
|
---|
| 608 | return MP_OKAY;
|
---|
| 609 | }
|
---|
| 610 |
|
---|
| 611 | /* computes a = 2**b
|
---|
| 612 | *
|
---|
| 613 | * Simple algorithm which zeroes the int, grows it then just sets one bit
|
---|
| 614 | * as required.
|
---|
| 615 | */
|
---|
| 616 | int
|
---|
| 617 | mp_2expt (mp_int * a, int b)
|
---|
| 618 | {
|
---|
| 619 | int res;
|
---|
| 620 |
|
---|
| 621 | /* zero a as per default */
|
---|
| 622 | mp_zero (a);
|
---|
| 623 |
|
---|
| 624 | /* grow a to accommodate the single bit */
|
---|
| 625 | if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
---|
| 626 | return res;
|
---|
| 627 | }
|
---|
| 628 |
|
---|
| 629 | /* set the used count of where the bit will go */
|
---|
| 630 | a->used = b / DIGIT_BIT + 1;
|
---|
| 631 |
|
---|
| 632 | /* put the single bit in its place */
|
---|
| 633 | a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
|
---|
| 634 |
|
---|
| 635 | return MP_OKAY;
|
---|
| 636 | }
|
---|
| 637 |
|
---|
| 638 | /* b = |a|
|
---|
| 639 | *
|
---|
| 640 | * Simple function copies the input and fixes the sign to positive
|
---|
| 641 | */
|
---|
| 642 | int
|
---|
| 643 | mp_abs (const mp_int * a, mp_int * b)
|
---|
| 644 | {
|
---|
| 645 | int res;
|
---|
| 646 |
|
---|
| 647 | /* copy a to b */
|
---|
| 648 | if (a != b) {
|
---|
| 649 | if ((res = mp_copy (a, b)) != MP_OKAY) {
|
---|
| 650 | return res;
|
---|
| 651 | }
|
---|
| 652 | }
|
---|
| 653 |
|
---|
| 654 | /* force the sign of b to positive */
|
---|
| 655 | b->sign = MP_ZPOS;
|
---|
| 656 |
|
---|
| 657 | return MP_OKAY;
|
---|
| 658 | }
|
---|
| 659 |
|
---|
| 660 | /* high level addition (handles signs) */
|
---|
| 661 | int mp_add (mp_int * a, mp_int * b, mp_int * c)
|
---|
| 662 | {
|
---|
| 663 | int sa, sb, res;
|
---|
| 664 |
|
---|
| 665 | /* get sign of both inputs */
|
---|
| 666 | sa = a->sign;
|
---|
| 667 | sb = b->sign;
|
---|
| 668 |
|
---|
| 669 | /* handle two cases, not four */
|
---|
| 670 | if (sa == sb) {
|
---|
| 671 | /* both positive or both negative */
|
---|
| 672 | /* add their magnitudes, copy the sign */
|
---|
| 673 | c->sign = sa;
|
---|
| 674 | res = s_mp_add (a, b, c);
|
---|
| 675 | } else {
|
---|
| 676 | /* one positive, the other negative */
|
---|
| 677 | /* subtract the one with the greater magnitude from */
|
---|
| 678 | /* the one of the lesser magnitude. The result gets */
|
---|
| 679 | /* the sign of the one with the greater magnitude. */
|
---|
| 680 | if (mp_cmp_mag (a, b) == MP_LT) {
|
---|
| 681 | c->sign = sb;
|
---|
| 682 | res = s_mp_sub (b, a, c);
|
---|
| 683 | } else {
|
---|
| 684 | c->sign = sa;
|
---|
| 685 | res = s_mp_sub (a, b, c);
|
---|
| 686 | }
|
---|
| 687 | }
|
---|
| 688 | return res;
|
---|
| 689 | }
|
---|
| 690 |
|
---|
| 691 |
|
---|
| 692 | /* single digit addition */
|
---|
| 693 | int
|
---|
| 694 | mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
---|
| 695 | {
|
---|
| 696 | int res, ix, oldused;
|
---|
| 697 | mp_digit *tmpa, *tmpc, mu;
|
---|
| 698 |
|
---|
| 699 | /* grow c as required */
|
---|
| 700 | if (c->alloc < a->used + 1) {
|
---|
| 701 | if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
---|
| 702 | return res;
|
---|
| 703 | }
|
---|
| 704 | }
|
---|
| 705 |
|
---|
| 706 | /* if a is negative and |a| >= b, call c = |a| - b */
|
---|
| 707 | if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
|
---|
| 708 | /* temporarily fix sign of a */
|
---|
| 709 | a->sign = MP_ZPOS;
|
---|
| 710 |
|
---|
| 711 | /* c = |a| - b */
|
---|
| 712 | res = mp_sub_d(a, b, c);
|
---|
| 713 |
|
---|
| 714 | /* fix sign */
|
---|
| 715 | a->sign = c->sign = MP_NEG;
|
---|
| 716 |
|
---|
| 717 | return res;
|
---|
| 718 | }
|
---|
| 719 |
|
---|
| 720 | /* old number of used digits in c */
|
---|
| 721 | oldused = c->used;
|
---|
| 722 |
|
---|
| 723 | /* sign always positive */
|
---|
| 724 | c->sign = MP_ZPOS;
|
---|
| 725 |
|
---|
| 726 | /* source alias */
|
---|
| 727 | tmpa = a->dp;
|
---|
| 728 |
|
---|
| 729 | /* destination alias */
|
---|
| 730 | tmpc = c->dp;
|
---|
| 731 |
|
---|
| 732 | /* if a is positive */
|
---|
| 733 | if (a->sign == MP_ZPOS) {
|
---|
| 734 | /* add digit, after this we're propagating
|
---|
| 735 | * the carry.
|
---|
| 736 | */
|
---|
| 737 | *tmpc = *tmpa++ + b;
|
---|
| 738 | mu = *tmpc >> DIGIT_BIT;
|
---|
| 739 | *tmpc++ &= MP_MASK;
|
---|
| 740 |
|
---|
| 741 | /* now handle rest of the digits */
|
---|
| 742 | for (ix = 1; ix < a->used; ix++) {
|
---|
| 743 | *tmpc = *tmpa++ + mu;
|
---|
| 744 | mu = *tmpc >> DIGIT_BIT;
|
---|
| 745 | *tmpc++ &= MP_MASK;
|
---|
| 746 | }
|
---|
| 747 | /* set final carry */
|
---|
| 748 | ix++;
|
---|
| 749 | *tmpc++ = mu;
|
---|
| 750 |
|
---|
| 751 | /* setup size */
|
---|
| 752 | c->used = a->used + 1;
|
---|
| 753 | } else {
|
---|
| 754 | /* a was negative and |a| < b */
|
---|
| 755 | c->used = 1;
|
---|
| 756 |
|
---|
| 757 | /* the result is a single digit */
|
---|
| 758 | if (a->used == 1) {
|
---|
| 759 | *tmpc++ = b - a->dp[0];
|
---|
| 760 | } else {
|
---|
| 761 | *tmpc++ = b;
|
---|
| 762 | }
|
---|
| 763 |
|
---|
| 764 | /* setup count so the clearing of oldused
|
---|
| 765 | * can fall through correctly
|
---|
| 766 | */
|
---|
| 767 | ix = 1;
|
---|
| 768 | }
|
---|
| 769 |
|
---|
| 770 | /* now zero to oldused */
|
---|
| 771 | while (ix++ < oldused) {
|
---|
| 772 | *tmpc++ = 0;
|
---|
| 773 | }
|
---|
| 774 | mp_clamp(c);
|
---|
| 775 |
|
---|
| 776 | return MP_OKAY;
|
---|
| 777 | }
|
---|
| 778 |
|
---|
| 779 | /* trim unused digits
|
---|
| 780 | *
|
---|
| 781 | * This is used to ensure that leading zero digits are
|
---|
| 782 | * trimed and the leading "used" digit will be non-zero
|
---|
| 783 | * Typically very fast. Also fixes the sign if there
|
---|
| 784 | * are no more leading digits
|
---|
| 785 | */
|
---|
| 786 | void
|
---|
| 787 | mp_clamp (mp_int * a)
|
---|
| 788 | {
|
---|
| 789 | /* decrease used while the most significant digit is
|
---|
| 790 | * zero.
|
---|
| 791 | */
|
---|
| 792 | while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
---|
| 793 | --(a->used);
|
---|
| 794 | }
|
---|
| 795 |
|
---|
| 796 | /* reset the sign flag if used == 0 */
|
---|
| 797 | if (a->used == 0) {
|
---|
| 798 | a->sign = MP_ZPOS;
|
---|
| 799 | }
|
---|
| 800 | }
|
---|
| 801 |
|
---|
| 802 | /* clear one (frees) */
|
---|
| 803 | void
|
---|
| 804 | mp_clear (mp_int * a)
|
---|
| 805 | {
|
---|
| 806 | int i;
|
---|
| 807 |
|
---|
| 808 | /* only do anything if a hasn't been freed previously */
|
---|
| 809 | if (a->dp != NULL) {
|
---|
| 810 | /* first zero the digits */
|
---|
| 811 | for (i = 0; i < a->used; i++) {
|
---|
| 812 | a->dp[i] = 0;
|
---|
| 813 | }
|
---|
| 814 |
|
---|
| 815 | /* free ram */
|
---|
| 816 | free(a->dp);
|
---|
| 817 |
|
---|
| 818 | /* reset members to make debugging easier */
|
---|
| 819 | a->dp = NULL;
|
---|
| 820 | a->alloc = a->used = 0;
|
---|
| 821 | a->sign = MP_ZPOS;
|
---|
| 822 | }
|
---|
| 823 | }
|
---|
| 824 |
|
---|
| 825 |
|
---|
| 826 | void mp_clear_multi(mp_int *mp, ...)
|
---|
| 827 | {
|
---|
| 828 | mp_int* next_mp = mp;
|
---|
| 829 | va_list args;
|
---|
| 830 | va_start(args, mp);
|
---|
| 831 | while (next_mp != NULL) {
|
---|
| 832 | mp_clear(next_mp);
|
---|
| 833 | next_mp = va_arg(args, mp_int*);
|
---|
| 834 | }
|
---|
| 835 | va_end(args);
|
---|
| 836 | }
|
---|
| 837 |
|
---|
| 838 | /* compare two ints (signed)*/
|
---|
| 839 | int
|
---|
| 840 | mp_cmp (const mp_int * a, const mp_int * b)
|
---|
| 841 | {
|
---|
| 842 | /* compare based on sign */
|
---|
| 843 | if (a->sign != b->sign) {
|
---|
| 844 | if (a->sign == MP_NEG) {
|
---|
| 845 | return MP_LT;
|
---|
| 846 | } else {
|
---|
| 847 | return MP_GT;
|
---|
| 848 | }
|
---|
| 849 | }
|
---|
| 850 |
|
---|
| 851 | /* compare digits */
|
---|
| 852 | if (a->sign == MP_NEG) {
|
---|
| 853 | /* if negative compare opposite direction */
|
---|
| 854 | return mp_cmp_mag(b, a);
|
---|
| 855 | } else {
|
---|
| 856 | return mp_cmp_mag(a, b);
|
---|
| 857 | }
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 | /* compare a digit */
|
---|
| 861 | int mp_cmp_d(const mp_int * a, mp_digit b)
|
---|
| 862 | {
|
---|
| 863 | /* compare based on sign */
|
---|
| 864 | if (a->sign == MP_NEG) {
|
---|
| 865 | return MP_LT;
|
---|
| 866 | }
|
---|
| 867 |
|
---|
| 868 | /* compare based on magnitude */
|
---|
| 869 | if (a->used > 1) {
|
---|
| 870 | return MP_GT;
|
---|
| 871 | }
|
---|
| 872 |
|
---|
| 873 | /* compare the only digit of a to b */
|
---|
| 874 | if (a->dp[0] > b) {
|
---|
| 875 | return MP_GT;
|
---|
| 876 | } else if (a->dp[0] < b) {
|
---|
| 877 | return MP_LT;
|
---|
| 878 | } else {
|
---|
| 879 | return MP_EQ;
|
---|
| 880 | }
|
---|
| 881 | }
|
---|
| 882 |
|
---|
| 883 | /* compare maginitude of two ints (unsigned) */
|
---|
| 884 | int mp_cmp_mag (const mp_int * a, const mp_int * b)
|
---|
| 885 | {
|
---|
| 886 | int n;
|
---|
| 887 | mp_digit *tmpa, *tmpb;
|
---|
| 888 |
|
---|
| 889 | /* compare based on # of non-zero digits */
|
---|
| 890 | if (a->used > b->used) {
|
---|
| 891 | return MP_GT;
|
---|
| 892 | }
|
---|
| 893 |
|
---|
| 894 | if (a->used < b->used) {
|
---|
| 895 | return MP_LT;
|
---|
| 896 | }
|
---|
| 897 |
|
---|
| 898 | /* alias for a */
|
---|
| 899 | tmpa = a->dp + (a->used - 1);
|
---|
| 900 |
|
---|
| 901 | /* alias for b */
|
---|
| 902 | tmpb = b->dp + (a->used - 1);
|
---|
| 903 |
|
---|
| 904 | /* compare based on digits */
|
---|
| 905 | for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
---|
| 906 | if (*tmpa > *tmpb) {
|
---|
| 907 | return MP_GT;
|
---|
| 908 | }
|
---|
| 909 |
|
---|
| 910 | if (*tmpa < *tmpb) {
|
---|
| 911 | return MP_LT;
|
---|
| 912 | }
|
---|
| 913 | }
|
---|
| 914 | return MP_EQ;
|
---|
| 915 | }
|
---|
| 916 |
|
---|
| 917 | static const int lnz[16] = {
|
---|
| 918 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
---|
| 919 | };
|
---|
| 920 |
|
---|
| 921 | /* Counts the number of lsbs which are zero before the first zero bit */
|
---|
| 922 | int mp_cnt_lsb(const mp_int *a)
|
---|
| 923 | {
|
---|
| 924 | int x;
|
---|
| 925 | mp_digit q, qq;
|
---|
| 926 |
|
---|
| 927 | /* easy out */
|
---|
| 928 | if (mp_iszero(a) == 1) {
|
---|
| 929 | return 0;
|
---|
| 930 | }
|
---|
| 931 |
|
---|
| 932 | /* scan lower digits until non-zero */
|
---|
| 933 | for (x = 0; x < a->used && a->dp[x] == 0; x++);
|
---|
| 934 | q = a->dp[x];
|
---|
| 935 | x *= DIGIT_BIT;
|
---|
| 936 |
|
---|
| 937 | /* now scan this digit until a 1 is found */
|
---|
| 938 | if ((q & 1) == 0) {
|
---|
| 939 | do {
|
---|
| 940 | qq = q & 15;
|
---|
| 941 | x += lnz[qq];
|
---|
| 942 | q >>= 4;
|
---|
| 943 | } while (qq == 0);
|
---|
| 944 | }
|
---|
| 945 | return x;
|
---|
| 946 | }
|
---|
| 947 |
|
---|
| 948 | /* copy, b = a */
|
---|
| 949 | int
|
---|
| 950 | mp_copy (const mp_int * a, mp_int * b)
|
---|
| 951 | {
|
---|
| 952 | int res, n;
|
---|
| 953 |
|
---|
| 954 | /* if dst == src do nothing */
|
---|
| 955 | if (a == b) {
|
---|
| 956 | return MP_OKAY;
|
---|
| 957 | }
|
---|
| 958 |
|
---|
| 959 | /* grow dest */
|
---|
| 960 | if (b->alloc < a->used) {
|
---|
| 961 | if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
---|
| 962 | return res;
|
---|
| 963 | }
|
---|
| 964 | }
|
---|
| 965 |
|
---|
| 966 | /* zero b and copy the parameters over */
|
---|
| 967 | {
|
---|
| 968 | register mp_digit *tmpa, *tmpb;
|
---|
| 969 |
|
---|
| 970 | /* pointer aliases */
|
---|
| 971 |
|
---|
| 972 | /* source */
|
---|
| 973 | tmpa = a->dp;
|
---|
| 974 |
|
---|
| 975 | /* destination */
|
---|
| 976 | tmpb = b->dp;
|
---|
| 977 |
|
---|
| 978 | /* copy all the digits */
|
---|
| 979 | for (n = 0; n < a->used; n++) {
|
---|
| 980 | *tmpb++ = *tmpa++;
|
---|
| 981 | }
|
---|
| 982 |
|
---|
| 983 | /* clear high digits */
|
---|
| 984 | for (; n < b->used; n++) {
|
---|
| 985 | *tmpb++ = 0;
|
---|
| 986 | }
|
---|
| 987 | }
|
---|
| 988 |
|
---|
| 989 | /* copy used count and sign */
|
---|
| 990 | b->used = a->used;
|
---|
| 991 | b->sign = a->sign;
|
---|
| 992 | return MP_OKAY;
|
---|
| 993 | }
|
---|
| 994 |
|
---|
| 995 | /* returns the number of bits in an int */
|
---|
| 996 | int
|
---|
| 997 | mp_count_bits (const mp_int * a)
|
---|
| 998 | {
|
---|
| 999 | int r;
|
---|
| 1000 | mp_digit q;
|
---|
| 1001 |
|
---|
| 1002 | /* shortcut */
|
---|
| 1003 | if (a->used == 0) {
|
---|
| 1004 | return 0;
|
---|
| 1005 | }
|
---|
| 1006 |
|
---|
| 1007 | /* get number of digits and add that */
|
---|
| 1008 | r = (a->used - 1) * DIGIT_BIT;
|
---|
| 1009 |
|
---|
| 1010 | /* take the last digit and count the bits in it */
|
---|
| 1011 | q = a->dp[a->used - 1];
|
---|
| 1012 | while (q > ((mp_digit) 0)) {
|
---|
| 1013 | ++r;
|
---|
| 1014 | q >>= ((mp_digit) 1);
|
---|
| 1015 | }
|
---|
| 1016 | return r;
|
---|
| 1017 | }
|
---|
| 1018 |
|
---|
| 1019 | /* integer signed division.
|
---|
| 1020 | * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
---|
| 1021 | * HAC pp.598 Algorithm 14.20
|
---|
| 1022 | *
|
---|
| 1023 | * Note that the description in HAC is horribly
|
---|
| 1024 | * incomplete. For example, it doesn't consider
|
---|
| 1025 | * the case where digits are removed from 'x' in
|
---|
| 1026 | * the inner loop. It also doesn't consider the
|
---|
| 1027 | * case that y has fewer than three digits, etc..
|
---|
| 1028 | *
|
---|
| 1029 | * The overall algorithm is as described as
|
---|
| 1030 | * 14.20 from HAC but fixed to treat these cases.
