[3325] | 1 | /* trees.c -- output deflated data using Huffman coding
|
---|
| 2 |
|
---|
| 3 | Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
|
---|
| 4 | Copyright (C) 1992-1993 Jean-loup Gailly
|
---|
| 5 |
|
---|
| 6 | This program is free software; you can redistribute it and/or modify
|
---|
| 7 | it under the terms of the GNU General Public License as published by
|
---|
| 8 | the Free Software Foundation; either version 2, or (at your option)
|
---|
| 9 | any later version.
|
---|
| 10 |
|
---|
| 11 | This program is distributed in the hope that it will be useful,
|
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | GNU General Public License for more details.
|
---|
| 15 |
|
---|
| 16 | You should have received a copy of the GNU General Public License
|
---|
| 17 | along with this program; if not, write to the Free Software Foundation,
|
---|
| 18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
---|
| 19 |
|
---|
| 20 | /*
|
---|
| 21 | * PURPOSE
|
---|
| 22 | *
|
---|
| 23 | * Encode various sets of source values using variable-length
|
---|
| 24 | * binary code trees.
|
---|
| 25 | *
|
---|
| 26 | * DISCUSSION
|
---|
| 27 | *
|
---|
| 28 | * The PKZIP "deflation" process uses several Huffman trees. The more
|
---|
| 29 | * common source values are represented by shorter bit sequences.
|
---|
| 30 | *
|
---|
| 31 | * Each code tree is stored in the ZIP file in a compressed form
|
---|
| 32 | * which is itself a Huffman encoding of the lengths of
|
---|
| 33 | * all the code strings (in ascending order by source values).
|
---|
| 34 | * The actual code strings are reconstructed from the lengths in
|
---|
| 35 | * the UNZIP process, as described in the "application note"
|
---|
| 36 | * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
|
---|
| 37 | *
|
---|
| 38 | * REFERENCES
|
---|
| 39 | *
|
---|
| 40 | * Lynch, Thomas J.
|
---|
| 41 | * Data Compression: Techniques and Applications, pp. 53-55.
|
---|
| 42 | * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
|
---|
| 43 | *
|
---|
| 44 | * Storer, James A.
|
---|
| 45 | * Data Compression: Methods and Theory, pp. 49-50.
|
---|
| 46 | * Computer Science Press, 1988. ISBN 0-7167-8156-5.
|
---|
| 47 | *
|
---|
| 48 | * Sedgewick, R.
|
---|
| 49 | * Algorithms, p290.
|
---|
| 50 | * Addison-Wesley, 1983. ISBN 0-201-06672-6.
|
---|
| 51 | *
|
---|
| 52 | * INTERFACE
|
---|
| 53 | *
|
---|
| 54 | * void ct_init (ush *attr, int *methodp)
|
---|
| 55 | * Allocate the match buffer, initialize the various tables and save
|
---|
| 56 | * the location of the internal file attribute (ascii/binary) and
|
---|
| 57 | * method (DEFLATE/STORE)
|
---|
| 58 | *
|
---|
| 59 | * void ct_tally (int dist, int lc);
|
---|
| 60 | * Save the match info and tally the frequency counts.
|
---|
| 61 | *
|
---|
| 62 | * off_t flush_block (char *buf, ulg stored_len, int eof)
|
---|
| 63 | * Determine the best encoding for the current block: dynamic trees,
|
---|
| 64 | * static trees or store, and output the encoded block to the zip
|
---|
| 65 | * file. Returns the total compressed length for the file so far.
|
---|
| 66 | *
|
---|
| 67 | */
|
---|
| 68 |
|
---|
| 69 | #include <config.h>
|
---|
| 70 | #include <ctype.h>
|
---|
| 71 |
|
---|
| 72 | #include "tailor.h"
|
---|
| 73 | #include "gzip.h"
|
---|
| 74 |
|
---|
| 75 | #ifdef RCSID
|
---|
| 76 | static char rcsid[] = "$Id: trees.c,v 1.4 2006/11/20 08:40:33 eggert Exp $";
|
---|
| 77 | #endif
|
---|
| 78 |
|
---|
| 79 | /* ===========================================================================
|
---|
| 80 | * Constants
|
---|
| 81 | */
|
---|
| 82 |
|
---|
| 83 | #define MAX_BITS 15
|
---|
| 84 | /* All codes must not exceed MAX_BITS bits */
|
---|
| 85 |
|
---|
| 86 | #define MAX_BL_BITS 7
|
---|
| 87 | /* Bit length codes must not exceed MAX_BL_BITS bits */
|
---|
| 88 |
|
---|
| 89 | #define LENGTH_CODES 29
|
---|
| 90 | /* number of length codes, not counting the special END_BLOCK code */
|
---|
| 91 |
|
---|
| 92 | #define LITERALS 256
|
---|
| 93 | /* number of literal bytes 0..255 */
|
---|
| 94 |
|
---|
| 95 | #define END_BLOCK 256
|
---|
| 96 | /* end of block literal code */
|
---|
| 97 |
|
---|
| 98 | #define L_CODES (LITERALS+1+LENGTH_CODES)
|
---|
| 99 | /* number of Literal or Length codes, including the END_BLOCK code */
|
---|
| 100 |
|
---|
| 101 | #define D_CODES 30
|
---|
| 102 | /* number of distance codes */
|
---|
| 103 |
|
---|
| 104 | #define BL_CODES 19
|
---|
| 105 | /* number of codes used to transfer the bit lengths */
|
---|
| 106 |
|
---|
| 107 |
|
---|
| 108 | local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
|
---|
| 109 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
|
---|
| 110 |
|
---|
| 111 | local int near extra_dbits[D_CODES] /* extra bits for each distance code */
|
---|
| 112 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
|
---|
| 113 |
|
---|
| 114 | local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
|
---|
| 115 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
|
---|
| 116 |
|
---|
| 117 | #define STORED_BLOCK 0
|
---|
| 118 | #define STATIC_TREES 1
|
---|
| 119 | #define DYN_TREES 2
|
---|
| 120 | /* The three kinds of block type */
|
---|
| 121 |
|
---|
| 122 | #ifndef LIT_BUFSIZE
|
---|
| 123 | # ifdef SMALL_MEM
|
---|
| 124 | # define LIT_BUFSIZE 0x2000
|
---|
| 125 | # else
|
---|
| 126 | # ifdef MEDIUM_MEM
|
---|
| 127 | # define LIT_BUFSIZE 0x4000
|
---|
| 128 | # else
|
---|
| 129 | # define LIT_BUFSIZE 0x8000
|
---|
| 130 | # endif
|
---|
| 131 | # endif
|
---|
| 132 | #endif
|
---|
| 133 | #ifndef DIST_BUFSIZE
|
---|
| 134 | # define DIST_BUFSIZE LIT_BUFSIZE
|
---|
| 135 | #endif
|
---|
| 136 | /* Sizes of match buffers for literals/lengths and distances. There are
|
---|
| 137 | * 4 reasons for limiting LIT_BUFSIZE to 64K:
|
---|
| 138 | * - frequencies can be kept in 16 bit counters
|
---|
| 139 | * - if compression is not successful for the first block, all input data is
|
---|
| 140 | * still in the window so we can still emit a stored block even when input
|
---|
| 141 | * comes from standard input. (This can also be done for all blocks if
|
---|
| 142 | * LIT_BUFSIZE is not greater than 32K.)