|
---|
| 1031 | */
|
---|
| 1032 | int mp_div (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
|
---|
| 1033 | {
|
---|
| 1034 | mp_int q, x, y, t1, t2;
|
---|
| 1035 | int res, n, t, i, norm, neg;
|
---|
| 1036 |
|
---|
| 1037 | /* is divisor zero ? */
|
---|
| 1038 | if (mp_iszero (b) == 1) {
|
---|
| 1039 | return MP_VAL;
|
---|
| 1040 | }
|
---|
| 1041 |
|
---|
| 1042 | /* if a < b then q=0, r = a */
|
---|
| 1043 | if (mp_cmp_mag (a, b) == MP_LT) {
|
---|
| 1044 | if (d != NULL) {
|
---|
| 1045 | res = mp_copy (a, d);
|
---|
| 1046 | } else {
|
---|
| 1047 | res = MP_OKAY;
|
---|
| 1048 | }
|
---|
| 1049 | if (c != NULL) {
|
---|
| 1050 | mp_zero (c);
|
---|
| 1051 | }
|
---|
| 1052 | return res;
|
---|
| 1053 | }
|
---|
| 1054 |
|
---|
| 1055 | if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
---|
| 1056 | return res;
|
---|
| 1057 | }
|
---|
| 1058 | q.used = a->used + 2;
|
---|
| 1059 |
|
---|
| 1060 | if ((res = mp_init (&t1)) != MP_OKAY) {
|
---|
| 1061 | goto __Q;
|
---|
| 1062 | }
|
---|
| 1063 |
|
---|
| 1064 | if ((res = mp_init (&t2)) != MP_OKAY) {
|
---|
| 1065 | goto __T1;
|
---|
| 1066 | }
|
---|
| 1067 |
|
---|
| 1068 | if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
---|
| 1069 | goto __T2;
|
---|
| 1070 | }
|
---|
| 1071 |
|
---|
| 1072 | if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
---|
| 1073 | goto __X;
|
---|
| 1074 | }
|
---|
| 1075 |
|
---|
| 1076 | /* fix the sign */
|
---|
| 1077 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
---|
| 1078 | x.sign = y.sign = MP_ZPOS;
|
---|
| 1079 |
|
---|
| 1080 | /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
|
---|
| 1081 | norm = mp_count_bits(&y) % DIGIT_BIT;
|
---|
| 1082 | if (norm < DIGIT_BIT-1) {
|
---|
| 1083 | norm = (DIGIT_BIT-1) - norm;
|
---|
| 1084 | if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
|
---|
| 1085 | goto __Y;
|
---|
| 1086 | }
|
---|
| 1087 | if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
|
---|
| 1088 | goto __Y;
|
---|
| 1089 | }
|
---|
| 1090 | } else {
|
---|
| 1091 | norm = 0;
|
---|
| 1092 | }
|
---|
| 1093 |
|
---|
| 1094 | /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
---|
| 1095 | n = x.used - 1;
|
---|
| 1096 | t = y.used - 1;
|
---|
| 1097 |
|
---|
| 1098 | /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
|
---|
| 1099 | if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
|
---|
| 1100 | goto __Y;
|
---|
| 1101 | }
|
---|
| 1102 |
|
---|
| 1103 | while (mp_cmp (&x, &y) != MP_LT) {
|
---|
| 1104 | ++(q.dp[n - t]);
|
---|
| 1105 | if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
---|
| 1106 | goto __Y;
|
---|
| 1107 | }
|
---|
| 1108 | }
|
---|
| 1109 |
|
---|
| 1110 | /* reset y by shifting it back down */
|
---|
| 1111 | mp_rshd (&y, n - t);
|
---|
| 1112 |
|
---|
| 1113 | /* step 3. for i from n down to (t + 1) */
|
---|
| 1114 | for (i = n; i >= (t + 1); i--) {
|
---|
| 1115 | if (i > x.used) {
|
---|
| 1116 | continue;
|
---|
| 1117 | }
|
---|
| 1118 |
|
---|
| 1119 | /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
---|
| 1120 | * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
---|
| 1121 | if (x.dp[i] == y.dp[t]) {
|
---|
| 1122 | q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
---|
| 1123 | } else {
|
---|
| 1124 | mp_word tmp;
|
---|
| 1125 | tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
---|
| 1126 | tmp |= ((mp_word) x.dp[i - 1]);
|
---|
| 1127 | tmp /= ((mp_word) y.dp[t]);
|
---|
| 1128 | if (tmp > (mp_word) MP_MASK)
|
---|
| 1129 | tmp = MP_MASK;
|
---|
| 1130 | q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
---|
| 1131 | }
|
---|
| 1132 |
|
---|
| 1133 | /* while (q{i-t-1} * (yt * b + y{t-1})) >
|
---|
| 1134 | xi * b**2 + xi-1 * b + xi-2
|
---|
| 1135 |
|
---|
| 1136 | do q{i-t-1} -= 1;
|
---|
| 1137 | */
|
---|
| 1138 | q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
---|
| 1139 | do {
|
---|
| 1140 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
---|
| 1141 |
|
---|
| 1142 | /* find left hand */
|
---|
| 1143 | mp_zero (&t1);
|
---|
| 1144 | t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
---|
| 1145 | t1.dp[1] = y.dp[t];
|
---|
| 1146 | t1.used = 2;
|
---|
| 1147 | if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
---|
| 1148 | goto __Y;
|
---|
| 1149 | }
|
---|
| 1150 |
|
---|
| 1151 | /* find right hand */
|
---|
| 1152 | t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
---|
| 1153 | t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
---|
| 1154 | t2.dp[2] = x.dp[i];
|
---|
| 1155 | t2.used = 3;
|
---|
| 1156 | } while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
---|
| 1157 |
|
---|
| 1158 | /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
---|
| 1159 | if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
---|
| 1160 | goto __Y;
|
---|
| 1161 | }
|
---|
| 1162 |
|
---|
| 1163 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
---|
| 1164 | goto __Y;
|
---|
| 1165 | }
|
---|
| 1166 |
|
---|
| 1167 | if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
---|
| 1168 | goto __Y;
|
---|
| 1169 | }
|
---|
| 1170 |
|
---|
| 1171 | /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
|
---|
| 1172 | if (x.sign == MP_NEG) {
|
---|
| 1173 | if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
---|
| 1174 | goto __Y;
|
---|
| 1175 | }
|
---|
| 1176 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
---|
| 1177 | goto __Y;
|
---|
| 1178 | }
|
---|
| 1179 | if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
---|
| 1180 | goto __Y;
|
---|
| 1181 | }
|
---|
| 1182 |
|
---|
| 1183 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
---|
| 1184 | }
|
---|
| 1185 | }
|
---|
| 1186 |
|
---|
| 1187 | /* now q is the quotient and x is the remainder
|
---|
| 1188 | * [which we have to normalize]
|
---|
| 1189 | */
|
---|
| 1190 |
|
---|
| 1191 | /* get sign before writing to c */
|
---|
| 1192 | x.sign = x.used == 0 ? MP_ZPOS : a->sign;
|
---|
| 1193 |
|
---|
| 1194 | if (c != NULL) {
|
---|
| 1195 | mp_clamp (&q);
|
---|
| 1196 | mp_exch (&q, c);
|
---|
| 1197 | c->sign = neg;
|
---|
| 1198 | }
|
---|
| 1199 |
|
---|
| 1200 | if (d != NULL) {
|
---|
| 1201 | mp_div_2d (&x, norm, &x, NULL);
|
---|
| 1202 | mp_exch (&x, d);
|
---|
| 1203 | }
|
---|
| 1204 |
|
---|
| 1205 | res = MP_OKAY;
|
---|
| 1206 |
|
---|
| 1207 | __Y:mp_clear (&y);
|
---|
| 1208 | __X:mp_clear (&x);
|
---|
| 1209 | __T2:mp_clear (&t2);
|
---|
| 1210 | __T1:mp_clear (&t1);
|
---|
| 1211 | __Q:mp_clear (&q);
|
---|
| 1212 | return res;
|
---|
| 1213 | }
|
---|
| 1214 |
|
---|
| 1215 | /* b = a/2 */
|
---|
| 1216 | int mp_div_2(const mp_int * a, mp_int * b)
|
---|
| 1217 | {
|
---|
| 1218 | int x, res, oldused;
|
---|
| 1219 |
|
---|
| 1220 | /* copy */
|
---|
| 1221 | if (b->alloc < a->used) {
|
---|
| 1222 | if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
---|
| 1223 | return res;
|
---|
| 1224 | }
|
---|
| 1225 | }
|
---|
| 1226 |
|
---|
| 1227 | oldused = b->used;
|
---|
| 1228 | b->used = a->used;
|
---|
| 1229 | {
|
---|
| 1230 | register mp_digit r, rr, *tmpa, *tmpb;
|
---|
| 1231 |
|
---|
| 1232 | /* source alias */
|
---|
| 1233 | tmpa = a->dp + b->used - 1;
|
---|
| 1234 |
|
---|
| 1235 | /* dest alias */
|
---|
| 1236 | tmpb = b->dp + b->used - 1;
|
---|
| 1237 |
|
---|
| 1238 | /* carry */
|
---|
| 1239 | r = 0;
|
---|
| 1240 | for (x = b->used - 1; x >= 0; x--) {
|
---|
| 1241 | /* get the carry for the next iteration */
|
---|
| 1242 | rr = *tmpa & 1;
|
---|
| 1243 |
|
---|
| 1244 | /* shift the current digit, add in carry and store */
|
---|
| 1245 | *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
---|
| 1246 |
|
---|
| 1247 | /* forward carry to next iteration */
|
---|
| 1248 | r = rr;
|
---|
| 1249 | }
|
---|
| 1250 |
|
---|
| 1251 | /* zero excess digits */
|
---|
| 1252 | tmpb = b->dp + b->used;
|
---|
| 1253 | for (x = b->used; x < oldused; x++) {
|
---|
| 1254 | *tmpb++ = 0;
|
---|
| 1255 | }
|
---|
| 1256 | }
|
---|
| 1257 | b->sign = a->sign;
|
---|
| 1258 | mp_clamp (b);
|
---|
| 1259 | return MP_OKAY;
|
---|
| 1260 | }
|
---|
| 1261 |
|
---|
| 1262 | /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
|
---|
| 1263 | int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d)
|
---|
| 1264 | {
|
---|
| 1265 | mp_digit D, r, rr;
|
---|
| 1266 | int x, res;
|
---|
| 1267 | mp_int t;
|
---|
| 1268 |
|
---|
| 1269 |
|
---|
| 1270 | /* if the shift count is <= 0 then we do no work */
|
---|
| 1271 | if (b <= 0) {
|
---|
| 1272 | res = mp_copy (a, c);
|
---|
| 1273 | if (d != NULL) {
|
---|
| 1274 | mp_zero (d);
|
---|
| 1275 | }
|
---|
| 1276 | return res;
|
---|
| 1277 | }
|
---|
| 1278 |
|
---|
| 1279 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
| 1280 | return res;
|
---|
| 1281 | }
|
---|
| 1282 |
|
---|
| 1283 | /* get the remainder */
|
---|
| 1284 | if (d != NULL) {
|
---|
| 1285 | if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
|
---|
| 1286 | mp_clear (&t);
|
---|
| 1287 | return res;
|
---|
| 1288 | }
|
---|
| 1289 | }
|
---|
| 1290 |
|
---|
| 1291 | /* copy */
|
---|
| 1292 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
| 1293 | mp_clear (&t);
|
---|
| 1294 | return res;
|
---|
| 1295 | }
|
---|
| 1296 |
|
---|
| 1297 | /* shift by as many digits in the bit count */
|
---|
| 1298 | if (b >= DIGIT_BIT) {
|
---|
| 1299 | mp_rshd (c, b / DIGIT_BIT);
|
---|
| 1300 | }
|
---|
| 1301 |
|
---|
| 1302 | /* shift any bit count < DIGIT_BIT */
|
---|
| 1303 | D = (mp_digit) (b % DIGIT_BIT);
|
---|
| 1304 | if (D != 0) {
|
---|
| 1305 | register mp_digit *tmpc, mask, shift;
|
---|
| 1306 |
|
---|
| 1307 | /* mask */
|
---|
| 1308 | mask = (((mp_digit)1) << D) - 1;
|
---|
| 1309 |
|
---|
| 1310 | /* shift for lsb */
|
---|
| 1311 | shift = DIGIT_BIT - D;
|
---|
| 1312 |
|
---|
| 1313 | /* alias */
|
---|
| 1314 | tmpc = c->dp + (c->used - 1);
|
---|
| 1315 |
|
---|
| 1316 | /* carry */
|
---|
| 1317 | r = 0;
|
---|
| 1318 | for (x = c->used - 1; x >= 0; x--) {
|
---|
| 1319 | /* get the lower bits of this word in a temp */
|
---|
| 1320 | rr = *tmpc & mask;
|
---|
| 1321 |
|
---|
| 1322 | /* shift the current word and mix in the carry bits from the previous word */
|
---|
| 1323 | *tmpc = (*tmpc >> D) | (r << shift);
|
---|
| 1324 | --tmpc;
|
---|
| 1325 |
|
---|
| 1326 | /* set the carry to the carry bits of the current word found above */
|
---|
| 1327 | r = rr;
|
---|
| 1328 | }
|
---|
| 1329 | }
|
---|
| 1330 | mp_clamp (c);
|
---|
| 1331 | if (d != NULL) {
|
---|
| 1332 | mp_exch (&t, d);
|
---|
| 1333 | }
|
---|
| 1334 | mp_clear (&t);
|
---|
| 1335 | return MP_OKAY;
|
---|
| 1336 | }
|
---|
| 1337 |
|
---|
| 1338 | static int s_is_power_of_two(mp_digit b, int *p)
|
---|
| 1339 | {
|
---|
| 1340 | int x;
|
---|
| 1341 |
|
---|
| 1342 | for (x = 1; x < DIGIT_BIT; x++) {
|
---|
| 1343 | if (b == (((mp_digit)1)<<x)) {
|
---|
| 1344 | *p = x;
|
---|
| 1345 | return 1;
|
---|
| 1346 | }
|
---|
| 1347 | }
|
---|
| 1348 | return 0;
|
---|
| 1349 | }
|
---|
| 1350 |
|
---|
| 1351 | /* single digit division (based on routine from MPI) */
|
---|
| 1352 | int mp_div_d (const mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
|
---|
| 1353 | {
|
---|
| 1354 | mp_int q;
|
---|
| 1355 | mp_word w;
|
---|
| 1356 | mp_digit t;
|
---|
| 1357 | int res, ix;
|
---|
| 1358 |
|
---|
| 1359 | /* cannot divide by zero */
|
---|
| 1360 | if (b == 0) {
|
---|
| 1361 | return MP_VAL;
|
---|
| 1362 | }
|
---|
| 1363 |
|
---|
| 1364 | /* quick outs */
|
---|
| 1365 | if (b == 1 || mp_iszero(a) == 1) {
|
---|
| 1366 | if (d != NULL) {
|
---|
| 1367 | *d = 0;
|
---|
| 1368 | }
|
---|
| 1369 | if (c != NULL) {
|
---|
| 1370 | return mp_copy(a, c);
|
---|
| 1371 | }
|
---|
| 1372 | return MP_OKAY;
|
---|
| 1373 | }
|
---|
| 1374 |
|
---|
| 1375 | /* power of two ? */
|
---|
| 1376 | if (s_is_power_of_two(b, &ix) == 1) {
|
---|
| 1377 | if (d != NULL) {
|
---|
| 1378 | *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
|
---|
| 1379 | }
|
---|
| 1380 | if (c != NULL) {
|
---|
| 1381 | return mp_div_2d(a, ix, c, NULL);
|
---|
| 1382 | }
|
---|
| 1383 | return MP_OKAY;
|
---|
| 1384 | }
|
---|
| 1385 |
|
---|
| 1386 | /* no easy answer [c'est la vie]. Just division */
|
---|
| 1387 | if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
---|
| 1388 | return res;
|
---|
| 1389 | }
|
---|
| 1390 |
|
---|
| 1391 | q.used = a->used;
|
---|
| 1392 | q.sign = a->sign;
|
---|
| 1393 | w = 0;
|
---|
| 1394 | for (ix = a->used - 1; ix >= 0; ix--) {
|
---|
| 1395 | w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
|
---|
| 1396 |
|
---|
| 1397 | if (w >= b) {
|
---|
| 1398 | t = (mp_digit)(w / b);
|
---|
| 1399 | w -= ((mp_word)t) * ((mp_word)b);
|
---|
| 1400 | } else {
|
---|
| 1401 | t = 0;
|
---|
| 1402 | }
|
---|
| 1403 | q.dp[ix] = t;
|
---|
| 1404 | }
|
---|
| 1405 |
|
---|
| 1406 | if (d != NULL) {
|
---|
| 1407 | *d = (mp_digit)w;
|
---|
| 1408 | }
|
---|
| 1409 |
|
---|
| 1410 | if (c != NULL) {
|
---|
| 1411 | mp_clamp(&q);
|
---|
| 1412 | mp_exch(&q, c);
|
---|
| 1413 | }
|
---|
| 1414 | mp_clear(&q);
|
---|
| 1415 |
|
---|
| 1416 | return res;
|
---|
| 1417 | }
|
---|
| 1418 |
|
---|
| 1419 | /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
|
---|
| 1420 | *
|
---|
| 1421 | * Based on algorithm from the paper
|
---|
| 1422 | *
|
---|
| 1423 | * "Generating Efficient Primes for Discrete Log Cryptosystems"
|
---|
| 1424 | * Chae Hoon Lim, Pil Loong Lee,
|
---|
| 1425 | * POSTECH Information Research Laboratories
|
---|
| 1426 | *
|
---|
| 1427 | * The modulus must be of a special format [see manual]
|
---|
| 1428 | *
|
---|
| 1429 | * Has been modified to use algorithm 7.10 from the LTM book instead
|
---|
| 1430 | *
|
---|
| 1431 | * Input x must be in the range 0 <= x <= (n-1)**2
|
---|
| 1432 | */
|
---|
| 1433 | int
|
---|
| 1434 | mp_dr_reduce (mp_int * x, const mp_int * n, mp_digit k)
|
---|
| 1435 | {
|
---|
| 1436 | int err, i, m;
|
---|
| 1437 | mp_word r;
|
---|
| 1438 | mp_digit mu, *tmpx1, *tmpx2;
|
---|
| 1439 |
|
---|
| 1440 | /* m = digits in modulus */
|
---|
| 1441 | m = n->used;
|
---|
| 1442 |
|
---|
| 1443 | /* ensure that "x" has at least 2m digits */
|
---|
| 1444 | if (x->alloc < m + m) {
|
---|
| 1445 | if ((err = mp_grow (x, m + m)) != MP_OKAY) {
|
---|
| 1446 | return err;
|
---|
| 1447 | }
|
---|
| 1448 | }
|
---|
| 1449 |
|
---|
| 1450 | /* top of loop, this is where the code resumes if
|
---|
| 1451 | * another reduction pass is required.
|
---|
| 1452 | */
|
---|
| 1453 | top:
|
---|
| 1454 | /* aliases for digits */
|
---|
| 1455 | /* alias for lower half of x */
|
---|
| 1456 | tmpx1 = x->dp;
|
---|
| 1457 |
|
---|
| 1458 | /* alias for upper half of x, or x/B**m */
|
---|
| 1459 | tmpx2 = x->dp + m;
|
---|
| 1460 |
|
---|
| 1461 | /* set carry to zero */
|
---|
| 1462 | mu = 0;
|
---|
| 1463 |
|
---|
| 1464 | /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
|
---|
| 1465 | for (i = 0; i < m; i++) {
|
---|
| 1466 | r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
|
---|
| 1467 | *tmpx1++ = (mp_digit)(r & MP_MASK);
|
---|
| 1468 | mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
|
---|
| 1469 | }
|
---|
| 1470 |
|
---|
| 1471 | /* set final carry */
|
---|
| 1472 | *tmpx1++ = mu;
|
---|
| 1473 |
|
---|
| 1474 | /* zero words above m */
|
---|
| 1475 | for (i = m + 1; i < x->used; i++) {
|
---|
| 1476 | *tmpx1++ = 0;
|
---|
| 1477 | }
|
---|
| 1478 |
|
---|
| 1479 | /* clamp, sub and return */
|
---|
| 1480 | mp_clamp (x);
|
---|
| 1481 |
|
---|
| 1482 | /* if x >= n then subtract and reduce again
|
---|
| 1483 | * Each successive "recursion" makes the input smaller and smaller.
|
---|
| 1484 | */
|
---|
| 1485 | if (mp_cmp_mag (x, n) != MP_LT) {
|
---|
| 1486 | s_mp_sub(x, n, x);
|
---|
| 1487 | goto top;
|
---|
| 1488 | }
|
---|
| 1489 | return MP_OKAY;
|
---|
| 1490 | }
|
---|
| 1491 |
|
---|
| 1492 | /* determines the setup value */
|
---|
| 1493 | void mp_dr_setup(const mp_int *a, mp_digit *d)
|
---|
| 1494 | {
|
---|
| 1495 | /* the casts are required if DIGIT_BIT is one less than
|
---|
| 1496 | * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
|
---|
| 1497 | */
|
---|
| 1498 | *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
|
---|
| 1499 | ((mp_word)a->dp[0]));
|
---|
| 1500 | }
|
---|
| 1501 |
|
---|
| 1502 | /* swap the elements of two integers, for cases where you can't simply swap the
|
---|
| 1503 | * mp_int pointers around
|
---|
| 1504 | */
|
---|
| 1505 | void
|
---|
| 1506 | mp_exch (mp_int * a, mp_int * b)
|
---|
| 1507 | {
|
---|
| 1508 | mp_int t;
|
---|
| 1509 |
|
---|
| 1510 | t = *a;
|
---|
| 1511 | *a = *b;
|
---|
| 1512 | *b = t;
|
---|
| 1513 | }
|
---|
| 1514 |
|
---|
| 1515 | /* this is a shell function that calls either the normal or Montgomery
|
---|
| 1516 | * exptmod functions. Originally the call to the montgomery code was
|
---|
| 1517 | * embedded in the normal function but that wasted a lot of stack space
|
---|
| 1518 | * for nothing (since 99% of the time the Montgomery code would be called)
|
---|
| 1519 | */
|
---|
| 1520 | int mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
|
---|
| 1521 | {
|
---|
| 1522 | int dr;
|
---|
| 1523 |
|
---|
| 1524 | /* modulus P must be positive */
|
---|
| 1525 | if (P->sign == MP_NEG) {
|
---|
| 1526 | return MP_VAL;
|
---|
| 1527 | }
|
---|
| 1528 |
|
---|
| 1529 | /* if exponent X is negative we have to recurse */
|
---|
| 1530 | if (X->sign == MP_NEG) {
|
---|
| 1531 | mp_int tmpG, tmpX;
|
---|
| 1532 | int err;
|
---|
| 1533 |
|
---|
| 1534 | /* first compute 1/G mod P */
|
---|
| 1535 | if ((err = mp_init(&tmpG)) != MP_OKAY) {
|
---|
| 1536 | return err;
|
---|
| 1537 | }
|
---|
| 1538 | if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
---|
| 1539 | mp_clear(&tmpG);
|
---|
| 1540 | return err;
|
---|
| 1541 | }
|
---|
| 1542 |
|
---|
| 1543 | /* now get |X| */
|
---|
| 1544 | if ((err = mp_init(&tmpX)) != MP_OKAY) {
|
---|
| 1545 | mp_clear(&tmpG);
|
---|
| 1546 | return err;
|
---|
| 1547 | }
|
---|
| 1548 | if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
---|
| 1549 | mp_clear_multi(&tmpG, &tmpX, NULL);
|
---|
| 1550 | return err;
|
---|
| 1551 | }
|
---|
| 1552 |
|
---|
| 1553 | /* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
---|
| 1554 | err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
---|
| 1555 | mp_clear_multi(&tmpG, &tmpX, NULL);
|
---|
| 1556 | return err;
|
---|
| 1557 | }
|
---|
| 1558 |
|
---|
| 1559 | dr = 0;
|
---|
| 1560 |
|
---|
| 1561 | /* if the modulus is odd or dr != 0 use the fast method */
|
---|
| 1562 | if (mp_isodd (P) == 1 || dr != 0) {
|
---|
| 1563 | return mp_exptmod_fast (G, X, P, Y, dr);
|
---|
| 1564 | } else {
|
---|
| 1565 | /* otherwise use the generic Barrett reduction technique */
|
---|
| 1566 | return s_mp_exptmod (G, X, P, Y);
|
---|
| 1567 | }
|
---|
| 1568 | }
|
---|
| 1569 |
|
---|
| 1570 | /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
|
---|
| 1571 | *
|
---|
| 1572 | * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
---|
| 1573 | * The value of k changes based on the size of the exponent.
|
---|
| 1574 | *
|
---|
| 1575 | * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
---|
| 1576 | */
|
---|
| 1577 |
|
---|
| 1578 | int
|
---|
| 1579 | mp_exptmod_fast (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
---|
| 1580 | {
|
---|
| 1581 | mp_int M[256], res;
|
---|
| 1582 | mp_digit buf, mp;
|
---|
| 1583 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
---|
| 1584 |
|
---|
| 1585 | /* use a pointer to the reduction algorithm. This allows us to use
|
---|
| 1586 | * one of many reduction algorithms without modding the guts of
|
---|
| 1587 | * the code with if statements everywhere.
|
---|
| 1588 | */
|
---|
| 1589 | int (*redux)(mp_int*,const mp_int*,mp_digit);
|
---|
| 1590 |
|
---|
| 1591 | /* find window size */
|
---|
| 1592 | x = mp_count_bits (X);
|
---|
| 1593 | if (x <= 7) {
|
---|
| 1594 | winsize = 2;
|
---|
| 1595 | } else if (x <= 36) {
|
---|
| 1596 | winsize = 3;
|
---|
| 1597 | } else if (x <= 140) {
|
---|
| 1598 | winsize = 4;
|
---|
| 1599 | } else if (x <= 450) {
|
---|
| 1600 | winsize = 5;
|
---|
| 1601 | } else if (x <= 1303) {
|
---|
| 1602 | winsize = 6;
|
---|
| 1603 | } else if (x <= 3529) {
|
---|
| 1604 | winsize = 7;
|
---|
| 1605 | } else {
|
---|
| 1606 | winsize = 8;
|
---|
| 1607 | }
|
---|
| 1608 |
|
---|
| 1609 | /* init M array */
|
---|
| 1610 | /* init first cell */
|
---|
| 1611 | if ((err = mp_init(&M[1])) != MP_OKAY) {
|
---|
| 1612 | return err;
|
---|
| 1613 | }
|
---|
| 1614 |
|
---|
| 1615 | /* now init the second half of the array */
|
---|
| 1616 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
| 1617 | if ((err = mp_init(&M[x])) != MP_OKAY) {
|
---|
| 1618 | for (y = 1<<(winsize-1); y < x; y++) {
|
---|
| 1619 | mp_clear (&M[y]);
|
---|
| 1620 | }
|
---|
| 1621 | mp_clear(&M[1]);
|
---|
| 1622 | return err;
|
---|
| 1623 | }
|
---|
| 1624 | }
|
---|
| 1625 |
|
---|
| 1626 | /* determine and setup reduction code */
|
---|
| 1627 | if (redmode == 0) {
|
---|
| 1628 | /* now setup montgomery */
|
---|
| 1629 | if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
---|
| 1630 | goto __M;
|
---|
| 1631 | }
|
---|
| 1632 |
|
---|
| 1633 | /* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
---|
| 1634 | if (((P->used * 2 + 1) < MP_WARRAY) &&
|
---|
| 1635 | P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
| 1636 | redux = fast_mp_montgomery_reduce;
|
---|
| 1637 | } else {
|
---|
| 1638 | /* use slower baseline Montgomery method */
|
---|
| 1639 | redux = mp_montgomery_reduce;
|
---|
| 1640 | }
|
---|
| 1641 | } else if (redmode == 1) {
|
---|
| 1642 | /* setup DR reduction for moduli of the form B**k - b */
|
---|
| 1643 | mp_dr_setup(P, &mp);
|
---|
| 1644 | redux = mp_dr_reduce;
|
---|
| 1645 | } else {
|
---|
| 1646 | /* setup DR reduction for moduli of the form 2**k - b */
|
---|
| 1647 | if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
---|
| 1648 | goto __M;
|
---|
| 1649 | }
|
---|
| 1650 | redux = mp_reduce_2k;
|
---|
| 1651 | }
|
---|
| 1652 |
|
---|
| 1653 | /* setup result */
|
---|
| 1654 | if ((err = mp_init (&res)) != MP_OKAY) {
|
---|
| 1655 | goto __M;
|
---|
| 1656 | }
|
---|
| 1657 |
|
---|
| 1658 | /* create M table
|
---|
| 1659 | *
|
---|
| 1660 |
|
---|
| 1661 | *
|
---|
| 1662 | * The first half of the table is not computed though accept for M[0] and M[1]
|
---|
| 1663 | */
|
---|
| 1664 |
|
---|
| 1665 | if (redmode == 0) {
|
---|
| 1666 | /* now we need R mod m */
|
---|
| 1667 | if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
---|
| 1668 | goto __RES;
|
---|
| 1669 | }
|
---|
| 1670 |
|
---|
| 1671 | /* now set M[1] to G * R mod m */
|
---|
| 1672 | if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
---|
| 1673 | goto __RES;
|
---|
| 1674 | }
|
---|
| 1675 | } else {
|
---|
| 1676 | mp_set(&res, 1);
|
---|
| 1677 | if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
---|
| 1678 | goto __RES;
|
---|
| 1679 | }
|
---|
| 1680 | }
|
---|
| 1681 |
|
---|
| 1682 | /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
---|
| 1683 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
| 1684 | goto __RES;
|
---|
| 1685 | }
|
---|
| 1686 |
|
---|
| 1687 | for (x = 0; x < (winsize - 1); x++) {
|
---|
| 1688 | if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
| 1689 | goto __RES;
|
---|
| 1690 | }
|
---|
| 1691 | if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
---|
| 1692 | goto __RES;
|
---|
| 1693 | }
|
---|
| 1694 | }
|
---|
| 1695 |
|
---|
| 1696 | /* create upper table */
|
---|
| 1697 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
---|
| 1698 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
---|
| 1699 | goto __RES;
|
---|
| 1700 | }
|
---|
| 1701 | if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
---|
| 1702 | goto __RES;
|
---|
| 1703 | }
|
---|
| 1704 | }
|
---|
| 1705 |
|
---|
| 1706 | /* set initial mode and bit cnt */
|
---|
| 1707 | mode = 0;
|
---|
| 1708 | bitcnt = 1;
|
---|
| 1709 | buf = 0;
|
---|
| 1710 | digidx = X->used - 1;
|
---|
| 1711 | bitcpy = 0;
|
---|
| 1712 | bitbuf = 0;
|
---|
| 1713 |
|
---|
| 1714 | for (;;) {
|
---|
| 1715 | /* grab next digit as required */
|
---|
| 1716 | if (--bitcnt == 0) {
|
---|
| 1717 | /* if digidx == -1 we are out of digits so break */
|
---|
| 1718 | if (digidx == -1) {
|
---|
| 1719 | break;
|
---|
| 1720 | }
|
---|
| 1721 | /* read next digit and reset bitcnt */
|
---|
| 1722 | buf = X->dp[digidx--];
|
---|
| 1723 | bitcnt = DIGIT_BIT;
|
---|
| 1724 | }
|
---|
| 1725 |
|
---|
| 1726 | /* grab the next msb from the exponent */
|
---|
| 1727 | y = (buf >> (DIGIT_BIT - 1)) & 1;
|
---|
| 1728 | buf <<= (mp_digit)1;
|
---|
| 1729 |
|
---|
| 1730 | /* if the bit is zero and mode == 0 then we ignore it
|
---|
| 1731 | * These represent the leading zero bits before the first 1 bit
|
---|
| 1732 | * in the exponent. Technically this opt is not required but it
|
---|
| 1733 | * does lower the # of trivial squaring/reductions used
|
---|
| 1734 | */
|
---|
| 1735 | if (mode == 0 && y == 0) {
|
---|
| 1736 | continue;
|
---|
| 1737 | }
|
---|
| 1738 |
|
---|
| 1739 | /* if the bit is zero and mode == 1 then we square */
|
---|
| 1740 | if (mode == 1 && y == 0) {
|
---|
| 1741 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
| 1742 | goto __RES;
|
---|
| 1743 | }
|
---|
| 1744 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
| 1745 | goto __RES;
|
---|
| 1746 | }
|
---|
| 1747 | continue;
|
---|
| 1748 | }
|
---|
| 1749 |
|
---|
| 1750 | /* else we add it to the window */
|
---|
| 1751 | bitbuf |= (y << (winsize - ++bitcpy));
|
---|
| 1752 | mode = 2;
|
---|
| 1753 |
|
---|
| 1754 | if (bitcpy == winsize) {
|
---|
| 1755 | /* ok window is filled so square as required and multiply */
|
---|
| 1756 | /* square first */
|
---|
| 1757 | for (x = 0; x < winsize; x++) {
|
---|
| 1758 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
| 1759 | goto __RES;
|
---|
| 1760 | }
|
---|
| 1761 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
| 1762 | goto __RES;
|
---|
| 1763 | }
|
---|
| 1764 | }
|
---|
| 1765 |
|
---|
| 1766 | /* then multiply */
|
---|
| 1767 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
---|
| 1768 | goto __RES;
|
---|
| 1769 | }
|
---|
| 1770 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
| 1771 | goto __RES;
|
---|
| 1772 | }
|
---|
| 1773 |
|
---|
| 1774 | /* empty window and reset */
|
---|
| 1775 | bitcpy = 0;
|
---|
| 1776 | bitbuf = 0;
|
---|
| 1777 | mode = 1;
|
---|
| 1778 | }
|
---|
| 1779 | }
|
---|
| 1780 |
|
---|
| 1781 | /* if bits remain then square/multiply */
|
---|
| 1782 | if (mode == 2 && bitcpy > 0) {
|
---|
| 1783 | /* square then multiply if the bit is set */
|
---|
| 1784 | for (x = 0; x < bitcpy; x++) {
|
---|
| 1785 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
| 1786 | goto __RES;
|
---|
| 1787 | }
|
---|
| 1788 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
| 1789 | goto __RES;
|
---|
| 1790 | }
|
---|
| 1791 |
|
---|
| 1792 | /* get next bit of the window */
|
---|
| 1793 | bitbuf <<= 1;
|
---|
| 1794 | if ((bitbuf & (1 << winsize)) != 0) {
|
---|
| 1795 | /* then multiply */
|
---|
| 1796 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
---|
| 1797 | goto __RES;
|
---|
| 1798 | }
|
---|
| 1799 | if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
---|
| 1800 | goto __RES;
|
---|
| 1801 | }
|
---|
| 1802 | }
|
---|
| 1803 | }
|
---|
| 1804 | }
|
---|
| 1805 |
|
---|
| 1806 | if (redmode == 0) {
|
---|
| 1807 | /* fixup result if Montgomery reduction is used
|
---|
| 1808 | * recall that any value in a Montgomery system is
|
---|
| 1809 | * actually multiplied by R mod n. So we have
|
---|
| 1810 | * to reduce one more time to cancel out the factor
|
---|
| 1811 | * of R.
|
---|
| 1812 | */
|
---|
| 1813 | if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
---|
| 1814 | goto __RES;
|
---|
| 1815 | }
|
---|
| 1816 | }
|
---|
| 1817 |
|
---|
| 1818 | /* swap res with Y */
|
---|
| 1819 | mp_exch (&res, Y);
|
---|
| 1820 | err = MP_OKAY;
|
---|
| 1821 | __RES:mp_clear (&res);
|
---|
| 1822 | __M:
|
---|
| 1823 | mp_clear(&M[1]);
|
---|
| 1824 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
| 1825 | mp_clear (&M[x]);
|
---|
| 1826 | }
|
---|
| 1827 | return err;
|
---|
| 1828 | }
|
---|
| 1829 |
|
---|
| 1830 | /* Greatest Common Divisor using the binary method */
|
---|
| 1831 | int mp_gcd (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
| 1832 | {
|
---|
| 1833 | mp_int u, v;
|
---|
| 1834 | int k, u_lsb, v_lsb, res;
|
---|
| 1835 |
|
---|
| 1836 | /* either zero than gcd is the largest */
|
---|
| 1837 | if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
|
---|
| 1838 | return mp_abs (b, c);
|
---|
| 1839 | }
|
---|
| 1840 | if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
|
---|
| 1841 | return mp_abs (a, c);
|
---|
| 1842 | }
|
---|
| 1843 |
|
---|
| 1844 | /* optimized. At this point if a == 0 then
|
---|
| 1845 | * b must equal zero too
|
---|
| 1846 | */
|
---|
| 1847 | if (mp_iszero (a) == 1) {
|
---|
| 1848 | mp_zero(c);
|
---|
| 1849 | return MP_OKAY;
|
---|
| 1850 | }
|
---|
| 1851 |
|
---|
| 1852 | /* get copies of a and b we can modify */
|
---|
| 1853 | if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
|
---|
| 1854 | return res;
|
---|
| 1855 | }
|
---|
| 1856 |
|
---|
| 1857 | if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
|
---|
| 1858 | goto __U;
|
---|
| 1859 | }
|
---|
| 1860 |
|
---|
| 1861 | /* must be positive for the remainder of the algorithm */
|
---|
| 1862 | u.sign = v.sign = MP_ZPOS;
|
---|
| 1863 |
|
---|
| 1864 | /* B1. Find the common power of two for u and v */
|
---|
| 1865 | u_lsb = mp_cnt_lsb(&u);
|
---|
| 1866 | v_lsb = mp_cnt_lsb(&v);
|
---|
| 1867 | k = MIN(u_lsb, v_lsb);
|
---|
| 1868 |
|
---|
| 1869 | if (k > 0) {
|
---|
| 1870 | /* divide the power of two out */
|
---|
| 1871 | if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
|
---|
| 1872 | goto __V;
|
---|
| 1873 | }
|
---|
| 1874 |
|
---|
| 1875 | if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
|
---|
| 1876 | goto __V;
|
---|
| 1877 | }
|
---|
| 1878 | }
|
---|
| 1879 |
|
---|
| 1880 | /* divide any remaining factors of two out */
|
---|
| 1881 | if (u_lsb != k) {
|
---|
| 1882 | if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
|
---|
| 1883 | goto __V;
|
---|
| 1884 | }
|
---|
| 1885 | }
|
---|
| 1886 |
|
---|
| 1887 | if (v_lsb != k) {
|
---|
| 1888 | if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
|
---|
| 1889 | goto __V;
|
---|
| 1890 | }
|
---|
| 1891 | }
|
---|
| 1892 |
|
---|
| 1893 | while (mp_iszero(&v) == 0) {
|
---|
| 1894 | /* make sure v is the largest */
|
---|
| 1895 | if (mp_cmp_mag(&u, &v) == MP_GT) {
|
---|
| 1896 | /* swap u and v to make sure v is >= u */
|
---|
| 1897 | mp_exch(&u, &v);
|
---|
| 1898 | }
|
---|
| 1899 |
|
---|
| 1900 | /* subtract smallest from largest */
|
---|
| 1901 | if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
|
---|
| 1902 | goto __V;
|
---|
| 1903 | }
|
---|
| 1904 |
|
---|
| 1905 | /* Divide out all factors of two */
|
---|
| 1906 | if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
|
---|
| 1907 | goto __V;
|
---|
| 1908 | }
|
---|
| 1909 | }
|
---|
| 1910 |
|
---|
| 1911 | /* multiply by 2**k which we divided out at the beginning */
|
---|
| 1912 | if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
|
---|
| 1913 | goto __V;
|
---|
| 1914 | }
|
---|
| 1915 | c->sign = MP_ZPOS;
|
---|
| 1916 | res = MP_OKAY;
|
---|
| 1917 | __V:mp_clear (&u);
|
---|
| 1918 | __U:mp_clear (&v);
|
---|
| 1919 | return res;
|
---|
| 1920 | }
|
---|
| 1921 |
|
---|
| 1922 | /* get the lower 32-bits of an mp_int */
|
---|
| 1923 | unsigned long mp_get_int(const mp_int * a)
|
---|
| 1924 | {
|
---|
| 1925 | int i;
|
---|
| 1926 | unsigned long res;
|
---|
| 1927 |
|
---|
| 1928 | if (a->used == 0) {
|
---|
| 1929 | return 0;
|
---|
| 1930 | }
|
---|
| 1931 |
|
---|
| 1932 | /* get number of digits of the lsb we have to read */
|
---|
| 1933 | i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
---|
| 1934 |
|
---|
| 1935 | /* get most significant digit of result */
|
---|
| 1936 | res = DIGIT(a,i);
|
---|
| 1937 |
|
---|
| 1938 | while (--i >= 0) {
|
---|
| 1939 | res = (res << DIGIT_BIT) | DIGIT(a,i);
|
---|
| 1940 | }
|
---|
| 1941 |
|
---|
| 1942 | /* force result to 32-bits always so it is consistent on non 32-bit platforms */
|
---|
| 1943 | return res & 0xFFFFFFFFUL;
|
---|
| 1944 | }
|
---|
| 1945 |
|
---|
| 1946 | /* grow as required */
|
---|
| 1947 | int mp_grow (mp_int * a, int size)
|
---|
| 1948 | {
|
---|
| 1949 | int i;
|
---|
| 1950 | mp_digit *tmp;
|
---|
| 1951 |
|
---|
| 1952 | /* if the alloc size is smaller alloc more ram */
|
---|
| 1953 | if (a->alloc < size) {
|
---|
| 1954 | /* ensure there are always at least MP_PREC digits extra on top */
|
---|
| 1955 | size += (MP_PREC * 2) - (size % MP_PREC);
|
---|
| 1956 |
|
---|
| 1957 | /* reallocate the array a->dp
|
---|
| 1958 | *
|
---|
| 1959 | * We store the return in a temporary variable
|
---|
| 1960 | * in case the operation failed we don't want
|
---|
| 1961 | * to overwrite the dp member of a.
|
---|
| 1962 | */
|
---|
| 1963 | tmp = realloc (a->dp, sizeof (mp_digit) * size);
|
---|
| 1964 | if (tmp == NULL) {
|
---|
| 1965 | /* reallocation failed but "a" is still valid [can be freed] */
|
---|
| 1966 | return MP_MEM;
|
---|
| 1967 | }
|
---|
| 1968 |
|
---|
| 1969 | /* reallocation succeeded so set a->dp */
|
---|
| 1970 | a->dp = tmp;
|
---|
| 1971 |
|
---|
| 1972 | /* zero excess digits */
|
---|
| 1973 | i = a->alloc;
|
---|
| 1974 | a->alloc = size;
|
---|
| 1975 | for (; i < a->alloc; i++) {
|
---|
| 1976 | a->dp[i] = 0;
|
---|
| 1977 | }
|
---|
| 1978 | }
|
---|
| 1979 | return MP_OKAY;
|
---|
| 1980 | }
|
---|
| 1981 |
|
---|
| 1982 | /* init a new mp_int */
|
---|
| 1983 | int mp_init (mp_int * a)
|
---|
| 1984 | {
|
---|
| 1985 | int i;
|
---|
| 1986 |
|
---|
| 1987 | /* allocate memory required and clear it */
|
---|
| 1988 | a->dp = malloc (sizeof (mp_digit) * MP_PREC);
|
---|
| 1989 | if (a->dp == NULL) {
|
---|
| 1990 | return MP_MEM;
|
---|
| 1991 | }
|
---|
| 1992 |
|
---|
| 1993 | /* set the digits to zero */
|
---|
| 1994 | for (i = 0; i < MP_PREC; i++) {
|
---|
| 1995 | a->dp[i] = 0;
|
---|
| 1996 | }
|
---|
| 1997 |
|
---|
| 1998 | /* set the used to zero, allocated digits to the default precision
|
---|
| 1999 | * and sign to positive */
|
---|
| 2000 | a->used = 0;
|
---|
| 2001 | a->alloc = MP_PREC;
|
---|
| 2002 | a->sign = MP_ZPOS;
|
---|
| 2003 |
|
---|
| 2004 | return MP_OKAY;
|
---|
| 2005 | }
|
---|
| 2006 |
|
---|
| 2007 | /* creates "a" then copies b into it */
|
---|
| 2008 | int mp_init_copy (mp_int * a, const mp_int * b)
|
---|
| 2009 | {
|
---|
| 2010 | int res;
|
---|
| 2011 |
|
---|
| 2012 | if ((res = mp_init (a)) != MP_OKAY) {
|
---|
| 2013 | return res;
|
---|
| 2014 | }
|
---|
| 2015 | return mp_copy (b, a);
|
---|
| 2016 | }
|
---|
| 2017 |
|
---|
| 2018 | int mp_init_multi(mp_int *mp, ...)
|
---|
| 2019 | {
|
---|
| 2020 | mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
---|
| 2021 | int n = 0; /* Number of ok inits */
|
---|
| 2022 | mp_int* cur_arg = mp;
|
---|
| 2023 | va_list args;
|
---|
| 2024 |
|
---|
| 2025 | va_start(args, mp); /* init args to next argument from caller */
|
---|
| 2026 | while (cur_arg != NULL) {
|
---|
| 2027 | if (mp_init(cur_arg) != MP_OKAY) {
|
---|
| 2028 | /* Oops - error! Back-track and mp_clear what we already
|
---|
| 2029 | succeeded in init-ing, then return error.