|
---|
| 143 | * - if compression is not successful for a file smaller than 64K, we can
|
---|
| 144 | * even emit a stored file instead of a stored block (saving 5 bytes).
|
---|
| 145 | * - creating new Huffman trees less frequently may not provide fast
|
---|
| 146 | * adaptation to changes in the input data statistics. (Take for
|
---|
| 147 | * example a binary file with poorly compressible code followed by
|
---|
| 148 | * a highly compressible string table.) Smaller buffer sizes give
|
---|
| 149 | * fast adaptation but have of course the overhead of transmitting trees
|
---|
| 150 | * more frequently.
|
---|
| 151 | * - I can't count above 4
|
---|
| 152 | * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
|
---|
| 153 | * memory at the expense of compression). Some optimizations would be possible
|
---|
| 154 | * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
|
---|
| 155 | */
|
---|
| 156 | #if LIT_BUFSIZE > INBUFSIZ
|
---|
| 157 | error cannot overlay l_buf and inbuf
|
---|
| 158 | #endif
|
---|
| 159 |
|
---|
| 160 | #define REP_3_6 16
|
---|
| 161 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */
|
---|
| 162 |
|
---|
| 163 | #define REPZ_3_10 17
|
---|
| 164 | /* repeat a zero length 3-10 times (3 bits of repeat count) */
|
---|
| 165 |
|
---|
| 166 | #define REPZ_11_138 18
|
---|
| 167 | /* repeat a zero length 11-138 times (7 bits of repeat count) */
|
---|
| 168 |
|
---|
| 169 | /* ===========================================================================
|
---|
| 170 | * Local data
|
---|
| 171 | */
|
---|
| 172 |
|
---|
| 173 | /* Data structure describing a single value and its code string. */
|
---|
| 174 | typedef struct ct_data {
|
---|
| 175 | union {
|
---|
| 176 | ush freq; /* frequency count */
|
---|
| 177 | ush code; /* bit string */
|
---|
| 178 | } fc;
|
---|
| 179 | union {
|
---|
| 180 | ush dad; /* father node in Huffman tree */
|
---|
| 181 | ush len; /* length of bit string */
|
---|
| 182 | } dl;
|
---|
| 183 | } ct_data;
|
---|
| 184 |
|
---|
| 185 | #define Freq fc.freq
|
---|
| 186 | #define Code fc.code
|
---|
| 187 | #define Dad dl.dad
|
---|
| 188 | #define Len dl.len
|
---|
| 189 |
|
---|
| 190 | #define HEAP_SIZE (2*L_CODES+1)
|
---|
| 191 | /* maximum heap size */
|
---|
| 192 |
|
---|
| 193 | local ct_data near dyn_ltree[HEAP_SIZE]; /* literal and length tree */
|
---|
| 194 | local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
|
---|
| 195 |
|
---|
| 196 | local ct_data near static_ltree[L_CODES+2];
|
---|
| 197 | /* The static literal tree. Since the bit lengths are imposed, there is no
|
---|
| 198 | * need for the L_CODES extra codes used during heap construction. However
|
---|
| 199 | * The codes 286 and 287 are needed to build a canonical tree (see ct_init
|
---|
| 200 | * below).
|
---|
| 201 | */
|
---|
| 202 |
|
---|
| 203 | local ct_data near static_dtree[D_CODES];
|
---|
| 204 | /* The static distance tree. (Actually a trivial tree since all codes use
|
---|
| 205 | * 5 bits.)
|
---|
| 206 | */
|
---|
| 207 |
|
---|
| 208 | local ct_data near bl_tree[2*BL_CODES+1];
|
---|
| 209 | /* Huffman tree for the bit lengths */
|
---|
| 210 |
|
---|
| 211 | typedef struct tree_desc {
|
---|
| 212 | ct_data near *dyn_tree; /* the dynamic tree */
|
---|
| 213 | ct_data near *static_tree; /* corresponding static tree or NULL */
|
---|
| 214 | int near *extra_bits; /* extra bits for each code or NULL */
|
---|
| 215 | int extra_base; /* base index for extra_bits */
|
---|
| 216 | int elems; /* max number of elements in the tree */
|
---|
| 217 | int max_length; /* max bit length for the codes */
|
---|
| 218 | int max_code; /* largest code with non zero frequency */
|
---|
| 219 | } tree_desc;
|
---|
| 220 |
|
---|
| 221 | local tree_desc near l_desc =
|
---|
| 222 | {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
|
---|
| 223 |
|
---|
| 224 | local tree_desc near d_desc =
|
---|
| 225 | {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0};
|
---|
| 226 |
|
---|
| 227 | local tree_desc near bl_desc =
|
---|
| 228 | {bl_tree, (ct_data near *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0};
|
---|
| 229 |
|
---|
| 230 |
|
---|
| 231 | local ush near bl_count[MAX_BITS+1];
|
---|
| 232 | /* number of codes at each bit length for an optimal tree */
|
---|
| 233 |
|
---|
| 234 | local uch near bl_order[BL_CODES]
|
---|
| 235 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
|
---|
| 236 | /* The lengths of the bit length codes are sent in order of decreasing
|
---|
| 237 | * probability, to avoid transmitting the lengths for unused bit length codes.
|
---|
| 238 | */
|
---|
| 239 |
|
---|
| 240 | local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
|
---|
| 241 | local int heap_len; /* number of elements in the heap */
|
---|
| 242 | local int heap_max; /* element of largest frequency */
|
---|
| 243 | /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
|
---|
| 244 | * The same heap array is used to build all trees.
|
---|
| 245 | */
|
---|
| 246 |
|
---|
| 247 | local uch near depth[2*L_CODES+1];
|
---|
| 248 | /* Depth of each subtree used as tie breaker for trees of equal frequency */
|
---|
| 249 |
|
---|
| 250 | local uch length_code[MAX_MATCH-MIN_MATCH+1];
|
---|
| 251 | /* length code for each normalized match length (0 == MIN_MATCH) */
|
---|
| 252 |
|
---|
| 253 | local uch dist_code[512];
|
---|
| 254 | /* distance codes. The first 256 values correspond to the distances
|
---|
| 255 | * 3 .. 258, the last 256 values correspond to the top 8 bits of
|
---|
| 256 | * the 15 bit distances.
|
---|
| 257 | */
|
---|
| 258 |
|
---|
| 259 | local int near base_length[LENGTH_CODES];
|
---|
| 260 | /* First normalized length for each code (0 = MIN_MATCH) */
|
---|
| 261 |
|
---|
| 262 | local int near base_dist[D_CODES];
|
---|
| 263 | /* First normalized distance for each code (0 = distance of 1) */
|
---|
| 264 |
|
---|
| 265 | #define l_buf inbuf
|
---|
| 266 | /* DECLARE(uch, l_buf, LIT_BUFSIZE); buffer for literals or lengths */
|
---|
| 267 |
|
---|
| 268 | /* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
|
---|
| 269 |
|
---|
| 270 | local uch near flag_buf[(LIT_BUFSIZE/8)];
|
---|
| 271 | /* flag_buf is a bit array distinguishing literals from lengths in
|
---|
| 272 | * l_buf, thus indicating the presence or absence of a distance.
|
---|
| 273 | */
|
---|
| 274 |
|
---|
| 275 | local unsigned last_lit; /* running index in l_buf */
|
---|
| 276 | local unsigned last_dist; /* running index in d_buf */
|
---|
| 277 | local unsigned last_flags; /* running index in flag_buf */
|
---|
| 278 | local uch flags; /* current flags not yet saved in flag_buf */
|
---|
| 279 | local uch flag_bit; /* current bit used in flags */
|
---|
| 280 | /* bits are filled in flags starting at bit 0 (least significant).
|
---|
| 281 | * Note: these flags are overkill in the current code since we don't
|
---|
| 282 | * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
|
---|
| 283 | */
|
---|
| 284 |
|
---|
| 285 | local ulg opt_len; /* bit length of current block with optimal trees */
|
---|
| 286 | local ulg static_len; /* bit length of current block with static trees */
|
---|
| 287 |
|
---|
| 288 | local off_t compressed_len; /* total bit length of compressed file */
|
---|
| 289 |
|
---|
| 290 | local off_t input_len; /* total byte length of input file */
|
---|
| 291 | /* input_len is for debugging only since we can get it by other means. */
|
---|
| 292 |
|
---|
| 293 | ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
|
---|
| 294 | int *file_method; /* pointer to DEFLATE or STORE */
|
---|
| 295 |
|
---|
| 296 | #ifdef DEBUG
|
---|
| 297 | extern off_t bits_sent; /* bit length of the compressed data */
|
---|
| 298 | #endif
|
---|
| 299 |
|
---|
| 300 | extern long block_start; /* window offset of current block */
|
---|
| 301 | extern unsigned near strstart; /* window offset of current string */
|
---|
| 302 |
|
---|
| 303 | /* ===========================================================================
|
---|
| 304 | * Local (static) routines in this file.
|
---|
| 305 | */
|
---|
| 306 |
|
---|
| 307 | local void init_block OF((void));
|
---|
| 308 | local void pqdownheap OF((ct_data near *tree, int k));
|
---|
| 309 | local void gen_bitlen OF((tree_desc near *desc));
|
---|
| 310 | local void gen_codes OF((ct_data near *tree, int max_code));
|
---|
| 311 | local void build_tree OF((tree_desc near *desc));
|
---|
| 312 | local void scan_tree OF((ct_data near *tree, int max_code));
|
---|
| 313 | local void send_tree OF((ct_data near *tree, int max_code));
|
---|
| 314 | local int build_bl_tree OF((void));
|
---|
| 315 | local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
|
---|
| 316 | local void compress_block OF((ct_data near *ltree, ct_data near *dtree));
|
---|
| 317 | local void set_file_type OF((void));
|
---|
| 318 |
|
---|
| 319 |
|
---|
| 320 | #ifndef DEBUG
|
---|
| 321 | # define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
|
---|
| 322 | /* Send a code of the given tree. c and tree must not have side effects */
|
---|
| 323 |
|
---|
| 324 | #else /* DEBUG */
|
---|
| 325 | # define send_code(c, tree) \
|
---|
| 326 | { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
|
---|
| 327 | send_bits(tree[c].Code, tree[c].Len); }
|
---|
| 328 | #endif
|
---|
| 329 |
|
---|
| 330 | #define d_code(dist) \
|
---|
| 331 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
|
---|
| 332 | /* Mapping from a distance to a distance code. dist is the distance - 1 and
|
---|
| 333 | * must not have side effects. dist_code[256] and dist_code[257] are never
|
---|
| 334 | * used.
|
---|
| 335 | */
|
---|
| 336 |
|
---|
| 337 | #define MAX(a,b) (a >= b ? a : b)
|
---|
| 338 | /* the arguments must not have side effects */
|
---|
| 339 |
|
---|
| 340 | /* ===========================================================================
|
---|
| 341 | * Allocate the match buffer, initialize the various tables and save the
|
---|
| 342 | * location of the internal file attribute (ascii/binary) and method
|
---|
| 343 | * (DEFLATE/STORE).