|
---|
| 2030 | */
|
---|
| 2031 | va_list clean_args;
|
---|
| 2032 |
|
---|
| 2033 | /* end the current list */
|
---|
| 2034 | va_end(args);
|
---|
| 2035 |
|
---|
| 2036 | /* now start cleaning up */
|
---|
| 2037 | cur_arg = mp;
|
---|
| 2038 | va_start(clean_args, mp);
|
---|
| 2039 | while (n--) {
|
---|
| 2040 | mp_clear(cur_arg);
|
---|
| 2041 | cur_arg = va_arg(clean_args, mp_int*);
|
---|
| 2042 | }
|
---|
| 2043 | va_end(clean_args);
|
---|
| 2044 | res = MP_MEM;
|
---|
| 2045 | break;
|
---|
| 2046 | }
|
---|
| 2047 | n++;
|
---|
| 2048 | cur_arg = va_arg(args, mp_int*);
|
---|
| 2049 | }
|
---|
| 2050 | va_end(args);
|
---|
| 2051 | return res; /* Assumed ok, if error flagged above. */
|
---|
| 2052 | }
|
---|
| 2053 |
|
---|
| 2054 | /* init an mp_init for a given size */
|
---|
| 2055 | int mp_init_size (mp_int * a, int size)
|
---|
| 2056 | {
|
---|
| 2057 | int x;
|
---|
| 2058 |
|
---|
| 2059 | /* pad size so there are always extra digits */
|
---|
| 2060 | size += (MP_PREC * 2) - (size % MP_PREC);
|
---|
| 2061 |
|
---|
| 2062 | /* alloc mem */
|
---|
| 2063 | a->dp = malloc (sizeof (mp_digit) * size);
|
---|
| 2064 | if (a->dp == NULL) {
|
---|
| 2065 | return MP_MEM;
|
---|
| 2066 | }
|
---|
| 2067 |
|
---|
| 2068 | /* set the members */
|
---|
| 2069 | a->used = 0;
|
---|
| 2070 | a->alloc = size;
|
---|
| 2071 | a->sign = MP_ZPOS;
|
---|
| 2072 |
|
---|
| 2073 | /* zero the digits */
|
---|
| 2074 | for (x = 0; x < size; x++) {
|
---|
| 2075 | a->dp[x] = 0;
|
---|
| 2076 | }
|
---|
| 2077 |
|
---|
| 2078 | return MP_OKAY;
|
---|
| 2079 | }
|
---|
| 2080 |
|
---|
| 2081 | /* hac 14.61, pp608 */
|
---|
| 2082 | int mp_invmod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
| 2083 | {
|
---|
| 2084 | /* b cannot be negative */
|
---|
| 2085 | if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
---|
| 2086 | return MP_VAL;
|
---|
| 2087 | }
|
---|
| 2088 |
|
---|
| 2089 | /* if the modulus is odd we can use a faster routine instead */
|
---|
| 2090 | if (mp_isodd (b) == 1) {
|
---|
| 2091 | return fast_mp_invmod (a, b, c);
|
---|
| 2092 | }
|
---|
| 2093 |
|
---|
| 2094 | return mp_invmod_slow(a, b, c);
|
---|
| 2095 | }
|
---|
| 2096 |
|
---|
| 2097 | /* hac 14.61, pp608 */
|
---|
| 2098 | int mp_invmod_slow (const mp_int * a, mp_int * b, mp_int * c)
|
---|
| 2099 | {
|
---|
| 2100 | mp_int x, y, u, v, A, B, C, D;
|
---|
| 2101 | int res;
|
---|
| 2102 |
|
---|
| 2103 | /* b cannot be negative */
|
---|
| 2104 | if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
---|
| 2105 | return MP_VAL;
|
---|
| 2106 | }
|
---|
| 2107 |
|
---|
| 2108 | /* init temps */
|
---|
| 2109 | if ((res = mp_init_multi(&x, &y, &u, &v,
|
---|
| 2110 | &A, &B, &C, &D, NULL)) != MP_OKAY) {
|
---|
| 2111 | return res;
|
---|
| 2112 | }
|
---|
| 2113 |
|
---|
| 2114 | /* x = a, y = b */
|
---|
| 2115 | if ((res = mp_copy (a, &x)) != MP_OKAY) {
|
---|
| 2116 | goto __ERR;
|
---|
| 2117 | }
|
---|
| 2118 | if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
---|
| 2119 | goto __ERR;
|
---|
| 2120 | }
|
---|
| 2121 |
|
---|
| 2122 | /* 2. [modified] if x,y are both even then return an error! */
|
---|
| 2123 | if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
---|
| 2124 | res = MP_VAL;
|
---|
| 2125 | goto __ERR;
|
---|
| 2126 | }
|
---|
| 2127 |
|
---|
| 2128 | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
---|
| 2129 | if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
---|
| 2130 | goto __ERR;
|
---|
| 2131 | }
|
---|
| 2132 | if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
---|
| 2133 | goto __ERR;
|
---|
| 2134 | }
|
---|
| 2135 | mp_set (&A, 1);
|
---|
| 2136 | mp_set (&D, 1);
|
---|
| 2137 |
|
---|
| 2138 | top:
|
---|
| 2139 | /* 4. while u is even do */
|
---|
| 2140 | while (mp_iseven (&u) == 1) {
|
---|
| 2141 | /* 4.1 u = u/2 */
|
---|
| 2142 | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
---|
| 2143 | goto __ERR;
|
---|
| 2144 | }
|
---|
| 2145 | /* 4.2 if A or B is odd then */
|
---|
| 2146 | if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
|
---|
| 2147 | /* A = (A+y)/2, B = (B-x)/2 */
|
---|
| 2148 | if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
---|
| 2149 | goto __ERR;
|
---|
| 2150 | }
|
---|
| 2151 | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
---|
| 2152 | goto __ERR;
|
---|
| 2153 | }
|
---|
| 2154 | }
|
---|
| 2155 | /* A = A/2, B = B/2 */
|
---|
| 2156 | if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
---|
| 2157 | goto __ERR;
|
---|
| 2158 | }
|
---|
| 2159 | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
---|
| 2160 | goto __ERR;
|
---|
| 2161 | }
|
---|
| 2162 | }
|
---|
| 2163 |
|
---|
| 2164 | /* 5. while v is even do */
|
---|
| 2165 | while (mp_iseven (&v) == 1) {
|
---|
| 2166 | /* 5.1 v = v/2 */
|
---|
| 2167 | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
---|
| 2168 | goto __ERR;
|
---|
| 2169 | }
|
---|
| 2170 | /* 5.2 if C or D is odd then */
|
---|
| 2171 | if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
|
---|
| 2172 | /* C = (C+y)/2, D = (D-x)/2 */
|
---|
| 2173 | if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
---|
| 2174 | goto __ERR;
|
---|
| 2175 | }
|
---|
| 2176 | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
---|
| 2177 | goto __ERR;
|
---|
| 2178 | }
|
---|
| 2179 | }
|
---|
| 2180 | /* C = C/2, D = D/2 */
|
---|
| 2181 | if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
---|
| 2182 | goto __ERR;
|
---|
| 2183 | }
|
---|
| 2184 | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
---|
| 2185 | goto __ERR;
|
---|
| 2186 | }
|
---|
| 2187 | }
|
---|
| 2188 |
|
---|
| 2189 | /* 6. if u >= v then */
|
---|
| 2190 | if (mp_cmp (&u, &v) != MP_LT) {
|
---|
| 2191 | /* u = u - v, A = A - C, B = B - D */
|
---|
| 2192 | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
---|
| 2193 | goto __ERR;
|
---|
| 2194 | }
|
---|
| 2195 |
|
---|
| 2196 | if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
---|
| 2197 | goto __ERR;
|
---|
| 2198 | }
|
---|
| 2199 |
|
---|
| 2200 | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
---|
| 2201 | goto __ERR;
|
---|
| 2202 | }
|
---|
| 2203 | } else {
|
---|
| 2204 | /* v - v - u, C = C - A, D = D - B */
|
---|
| 2205 | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
---|
| 2206 | goto __ERR;
|
---|
| 2207 | }
|
---|
| 2208 |
|
---|
| 2209 | if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
---|
| 2210 | goto __ERR;
|
---|
| 2211 | }
|
---|
| 2212 |
|
---|
| 2213 | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
---|
| 2214 | goto __ERR;
|
---|
| 2215 | }
|
---|
| 2216 | }
|
---|
| 2217 |
|
---|
| 2218 | /* if not zero goto step 4 */
|
---|
| 2219 | if (mp_iszero (&u) == 0)
|
---|
| 2220 | goto top;
|
---|
| 2221 |
|
---|
| 2222 | /* now a = C, b = D, gcd == g*v */
|
---|
| 2223 |
|
---|
| 2224 | /* if v != 1 then there is no inverse */
|
---|
| 2225 | if (mp_cmp_d (&v, 1) != MP_EQ) {
|
---|
| 2226 | res = MP_VAL;
|
---|
| 2227 | goto __ERR;
|
---|
| 2228 | }
|
---|
| 2229 |
|
---|
| 2230 | /* if its too low */
|
---|
| 2231 | while (mp_cmp_d(&C, 0) == MP_LT) {
|
---|
| 2232 | if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
|
---|
| 2233 | goto __ERR;
|
---|
| 2234 | }
|
---|
| 2235 | }
|
---|
| 2236 |
|
---|
| 2237 | /* too big */
|
---|
| 2238 | while (mp_cmp_mag(&C, b) != MP_LT) {
|
---|
| 2239 | if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
---|
| 2240 | goto __ERR;
|
---|
| 2241 | }
|
---|
| 2242 | }
|
---|
| 2243 |
|
---|
| 2244 | /* C is now the inverse */
|
---|
| 2245 | mp_exch (&C, c);
|
---|
| 2246 | res = MP_OKAY;
|
---|
| 2247 | __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
---|
| 2248 | return res;
|
---|
| 2249 | }
|
---|
| 2250 |
|
---|
| 2251 | /* c = |a| * |b| using Karatsuba Multiplication using
|
---|
| 2252 | * three half size multiplications
|
---|
| 2253 | *
|
---|
| 2254 | * Let B represent the radix [e.g. 2**DIGIT_BIT] and
|
---|
| 2255 | * let n represent half of the number of digits in
|
---|
| 2256 | * the min(a,b)
|
---|
| 2257 | *
|
---|
| 2258 | * a = a1 * B**n + a0
|
---|
| 2259 | * b = b1 * B**n + b0
|
---|
| 2260 | *
|
---|
| 2261 | * Then, a * b =>
|
---|
| 2262 | a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
|
---|
| 2263 | *
|
---|
| 2264 | * Note that a1b1 and a0b0 are used twice and only need to be
|
---|
| 2265 | * computed once. So in total three half size (half # of
|
---|
| 2266 | * digit) multiplications are performed, a0b0, a1b1 and
|
---|
| 2267 | * (a1-b1)(a0-b0)
|
---|
| 2268 | *
|
---|
| 2269 | * Note that a multiplication of half the digits requires
|
---|
| 2270 | * 1/4th the number of single precision multiplications so in
|
---|
| 2271 | * total after one call 25% of the single precision multiplications
|
---|
| 2272 | * are saved. Note also that the call to mp_mul can end up back
|
---|
| 2273 | * in this function if the a0, a1, b0, or b1 are above the threshold.
|
---|
| 2274 | * This is known as divide-and-conquer and leads to the famous
|
---|
| 2275 | * O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than
|
---|
| 2276 | * the standard O(N**2) that the baseline/comba methods use.
|
---|
| 2277 | * Generally though the overhead of this method doesn't pay off
|
---|
| 2278 | * until a certain size (N ~ 80) is reached.
|
---|
| 2279 | */
|
---|
| 2280 | int mp_karatsuba_mul (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
| 2281 | {
|
---|
| 2282 | mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
---|
| 2283 | int B, err;
|
---|
| 2284 |
|
---|
| 2285 | /* default the return code to an error */
|
---|
| 2286 | err = MP_MEM;
|
---|
| 2287 |
|
---|
| 2288 | /* min # of digits */
|
---|
| 2289 | B = MIN (a->used, b->used);
|
---|
| 2290 |
|
---|
| 2291 | /* now divide in two */
|
---|
| 2292 | B = B >> 1;
|
---|
| 2293 |
|
---|
| 2294 | /* init copy all the temps */
|
---|
| 2295 | if (mp_init_size (&x0, B) != MP_OKAY)
|
---|
| 2296 | goto ERR;
|
---|
| 2297 | if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
---|
| 2298 | goto X0;
|
---|
| 2299 | if (mp_init_size (&y0, B) != MP_OKAY)
|
---|
| 2300 | goto X1;
|
---|
| 2301 | if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
---|
| 2302 | goto Y0;
|
---|
| 2303 |
|
---|
| 2304 | /* init temps */
|
---|
| 2305 | if (mp_init_size (&t1, B * 2) != MP_OKAY)
|
---|
| 2306 | goto Y1;
|
---|
| 2307 | if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
|
---|
| 2308 | goto T1;
|
---|
| 2309 | if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
|
---|
| 2310 | goto X0Y0;
|
---|
| 2311 |
|
---|
| 2312 | /* now shift the digits */
|
---|
| 2313 | x0.used = y0.used = B;
|
---|
| 2314 | x1.used = a->used - B;
|
---|
| 2315 | y1.used = b->used - B;
|
---|
| 2316 |
|
---|
| 2317 | {
|
---|
| 2318 | register int x;
|
---|
| 2319 | register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
---|
| 2320 |
|
---|
| 2321 | /* we copy the digits directly instead of using higher level functions
|
---|
| 2322 | * since we also need to shift the digits
|
---|
| 2323 | */
|
---|
| 2324 | tmpa = a->dp;
|
---|
| 2325 | tmpb = b->dp;
|
---|
| 2326 |
|
---|
| 2327 | tmpx = x0.dp;
|
---|
| 2328 | tmpy = y0.dp;
|
---|
| 2329 | for (x = 0; x < B; x++) {
|
---|
| 2330 | *tmpx++ = *tmpa++;
|
---|
| 2331 | *tmpy++ = *tmpb++;
|
---|
| 2332 | }
|
---|
| 2333 |
|
---|
| 2334 | tmpx = x1.dp;
|
---|
| 2335 | for (x = B; x < a->used; x++) {
|
---|
| 2336 | *tmpx++ = *tmpa++;
|
---|
| 2337 | }
|
---|
| 2338 |
|
---|
| 2339 | tmpy = y1.dp;
|
---|
| 2340 | for (x = B; x < b->used; x++) {
|
---|
| 2341 | *tmpy++ = *tmpb++;
|
---|
| 2342 | }
|
---|
| 2343 | }
|
---|
| 2344 |
|
---|
| 2345 | /* only need to clamp the lower words since by definition the
|
---|
| 2346 | * upper words x1/y1 must have a known number of digits
|
---|
| 2347 | */
|
---|
| 2348 | mp_clamp (&x0);
|
---|
| 2349 | mp_clamp (&y0);
|
---|
| 2350 |
|
---|
| 2351 | /* now calc the products x0y0 and x1y1 */
|
---|
| 2352 | /* after this x0 is no longer required, free temp [x0==t2]! */
|
---|
| 2353 | if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
---|
| 2354 | goto X1Y1; /* x0y0 = x0*y0 */
|
---|
| 2355 | if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
---|
| 2356 | goto X1Y1; /* x1y1 = x1*y1 */
|
---|
| 2357 |
|
---|
| 2358 | /* now calc x1-x0 and y1-y0 */
|
---|
| 2359 | if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
---|
| 2360 | goto X1Y1; /* t1 = x1 - x0 */
|
---|
| 2361 | if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
|
---|
| 2362 | goto X1Y1; /* t2 = y1 - y0 */
|
---|
| 2363 | if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
|
---|
| 2364 | goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
|
---|
| 2365 |
|
---|
| 2366 | /* add x0y0 */
|
---|
| 2367 | if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
|
---|
| 2368 | goto X1Y1; /* t2 = x0y0 + x1y1 */
|
---|
| 2369 | if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
|
---|
| 2370 | goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
|
---|
| 2371 |
|
---|
| 2372 | /* shift by B */
|
---|
| 2373 | if (mp_lshd (&t1, B) != MP_OKAY)
|
---|
| 2374 | goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
---|
| 2375 | if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
---|
| 2376 | goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
---|
| 2377 |
|
---|
| 2378 | if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
---|
| 2379 | goto X1Y1; /* t1 = x0y0 + t1 */
|
---|
| 2380 | if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
---|
| 2381 | goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
---|
| 2382 |
|
---|
| 2383 | /* Algorithm succeeded set the return code to MP_OKAY */
|
---|
| 2384 | err = MP_OKAY;
|
---|
| 2385 |
|
---|
| 2386 | X1Y1:mp_clear (&x1y1);
|
---|
| 2387 | X0Y0:mp_clear (&x0y0);
|
---|
| 2388 | T1:mp_clear (&t1);
|
---|
| 2389 | Y1:mp_clear (&y1);
|
---|
| 2390 | Y0:mp_clear (&y0);
|
---|
| 2391 | X1:mp_clear (&x1);
|
---|
| 2392 | X0:mp_clear (&x0);
|
---|
| 2393 | ERR:
|
---|
| 2394 | return err;
|
---|
| 2395 | }
|
---|
| 2396 |
|
---|
| 2397 | /* Karatsuba squaring, computes b = a*a using three
|
---|
| 2398 | * half size squarings
|
---|
| 2399 | *
|
---|
| 2400 | * See comments of karatsuba_mul for details. It
|
---|
| 2401 | * is essentially the same algorithm but merely
|
---|
| 2402 | * tuned to perform recursive squarings.
|
---|
| 2403 | */
|
---|
| 2404 | int mp_karatsuba_sqr (const mp_int * a, mp_int * b)
|
---|
| 2405 | {
|
---|
| 2406 | mp_int x0, x1, t1, t2, x0x0, x1x1;
|
---|
| 2407 | int B, err;
|
---|
| 2408 |
|
---|
| 2409 | err = MP_MEM;
|
---|
| 2410 |
|
---|
| 2411 | /* min # of digits */
|
---|
| 2412 | B = a->used;
|
---|
| 2413 |
|
---|
| 2414 | /* now divide in two */
|
---|
| 2415 | B = B >> 1;
|
---|
| 2416 |
|
---|
| 2417 | /* init copy all the temps */
|
---|
| 2418 | if (mp_init_size (&x0, B) != MP_OKAY)
|
---|
| 2419 | goto ERR;
|
---|
| 2420 | if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
---|
| 2421 | goto X0;
|
---|
| 2422 |
|
---|
| 2423 | /* init temps */
|
---|
| 2424 | if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
|
---|
| 2425 | goto X1;
|
---|
| 2426 | if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
|
---|
| 2427 | goto T1;
|
---|
| 2428 | if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
|
---|
| 2429 | goto T2;
|
---|
| 2430 | if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
|
---|
| 2431 | goto X0X0;
|
---|
| 2432 |
|
---|
| 2433 | {
|
---|
| 2434 | register int x;
|
---|
| 2435 | register mp_digit *dst, *src;
|
---|
| 2436 |
|
---|
| 2437 | src = a->dp;
|
---|
| 2438 |
|
---|
| 2439 | /* now shift the digits */
|
---|
| 2440 | dst = x0.dp;
|
---|
| 2441 | for (x = 0; x < B; x++) {
|
---|
| 2442 | *dst++ = *src++;
|
---|
| 2443 | }
|
---|
| 2444 |
|
---|
| 2445 | dst = x1.dp;
|
---|
| 2446 | for (x = B; x < a->used; x++) {
|
---|
| 2447 | *dst++ = *src++;
|
---|
| 2448 | }
|
---|
| 2449 | }
|
---|
| 2450 |
|
---|
| 2451 | x0.used = B;
|
---|
| 2452 | x1.used = a->used - B;
|
---|
| 2453 |
|
---|
| 2454 | mp_clamp (&x0);
|
---|
| 2455 |
|
---|
| 2456 | /* now calc the products x0*x0 and x1*x1 */
|
---|
| 2457 | if (mp_sqr (&x0, &x0x0) != MP_OKAY)
|
---|
| 2458 | goto X1X1; /* x0x0 = x0*x0 */
|
---|
| 2459 | if (mp_sqr (&x1, &x1x1) != MP_OKAY)
|
---|
| 2460 | goto X1X1; /* x1x1 = x1*x1 */
|
---|
| 2461 |
|
---|
| 2462 | /* now calc (x1-x0)**2 */
|
---|
| 2463 | if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
|
---|
| 2464 | goto X1X1; /* t1 = x1 - x0 */
|
---|
| 2465 | if (mp_sqr (&t1, &t1) != MP_OKAY)
|
---|
| 2466 | goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
|
---|
| 2467 |
|
---|
| 2468 | /* add x0y0 */
|
---|
| 2469 | if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
|
---|
| 2470 | goto X1X1; /* t2 = x0x0 + x1x1 */
|
---|
| 2471 | if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
|
---|
| 2472 | goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
|
---|
| 2473 |
|
---|
| 2474 | /* shift by B */
|
---|
| 2475 | if (mp_lshd (&t1, B) != MP_OKAY)
|
---|
| 2476 | goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
|
---|
| 2477 | if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
|
---|
| 2478 | goto X1X1; /* x1x1 = x1x1 << 2*B */
|
---|
| 2479 |
|
---|
| 2480 | if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
|
---|
| 2481 | goto X1X1; /* t1 = x0x0 + t1 */
|
---|
| 2482 | if (mp_add (&t1, &x1x1, b) != MP_OKAY)
|
---|
| 2483 | goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
|
---|
| 2484 |
|
---|
| 2485 | err = MP_OKAY;
|
---|
| 2486 |
|
---|
| 2487 | X1X1:mp_clear (&x1x1);
|
---|
| 2488 | X0X0:mp_clear (&x0x0);
|
---|
| 2489 | T2:mp_clear (&t2);
|
---|
| 2490 | T1:mp_clear (&t1);
|
---|
| 2491 | X1:mp_clear (&x1);
|
---|
| 2492 | X0:mp_clear (&x0);
|
---|
| 2493 | ERR:
|
---|
| 2494 | return err;
|
---|
| 2495 | }
|
---|
| 2496 |
|
---|
| 2497 | /* computes least common multiple as |a*b|/(a, b) */
|
---|
| 2498 | int mp_lcm (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
| 2499 | {
|
---|
| 2500 | int res;
|
---|
| 2501 | mp_int t1, t2;
|
---|
| 2502 |
|
---|
| 2503 |
|
---|
| 2504 | if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
|
---|
| 2505 | return res;
|
---|
| 2506 | }
|
---|
| 2507 |
|
---|
| 2508 | /* t1 = get the GCD of the two inputs */
|
---|
| 2509 | if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
|
---|
| 2510 | goto __T;
|
---|
| 2511 | }
|
---|
| 2512 |
|
---|
| 2513 | /* divide the smallest by the GCD */
|
---|
| 2514 | if (mp_cmp_mag(a, b) == MP_LT) {
|
---|
| 2515 | /* store quotient in t2 such that t2 * b is the LCM */
|
---|
| 2516 | if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
|
---|
| 2517 | goto __T;
|
---|
| 2518 | }
|
---|
| 2519 | res = mp_mul(b, &t2, c);
|
---|
| 2520 | } else {
|
---|
| 2521 | /* store quotient in t2 such that t2 * a is the LCM */
|
---|
| 2522 | if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
|
---|
| 2523 | goto __T;
|
---|
| 2524 | }
|
---|
| 2525 | res = mp_mul(a, &t2, c);
|
---|
| 2526 | }
|
---|
| 2527 |
|
---|
| 2528 | /* fix the sign to positive */
|
---|
| 2529 | c->sign = MP_ZPOS;
|
---|
| 2530 |
|
---|
| 2531 | __T:
|
---|
| 2532 | mp_clear_multi (&t1, &t2, NULL);
|
---|
| 2533 | return res;
|
---|
| 2534 | }
|
---|
| 2535 |
|
---|
| 2536 | /* shift left a certain amount of digits */
|
---|
| 2537 | int mp_lshd (mp_int * a, int b)
|
---|
| 2538 | {
|
---|
| 2539 | int x, res;
|
---|
| 2540 |
|
---|
| 2541 | /* if its less than zero return */
|
---|
| 2542 | if (b <= 0) {
|
---|
| 2543 | return MP_OKAY;
|
---|
| 2544 | }
|
---|
| 2545 |
|
---|
| 2546 | /* grow to fit the new digits */
|
---|
| 2547 | if (a->alloc < a->used + b) {
|
---|
| 2548 | if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
---|
| 2549 | return res;
|
---|
| 2550 | }
|
---|
| 2551 | }
|
---|
| 2552 |
|
---|
| 2553 | {
|
---|
| 2554 | register mp_digit *top, *bottom;
|
---|
| 2555 |
|
---|
| 2556 | /* increment the used by the shift amount then copy upwards */
|
---|
| 2557 | a->used += b;
|
---|
| 2558 |
|
---|
| 2559 | /* top */
|
---|
| 2560 | top = a->dp + a->used - 1;
|
---|
| 2561 |
|
---|
| 2562 | /* base */
|
---|
| 2563 | bottom = a->dp + a->used - 1 - b;
|
---|
| 2564 |
|
---|
| 2565 | /* much like mp_rshd this is implemented using a sliding window
|
---|
| 2566 | * except the window goes the otherway around. Copying from
|
---|
| 2567 | * the bottom to the top. see bn_mp_rshd.c for more info.
|
---|
| 2568 | */
|
---|
| 2569 | for (x = a->used - 1; x >= b; x--) {
|
---|
| 2570 | *top-- = *bottom--;
|
---|
| 2571 | }
|
---|
| 2572 |
|
---|
| 2573 | /* zero the lower digits */
|
---|
| 2574 | top = a->dp;
|
---|
| 2575 | for (x = 0; x < b; x++) {
|
---|
| 2576 | *top++ = 0;
|
---|
| 2577 | }
|
---|
| 2578 | }
|
---|
| 2579 | return MP_OKAY;
|
---|
| 2580 | }
|
---|
| 2581 |
|
---|
| 2582 | /* c = a mod b, 0 <= c < b */
|
---|
| 2583 | int
|
---|
| 2584 | mp_mod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
| 2585 | {
|
---|
| 2586 | mp_int t;
|
---|
| 2587 | int res;
|
---|
| 2588 |
|
---|
| 2589 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
| 2590 | return res;
|
---|
| 2591 | }
|
---|
| 2592 |
|
---|
| 2593 | if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
|
---|
| 2594 | mp_clear (&t);
|
---|
| 2595 | return res;
|
---|
| 2596 | }
|
---|
| 2597 |
|
---|
| 2598 | if (t.sign != b->sign) {
|
---|
| 2599 | res = mp_add (b, &t, c);
|
---|
| 2600 | } else {
|
---|
| 2601 | res = MP_OKAY;
|
---|
| 2602 | mp_exch (&t, c);
|
---|
| 2603 | }
|
---|
| 2604 |
|
---|
| 2605 | mp_clear (&t);
|
---|
| 2606 | return res;
|
---|
| 2607 | }
|
---|
| 2608 |
|
---|
| 2609 | /* calc a value mod 2**b */
|
---|
| 2610 | int
|
---|
| 2611 | mp_mod_2d (const mp_int * a, int b, mp_int * c)
|
---|
| 2612 | {
|
---|
| 2613 | int x, res;
|
---|
| 2614 |
|
---|
| 2615 | /* if b is <= 0 then zero the int */
|
---|
| 2616 | if (b <= 0) {
|
---|
| 2617 | mp_zero (c);
|
---|
| 2618 | return MP_OKAY;
|
---|
| 2619 | }
|
---|
| 2620 |
|
---|
| 2621 | /* if the modulus is larger than the value than return */
|
---|
| 2622 | if (b > a->used * DIGIT_BIT) {
|
---|
| 2623 | res = mp_copy (a, c);
|
---|
| 2624 | return res;
|
---|
| 2625 | }
|
---|
| 2626 |
|
---|
| 2627 | /* copy */
|
---|
| 2628 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
| 2629 | return res;
|
---|
| 2630 | }
|
---|
| 2631 |
|
---|
| 2632 | /* zero digits above the last digit of the modulus */
|
---|
| 2633 | for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
---|
| 2634 | c->dp[x] = 0;
|
---|
| 2635 | }
|
---|
| 2636 | /* clear the digit that is not completely outside/inside the modulus */
|
---|
| 2637 | c->dp[b / DIGIT_BIT] &= (1 << ((mp_digit)b % DIGIT_BIT)) - 1;
|
---|
| 2638 | mp_clamp (c);
|
---|
| 2639 | return MP_OKAY;
|
---|
| 2640 | }
|
---|
| 2641 |
|
---|
| 2642 | int
|
---|
| 2643 | mp_mod_d (const mp_int * a, mp_digit b, mp_digit * c)
|
---|
| 2644 | {
|
---|
| 2645 | return mp_div_d(a, b, NULL, c);
|
---|
| 2646 | }
|
---|
| 2647 |
|
---|
| 2648 | /*
|
---|
| 2649 | * shifts with subtractions when the result is greater than b.
|
---|
| 2650 | *
|
---|
| 2651 | * The method is slightly modified to shift B unconditionally up to just under
|
---|
| 2652 | * the leading bit of b. This saves a lot of multiple precision shifting.
|
---|
| 2653 | */
|
---|
| 2654 | int mp_montgomery_calc_normalization (mp_int * a, const mp_int * b)
|
---|
| 2655 | {
|
---|
| 2656 | int x, bits, res;
|
---|
| 2657 |
|
---|
| 2658 | /* how many bits of last digit does b use */
|
---|
| 2659 | bits = mp_count_bits (b) % DIGIT_BIT;
|
---|
| 2660 |
|
---|
| 2661 |
|
---|
| 2662 | if (b->used > 1) {
|
---|
| 2663 | if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
---|
| 2664 | return res;
|
---|
| 2665 | }
|
---|
| 2666 | } else {
|
---|
| 2667 | mp_set(a, 1);
|
---|
| 2668 | bits = 1;
|
---|
| 2669 | }
|
---|
| 2670 |
|
---|
| 2671 |
|
---|
| 2672 | /* now compute C = A * B mod b */
|
---|
| 2673 | for (x = bits - 1; x < DIGIT_BIT; x++) {
|
---|
| 2674 | if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
---|
| 2675 | return res;
|
---|
| 2676 | }
|
---|
| 2677 | if (mp_cmp_mag (a, b) != MP_LT) {
|
---|
| 2678 | if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
---|
| 2679 | return res;
|
---|
| 2680 | }
|
---|
| 2681 | }
|
---|
| 2682 | }
|
---|
| 2683 |
|
---|
| 2684 | return MP_OKAY;
|
---|
| 2685 | }
|
---|
| 2686 |
|
---|
| 2687 | /* computes xR**-1 == x (mod N) via Montgomery Reduction */
|
---|
| 2688 | int
|
---|
| 2689 | mp_montgomery_reduce (mp_int * x, const mp_int * n, mp_digit rho)
|
---|
| 2690 | {
|
---|
| 2691 | int ix, res, digs;
|
---|
| 2692 | mp_digit mu;
|
---|
| 2693 |
|
---|
| 2694 | /* can the fast reduction [comba] method be used?
|
---|
| 2695 | *
|
---|
| 2696 | * Note that unlike in mul you're safely allowed *less*
|
---|
| 2697 | * than the available columns [255 per default] since carries
|
---|
| 2698 | * are fixed up in the inner loop.
|
---|
| 2699 | */
|
---|
| 2700 | digs = n->used * 2 + 1;
|
---|
| 2701 | if ((digs < MP_WARRAY) &&
|
---|
| 2702 | n->used <
|
---|
| 2703 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
| 2704 | return fast_mp_montgomery_reduce (x, n, rho);
|
---|
| 2705 | }
|
---|
| 2706 |
|
---|
| 2707 | /* grow the input as required */
|
---|
| 2708 | if (x->alloc < digs) {
|
---|
| 2709 | if ((res = mp_grow (x, digs)) != MP_OKAY) {
|
---|
| 2710 | return res;
|
---|
| 2711 | }
|
---|
| 2712 | }
|
---|
| 2713 | x->used = digs;
|
---|
| 2714 |
|
---|
| 2715 | for (ix = 0; ix < n->used; ix++) {
|
---|
| 2716 | /* mu = ai * rho mod b
|
---|
| 2717 | *
|
---|
| 2718 | * The value of rho must be precalculated via
|
---|
| 2719 | * montgomery_setup() such that
|
---|
| 2720 | * it equals -1/n0 mod b this allows the
|
---|
| 2721 | * following inner loop to reduce the
|
---|
| 2722 | * input one digit at a time
|
---|
| 2723 | */
|
---|
| 2724 | mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
|
---|
| 2725 |
|
---|
| 2726 | /* a = a + mu * m * b**i */
|
---|
| 2727 | {
|
---|
| 2728 | register int iy;
|
---|
| 2729 | register mp_digit *tmpn, *tmpx, u;
|
---|
| 2730 | register mp_word r;
|
---|
| 2731 |
|
---|
| 2732 | /* alias for digits of the modulus */
|
---|
| 2733 | tmpn = n->dp;
|
---|
| 2734 |
|
---|
| 2735 | /* alias for the digits of x [the input] */
|
---|
| 2736 | tmpx = x->dp + ix;
|
---|
| 2737 |
|
---|
| 2738 | /* set the carry to zero */
|
---|
| 2739 | u = 0;
|
---|
| 2740 |
|
---|
| 2741 | /* Multiply and add in place */
|
---|
| 2742 | for (iy = 0; iy < n->used; iy++) {
|
---|
| 2743 | /* compute product and sum */
|
---|
| 2744 | r = ((mp_word)mu) * ((mp_word)*tmpn++) +
|
---|
| 2745 | ((mp_word) u) + ((mp_word) * tmpx);
|
---|
| 2746 |
|
---|
| 2747 | /* get carry */
|
---|
| 2748 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
| 2749 |
|
---|
| 2750 | /* fix digit */
|
---|
| 2751 | *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
|
---|
| 2752 | }
|
---|
| 2753 | /* At this point the ix'th digit of x should be zero */
|
---|
| 2754 |
|
---|
| 2755 |
|
---|
| 2756 | /* propagate carries upwards as required*/
|
---|
| 2757 | while (u) {
|
---|
| 2758 | *tmpx += u;
|
---|
| 2759 | u = *tmpx >> DIGIT_BIT;
|
---|
| 2760 | *tmpx++ &= MP_MASK;
|
---|
| 2761 | }
|
---|
| 2762 | }
|
---|
| 2763 | }
|
---|
| 2764 |
|
---|
| 2765 | /* at this point the n.used'th least
|
---|
| 2766 | * significant digits of x are all zero
|
---|
| 2767 | * which means we can shift x to the
|
---|
| 2768 | * right by n.used digits and the
|
---|
| 2769 | * residue is unchanged.
|
---|
| 2770 | */
|
---|
| 2771 |
|
---|
| 2772 | /* x = x/b**n.used */
|
---|
| 2773 | mp_clamp(x);
|
---|
| 2774 | mp_rshd (x, n->used);
|
---|
| 2775 |
|
---|
| 2776 | /* if x >= n then x = x - n */
|
---|
| 2777 | if (mp_cmp_mag (x, n) != MP_LT) {
|
---|
| 2778 | return s_mp_sub (x, n, x);
|
---|
| 2779 | }
|
---|
| 2780 |
|
---|
| 2781 | return MP_OKAY;
|
---|
| 2782 | }
|
---|
| 2783 |
|
---|
| 2784 | /* setups the montgomery reduction stuff */
|
---|
| 2785 | int
|
---|
| 2786 | mp_montgomery_setup (const mp_int * n, mp_digit * rho)
|
---|
| 2787 | {
|
---|
| 2788 | mp_digit x, b;
|
---|
| 2789 |
|
---|
| 2790 | /* fast inversion mod 2**k
|
---|
| 2791 | *
|
---|
| 2792 | * Based on the fact that
|
---|
| 2793 | *
|
---|
| 2794 | * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
---|
| 2795 | * => 2*X*A - X*X*A*A = 1
|
---|
| 2796 | * => 2*(1) - (1) = 1
|
---|
| 2797 | */
|
---|
| 2798 | b = n->dp[0];
|
---|
| 2799 |
|
---|
| 2800 | if ((b & 1) == 0) {
|
---|
| 2801 | return MP_VAL;
|
---|
| 2802 | }
|
---|
| 2803 |
|
---|
| 2804 | x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
---|
| 2805 | x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
---|
| 2806 | x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
---|
| 2807 | x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
---|
| 2808 |
|
---|
| 2809 | /* rho = -1/m mod b */
|
---|
| 2810 | *rho = (((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
|
---|
| 2811 |
|
---|
| 2812 | return MP_OKAY;
|
---|
| 2813 | }
|
---|
| 2814 |
|
---|
| 2815 | /* high level multiplication (handles sign) */
|
---|
| 2816 | int mp_mul (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
| 2817 | {
|
---|
| 2818 | int res, neg;
|
---|
| 2819 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
---|
| 2820 |
|
---|
| 2821 | /* use Karatsuba? */
|
---|
| 2822 | if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
---|
| 2823 | res = mp_karatsuba_mul (a, b, c);
|
---|
| 2824 | } else
|
---|
| 2825 | {
|
---|
| 2826 | /* can we use the fast multiplier?
|
---|
| 2827 | *
|
---|
| 2828 | * The fast multiplier can be used if the output will
|
---|
| 2829 | * have less than MP_WARRAY digits and the number of
|
---|
| 2830 | * digits won't affect carry propagation
|
---|
| 2831 | */
|
---|
| 2832 | int digs = a->used + b->used + 1;
|
---|
| 2833 |
|
---|
| 2834 | if ((digs < MP_WARRAY) &&
|
---|
| 2835 | MIN(a->used, b->used) <=
|
---|
| 2836 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
| 2837 | res = fast_s_mp_mul_digs (a, b, c, digs);
|
---|
| 2838 | } else
|
---|
| 2839 | res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
|
---|
| 2840 | }
|
---|
| 2841 | c->sign = (c->used > 0) ? neg : MP_ZPOS;
|
---|
| 2842 | return res;
|
---|
| 2843 | }
|
---|
| 2844 |
|
---|
| 2845 | /* b = a*2 */
|
---|
| 2846 | int mp_mul_2(const mp_int * a, mp_int * b)
|
---|
| 2847 | {
|
---|
| 2848 | int x, res, oldused;
|
---|
| 2849 |
|
---|
| 2850 | /* grow to accommodate result */
|
---|
| 2851 | if (b->alloc < a->used + 1) {
|
---|
| 2852 | if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
|
---|
| 2853 | return res;
|
---|
| 2854 | }
|
---|
| 2855 | }
|
---|
| 2856 |
|
---|
| 2857 | oldused = b->used;
|
---|
| 2858 | b->used = a->used;
|
---|
| 2859 |
|
---|
| 2860 | {
|
---|
| 2861 | register mp_digit r, rr, *tmpa, *tmpb;
|
---|
| 2862 |
|
---|
| 2863 | /* alias for source */
|
---|
| 2864 | tmpa = a->dp;
|
---|
| 2865 |
|
---|
| 2866 | /* alias for dest */
|
---|
| 2867 | tmpb = b->dp;
|
---|
| 2868 |
|
---|
| 2869 | /* carry */
|
---|
| 2870 | r = 0;
|
---|
| 2871 | for (x = 0; x < a->used; x++) {
|
---|
| 2872 |
|
---|
| 2873 | /* get what will be the *next* carry bit from the
|
---|
| 2874 | * MSB of the current digit
|
---|
| 2875 | */
|
---|
| 2876 | rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
---|
| 2877 |
|
---|
| 2878 | /* now shift up this digit, add in the carry [from the previous] */
|
---|
| 2879 | *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
---|
| 2880 |
|
---|
| 2881 | /* copy the carry that would be from the source
|
---|
| 2882 | * digit into the next iteration
|
---|
| 2883 | */
|
---|
| 2884 | r = rr;
|
---|
| 2885 | }
|
---|
| 2886 |
|
---|
| 2887 | /* new leading digit? */
|
---|
| 2888 | if (r != 0) {
|
---|
| 2889 | /* add a MSB which is always 1 at this point */
|
---|
| 2890 | *tmpb = 1;
|
---|
| 2891 | ++(b->used);
|
---|
| 2892 | }
|
---|
| 2893 |
|
---|
| 2894 | /* now zero any excess digits on the destination
|
---|
| 2895 | * that we didn't write to
|
---|
| 2896 | */
|
---|
| 2897 | tmpb = b->dp + b->used;
|
---|
| 2898 | for (x = b->used; x < oldused; x++) {
|
---|
| 2899 | *tmpb++ = 0;
|
---|
| 2900 | }
|
---|
| 2901 | }
|
---|
| 2902 | b->sign = a->sign;
|
---|
| 2903 | return MP_OKAY;
|
---|
| 2904 | }
|
---|
| 2905 |
|
---|
| 2906 | /* shift left by a certain bit count */
|
---|
| 2907 | int mp_mul_2d (const mp_int * a, int b, mp_int * c)
|
---|
| 2908 | {
|
---|
| 2909 | mp_digit d;
|
---|
| 2910 | int res;
|
---|
| 2911 |
|
---|
| 2912 | /* copy */
|
---|
| 2913 | if (a != c) {
|
---|
| 2914 | if ((res = mp_copy (a, c)) != MP_OKAY) {
|
---|
| 2915 | return res;
|
---|
| 2916 | }
|
---|
| 2917 | }
|
---|
| 2918 |
|
---|
| 2919 | if (c->alloc < c->used + b/DIGIT_BIT + 1) {
|
---|
| 2920 | if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
|
---|
| 2921 | return res;
|
---|
| 2922 | }
|
---|
| 2923 | }
|
---|
| 2924 |
|
---|
| 2925 | /* shift by as many digits in the bit count */
|
---|
| 2926 | if (b >= DIGIT_BIT) {
|
---|
| 2927 | if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
|
---|
| 2928 | return res;
|
---|
| 2929 | }
|
---|
| 2930 | }
|
---|
| 2931 |
|
---|
| 2932 | /* shift any bit count < DIGIT_BIT */
|
---|
| 2933 | d = (mp_digit) (b % DIGIT_BIT);
|
---|
| 2934 | if (d != 0) {
|
---|
| 2935 | register mp_digit *tmpc, shift, mask, r, rr;
|
---|
| 2936 | register int x;
|
---|
| 2937 |
|
---|
| 2938 | /* bitmask for carries */
|
---|
| 2939 | mask = (((mp_digit)1) << d) - 1;
|
---|
| 2940 |
|
---|
| 2941 | /* shift for msbs */
|
---|
| 2942 | shift = DIGIT_BIT - d;
|
---|
| 2943 |
|
---|
| 2944 | /* alias */
|
---|
| 2945 | tmpc = c->dp;
|
---|
| 2946 |
|
---|
| 2947 | /* carry */
|
---|
| 2948 | r = 0;
|
---|
| 2949 | for (x = 0; x < c->used; x++) {
|
---|
| 2950 | /* get the higher bits of the current word */
|
---|
| 2951 | rr = (*tmpc >> shift) & mask;
|
---|
| 2952 |
|
---|
| 2953 | /* shift the current word and OR in the carry */
|
---|
| 2954 | *tmpc = ((*tmpc << d) | r) & MP_MASK;
|
---|
| 2955 | ++tmpc;
|
---|
| 2956 |
|
---|
| 2957 | /* set the carry to the carry bits of the current word */
|
---|
| 2958 | r = rr;
|
---|
| 2959 | }
|
---|
| 2960 |
|
---|
| 2961 | /* set final carry */
|
---|
| 2962 | if (r != 0) {
|
---|
| 2963 | c->dp[(c->used)++] = r;
|
---|
| 2964 | }
|
---|
| 2965 | }
|
---|
| 2966 | mp_clamp (c);
|
---|
| 2967 | return MP_OKAY;
|
---|
| 2968 | }
|
---|
| 2969 |
|
---|
| 2970 | /* multiply by a digit */
|
---|
| 2971 | int
|
---|
| 2972 | mp_mul_d (const mp_int * a, mp_digit b, mp_int * c)
|
---|
| 2973 | {
|
---|
| 2974 | mp_digit u, *tmpa, *tmpc;
|
---|
| 2975 | mp_word r;
|
---|
| 2976 | int ix, res, olduse;
|
---|
| 2977 |
|
---|
| 2978 | /* make sure c is big enough to hold a*b */
|
---|
| 2979 | if (c->alloc < a->used + 1) {
|
---|
| 2980 | if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
|
---|
| 2981 | return res;
|
---|
| 2982 | }
|
---|
| 2983 | }
|
---|
| 2984 |
|
---|
| 2985 | /* get the original destinations used count */
|
---|
| 2986 | olduse = c->used;
|
---|
| 2987 |
|
---|
| 2988 | /* set the sign */
|
---|
| 2989 | c->sign = a->sign;
|
---|
| 2990 |
|
---|
| 2991 | /* alias for a->dp [source] */
|
---|
| 2992 | tmpa = a->dp;
|
---|
| 2993 |
|
---|
| 2994 | /* alias for c->dp [dest] */
|
---|
| 2995 | tmpc = c->dp;
|
---|
| 2996 |
|
---|
| 2997 | /* zero carry */
|
---|
| 2998 | u = 0;
|
---|
| 2999 |
|
---|
| 3000 | /* compute columns */
|
---|
| 3001 | for (ix = 0; ix < a->used; ix++) {
|
---|
| 3002 | /* compute product and carry sum for this term */
|
---|
| 3003 | r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
|
---|
| 3004 |
|
---|
| 3005 | /* mask off higher bits to get a single digit */
|
---|
| 3006 | *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
| 3007 |
|
---|
| 3008 | /* send carry into next iteration */