|
---|
| 344 | */
|
---|
| 345 | void ct_init(attr, methodp)
|
---|
| 346 | ush *attr; /* pointer to internal file attribute */
|
---|
| 347 | int *methodp; /* pointer to compression method */
|
---|
| 348 | {
|
---|
| 349 | int n; /* iterates over tree elements */
|
---|
| 350 | int bits; /* bit counter */
|
---|
| 351 | int length; /* length value */
|
---|
| 352 | int code; /* code value */
|
---|
| 353 | int dist; /* distance index */
|
---|
| 354 |
|
---|
| 355 | file_type = attr;
|
---|
| 356 | file_method = methodp;
|
---|
| 357 | compressed_len = input_len = 0L;
|
---|
| 358 |
|
---|
| 359 | if (static_dtree[0].Len != 0) return; /* ct_init already called */
|
---|
| 360 |
|
---|
| 361 | /* Initialize the mapping length (0..255) -> length code (0..28) */
|
---|
| 362 | length = 0;
|
---|
| 363 | for (code = 0; code < LENGTH_CODES-1; code++) {
|
---|
| 364 | base_length[code] = length;
|
---|
| 365 | for (n = 0; n < (1<<extra_lbits[code]); n++) {
|
---|
| 366 | length_code[length++] = (uch)code;
|
---|
| 367 | }
|
---|
| 368 | }
|
---|
| 369 | Assert (length == 256, "ct_init: length != 256");
|
---|
| 370 | /* Note that the length 255 (match length 258) can be represented
|
---|
| 371 | * in two different ways: code 284 + 5 bits or code 285, so we
|
---|
| 372 | * overwrite length_code[255] to use the best encoding:
|
---|
| 373 | */
|
---|
| 374 | length_code[length-1] = (uch)code;
|
---|
| 375 |
|
---|
| 376 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
---|
| 377 | dist = 0;
|
---|
| 378 | for (code = 0 ; code < 16; code++) {
|
---|
| 379 | base_dist[code] = dist;
|
---|
| 380 | for (n = 0; n < (1<<extra_dbits[code]); n++) {
|
---|
| 381 | dist_code[dist++] = (uch)code;
|
---|
| 382 | }
|
---|
| 383 | }
|
---|
| 384 | Assert (dist == 256, "ct_init: dist != 256");
|
---|
| 385 | dist >>= 7; /* from now on, all distances are divided by 128 */
|
---|
| 386 | for ( ; code < D_CODES; code++) {
|
---|
| 387 | base_dist[code] = dist << 7;
|
---|
| 388 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
|
---|
| 389 | dist_code[256 + dist++] = (uch)code;
|
---|
| 390 | }
|
---|
| 391 | }
|
---|
| 392 | Assert (dist == 256, "ct_init: 256+dist != 512");
|
---|
| 393 |
|
---|
| 394 | /* Construct the codes of the static literal tree */
|
---|
| 395 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
|
---|
| 396 | n = 0;
|
---|
| 397 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
|
---|
| 398 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
|
---|
| 399 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
|
---|
| 400 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
|
---|
| 401 | /* Codes 286 and 287 do not exist, but we must include them in the
|
---|
| 402 | * tree construction to get a canonical Huffman tree (longest code
|
---|
| 403 | * all ones)
|
---|
| 404 | */
|
---|
| 405 | gen_codes((ct_data near *)static_ltree, L_CODES+1);
|
---|
| 406 |
|
---|
| 407 | /* The static distance tree is trivial: */
|
---|
| 408 | for (n = 0; n < D_CODES; n++) {
|
---|
| 409 | static_dtree[n].Len = 5;
|
---|
| 410 | static_dtree[n].Code = bi_reverse(n, 5);
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | /* Initialize the first block of the first file: */
|
---|
| 414 | init_block();
|
---|
| 415 | }
|
---|
| 416 |
|
---|
| 417 | /* ===========================================================================
|
---|
| 418 | * Initialize a new block.
|
---|
| 419 | */
|
---|
| 420 | local void init_block()
|
---|
| 421 | {
|
---|
| 422 | int n; /* iterates over tree elements */
|
---|
| 423 |
|
---|
| 424 | /* Initialize the trees. */
|
---|
| 425 | for (n = 0; n < L_CODES; n++) dyn_ltree[n].Freq = 0;
|
---|
| 426 | for (n = 0; n < D_CODES; n++) dyn_dtree[n].Freq = 0;
|
---|
| 427 | for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
|
---|
| 428 |
|
---|
| 429 | dyn_ltree[END_BLOCK].Freq = 1;
|
---|
| 430 | opt_len = static_len = 0L;
|
---|
| 431 | last_lit = last_dist = last_flags = 0;
|
---|
| 432 | flags = 0; flag_bit = 1;
|
---|
| 433 | }
|
---|
| 434 |
|
---|
| 435 | #define SMALLEST 1
|
---|
| 436 | /* Index within the heap array of least frequent node in the Huffman tree */
|
---|
| 437 |
|
---|
| 438 |
|
---|
| 439 | /* ===========================================================================
|
---|
| 440 | * Remove the smallest element from the heap and recreate the heap with
|
---|
| 441 | * one less element. Updates heap and heap_len.
|
---|
| 442 | */
|
---|
| 443 | #define pqremove(tree, top) \
|
---|
| 444 | {\
|
---|
| 445 | top = heap[SMALLEST]; \
|
---|
| 446 | heap[SMALLEST] = heap[heap_len--]; \
|
---|
| 447 | pqdownheap(tree, SMALLEST); \
|
---|
| 448 | }
|
---|
| 449 |
|
---|
| 450 | /* ===========================================================================
|
---|
| 451 | * Compares to subtrees, using the tree depth as tie breaker when
|
---|
| 452 | * the subtrees have equal frequency. This minimizes the worst case length.
|
---|
| 453 | */
|
---|
| 454 | #define smaller(tree, n, m) \
|
---|
| 455 | (tree[n].Freq < tree[m].Freq || \
|
---|
| 456 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
|
---|
| 457 |
|
---|
| 458 | /* ===========================================================================
|
---|
| 459 | * Restore the heap property by moving down the tree starting at node k,
|
---|
| 460 | * exchanging a node with the smallest of its two sons if necessary, stopping
|
---|
| 461 | * when the heap property is re-established (each father smaller than its
|
---|
| 462 | * two sons).
|
---|
| 463 | */
|
---|
| 464 | local void pqdownheap(tree, k)
|
---|
| 465 | ct_data near *tree; /* the tree to restore */
|
---|
| 466 | int k; /* node to move down */
|
---|
| 467 | {
|
---|
| 468 | int v = heap[k];
|
---|
| 469 | int j = k << 1; /* left son of k */
|
---|
| 470 | while (j <= heap_len) {
|
---|
| 471 | /* Set j to the smallest of the two sons: */
|
---|
| 472 | if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
|
---|
| 473 |
|
---|
| 474 | /* Exit if v is smaller than both sons */
|
---|
| 475 | if (smaller(tree, v, heap[j])) break;
|
---|
| 476 |
|
---|
| 477 | /* Exchange v with the smallest son */
|
---|
| 478 | heap[k] = heap[j]; k = j;
|
---|
| 479 |
|
---|
| 480 | /* And continue down the tree, setting j to the left son of k */
|
---|
| 481 | j <<= 1;
|
---|
| 482 | }
|
---|
| 483 | heap[k] = v;
|
---|
| 484 | }
|
---|
| 485 |
|
---|
| 486 | /* ===========================================================================
|
---|
| 487 | * Compute the optimal bit lengths for a tree and update the total bit length
|
---|
| 488 | * for the current block.
|
---|
| 489 | * IN assertion: the fields freq and dad are set, heap[heap_max] and
|
---|
| 490 | * above are the tree nodes sorted by increasing frequency.
|
---|
| 491 | * OUT assertions: the field len is set to the optimal bit length, the
|
---|
| 492 | * array bl_count contains the frequencies for each bit length.
|
---|
| 493 | * The length opt_len is updated; static_len is also updated if stree is
|
---|
| 494 | * not null.
|
---|
| 495 | */
|
---|
| 496 | local void gen_bitlen(desc)
|
---|
| 497 | tree_desc near *desc; /* the tree descriptor */
|
---|
| 498 | {
|
---|
| 499 | ct_data near *tree = desc->dyn_tree;
|
---|
| 500 | int near *extra = desc->extra_bits;
|
---|
| 501 | int base = desc->extra_base;
|
---|
| 502 | int max_code = desc->max_code;
|
---|
| 503 | int max_length = desc->max_length;
|
---|
| 504 | ct_data near *stree = desc->static_tree;
|
---|
| 505 | int h; /* heap index */
|
---|
| 506 | int n, m; /* iterate over the tree elements */
|
---|
| 507 | int bits; /* bit length */
|
---|
| 508 | int xbits; /* extra bits */
|
---|
| 509 | ush f; /* frequency */
|
---|
| 510 | int overflow = 0; /* number of elements with bit length too large */
|
---|
| 511 |
|
---|
| 512 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
|
---|
| 513 |
|
---|
| 514 | /* In a first pass, compute the optimal bit lengths (which may
|
---|
| 515 | * overflow in the case of the bit length tree).
|
---|
| 516 | */
|
---|
| 517 | tree[heap[heap_max]].Len = 0; /* root of the heap */
|
---|
| 518 |
|
---|
| 519 | for (h = heap_max+1; h < HEAP_SIZE; h++) {
|
---|
| 520 | n = heap[h];
|
---|
| 521 | bits = tree[tree[n].Dad].Len + 1;
|
---|
| 522 | if (bits > max_length) bits = max_length, overflow++;
|
---|
| 523 | tree[n].Len = (ush)bits;
|
---|
| 524 | /* We overwrite tree[n].Dad which is no longer needed */
|
---|
| 525 |
|
---|
| 526 | if (n > max_code) continue; /* not a leaf node */
|
---|
| 527 |
|
---|
| 528 | bl_count[bits]++;
|
---|
| 529 | xbits = 0;
|
---|
| 530 | if (n >= base) xbits = extra[n-base];
|
---|
| 531 | f = tree[n].Freq;
|
---|
| 532 | opt_len += (ulg)f * (bits + xbits);
|
---|
| 533 | if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
|
---|
| 534 | }
|
---|
| 535 | if (overflow == 0) return;
|
---|
| 536 |
|
---|
| 537 | Trace((stderr,"\nbit length overflow\n"));
|
---|
| 538 | /* This happens for example on obj2 and pic of the Calgary corpus */
|
---|
| 539 |
|
---|
| 540 | /* Find the first bit length which could increase: */
|
---|
| 541 | do {
|
---|
| 542 | bits = max_length-1;
|
---|
| 543 | while (bl_count[bits] == 0) bits--;
|
---|
| 544 | bl_count[bits]--; /* move one leaf down the tree */
|
---|
| 545 | bl_count[bits+1] += 2; /* move one overflow item as its brother */
|
---|
| 546 | bl_count[max_length]--;
|
---|
| 547 | /* The brother of the overflow item also moves one step up,
|
---|
| 548 | * but this does not affect bl_count[max_length]
|
---|
| 549 | */
|
---|
| 550 | overflow -= 2;
|
---|
| 551 | } while (overflow > 0);
|
---|
| 552 |
|
---|
| 553 | /* Now recompute all bit lengths, scanning in increasing frequency.
|
---|
| 554 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
---|
| 555 | * lengths instead of fixing only the wrong ones. This idea is taken
|
---|
| 556 | * from 'ar' written by Haruhiko Okumura.)
|
---|
| 557 | */
|
---|
| 558 | for (bits = max_length; bits != 0; bits--) {
|
---|
| 559 | n = bl_count[bits];
|
---|
| 560 | while (n != 0) {
|
---|
| 561 | m = heap[--h];
|
---|
| 562 | if (m > max_code) continue;
|
---|
| 563 | if (tree[m].Len != (unsigned) bits) {
|
---|
| 564 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
|
---|
| 565 | opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
|
---|
| 566 | tree[m].Len = (ush)bits;
|
---|
| 567 | }
|
---|
| 568 | n--;
|
---|
| 569 | }
|
---|
| 570 | }
|
---|
| 571 | }
|
---|
| 572 |
|
---|
| 573 | /* ===========================================================================
|
---|
| 574 | * Generate the codes for a given tree and bit counts (which need not be
|
---|
| 575 | * optimal).
|
---|
| 576 | * IN assertion: the array bl_count contains the bit length statistics for
|
---|
| 577 | * the given tree and the field len is set for all tree elements.
|
---|
| 578 | * OUT assertion: the field code is set for all tree elements of non
|
---|
| 579 | * zero code length.
|
---|
| 580 | */
|
---|
| 581 | local void gen_codes (tree, max_code)
|
---|
| 582 | ct_data near *tree; /* the tree to decorate */
|
---|
| 583 | int max_code; /* largest code with non zero frequency */
|
---|
| 584 | {
|
---|
| 585 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
---|
| 586 | ush code = 0; /* running code value */
|
---|
| 587 | int bits; /* bit index */
|
---|
| 588 | int n; /* code index */
|
---|
| 589 |
|
---|
| 590 | /* The distribution counts are first used to generate the code values
|
---|
| 591 | * without bit reversal.
|
---|
| 592 | */
|
---|
| 593 | for (bits = 1; bits <= MAX_BITS; bits++) {
|
---|
| 594 | next_code[bits] = code = (code + bl_count[bits-1]) << 1;
|
---|
| 595 | }
|
---|
| 596 | /* Check that the bit counts in bl_count are consistent. The last code
|
---|
| 597 | * must be all ones.
|
---|
| 598 | */
|
---|
| 599 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
|
---|
| 600 | "inconsistent bit counts");
|
---|
| 601 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
---|
| 602 |
|
---|
| 603 | for (n = 0; n <= max_code; n++) {
|
---|
| 604 | int len = tree[n].Len;
|
---|
| 605 | if (len == 0) continue;
|
---|
| 606 | /* Now reverse the bits */
|
---|
| 607 | tree[n].Code = bi_reverse(next_code[len]++, len);
|
---|
| 608 |
|
---|
| 609 | Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
---|
| 610 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
|
---|
| 611 | }
|
---|
| 612 | }
|
---|
| 613 |
|
---|
| 614 | /* ===========================================================================
|
---|
| 615 | * Construct one Huffman tree and assigns the code bit strings and lengths.