|
---|
| 3009 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
| 3010 | }
|
---|
| 3011 |
|
---|
| 3012 | /* store final carry [if any] */
|
---|
| 3013 | *tmpc++ = u;
|
---|
| 3014 |
|
---|
| 3015 | /* now zero digits above the top */
|
---|
| 3016 | while (ix++ < olduse) {
|
---|
| 3017 | *tmpc++ = 0;
|
---|
| 3018 | }
|
---|
| 3019 |
|
---|
| 3020 | /* set used count */
|
---|
| 3021 | c->used = a->used + 1;
|
---|
| 3022 | mp_clamp(c);
|
---|
| 3023 |
|
---|
| 3024 | return MP_OKAY;
|
---|
| 3025 | }
|
---|
| 3026 |
|
---|
| 3027 | /* d = a * b (mod c) */
|
---|
| 3028 | int
|
---|
| 3029 | mp_mulmod (const mp_int * a, const mp_int * b, mp_int * c, mp_int * d)
|
---|
| 3030 | {
|
---|
| 3031 | int res;
|
---|
| 3032 | mp_int t;
|
---|
| 3033 |
|
---|
| 3034 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
| 3035 | return res;
|
---|
| 3036 | }
|
---|
| 3037 |
|
---|
| 3038 | if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
|
---|
| 3039 | mp_clear (&t);
|
---|
| 3040 | return res;
|
---|
| 3041 | }
|
---|
| 3042 | res = mp_mod (&t, c, d);
|
---|
| 3043 | mp_clear (&t);
|
---|
| 3044 | return res;
|
---|
| 3045 | }
|
---|
| 3046 |
|
---|
| 3047 | /* table of first PRIME_SIZE primes */
|
---|
| 3048 | static const mp_digit __prime_tab[] = {
|
---|
| 3049 | 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
|
---|
| 3050 | 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
|
---|
| 3051 | 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
|
---|
| 3052 | 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
|
---|
| 3053 | 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
|
---|
| 3054 | 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
|
---|
| 3055 | 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
|
---|
| 3056 | 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
|
---|
| 3057 |
|
---|
| 3058 | 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
|
---|
| 3059 | 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
|
---|
| 3060 | 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
|
---|
| 3061 | 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
|
---|
| 3062 | 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
|
---|
| 3063 | 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
|
---|
| 3064 | 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
|
---|
| 3065 | 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
|
---|
| 3066 |
|
---|
| 3067 | 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
|
---|
| 3068 | 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
|
---|
| 3069 | 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
|
---|
| 3070 | 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
|
---|
| 3071 | 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
|
---|
| 3072 | 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
|
---|
| 3073 | 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
|
---|
| 3074 | 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
|
---|
| 3075 |
|
---|
| 3076 | 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
|
---|
| 3077 | 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
|
---|
| 3078 | 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
|
---|
| 3079 | 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
|
---|
| 3080 | 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
|
---|
| 3081 | 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
|
---|
| 3082 | 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
|
---|
| 3083 | 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
|
---|
| 3084 | };
|
---|
| 3085 |
|
---|
| 3086 | /* determines if an integers is divisible by one
|
---|
| 3087 | * of the first PRIME_SIZE primes or not
|
---|
| 3088 | *
|
---|
| 3089 | * sets result to 0 if not, 1 if yes
|
---|
| 3090 | */
|
---|
| 3091 | int mp_prime_is_divisible (const mp_int * a, int *result)
|
---|
| 3092 | {
|
---|
| 3093 | int err, ix;
|
---|
| 3094 | mp_digit res;
|
---|
| 3095 |
|
---|
| 3096 | /* default to not */
|
---|
| 3097 | *result = MP_NO;
|
---|
| 3098 |
|
---|
| 3099 | for (ix = 0; ix < PRIME_SIZE; ix++) {
|
---|
| 3100 | /* what is a mod __prime_tab[ix] */
|
---|
| 3101 | if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
|
---|
| 3102 | return err;
|
---|
| 3103 | }
|
---|
| 3104 |
|
---|
| 3105 | /* is the residue zero? */
|
---|
| 3106 | if (res == 0) {
|
---|
| 3107 | *result = MP_YES;
|
---|
| 3108 | return MP_OKAY;
|
---|
| 3109 | }
|
---|
| 3110 | }
|
---|
| 3111 |
|
---|
| 3112 | return MP_OKAY;
|
---|
| 3113 | }
|
---|
| 3114 |
|
---|
| 3115 | /* performs a variable number of rounds of Miller-Rabin
|
---|
| 3116 | *
|
---|
| 3117 | * Probability of error after t rounds is no more than
|
---|
| 3118 |
|
---|
| 3119 | *
|
---|
| 3120 | * Sets result to 1 if probably prime, 0 otherwise
|
---|
| 3121 | */
|
---|
| 3122 | int mp_prime_is_prime (mp_int * a, int t, int *result)
|
---|
| 3123 | {
|
---|
| 3124 | mp_int b;
|
---|
| 3125 | int ix, err, res;
|
---|
| 3126 |
|
---|
| 3127 | /* default to no */
|
---|
| 3128 | *result = MP_NO;
|
---|
| 3129 |
|
---|
| 3130 | /* valid value of t? */
|
---|
| 3131 | if (t <= 0 || t > PRIME_SIZE) {
|
---|
| 3132 | return MP_VAL;
|
---|
| 3133 | }
|
---|
| 3134 |
|
---|
| 3135 | /* is the input equal to one of the primes in the table? */
|
---|
| 3136 | for (ix = 0; ix < PRIME_SIZE; ix++) {
|
---|
| 3137 | if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
|
---|
| 3138 | *result = 1;
|
---|
| 3139 | return MP_OKAY;
|
---|
| 3140 | }
|
---|
| 3141 | }
|
---|
| 3142 |
|
---|
| 3143 | /* first perform trial division */
|
---|
| 3144 | if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
|
---|
| 3145 | return err;
|
---|
| 3146 | }
|
---|
| 3147 |
|
---|
| 3148 | /* return if it was trivially divisible */
|
---|
| 3149 | if (res == MP_YES) {
|
---|
| 3150 | return MP_OKAY;
|
---|
| 3151 | }
|
---|
| 3152 |
|
---|
| 3153 | /* now perform the miller-rabin rounds */
|
---|
| 3154 | if ((err = mp_init (&b)) != MP_OKAY) {
|
---|
| 3155 | return err;
|
---|
| 3156 | }
|
---|
| 3157 |
|
---|
| 3158 | for (ix = 0; ix < t; ix++) {
|
---|
| 3159 | /* set the prime */
|
---|
| 3160 | mp_set (&b, __prime_tab[ix]);
|
---|
| 3161 |
|
---|
| 3162 | if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
|
---|
| 3163 | goto __B;
|
---|
| 3164 | }
|
---|
| 3165 |
|
---|
| 3166 | if (res == MP_NO) {
|
---|
| 3167 | goto __B;
|
---|
| 3168 | }
|
---|
| 3169 | }
|
---|
| 3170 |
|
---|
| 3171 | /* passed the test */
|
---|
| 3172 | *result = MP_YES;
|
---|
| 3173 | __B:mp_clear (&b);
|
---|
| 3174 | return err;
|
---|
| 3175 | }
|
---|
| 3176 |
|
---|
| 3177 | /* Miller-Rabin test of "a" to the base of "b" as described in
|
---|
| 3178 | * HAC pp. 139 Algorithm 4.24
|
---|
| 3179 | *
|
---|
| 3180 | * Sets result to 0 if definitely composite or 1 if probably prime.
|
---|
| 3181 | * Randomly the chance of error is no more than 1/4 and often
|
---|
| 3182 | * very much lower.
|
---|
| 3183 | */
|
---|
| 3184 | int mp_prime_miller_rabin (mp_int * a, const mp_int * b, int *result)
|
---|
| 3185 | {
|
---|
| 3186 | mp_int n1, y, r;
|
---|
| 3187 | int s, j, err;
|
---|
| 3188 |
|
---|
| 3189 | /* default */
|
---|
| 3190 | *result = MP_NO;
|
---|
| 3191 |
|
---|
| 3192 | /* ensure b > 1 */
|
---|
| 3193 | if (mp_cmp_d(b, 1) != MP_GT) {
|
---|
| 3194 | return MP_VAL;
|
---|
| 3195 | }
|
---|
| 3196 |
|
---|
| 3197 | /* get n1 = a - 1 */
|
---|
| 3198 | if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
|
---|
| 3199 | return err;
|
---|
| 3200 | }
|
---|
| 3201 | if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
|
---|
| 3202 | goto __N1;
|
---|
| 3203 | }
|
---|
| 3204 |
|
---|
| 3205 | /* set 2**s * r = n1 */
|
---|
| 3206 | if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
|
---|
| 3207 | goto __N1;
|
---|
| 3208 | }
|
---|
| 3209 |
|
---|
| 3210 | /* count the number of least significant bits
|
---|
| 3211 | * which are zero
|
---|
| 3212 | */
|
---|
| 3213 | s = mp_cnt_lsb(&r);
|
---|
| 3214 |
|
---|
| 3215 | /* now divide n - 1 by 2**s */
|
---|
| 3216 | if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
|
---|
| 3217 | goto __R;
|
---|
| 3218 | }
|
---|
| 3219 |
|
---|
| 3220 | /* compute y = b**r mod a */
|
---|
| 3221 | if ((err = mp_init (&y)) != MP_OKAY) {
|
---|
| 3222 | goto __R;
|
---|
| 3223 | }
|
---|
| 3224 | if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
|
---|
| 3225 | goto __Y;
|
---|
| 3226 | }
|
---|
| 3227 |
|
---|
| 3228 | /* if y != 1 and y != n1 do */
|
---|
| 3229 | if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
|
---|
| 3230 | j = 1;
|
---|
| 3231 | /* while j <= s-1 and y != n1 */
|
---|
| 3232 | while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
|
---|
| 3233 | if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
|
---|
| 3234 | goto __Y;
|
---|
| 3235 | }
|
---|
| 3236 |
|
---|
| 3237 | /* if y == 1 then composite */
|
---|
| 3238 | if (mp_cmp_d (&y, 1) == MP_EQ) {
|
---|
| 3239 | goto __Y;
|
---|
| 3240 | }
|
---|
| 3241 |
|
---|
| 3242 | ++j;
|
---|
| 3243 | }
|
---|
| 3244 |
|
---|
| 3245 | /* if y != n1 then composite */
|
---|
| 3246 | if (mp_cmp (&y, &n1) != MP_EQ) {
|
---|
| 3247 | goto __Y;
|
---|
| 3248 | }
|
---|
| 3249 | }
|
---|
| 3250 |
|
---|
| 3251 | /* probably prime now */
|
---|
| 3252 | *result = MP_YES;
|
---|
| 3253 | __Y:mp_clear (&y);
|
---|
| 3254 | __R:mp_clear (&r);
|
---|
| 3255 | __N1:mp_clear (&n1);
|
---|
| 3256 | return err;
|
---|
| 3257 | }
|
---|
| 3258 |
|
---|
| 3259 | static const struct {
|
---|
| 3260 | int k, t;
|
---|
| 3261 | } sizes[] = {
|
---|
| 3262 | { 128, 28 },
|
---|
| 3263 | { 256, 16 },
|
---|
| 3264 | { 384, 10 },
|
---|
| 3265 | { 512, 7 },
|
---|
| 3266 | { 640, 6 },
|
---|
| 3267 | { 768, 5 },
|
---|
| 3268 | { 896, 4 },
|
---|
| 3269 | { 1024, 4 }
|
---|
| 3270 | };
|
---|
| 3271 |
|
---|
| 3272 | /* returns # of RM trials required for a given bit size */
|
---|
| 3273 | int mp_prime_rabin_miller_trials(int size)
|
---|
| 3274 | {
|
---|
| 3275 | int x;
|
---|
| 3276 |
|
---|
| 3277 | for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
|
---|
| 3278 | if (sizes[x].k == size) {
|
---|
| 3279 | return sizes[x].t;
|
---|
| 3280 | } else if (sizes[x].k > size) {
|
---|
| 3281 | return (x == 0) ? sizes[0].t : sizes[x - 1].t;
|
---|
| 3282 | }
|
---|
| 3283 | }
|
---|
| 3284 | return sizes[x-1].t + 1;
|
---|
| 3285 | }
|
---|
| 3286 |
|
---|
| 3287 | /* makes a truly random prime of a given size (bits),
|
---|
| 3288 | *
|
---|
| 3289 | * Flags are as follows:
|
---|
| 3290 | *
|
---|
| 3291 | * LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
---|
| 3292 | * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
---|
| 3293 | * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
|
---|
| 3294 | * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
---|
| 3295 | *
|
---|
| 3296 | * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
---|
| 3297 | * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
---|
| 3298 | * so it can be NULL
|
---|
| 3299 | *
|
---|
| 3300 | */
|
---|
| 3301 |
|
---|
| 3302 | /* This is possibly the mother of all prime generation functions, muahahahahaha! */
|
---|
| 3303 | int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
|
---|
| 3304 | {
|
---|
| 3305 | unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
|
---|
| 3306 | int res, err, bsize, maskOR_msb_offset;
|
---|
| 3307 |
|
---|
| 3308 | /* sanity check the input */
|
---|
| 3309 | if (size <= 1 || t <= 0) {
|
---|
| 3310 | return MP_VAL;
|
---|
| 3311 | }
|
---|
| 3312 |
|
---|
| 3313 | /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
|
---|
| 3314 | if (flags & LTM_PRIME_SAFE) {
|
---|
| 3315 | flags |= LTM_PRIME_BBS;
|
---|
| 3316 | }
|
---|
| 3317 |
|
---|
| 3318 | /* calc the byte size */
|
---|
| 3319 | bsize = (size>>3)+((size&7)?1:0);
|
---|
| 3320 |
|
---|
| 3321 | /* we need a buffer of bsize bytes */
|
---|
| 3322 | tmp = malloc(bsize);
|
---|
| 3323 | if (tmp == NULL) {
|
---|
| 3324 | return MP_MEM;
|
---|
| 3325 | }
|
---|
| 3326 |
|
---|
| 3327 | /* calc the maskAND value for the MSbyte*/
|
---|
| 3328 | maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
|
---|
| 3329 |
|
---|
| 3330 | /* calc the maskOR_msb */
|
---|
| 3331 | maskOR_msb = 0;
|
---|
| 3332 | maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
|
---|
| 3333 | if (flags & LTM_PRIME_2MSB_ON) {
|
---|
| 3334 | maskOR_msb |= 1 << ((size - 2) & 7);
|
---|
| 3335 | } else if (flags & LTM_PRIME_2MSB_OFF) {
|
---|
| 3336 | maskAND &= ~(1 << ((size - 2) & 7));
|
---|
| 3337 | }
|
---|
| 3338 |
|
---|
| 3339 | /* get the maskOR_lsb */
|
---|
| 3340 | maskOR_lsb = 0;
|
---|
| 3341 | if (flags & LTM_PRIME_BBS) {
|
---|
| 3342 | maskOR_lsb |= 3;
|
---|
| 3343 | }
|
---|
| 3344 |
|
---|
| 3345 | do {
|
---|
| 3346 | /* read the bytes */
|
---|
| 3347 | if (cb(tmp, bsize, dat) != bsize) {
|
---|
| 3348 | err = MP_VAL;
|
---|
| 3349 | goto error;
|
---|
| 3350 | }
|
---|
| 3351 |
|
---|
| 3352 | /* work over the MSbyte */
|
---|
| 3353 | tmp[0] &= maskAND;
|
---|
| 3354 | tmp[0] |= 1 << ((size - 1) & 7);
|
---|
| 3355 |
|
---|
| 3356 | /* mix in the maskORs */
|
---|
| 3357 | tmp[maskOR_msb_offset] |= maskOR_msb;
|
---|
| 3358 | tmp[bsize-1] |= maskOR_lsb;
|
---|
| 3359 |
|
---|
| 3360 | /* read it in */
|
---|
| 3361 | if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
|
---|
| 3362 |
|
---|
| 3363 | /* is it prime? */
|
---|
| 3364 | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
---|
| 3365 | if (res == MP_NO) {
|
---|
| 3366 | continue;
|
---|
| 3367 | }
|
---|
| 3368 |
|
---|
| 3369 | if (flags & LTM_PRIME_SAFE) {
|
---|
| 3370 | /* see if (a-1)/2 is prime */
|
---|
| 3371 | if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
|
---|
| 3372 | if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
|
---|
| 3373 |
|
---|
| 3374 | /* is it prime? */
|
---|
| 3375 | if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
---|
| 3376 | }
|
---|
| 3377 | } while (res == MP_NO);
|
---|
| 3378 |
|
---|
| 3379 | if (flags & LTM_PRIME_SAFE) {
|
---|
| 3380 | /* restore a to the original value */
|
---|
| 3381 | if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
|
---|
| 3382 | if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
|
---|
| 3383 | }
|
---|
| 3384 |
|
---|
| 3385 | err = MP_OKAY;
|
---|
| 3386 | error:
|
---|
| 3387 | free(tmp);
|
---|
| 3388 | return err;
|
---|
| 3389 | }
|
---|
| 3390 |
|
---|
| 3391 | /* reads an unsigned char array, assumes the msb is stored first [big endian] */
|
---|
| 3392 | int
|
---|
| 3393 | mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
|
---|
| 3394 | {
|
---|
| 3395 | int res;
|
---|
| 3396 |
|
---|
| 3397 | /* make sure there are at least two digits */
|
---|
| 3398 | if (a->alloc < 2) {
|
---|
| 3399 | if ((res = mp_grow(a, 2)) != MP_OKAY) {
|
---|
| 3400 | return res;
|
---|
| 3401 | }
|
---|
| 3402 | }
|
---|
| 3403 |
|
---|
| 3404 | /* zero the int */
|
---|
| 3405 | mp_zero (a);
|
---|
| 3406 |
|
---|
| 3407 | /* read the bytes in */
|
---|
| 3408 | while (c-- > 0) {
|
---|
| 3409 | if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
|
---|
| 3410 | return res;
|
---|
| 3411 | }
|
---|
| 3412 |
|
---|
| 3413 | a->dp[0] |= *b++;
|
---|
| 3414 | a->used += 1;
|
---|
| 3415 | }
|
---|
| 3416 | mp_clamp (a);
|
---|
| 3417 | return MP_OKAY;
|
---|
| 3418 | }
|
---|
| 3419 |
|
---|
| 3420 | /* reduces x mod m, assumes 0 < x < m**2, mu is
|
---|
| 3421 | * precomputed via mp_reduce_setup.
|
---|
| 3422 | * From HAC pp.604 Algorithm 14.42
|
---|
| 3423 | */
|
---|
| 3424 | int
|
---|
| 3425 | mp_reduce (mp_int * x, const mp_int * m, const mp_int * mu)
|
---|
| 3426 | {
|
---|
| 3427 | mp_int q;
|
---|
| 3428 | int res, um = m->used;
|
---|
| 3429 |
|
---|
| 3430 | /* q = x */
|
---|
| 3431 | if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
|
---|
| 3432 | return res;
|
---|
| 3433 | }
|
---|
| 3434 |
|
---|
| 3435 | /* q1 = x / b**(k-1) */
|
---|
| 3436 | mp_rshd (&q, um - 1);
|
---|
| 3437 |
|
---|
| 3438 | /* according to HAC this optimization is ok */
|
---|
| 3439 | if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
|
---|
| 3440 | if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
|
---|
| 3441 | goto CLEANUP;
|
---|
| 3442 | }
|
---|
| 3443 | } else {
|
---|
| 3444 | if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
|
---|
| 3445 | goto CLEANUP;
|
---|
| 3446 | }
|
---|
| 3447 | }
|
---|
| 3448 |
|
---|
| 3449 | /* q3 = q2 / b**(k+1) */
|
---|
| 3450 | mp_rshd (&q, um + 1);
|
---|
| 3451 |
|
---|
| 3452 | /* x = x mod b**(k+1), quick (no division) */
|
---|
| 3453 | if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
---|
| 3454 | goto CLEANUP;
|
---|
| 3455 | }
|
---|
| 3456 |
|
---|
| 3457 | /* q = q * m mod b**(k+1), quick (no division) */
|
---|
| 3458 | if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
|
---|
| 3459 | goto CLEANUP;
|
---|
| 3460 | }
|
---|
| 3461 |
|
---|
| 3462 | /* x = x - q */
|
---|
| 3463 | if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
|
---|
| 3464 | goto CLEANUP;
|
---|
| 3465 | }
|
---|
| 3466 |
|
---|
| 3467 | /* If x < 0, add b**(k+1) to it */
|
---|
| 3468 | if (mp_cmp_d (x, 0) == MP_LT) {
|
---|
| 3469 | mp_set (&q, 1);
|
---|
| 3470 | if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
|
---|
| 3471 | goto CLEANUP;
|
---|
| 3472 | if ((res = mp_add (x, &q, x)) != MP_OKAY)
|
---|
| 3473 | goto CLEANUP;
|
---|
| 3474 | }
|
---|
| 3475 |
|
---|
| 3476 | /* Back off if it's too big */
|
---|
| 3477 | while (mp_cmp (x, m) != MP_LT) {
|
---|
| 3478 | if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
|
---|
| 3479 | goto CLEANUP;
|
---|
| 3480 | }
|
---|
| 3481 | }
|
---|
| 3482 |
|
---|
| 3483 | CLEANUP:
|
---|
| 3484 | mp_clear (&q);
|
---|
| 3485 |
|
---|
| 3486 | return res;
|
---|
| 3487 | }
|
---|
| 3488 |
|
---|
| 3489 | /* reduces a modulo n where n is of the form 2**p - d */
|
---|
| 3490 | int
|
---|
| 3491 | mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
|
---|
| 3492 | {
|
---|
| 3493 | mp_int q;
|
---|
| 3494 | int p, res;
|
---|
| 3495 |
|
---|
| 3496 | if ((res = mp_init(&q)) != MP_OKAY) {
|
---|
| 3497 | return res;
|
---|
| 3498 | }
|
---|
| 3499 |
|
---|
| 3500 | p = mp_count_bits(n);
|
---|
| 3501 | top:
|
---|
| 3502 | /* q = a/2**p, a = a mod 2**p */
|
---|
| 3503 | if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
---|
| 3504 | goto ERR;
|
---|
| 3505 | }
|
---|
| 3506 |
|
---|
| 3507 | if (d != 1) {
|
---|
| 3508 | /* q = q * d */
|
---|
| 3509 | if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
|
---|
| 3510 | goto ERR;
|
---|
| 3511 | }
|
---|
| 3512 | }
|
---|
| 3513 |
|
---|
| 3514 | /* a = a + q */
|
---|
| 3515 | if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
---|
| 3516 | goto ERR;
|
---|
| 3517 | }
|
---|
| 3518 |
|
---|
| 3519 | if (mp_cmp_mag(a, n) != MP_LT) {
|
---|
| 3520 | s_mp_sub(a, n, a);
|
---|
| 3521 | goto top;
|
---|
| 3522 | }
|
---|
| 3523 |
|
---|
| 3524 | ERR:
|
---|
| 3525 | mp_clear(&q);
|
---|
| 3526 | return res;
|
---|
| 3527 | }
|
---|
| 3528 |
|
---|
| 3529 | /* determines the setup value */
|
---|
| 3530 | int
|
---|
| 3531 | mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
|
---|
| 3532 | {
|
---|
| 3533 | int res, p;
|
---|
| 3534 | mp_int tmp;
|
---|
| 3535 |
|
---|
| 3536 | if ((res = mp_init(&tmp)) != MP_OKAY) {
|
---|
| 3537 | return res;
|
---|
| 3538 | }
|
---|
| 3539 |
|
---|
| 3540 | p = mp_count_bits(a);
|
---|
| 3541 | if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
|
---|
| 3542 | mp_clear(&tmp);
|
---|
| 3543 | return res;
|
---|
| 3544 | }
|
---|
| 3545 |
|
---|
| 3546 | if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
|
---|
| 3547 | mp_clear(&tmp);
|
---|
| 3548 | return res;
|
---|
| 3549 | }
|
---|
| 3550 |
|
---|
| 3551 | *d = tmp.dp[0];
|
---|
| 3552 | mp_clear(&tmp);
|
---|
| 3553 | return MP_OKAY;
|
---|
| 3554 | }
|
---|
| 3555 |
|
---|
| 3556 | /* pre-calculate the value required for Barrett reduction
|
---|
| 3557 | * For a given modulus "b" it calulates the value required in "a"
|
---|
| 3558 | */
|
---|
| 3559 | int mp_reduce_setup (mp_int * a, const mp_int * b)
|
---|
| 3560 | {
|
---|
| 3561 | int res;
|
---|
| 3562 |
|
---|
| 3563 | if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
---|
| 3564 | return res;
|
---|
| 3565 | }
|
---|
| 3566 | return mp_div (a, b, a, NULL);
|
---|
| 3567 | }
|
---|
| 3568 |
|
---|
| 3569 | /* shift right a certain amount of digits */
|
---|
| 3570 | void mp_rshd (mp_int * a, int b)
|
---|
| 3571 | {
|
---|
| 3572 | int x;
|
---|
| 3573 |
|
---|
| 3574 | /* if b <= 0 then ignore it */
|
---|
| 3575 | if (b <= 0) {
|
---|
| 3576 | return;
|
---|
| 3577 | }
|
---|
| 3578 |
|
---|
| 3579 | /* if b > used then simply zero it and return */
|
---|
| 3580 | if (a->used <= b) {
|
---|
| 3581 | mp_zero (a);
|
---|
| 3582 | return;
|
---|
| 3583 | }
|
---|
| 3584 |
|
---|
| 3585 | {
|
---|
| 3586 | register mp_digit *bottom, *top;
|
---|
| 3587 |
|
---|
| 3588 | /* shift the digits down */
|
---|
| 3589 |
|
---|
| 3590 | /* bottom */
|
---|
| 3591 | bottom = a->dp;
|
---|
| 3592 |
|
---|
| 3593 | /* top [offset into digits] */
|
---|
| 3594 | top = a->dp + b;
|
---|
| 3595 |
|
---|
| 3596 | /* this is implemented as a sliding window where
|
---|
| 3597 | * the window is b-digits long and digits from
|
---|
| 3598 | * the top of the window are copied to the bottom
|
---|
| 3599 | *
|
---|
| 3600 | * e.g.
|
---|
| 3601 |
|
---|
| 3602 | b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
|
---|
| 3603 | /\ | ---->
|
---|
| 3604 | \-------------------/ ---->
|
---|
| 3605 | */
|
---|
| 3606 | for (x = 0; x < (a->used - b); x++) {
|
---|
| 3607 | *bottom++ = *top++;
|
---|
| 3608 | }
|
---|
| 3609 |
|
---|
| 3610 | /* zero the top digits */
|
---|
| 3611 | for (; x < a->used; x++) {
|
---|
| 3612 | *bottom++ = 0;
|
---|
| 3613 | }
|
---|
| 3614 | }
|
---|
| 3615 |
|
---|
| 3616 | /* remove excess digits */
|
---|
| 3617 | a->used -= b;
|
---|
| 3618 | }
|
---|
| 3619 |
|
---|
| 3620 | /* set to a digit */
|
---|
| 3621 | void mp_set (mp_int * a, mp_digit b)
|
---|
| 3622 | {
|
---|
| 3623 | mp_zero (a);
|
---|
| 3624 | a->dp[0] = b & MP_MASK;
|
---|
| 3625 | a->used = (a->dp[0] != 0) ? 1 : 0;
|
---|
| 3626 | }
|
---|
| 3627 |
|
---|
| 3628 | /* set a 32-bit const */
|
---|
| 3629 | int mp_set_int (mp_int * a, unsigned long b)
|
---|
| 3630 | {
|
---|
| 3631 | int x, res;
|
---|
| 3632 |
|
---|
| 3633 | mp_zero (a);
|
---|
| 3634 |
|
---|
| 3635 | /* set four bits at a time */
|
---|
| 3636 | for (x = 0; x < 8; x++) {
|
---|
| 3637 | /* shift the number up four bits */
|
---|
| 3638 | if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
|
---|
| 3639 | return res;
|
---|
| 3640 | }
|
---|
| 3641 |
|
---|
| 3642 | /* OR in the top four bits of the source */
|
---|
| 3643 | a->dp[0] |= (b >> 28) & 15;
|
---|
| 3644 |
|
---|
| 3645 | /* shift the source up to the next four bits */
|
---|
| 3646 | b <<= 4;
|
---|
| 3647 |
|
---|
| 3648 | /* ensure that digits are not clamped off */
|
---|
| 3649 | a->used += 1;
|
---|
| 3650 | }
|
---|
| 3651 | mp_clamp (a);
|
---|
| 3652 | return MP_OKAY;
|
---|
| 3653 | }
|
---|
| 3654 |
|
---|
| 3655 | /* shrink a bignum */
|
---|
| 3656 | int mp_shrink (mp_int * a)
|
---|
| 3657 | {
|
---|
| 3658 | mp_digit *tmp;
|
---|
| 3659 | if (a->alloc != a->used && a->used > 0) {
|
---|
| 3660 | if ((tmp = realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
|
---|
| 3661 | return MP_MEM;
|
---|
| 3662 | }
|
---|
| 3663 | a->dp = tmp;
|
---|
| 3664 | a->alloc = a->used;
|
---|
| 3665 | }
|
---|
| 3666 | return MP_OKAY;
|
---|
| 3667 | }
|
---|
| 3668 |
|
---|
| 3669 | /* get the size for an signed equivalent */
|
---|
| 3670 | int mp_signed_bin_size (const mp_int * a)
|
---|
| 3671 | {
|
---|
| 3672 | return 1 + mp_unsigned_bin_size (a);
|
---|
| 3673 | }
|
---|
| 3674 |
|
---|
| 3675 | /* computes b = a*a */
|
---|
| 3676 | int
|
---|
| 3677 | mp_sqr (const mp_int * a, mp_int * b)
|
---|
| 3678 | {
|
---|
| 3679 | int res;
|
---|
| 3680 |
|
---|
| 3681 | if (a->used >= KARATSUBA_SQR_CUTOFF) {
|
---|
| 3682 | res = mp_karatsuba_sqr (a, b);
|
---|
| 3683 | } else
|
---|
| 3684 | {
|
---|
| 3685 | /* can we use the fast comba multiplier? */
|
---|
| 3686 | if ((a->used * 2 + 1) < MP_WARRAY &&
|
---|
| 3687 | a->used <
|
---|
| 3688 | (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
|
---|
| 3689 | res = fast_s_mp_sqr (a, b);
|
---|
| 3690 | } else
|
---|
| 3691 | res = s_mp_sqr (a, b);
|
---|
| 3692 | }
|
---|
| 3693 | b->sign = MP_ZPOS;
|
---|
| 3694 | return res;
|
---|
| 3695 | }
|
---|
| 3696 |
|
---|
| 3697 | /* c = a * a (mod b) */
|
---|
| 3698 | int
|
---|
| 3699 | mp_sqrmod (const mp_int * a, mp_int * b, mp_int * c)
|
---|
| 3700 | {
|
---|
| 3701 | int res;
|
---|
| 3702 | mp_int t;
|
---|
| 3703 |
|
---|
| 3704 | if ((res = mp_init (&t)) != MP_OKAY) {
|
---|
| 3705 | return res;
|
---|
| 3706 | }
|
---|
| 3707 |
|
---|
| 3708 | if ((res = mp_sqr (a, &t)) != MP_OKAY) {
|
---|
| 3709 | mp_clear (&t);
|
---|
| 3710 | return res;
|
---|
| 3711 | }
|
---|
| 3712 | res = mp_mod (&t, b, c);
|
---|
| 3713 | mp_clear (&t);
|
---|
| 3714 | return res;
|
---|
| 3715 | }
|
---|
| 3716 |
|
---|
| 3717 | /* high level subtraction (handles signs) */
|
---|
| 3718 | int
|
---|
| 3719 | mp_sub (mp_int * a, mp_int * b, mp_int * c)
|
---|
| 3720 | {
|
---|
| 3721 | int sa, sb, res;
|
---|
| 3722 |
|
---|
| 3723 | sa = a->sign;
|
---|
| 3724 | sb = b->sign;
|
---|
| 3725 |
|
---|
| 3726 | if (sa != sb) {
|
---|
| 3727 | /* subtract a negative from a positive, OR */
|
---|
| 3728 | /* subtract a positive from a negative. */
|
---|
| 3729 | /* In either case, ADD their magnitudes, */
|
---|
| 3730 | /* and use the sign of the first number. */
|
---|
| 3731 | c->sign = sa;
|
---|
| 3732 | res = s_mp_add (a, b, c);
|
---|
| 3733 | } else {
|
---|
| 3734 | /* subtract a positive from a positive, OR */
|
---|
| 3735 | /* subtract a negative from a negative. */
|
---|
| 3736 | /* First, take the difference between their */
|
---|
| 3737 | /* magnitudes, then... */
|
---|
| 3738 | if (mp_cmp_mag (a, b) != MP_LT) {
|
---|
| 3739 | /* Copy the sign from the first */
|
---|
| 3740 | c->sign = sa;
|
---|
| 3741 | /* The first has a larger or equal magnitude */
|
---|
| 3742 | res = s_mp_sub (a, b, c);
|
---|
| 3743 | } else {
|
---|
| 3744 | /* The result has the *opposite* sign from */
|
---|
| 3745 | /* the first number. */
|
---|
| 3746 | c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
|
---|
| 3747 | /* The second has a larger magnitude */
|
---|
| 3748 | res = s_mp_sub (b, a, c);
|
---|
| 3749 | }
|
---|
| 3750 | }
|
---|
| 3751 | return res;
|
---|
| 3752 | }
|
---|
| 3753 |
|
---|
| 3754 | /* single digit subtraction */
|
---|
| 3755 | int
|
---|
| 3756 | mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
|
---|
| 3757 | {
|
---|
| 3758 | mp_digit *tmpa, *tmpc, mu;
|
---|
| 3759 | int res, ix, oldused;
|
---|
| 3760 |
|
---|
| 3761 | /* grow c as required */
|
---|
| 3762 | if (c->alloc < a->used + 1) {
|
---|
| 3763 | if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
---|
| 3764 | return res;
|
---|
| 3765 | }
|
---|
| 3766 | }
|
---|
| 3767 |
|
---|
| 3768 | /* if a is negative just do an unsigned
|
---|
| 3769 | * addition [with fudged signs]
|
---|
| 3770 | */
|
---|
| 3771 | if (a->sign == MP_NEG) {
|
---|
| 3772 | a->sign = MP_ZPOS;
|
---|
| 3773 | res = mp_add_d(a, b, c);
|
---|
| 3774 | a->sign = c->sign = MP_NEG;
|
---|
| 3775 | return res;
|
---|
| 3776 | }
|
---|
| 3777 |
|
---|
| 3778 | /* setup regs */
|
---|
| 3779 | oldused = c->used;
|
---|
| 3780 | tmpa = a->dp;
|
---|
| 3781 | tmpc = c->dp;
|
---|
| 3782 |
|
---|
| 3783 | /* if a <= b simply fix the single digit */
|
---|
| 3784 | if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
|
---|
| 3785 | if (a->used == 1) {
|
---|
| 3786 | *tmpc++ = b - *tmpa;
|
---|
| 3787 | } else {
|
---|
| 3788 | *tmpc++ = b;
|
---|
| 3789 | }
|
---|
| 3790 | ix = 1;
|
---|
| 3791 |
|
---|
| 3792 | /* negative/1digit */
|
---|
| 3793 | c->sign = MP_NEG;
|
---|
| 3794 | c->used = 1;
|
---|
| 3795 | } else {
|
---|
| 3796 | /* positive/size */
|
---|
| 3797 | c->sign = MP_ZPOS;
|
---|
| 3798 | c->used = a->used;
|
---|
| 3799 |
|
---|
| 3800 | /* subtract first digit */
|
---|
| 3801 | *tmpc = *tmpa++ - b;
|
---|
| 3802 | mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
|
---|
| 3803 | *tmpc++ &= MP_MASK;
|
---|
| 3804 |
|
---|
| 3805 | /* handle rest of the digits */
|
---|
| 3806 | for (ix = 1; ix < a->used; ix++) {
|
---|
| 3807 | *tmpc = *tmpa++ - mu;
|
---|
| 3808 | mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
|
---|
| 3809 | *tmpc++ &= MP_MASK;
|
---|
| 3810 | }
|
---|
| 3811 | }
|
---|
| 3812 |
|
---|
| 3813 | /* zero excess digits */
|
---|
| 3814 | while (ix++ < oldused) {
|
---|
| 3815 | *tmpc++ = 0;
|
---|
| 3816 | }
|
---|
| 3817 | mp_clamp(c);
|
---|
| 3818 | return MP_OKAY;
|
---|
| 3819 | }
|
---|
| 3820 |
|
---|
| 3821 | /* store in unsigned [big endian] format */
|
---|
| 3822 | int
|
---|
| 3823 | mp_to_unsigned_bin (const mp_int * a, unsigned char *b)
|
---|
| 3824 | {
|
---|
| 3825 | int x, res;
|
---|
| 3826 | mp_int t;
|
---|
| 3827 |
|
---|
| 3828 | if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
---|
| 3829 | return res;
|
---|
| 3830 | }
|
---|
| 3831 |
|
---|
| 3832 | x = 0;
|
---|
| 3833 | while (mp_iszero (&t) == 0) {
|
---|
| 3834 | b[x++] = (unsigned char) (t.dp[0] & 255);
|
---|
| 3835 | if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
|
---|
| 3836 | mp_clear (&t);
|
---|
| 3837 | return res;
|
---|
| 3838 | }
|
---|
| 3839 | }
|
---|
| 3840 | bn_reverse (b, x);
|
---|
| 3841 | mp_clear (&t);
|
---|
| 3842 | return MP_OKAY;
|
---|
| 3843 | }
|
---|
| 3844 |
|
---|
| 3845 | /* get the size for an unsigned equivalent */
|
---|
| 3846 | int
|
---|
| 3847 | mp_unsigned_bin_size (const mp_int * a)
|
---|
| 3848 | {
|
---|
| 3849 | int size = mp_count_bits (a);
|
---|
| 3850 | return (size / 8 + ((size & 7) != 0 ? 1 : 0));
|
---|
| 3851 | }
|
---|
| 3852 |
|
---|
| 3853 | /* set to zero */
|
---|
| 3854 | void
|
---|
| 3855 | mp_zero (mp_int * a)
|
---|
| 3856 | {
|
---|
| 3857 | a->sign = MP_ZPOS;
|
---|
| 3858 | a->used = 0;
|
---|
| 3859 | memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
|
---|
| 3860 | }
|
---|
| 3861 |
|
---|
| 3862 | /* reverse an array, used for radix code */
|
---|
| 3863 | static void
|
---|
| 3864 | bn_reverse (unsigned char *s, int len)
|
---|
| 3865 | {
|
---|
| 3866 | int ix, iy;
|
---|
| 3867 | unsigned char t;
|
---|
| 3868 |
|
---|
| 3869 | ix = 0;
|
---|
| 3870 | iy = len - 1;
|
---|
| 3871 | while (ix < iy) {
|
---|
| 3872 | t = s[ix];
|
---|
| 3873 | s[ix] = s[iy];
|
---|
| 3874 | s[iy] = t;
|
---|
| 3875 | ++ix;
|
---|
| 3876 | --iy;
|
---|
| 3877 | }
|
---|
| 3878 | }
|
---|
| 3879 |
|
---|
| 3880 | /* low level addition, based on HAC pp.594, Algorithm 14.7 */
|
---|
| 3881 | static int
|
---|
| 3882 | s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
---|
| 3883 | {
|
---|
| 3884 | mp_int *x;
|
---|
| 3885 | int olduse, res, min, max;
|
---|
| 3886 |
|
---|
| 3887 | /* find sizes, we let |a| <= |b| which means we have to sort
|
---|
| 3888 | * them. "x" will point to the input with the most digits
|
---|
| 3889 | */
|
---|
| 3890 | if (a->used > b->used) {
|
---|
| 3891 | min = b->used;
|
---|
| 3892 | max = a->used;
|
---|
| 3893 | x = a;
|
---|
| 3894 | } else {
|
---|
| 3895 | min = a->used;
|
---|
| 3896 | max = b->used;
|
---|
| 3897 | x = b;
|
---|
| 3898 | }
|
---|
| 3899 |
|
---|
| 3900 | /* init result */
|
---|
| 3901 | if (c->alloc < max + 1) {
|
---|
| 3902 | if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
|
---|
| 3903 | return res;
|
---|
| 3904 | }
|
---|
| 3905 | }
|
---|
| 3906 |
|
---|
| 3907 | /* get old used digit count and set new one */
|
---|
| 3908 | olduse = c->used;
|
---|
| 3909 | c->used = max + 1;
|
---|
| 3910 |
|
---|
| 3911 | {
|
---|
| 3912 | register mp_digit u, *tmpa, *tmpb, *tmpc;
|
---|
| 3913 | register int i;
|
---|
| 3914 |
|
---|
| 3915 | /* alias for digit pointers */
|
---|
| 3916 |
|
---|
| 3917 | /* first input */
|
---|
| 3918 | tmpa = a->dp;
|
---|
| 3919 |
|
---|
| 3920 | /* second input */
|
---|
| 3921 | tmpb = b->dp;
|
---|
| 3922 |
|
---|
| 3923 | /* destination */
|
---|
| 3924 | tmpc = c->dp;
|
---|
| 3925 |
|
---|
| 3926 | /* zero the carry */
|
---|
| 3927 | u = 0;
|
---|
| 3928 | for (i = 0; i < min; i++) {
|
---|
| 3929 | /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
|
---|
| 3930 | *tmpc = *tmpa++ + *tmpb++ + u;
|
---|
| 3931 |
|
---|
| 3932 | /* U = carry bit of T[i] */
|
---|
| 3933 | u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
---|
| 3934 |
|
---|
| 3935 | /* take away carry bit from T[i] */
|
---|
| 3936 | *tmpc++ &= MP_MASK;
|
---|
| 3937 | }
|
---|
| 3938 |
|
---|
| 3939 | /* now copy higher words if any, that is in A+B
|
---|
| 3940 | * if A or B has more digits add those in
|
---|
| 3941 | */
|
---|
| 3942 | if (min != max) {
|
---|
| 3943 | for (; i < max; i++) {
|
---|
| 3944 | /* T[i] = X[i] + U */
|
---|
| 3945 | *tmpc = x->dp[i] + u;
|
---|
| 3946 |
|
---|