|
---|
| 616 | * Update the total bit length for the current block.
|
---|
| 617 | * IN assertion: the field freq is set for all tree elements.
|
---|
| 618 | * OUT assertions: the fields len and code are set to the optimal bit length
|
---|
| 619 | * and corresponding code. The length opt_len is updated; static_len is
|
---|
| 620 | * also updated if stree is not null. The field max_code is set.
|
---|
| 621 | */
|
---|
| 622 | local void build_tree(desc)
|
---|
| 623 | tree_desc near *desc; /* the tree descriptor */
|
---|
| 624 | {
|
---|
| 625 | ct_data near *tree = desc->dyn_tree;
|
---|
| 626 | ct_data near *stree = desc->static_tree;
|
---|
| 627 | int elems = desc->elems;
|
---|
| 628 | int n, m; /* iterate over heap elements */
|
---|
| 629 | int max_code = -1; /* largest code with non zero frequency */
|
---|
| 630 | int node = elems; /* next internal node of the tree */
|
---|
| 631 |
|
---|
| 632 | /* Construct the initial heap, with least frequent element in
|
---|
| 633 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
---|
| 634 | * heap[0] is not used.
|
---|
| 635 | */
|
---|
| 636 | heap_len = 0, heap_max = HEAP_SIZE;
|
---|
| 637 |
|
---|
| 638 | for (n = 0; n < elems; n++) {
|
---|
| 639 | if (tree[n].Freq != 0) {
|
---|
| 640 | heap[++heap_len] = max_code = n;
|
---|
| 641 | depth[n] = 0;
|
---|
| 642 | } else {
|
---|
| 643 | tree[n].Len = 0;
|
---|
| 644 | }
|
---|
| 645 | }
|
---|
| 646 |
|
---|
| 647 | /* The pkzip format requires that at least one distance code exists,
|
---|
| 648 | * and that at least one bit should be sent even if there is only one
|
---|
| 649 | * possible code. So to avoid special checks later on we force at least
|
---|
| 650 | * two codes of non zero frequency.
|
---|
| 651 | */
|
---|
| 652 | while (heap_len < 2) {
|
---|
| 653 | int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
|
---|
| 654 | tree[new].Freq = 1;
|
---|
| 655 | depth[new] = 0;
|
---|
| 656 | opt_len--; if (stree) static_len -= stree[new].Len;
|
---|
| 657 | /* new is 0 or 1 so it does not have extra bits */
|
---|
| 658 | }
|
---|
| 659 | desc->max_code = max_code;
|
---|
| 660 |
|
---|
| 661 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
---|
| 662 | * establish sub-heaps of increasing lengths:
|
---|
| 663 | */
|
---|
| 664 | for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
|
---|
| 665 |
|
---|
| 666 | /* Construct the Huffman tree by repeatedly combining the least two
|
---|
| 667 | * frequent nodes.
|
---|
| 668 | */
|
---|
| 669 | do {
|
---|
| 670 | pqremove(tree, n); /* n = node of least frequency */
|
---|
| 671 | m = heap[SMALLEST]; /* m = node of next least frequency */
|
---|
| 672 |
|
---|
| 673 | heap[--heap_max] = n; /* keep the nodes sorted by frequency */
|
---|
| 674 | heap[--heap_max] = m;
|
---|
| 675 |
|
---|
| 676 | /* Create a new node father of n and m */
|
---|
| 677 | tree[node].Freq = tree[n].Freq + tree[m].Freq;
|
---|
| 678 | depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
|
---|
| 679 | tree[n].Dad = tree[m].Dad = (ush)node;
|
---|
| 680 | #ifdef DUMP_BL_TREE
|
---|
| 681 | if (tree == bl_tree) {
|
---|
| 682 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
|
---|
| 683 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
|
---|
| 684 | }
|
---|
| 685 | #endif
|
---|
| 686 | /* and insert the new node in the heap */
|
---|
| 687 | heap[SMALLEST] = node++;
|
---|
| 688 | pqdownheap(tree, SMALLEST);
|
---|
| 689 |
|
---|
| 690 | } while (heap_len >= 2);
|
---|
| 691 |
|
---|
| 692 | heap[--heap_max] = heap[SMALLEST];
|
---|
| 693 |
|
---|
| 694 | /* At this point, the fields freq and dad are set. We can now
|
---|
| 695 | * generate the bit lengths.
|
---|
| 696 | */
|
---|
| 697 | gen_bitlen((tree_desc near *)desc);
|
---|
| 698 |
|
---|
| 699 | /* The field len is now set, we can generate the bit codes */
|
---|
| 700 | gen_codes ((ct_data near *)tree, max_code);
|
---|
| 701 | }
|
---|
| 702 |
|
---|
| 703 | /* ===========================================================================
|
---|
| 704 | * Scan a literal or distance tree to determine the frequencies of the codes
|
---|
| 705 | * in the bit length tree. Updates opt_len to take into account the repeat
|
---|
| 706 | * counts. (The contribution of the bit length codes will be added later
|
---|
| 707 | * during the construction of bl_tree.)
|
---|
| 708 | */
|
---|
| 709 | local void scan_tree (tree, max_code)
|
---|
| 710 | ct_data near *tree; /* the tree to be scanned */
|
---|
| 711 | int max_code; /* and its largest code of non zero frequency */
|
---|
| 712 | {
|
---|
| 713 | int n; /* iterates over all tree elements */
|
---|
| 714 | int prevlen = -1; /* last emitted length */
|
---|
| 715 | int curlen; /* length of current code */
|
---|
| 716 | int nextlen = tree[0].Len; /* length of next code */
|
---|
| 717 | int count = 0; /* repeat count of the current code */
|
---|
| 718 | int max_count = 7; /* max repeat count */
|
---|
| 719 | int min_count = 4; /* min repeat count */
|
---|
| 720 |
|
---|
| 721 | if (nextlen == 0) max_count = 138, min_count = 3;
|
---|
| 722 | tree[max_code+1].Len = (ush)0xffff; /* guard */
|
---|
| 723 |
|
---|
| 724 | for (n = 0; n <= max_code; n++) {
|
---|
| 725 | curlen = nextlen; nextlen = tree[n+1].Len;
|
---|
| 726 | if (++count < max_count && curlen == nextlen) {
|
---|
| 727 | continue;
|
---|
| 728 | } else if (count < min_count) {
|
---|
| 729 | bl_tree[curlen].Freq += count;
|
---|
| 730 | } else if (curlen != 0) {
|
---|
| 731 | if (curlen != prevlen) bl_tree[curlen].Freq++;
|
---|
| 732 | bl_tree[REP_3_6].Freq++;
|
---|
| 733 | } else if (count <= 10) {
|
---|
| 734 | bl_tree[REPZ_3_10].Freq++;
|
---|
| 735 | } else {
|
---|
| 736 | bl_tree[REPZ_11_138].Freq++;
|
---|
| 737 | }
|
---|
| 738 | count = 0; prevlen = curlen;
|
---|
| 739 | if (nextlen == 0) {
|
---|
| 740 | max_count = 138, min_count = 3;
|
---|
| 741 | } else if (curlen == nextlen) {
|
---|
| 742 | max_count = 6, min_count = 3;
|
---|
| 743 | } else {
|
---|
| 744 | max_count = 7, min_count = 4;
|
---|
| 745 | }
|
---|
| 746 | }
|
---|
| 747 | }
|
---|
| 748 |
|
---|
| 749 | /* ===========================================================================
|
---|
| 750 | * Send a literal or distance tree in compressed form, using the codes in
|
---|
| 751 | * bl_tree.