| 3947 | /* U = carry bit of T[i] */
|
---|
| 3948 | u = *tmpc >> ((mp_digit)DIGIT_BIT);
|
---|
| 3949 |
|
---|
| 3950 | /* take away carry bit from T[i] */
|
---|
| 3951 | *tmpc++ &= MP_MASK;
|
---|
| 3952 | }
|
---|
| 3953 | }
|
---|
| 3954 |
|
---|
| 3955 | /* add carry */
|
---|
| 3956 | *tmpc++ = u;
|
---|
| 3957 |
|
---|
| 3958 | /* clear digits above oldused */
|
---|
| 3959 | for (i = c->used; i < olduse; i++) {
|
---|
| 3960 | *tmpc++ = 0;
|
---|
| 3961 | }
|
---|
| 3962 | }
|
---|
| 3963 |
|
---|
| 3964 | mp_clamp (c);
|
---|
| 3965 | return MP_OKAY;
|
---|
| 3966 | }
|
---|
| 3967 |
|
---|
| 3968 | static int s_mp_exptmod (const mp_int * G, const mp_int * X, mp_int * P, mp_int * Y)
|
---|
| 3969 | {
|
---|
| 3970 | mp_int M[256], res, mu;
|
---|
| 3971 | mp_digit buf;
|
---|
| 3972 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
---|
| 3973 |
|
---|
| 3974 | /* find window size */
|
---|
| 3975 | x = mp_count_bits (X);
|
---|
| 3976 | if (x <= 7) {
|
---|
| 3977 | winsize = 2;
|
---|
| 3978 | } else if (x <= 36) {
|
---|
| 3979 | winsize = 3;
|
---|
| 3980 | } else if (x <= 140) {
|
---|
| 3981 | winsize = 4;
|
---|
| 3982 | } else if (x <= 450) {
|
---|
| 3983 | winsize = 5;
|
---|
| 3984 | } else if (x <= 1303) {
|
---|
| 3985 | winsize = 6;
|
---|
| 3986 | } else if (x <= 3529) {
|
---|
| 3987 | winsize = 7;
|
---|
| 3988 | } else {
|
---|
| 3989 | winsize = 8;
|
---|
| 3990 | }
|
---|
| 3991 |
|
---|
| 3992 | /* init M array */
|
---|
| 3993 | /* init first cell */
|
---|
| 3994 | if ((err = mp_init(&M[1])) != MP_OKAY) {
|
---|
| 3995 | return err;
|
---|
| 3996 | }
|
---|
| 3997 |
|
---|
| 3998 | /* now init the second half of the array */
|
---|
| 3999 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
| 4000 | if ((err = mp_init(&M[x])) != MP_OKAY) {
|
---|
| 4001 | for (y = 1<<(winsize-1); y < x; y++) {
|
---|
| 4002 | mp_clear (&M[y]);
|
---|
| 4003 | }
|
---|
| 4004 | mp_clear(&M[1]);
|
---|
| 4005 | return err;
|
---|
| 4006 | }
|
---|
| 4007 | }
|
---|
| 4008 |
|
---|
| 4009 | /* create mu, used for Barrett reduction */
|
---|
| 4010 | if ((err = mp_init (&mu)) != MP_OKAY) {
|
---|
| 4011 | goto __M;
|
---|
| 4012 | }
|
---|
| 4013 | if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
---|
| 4014 | goto __MU;
|
---|
| 4015 | }
|
---|
| 4016 |
|
---|
| 4017 | /* create M table
|
---|
| 4018 | *
|
---|
| 4019 | * The M table contains powers of the base,
|
---|
| 4020 | * e.g. M[x] = G**x mod P
|
---|
| 4021 | *
|
---|
| 4022 | * The first half of the table is not
|
---|
| 4023 | * computed though accept for M[0] and M[1]
|
---|
| 4024 | */
|
---|
| 4025 | if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
---|
| 4026 | goto __MU;
|
---|
| 4027 | }
|
---|
| 4028 |
|
---|
| 4029 | /* compute the value at M[1<<(winsize-1)] by squaring
|
---|
| 4030 | * M[1] (winsize-1) times
|
---|
| 4031 | */
|
---|
| 4032 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
| 4033 | goto __MU;
|
---|
| 4034 | }
|
---|
| 4035 |
|
---|
| 4036 | for (x = 0; x < (winsize - 1); x++) {
|
---|
| 4037 | if ((err = mp_sqr (&M[1 << (winsize - 1)],
|
---|
| 4038 | &M[1 << (winsize - 1)])) != MP_OKAY) {
|
---|
| 4039 | goto __MU;
|
---|
| 4040 | }
|
---|
| 4041 | if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
|
---|
| 4042 | goto __MU;
|
---|
| 4043 | }
|
---|
| 4044 | }
|
---|
| 4045 |
|
---|
| 4046 | /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
|
---|
| 4047 | * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
|
---|
| 4048 | */
|
---|
| 4049 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
---|
| 4050 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
---|
| 4051 | goto __MU;
|
---|
| 4052 | }
|
---|
| 4053 | if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
|
---|
| 4054 | goto __MU;
|
---|
| 4055 | }
|
---|
| 4056 | }
|
---|
| 4057 |
|
---|
| 4058 | /* setup result */
|
---|
| 4059 | if ((err = mp_init (&res)) != MP_OKAY) {
|
---|
| 4060 | goto __MU;
|
---|
| 4061 | }
|
---|
| 4062 | mp_set (&res, 1);
|
---|
| 4063 |
|
---|
| 4064 | /* set initial mode and bit cnt */
|
---|
| 4065 | mode = 0;
|
---|
| 4066 | bitcnt = 1;
|
---|
| 4067 | buf = 0;
|
---|
| 4068 | digidx = X->used - 1;
|
---|
| 4069 | bitcpy = 0;
|
---|
| 4070 | bitbuf = 0;
|
---|
| 4071 |
|
---|
| 4072 | for (;;) {
|
---|
| 4073 | /* grab next digit as required */
|
---|
| 4074 | if (--bitcnt == 0) {
|
---|
| 4075 | /* if digidx == -1 we are out of digits */
|
---|
| 4076 | if (digidx == -1) {
|
---|
| 4077 | break;
|
---|
| 4078 | }
|
---|
| 4079 | /* read next digit and reset the bitcnt */
|
---|
| 4080 | buf = X->dp[digidx--];
|
---|
| 4081 | bitcnt = DIGIT_BIT;
|
---|
| 4082 | }
|
---|
| 4083 |
|
---|
| 4084 | /* grab the next msb from the exponent */
|
---|
| 4085 | y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
|
---|
| 4086 | buf <<= (mp_digit)1;
|
---|
| 4087 |
|
---|
| 4088 | /* if the bit is zero and mode == 0 then we ignore it
|
---|
| 4089 | * These represent the leading zero bits before the first 1 bit
|
---|
| 4090 | * in the exponent. Technically this opt is not required but it
|
---|
| 4091 | * does lower the # of trivial squaring/reductions used
|
---|
| 4092 | */
|
---|
| 4093 | if (mode == 0 && y == 0) {
|
---|
| 4094 | continue;
|
---|
| 4095 | }
|
---|
| 4096 |
|
---|
| 4097 | /* if the bit is zero and mode == 1 then we square */
|
---|
| 4098 | if (mode == 1 && y == 0) {
|
---|
| 4099 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
| 4100 | goto __RES;
|
---|
| 4101 | }
|
---|
| 4102 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
| 4103 | goto __RES;
|
---|
| 4104 | }
|
---|
| 4105 | continue;
|
---|
| 4106 | }
|
---|
| 4107 |
|
---|
| 4108 | /* else we add it to the window */
|
---|
| 4109 | bitbuf |= (y << (winsize - ++bitcpy));
|
---|
| 4110 | mode = 2;
|
---|
| 4111 |
|
---|
| 4112 | if (bitcpy == winsize) {
|
---|
| 4113 | /* ok window is filled so square as required and multiply */
|
---|
| 4114 | /* square first */
|
---|
| 4115 | for (x = 0; x < winsize; x++) {
|
---|
| 4116 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
| 4117 | goto __RES;
|
---|
| 4118 | }
|
---|
| 4119 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
| 4120 | goto __RES;
|
---|
| 4121 | }
|
---|
| 4122 | }
|
---|
| 4123 |
|
---|
| 4124 | /* then multiply */
|
---|
| 4125 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
---|
| 4126 | goto __RES;
|
---|
| 4127 | }
|
---|
| 4128 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
| 4129 | goto __RES;
|
---|
| 4130 | }
|
---|
| 4131 |
|
---|
| 4132 | /* empty window and reset */
|
---|
| 4133 | bitcpy = 0;
|
---|
| 4134 | bitbuf = 0;
|
---|
| 4135 | mode = 1;
|
---|
| 4136 | }
|
---|
| 4137 | }
|
---|
| 4138 |
|
---|
| 4139 | /* if bits remain then square/multiply */
|
---|
| 4140 | if (mode == 2 && bitcpy > 0) {
|
---|
| 4141 | /* square then multiply if the bit is set */
|
---|
| 4142 | for (x = 0; x < bitcpy; x++) {
|
---|
| 4143 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
---|
| 4144 | goto __RES;
|
---|
| 4145 | }
|
---|
| 4146 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
| 4147 | goto __RES;
|
---|
| 4148 | }
|
---|
| 4149 |
|
---|
| 4150 | bitbuf <<= 1;
|
---|
| 4151 | if ((bitbuf & (1 << winsize)) != 0) {
|
---|
| 4152 | /* then multiply */
|
---|
| 4153 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
---|
| 4154 | goto __RES;
|
---|
| 4155 | }
|
---|
| 4156 | if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
|
---|
| 4157 | goto __RES;
|
---|
| 4158 | }
|
---|
| 4159 | }
|
---|
| 4160 | }
|
---|
| 4161 | }
|
---|
| 4162 |
|
---|
| 4163 | mp_exch (&res, Y);
|
---|
| 4164 | err = MP_OKAY;
|
---|
| 4165 | __RES:mp_clear (&res);
|
---|
| 4166 | __MU:mp_clear (&mu);
|
---|
| 4167 | __M:
|
---|
| 4168 | mp_clear(&M[1]);
|
---|
| 4169 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
---|
| 4170 | mp_clear (&M[x]);
|
---|
| 4171 | }
|
---|
| 4172 | return err;
|
---|
| 4173 | }
|
---|
| 4174 |
|
---|
| 4175 | /* multiplies |a| * |b| and only computes up to digs digits of result
|
---|
| 4176 | * HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
---|
| 4177 | * many digits of output are created.
|
---|
| 4178 | */
|
---|
| 4179 | static int
|
---|
| 4180 | s_mp_mul_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
| 4181 | {
|
---|
| 4182 | mp_int t;
|
---|
| 4183 | int res, pa, pb, ix, iy;
|
---|
| 4184 | mp_digit u;
|
---|
| 4185 | mp_word r;
|
---|
| 4186 | mp_digit tmpx, *tmpt, *tmpy;
|
---|
| 4187 |
|
---|
| 4188 | /* can we use the fast multiplier? */
|
---|
| 4189 | if (((digs) < MP_WARRAY) &&
|
---|
| 4190 | MIN (a->used, b->used) <
|
---|
| 4191 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
| 4192 | return fast_s_mp_mul_digs (a, b, c, digs);
|
---|
| 4193 | }
|
---|
| 4194 |
|
---|
| 4195 | if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
|
---|
| 4196 | return res;
|
---|
| 4197 | }
|
---|
| 4198 | t.used = digs;
|
---|
| 4199 |
|
---|
| 4200 | /* compute the digits of the product directly */
|
---|
| 4201 | pa = a->used;
|
---|
| 4202 | for (ix = 0; ix < pa; ix++) {
|
---|
| 4203 | /* set the carry to zero */
|
---|
| 4204 | u = 0;
|
---|
| 4205 |
|
---|
| 4206 | /* limit ourselves to making digs digits of output */
|
---|
| 4207 | pb = MIN (b->used, digs - ix);
|
---|
| 4208 |
|
---|
| 4209 | /* setup some aliases */
|
---|
| 4210 | /* copy of the digit from a used within the nested loop */
|
---|
| 4211 | tmpx = a->dp[ix];
|
---|
| 4212 |
|
---|
| 4213 | /* an alias for the destination shifted ix places */
|
---|
| 4214 | tmpt = t.dp + ix;
|
---|
| 4215 |
|
---|
| 4216 | /* an alias for the digits of b */
|
---|
| 4217 | tmpy = b->dp;
|
---|
| 4218 |
|
---|
| 4219 | /* compute the columns of the output and propagate the carry */
|
---|
| 4220 | for (iy = 0; iy < pb; iy++) {
|
---|
| 4221 | /* compute the column as a mp_word */
|
---|
| 4222 | r = ((mp_word)*tmpt) +
|
---|
| 4223 | ((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
---|
| 4224 | ((mp_word) u);
|
---|
| 4225 |
|
---|
| 4226 | /* the new column is the lower part of the result */
|
---|
| 4227 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
| 4228 |
|
---|
| 4229 | /* get the carry word from the result */
|
---|
| 4230 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
| 4231 | }
|
---|
| 4232 | /* set carry if it is placed below digs */
|
---|
| 4233 | if (ix + iy < digs) {
|
---|
| 4234 | *tmpt = u;
|
---|
| 4235 | }
|
---|
| 4236 | }
|
---|
| 4237 |
|
---|
| 4238 | mp_clamp (&t);
|
---|
| 4239 | mp_exch (&t, c);
|
---|
| 4240 |
|
---|
| 4241 | mp_clear (&t);
|
---|
| 4242 | return MP_OKAY;
|
---|
| 4243 | }
|
---|
| 4244 |
|
---|
| 4245 | /* multiplies |a| * |b| and does not compute the lower digs digits
|
---|
| 4246 | * [meant to get the higher part of the product]
|
---|
| 4247 | */
|
---|
| 4248 | static int
|
---|
| 4249 | s_mp_mul_high_digs (const mp_int * a, const mp_int * b, mp_int * c, int digs)
|
---|
| 4250 | {
|
---|
| 4251 | mp_int t;
|
---|
| 4252 | int res, pa, pb, ix, iy;
|
---|
| 4253 | mp_digit u;
|
---|
| 4254 | mp_word r;
|
---|
| 4255 | mp_digit tmpx, *tmpt, *tmpy;
|
---|
| 4256 |
|
---|
| 4257 | /* can we use the fast multiplier? */
|
---|
| 4258 | if (((a->used + b->used + 1) < MP_WARRAY)
|
---|
| 4259 | && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
---|
| 4260 | return fast_s_mp_mul_high_digs (a, b, c, digs);
|
---|
| 4261 | }
|
---|
| 4262 |
|
---|
| 4263 | if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
|
---|
| 4264 | return res;
|
---|
| 4265 | }
|
---|
| 4266 | t.used = a->used + b->used + 1;
|
---|
| 4267 |
|
---|
| 4268 | pa = a->used;
|
---|
| 4269 | pb = b->used;
|
---|
| 4270 | for (ix = 0; ix < pa; ix++) {
|
---|
| 4271 | /* clear the carry */
|
---|
| 4272 | u = 0;
|
---|
| 4273 |
|
---|
| 4274 | /* left hand side of A[ix] * B[iy] */
|
---|
| 4275 | tmpx = a->dp[ix];
|
---|
| 4276 |
|
---|
| 4277 | /* alias to the address of where the digits will be stored */
|
---|
| 4278 | tmpt = &(t.dp[digs]);
|
---|
| 4279 |
|
---|
| 4280 | /* alias for where to read the right hand side from */
|
---|
| 4281 | tmpy = b->dp + (digs - ix);
|
---|
| 4282 |
|
---|
| 4283 | for (iy = digs - ix; iy < pb; iy++) {
|
---|
| 4284 | /* calculate the double precision result */
|
---|
| 4285 | r = ((mp_word)*tmpt) +
|
---|
| 4286 | ((mp_word)tmpx) * ((mp_word)*tmpy++) +
|
---|
| 4287 | ((mp_word) u);
|
---|
| 4288 |
|
---|
| 4289 | /* get the lower part */
|
---|
| 4290 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
| 4291 |
|
---|
| 4292 | /* carry the carry */
|
---|
| 4293 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
|
---|
| 4294 | }
|
---|
| 4295 | *tmpt = u;
|
---|
| 4296 | }
|
---|
| 4297 | mp_clamp (&t);
|
---|
| 4298 | mp_exch (&t, c);
|
---|
| 4299 | mp_clear (&t);
|
---|
| 4300 | return MP_OKAY;
|
---|
| 4301 | }
|
---|
| 4302 |
|
---|
| 4303 | /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
|
---|
| 4304 | static int
|
---|
| 4305 | s_mp_sqr (const mp_int * a, mp_int * b)
|
---|
| 4306 | {
|
---|
| 4307 | mp_int t;
|
---|
| 4308 | int res, ix, iy, pa;
|
---|
| 4309 | mp_word r;
|
---|
| 4310 | mp_digit u, tmpx, *tmpt;
|
---|
| 4311 |
|
---|
| 4312 | pa = a->used;
|
---|
| 4313 | if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
|
---|
| 4314 | return res;
|
---|
| 4315 | }
|
---|
| 4316 |
|
---|
| 4317 | /* default used is maximum possible size */
|
---|
| 4318 | t.used = 2*pa + 1;
|
---|
| 4319 |
|
---|
| 4320 | for (ix = 0; ix < pa; ix++) {
|
---|
| 4321 | /* first calculate the digit at 2*ix */
|
---|
| 4322 | /* calculate double precision result */
|
---|
| 4323 | r = ((mp_word) t.dp[2*ix]) +
|
---|
| 4324 | ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
|
---|
| 4325 |
|
---|
| 4326 | /* store lower part in result */
|
---|
| 4327 | t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
| 4328 |
|
---|
| 4329 | /* get the carry */
|
---|
| 4330 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
| 4331 |
|
---|
| 4332 | /* left hand side of A[ix] * A[iy] */
|
---|
| 4333 | tmpx = a->dp[ix];
|
---|
| 4334 |
|
---|
| 4335 | /* alias for where to store the results */
|
---|
| 4336 | tmpt = t.dp + (2*ix + 1);
|
---|
| 4337 |
|
---|
| 4338 | for (iy = ix + 1; iy < pa; iy++) {
|
---|
| 4339 | /* first calculate the product */
|
---|
| 4340 | r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
|
---|
| 4341 |
|
---|
| 4342 | /* now calculate the double precision result, note we use
|
---|
| 4343 | * addition instead of *2 since it's easier to optimize
|
---|
| 4344 | */
|
---|
| 4345 | r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
|
---|
| 4346 |
|
---|
| 4347 | /* store lower part */
|
---|
| 4348 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
| 4349 |
|
---|
| 4350 | /* get carry */
|
---|
| 4351 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
| 4352 | }
|
---|
| 4353 | /* propagate upwards */
|
---|
| 4354 | while (u != ((mp_digit) 0)) {
|
---|
| 4355 | r = ((mp_word) *tmpt) + ((mp_word) u);
|
---|
| 4356 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
|
---|
| 4357 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
---|
| 4358 | }
|
---|
| 4359 | }
|
---|
| 4360 |
|
---|
| 4361 | mp_clamp (&t);
|
---|
| 4362 | mp_exch (&t, b);
|
---|
| 4363 | mp_clear (&t);
|
---|
| 4364 | return MP_OKAY;
|
---|
| 4365 | }
|
---|
| 4366 |
|
---|
| 4367 | /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
|
---|
| 4368 | int
|
---|
| 4369 | s_mp_sub (const mp_int * a, const mp_int * b, mp_int * c)
|
---|
| 4370 | {
|
---|
| 4371 | int olduse, res, min, max;
|
---|
| 4372 |
|
---|
| 4373 | /* find sizes */
|
---|
| 4374 | min = b->used;
|
---|
| 4375 | max = a->used;
|
---|
| 4376 |
|
---|
| 4377 | /* init result */
|
---|
| 4378 | if (c->alloc < max) {
|
---|
| 4379 | if ((res = mp_grow (c, max)) != MP_OKAY) {
|
---|
| 4380 | return res;
|
---|
| 4381 | }
|
---|
| 4382 | }
|
---|
| 4383 | olduse = c->used;
|
---|
| 4384 | c->used = max;
|
---|
| 4385 |
|
---|
| 4386 | {
|
---|
| 4387 | register mp_digit u, *tmpa, *tmpb, *tmpc;
|
---|
| 4388 | register int i;
|
---|
| 4389 |
|
---|
| 4390 | /* alias for digit pointers */
|
---|
| 4391 | tmpa = a->dp;
|
---|
| 4392 | tmpb = b->dp;
|
---|
| 4393 | tmpc = c->dp;
|
---|
| 4394 |
|
---|
| 4395 | /* set carry to zero */
|
---|
| 4396 | u = 0;
|
---|
| 4397 | for (i = 0; i < min; i++) {
|
---|
| 4398 | /* T[i] = A[i] - B[i] - U */
|
---|
| 4399 | *tmpc = *tmpa++ - *tmpb++ - u;
|
---|
| 4400 |
|
---|
| 4401 | /* U = carry bit of T[i]
|
---|
| 4402 | * Note this saves performing an AND operation since
|
---|
| 4403 | * if a carry does occur it will propagate all the way to the
|
---|
| 4404 | * MSB. As a result a single shift is enough to get the carry
|
---|
| 4405 | */
|
---|
| 4406 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
---|
| 4407 |
|
---|
| 4408 | /* Clear carry from T[i] */
|
---|
| 4409 | *tmpc++ &= MP_MASK;
|
---|
| 4410 | }
|
---|
| 4411 |
|
---|
| 4412 | /* now copy higher words if any, e.g. if A has more digits than B */
|
---|
| 4413 | for (; i < max; i++) {
|
---|
| 4414 | /* T[i] = A[i] - U */
|
---|
| 4415 | *tmpc = *tmpa++ - u;
|
---|
| 4416 |
|
---|
| 4417 | /* U = carry bit of T[i] */
|
---|
| 4418 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
|
---|
| 4419 |
|
---|
| 4420 | /* Clear carry from T[i] */
|
---|
| 4421 | *tmpc++ &= MP_MASK;
|
---|
| 4422 | }
|
---|
| 4423 |
|
---|
| 4424 | /* clear digits above used (since we may not have grown result above) */
|
---|
| 4425 | for (i = c->used; i < olduse; i++) {
|
---|
| 4426 | *tmpc++ = 0;
|
---|
| 4427 | }
|
---|
| 4428 | }
|
---|
| 4429 |
|
---|
| 4430 | mp_clamp (c);
|
---|
| 4431 | return MP_OKAY;
|
---|
| 4432 | }
|
---|