|
---|
| 752 | */
|
---|
| 753 | local void send_tree (tree, max_code)
|
---|
| 754 | ct_data near *tree; /* the tree to be scanned */
|
---|
| 755 | int max_code; /* and its largest code of non zero frequency */
|
---|
| 756 | {
|
---|
| 757 | int n; /* iterates over all tree elements */
|
---|
| 758 | int prevlen = -1; /* last emitted length */
|
---|
| 759 | int curlen; /* length of current code */
|
---|
| 760 | int nextlen = tree[0].Len; /* length of next code */
|
---|
| 761 | int count = 0; /* repeat count of the current code */
|
---|
| 762 | int max_count = 7; /* max repeat count */
|
---|
| 763 | int min_count = 4; /* min repeat count */
|
---|
| 764 |
|
---|
| 765 | /* tree[max_code+1].Len = -1; */ /* guard already set */
|
---|
| 766 | if (nextlen == 0) max_count = 138, min_count = 3;
|
---|
| 767 |
|
---|
| 768 | for (n = 0; n <= max_code; n++) {
|
---|
| 769 | curlen = nextlen; nextlen = tree[n+1].Len;
|
---|
| 770 | if (++count < max_count && curlen == nextlen) {
|
---|
| 771 | continue;
|
---|
| 772 | } else if (count < min_count) {
|
---|
| 773 | do { send_code(curlen, bl_tree); } while (--count != 0);
|
---|
| 774 |
|
---|
| 775 | } else if (curlen != 0) {
|
---|
| 776 | if (curlen != prevlen) {
|
---|
| 777 | send_code(curlen, bl_tree); count--;
|
---|
| 778 | }
|
---|
| 779 | Assert(count >= 3 && count <= 6, " 3_6?");
|
---|
| 780 | send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
|
---|
| 781 |
|
---|
| 782 | } else if (count <= 10) {
|
---|
| 783 | send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
|
---|
| 784 |
|
---|
| 785 | } else {
|
---|
| 786 | send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
|
---|
| 787 | }
|
---|
| 788 | count = 0; prevlen = curlen;
|
---|
| 789 | if (nextlen == 0) {
|
---|
| 790 | max_count = 138, min_count = 3;
|
---|
| 791 | } else if (curlen == nextlen) {
|
---|
| 792 | max_count = 6, min_count = 3;
|
---|
| 793 | } else {
|
---|
| 794 | max_count = 7, min_count = 4;
|
---|
| 795 | }
|
---|
| 796 | }
|
---|
| 797 | }
|
---|
| 798 |
|
---|
| 799 | /* ===========================================================================
|
---|
| 800 | * Construct the Huffman tree for the bit lengths and return the index in
|
---|
| 801 | * bl_order of the last bit length code to send.
|
---|
| 802 | */
|
---|
| 803 | local int build_bl_tree()
|
---|
| 804 | {
|
---|
| 805 | int max_blindex; /* index of last bit length code of non zero freq */
|
---|
| 806 |
|
---|
| 807 | /* Determine the bit length frequencies for literal and distance trees */
|
---|
| 808 | scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
|
---|
| 809 | scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
|
---|
| 810 |
|
---|
| 811 | /* Build the bit length tree: */
|
---|
| 812 | build_tree((tree_desc near *)(&bl_desc));
|
---|
| 813 | /* opt_len now includes the length of the tree representations, except
|
---|
| 814 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
---|
| 815 | */
|
---|
| 816 |
|
---|
| 817 | /* Determine the number of bit length codes to send. The pkzip format
|
---|
| 818 | * requires that at least 4 bit length codes be sent. (appnote.txt says
|
---|
| 819 | * 3 but the actual value used is 4.)
|
---|
| 820 | */
|
---|
| 821 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
|
---|
| 822 | if (bl_tree[bl_order[max_blindex]].Len != 0) break;
|
---|
| 823 | }
|
---|
| 824 | /* Update opt_len to include the bit length tree and counts */
|
---|
| 825 | opt_len += 3*(max_blindex+1) + 5+5+4;
|
---|
| 826 | Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu", opt_len, static_len));
|
---|
| 827 |
|
---|
| 828 | return max_blindex;
|
---|
| 829 | }
|
---|
| 830 |
|
---|
| 831 | /* ===========================================================================
|
---|
| 832 | * Send the header for a block using dynamic Huffman trees: the counts, the
|
---|
| 833 | * lengths of the bit length codes, the literal tree and the distance tree.
|
---|
| 834 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
---|
| 835 | */
|
---|
| 836 | local void send_all_trees(lcodes, dcodes, blcodes)
|
---|
| 837 | int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
---|
| 838 | {
|
---|
| 839 | int rank; /* index in bl_order */
|
---|
| 840 |
|
---|
| 841 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
---|
| 842 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
---|
| 843 | "too many codes");
|
---|
| 844 | Tracev((stderr, "\nbl counts: "));
|
---|
| 845 | send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
|
---|
| 846 | send_bits(dcodes-1, 5);
|
---|
| 847 | send_bits(blcodes-4, 4); /* not -3 as stated in appnote.txt */
|
---|
| 848 | for (rank = 0; rank < blcodes; rank++) {
|
---|
| 849 | Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
|
---|
| 850 | send_bits(bl_tree[bl_order[rank]].Len, 3);
|
---|
| 851 | }
|
---|
| 852 |
|
---|
| 853 | send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
|
---|
| 854 |
|
---|
| 855 | send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
|
---|
| 856 | }
|
---|
| 857 |
|
---|
| 858 | /* ===========================================================================
|
---|
| 859 | * Determine the best encoding for the current block: dynamic trees, static
|
---|
| 860 | * trees or store, and output the encoded block to the zip file. This function
|
---|
| 861 | * returns the total compressed length for the file so far.
|
---|
| 862 | */
|
---|
| 863 | off_t flush_block(buf, stored_len, eof)
|
---|
| 864 | char *buf; /* input block, or NULL if too old */
|
---|
| 865 | ulg stored_len; /* length of input block */
|
---|
| 866 | int eof; /* true if this is the last block for a file */
|
---|
| 867 | {
|
---|
| 868 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
---|
| 869 | int max_blindex; /* index of last bit length code of non zero freq */
|
---|
| 870 |
|
---|
| 871 | flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
|
---|
| 872 |
|
---|
| 873 | /* Check if the file is ascii or binary */
|
---|
| 874 | if (*file_type == (ush)UNKNOWN) set_file_type();
|
---|
| 875 |
|
---|
| 876 | /* Construct the literal and distance trees */
|
---|
| 877 | build_tree((tree_desc near *)(&l_desc));
|
---|
| 878 | Tracev((stderr, "\nlit data: dyn %lu, stat %lu", opt_len, static_len));
|
---|
| 879 |
|
---|
| 880 | build_tree((tree_desc near *)(&d_desc));
|
---|
| 881 | Tracev((stderr, "\ndist data: dyn %lu, stat %lu", opt_len, static_len));
|
---|
| 882 | /* At this point, opt_len and static_len are the total bit lengths of
|
---|
| 883 | * the compressed block data, excluding the tree representations.
|
---|
| 884 | */
|
---|
| 885 |
|
---|
| 886 | /* Build the bit length tree for the above two trees, and get the index
|
---|
| 887 | * in bl_order of the last bit length code to send.
|
---|
| 888 | */
|
---|
| 889 | max_blindex = build_bl_tree();
|
---|
| 890 |
|
---|
| 891 | /* Determine the best encoding. Compute first the block length in bytes */
|
---|
| 892 | opt_lenb = (opt_len+3+7)>>3;
|
---|
| 893 | static_lenb = (static_len+3+7)>>3;
|
---|
| 894 | input_len += stored_len; /* for debugging only */
|
---|
| 895 |
|
---|
| 896 | Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
|
---|
| 897 | opt_lenb, opt_len, static_lenb, static_len, stored_len,
|
---|
| 898 | last_lit, last_dist));
|
---|
| 899 |
|
---|
| 900 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
|
---|
| 901 |
|
---|
| 902 | /* If compression failed and this is the first and last block,
|
---|
| 903 | * and if the zip file can be seeked (to rewrite the local header),
|
---|
| 904 | * the whole file is transformed into a stored file:
|
---|
| 905 | */
|
---|
| 906 | #ifdef FORCE_METHOD
|
---|
| 907 | if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
|
---|
| 908 | #else
|
---|
| 909 | if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
|
---|
| 910 | #endif
|
---|
| 911 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
|
---|
| 912 | if (!buf)
|
---|
| 913 | gzip_error ("block vanished");
|
---|
| 914 |
|
---|
| 915 | copy_block(buf, (unsigned)stored_len, 0); /* without header */
|
---|
| 916 | compressed_len = stored_len << 3;
|
---|
| 917 | *file_method = STORED;
|
---|
| 918 |
|
---|
| 919 | #ifdef FORCE_METHOD
|
---|
| 920 | } else if (level == 2 && buf != (char*)0) { /* force stored block */
|
---|
| 921 | #else
|
---|
| 922 | } else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
|
---|
| 923 | /* 4: two words for the lengths */
|
---|
| 924 | #endif
|
---|
| 925 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
---|
| 926 | * Otherwise we can't have processed more than WSIZE input bytes since
|
---|
| 927 | * the last block flush, because compression would have been
|
---|
| 928 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
---|
| 929 | * transform a block into a stored block.
|
---|
| 930 | */
|
---|
| 931 | send_bits((STORED_BLOCK<<1)+eof, 3); /* send block type */
|
---|
| 932 | compressed_len = (compressed_len + 3 + 7) & ~7L;
|
---|
| 933 | compressed_len += (stored_len + 4) << 3;
|
---|
| 934 |
|
---|
| 935 | copy_block(buf, (unsigned)stored_len, 1); /* with header */
|
---|
| 936 |
|
---|
| 937 | #ifdef FORCE_METHOD
|
---|
| 938 | } else if (level == 3) { /* force static trees */
|
---|
| 939 | #else
|
---|
| 940 | } else if (static_lenb == opt_lenb) {
|
---|
| 941 | #endif
|
---|
| 942 | send_bits((STATIC_TREES<<1)+eof, 3);
|
---|
| 943 | compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree);
|
---|
| 944 | compressed_len += 3 + static_len;
|
---|
| 945 | } else {
|
---|
| 946 | send_bits((DYN_TREES<<1)+eof, 3);
|
---|
| 947 | send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
|
---|
| 948 | compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
|
---|
| 949 | compressed_len += 3 + opt_len;
|
---|
| 950 | }
|
---|
| 951 | Assert (compressed_len == bits_sent, "bad compressed size");
|
---|
| 952 | init_block();
|
---|
| 953 |
|
---|
| 954 | if (eof) {
|
---|
| 955 | Assert (input_len == bytes_in, "bad input size");
|
---|
| 956 | bi_windup();
|
---|
| 957 | compressed_len += 7; /* align on byte boundary */
|
---|
| 958 | }
|
---|
| 959 |
|
---|
| 960 | return compressed_len >> 3;
|
---|
| 961 | }
|
---|
| 962 |
|
---|
| 963 | /* ===========================================================================
|
---|
| 964 | * Save the match info and tally the frequency counts. Return true if
|
---|
| 965 | * the current block must be flushed.
|
---|
| 966 | */
|
---|
| 967 | int ct_tally (dist, lc)
|
---|
| 968 | int dist; /* distance of matched string */
|
---|
| 969 | int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
|
---|
| 970 | {
|
---|
| 971 | l_buf[last_lit++] = (uch)lc;
|
---|
| 972 | if (dist == 0) {
|
---|
| 973 | /* lc is the unmatched char */
|
---|
| 974 | dyn_ltree[lc].Freq++;
|
---|
| 975 | } else {
|
---|
| 976 | /* Here, lc is the match length - MIN_MATCH */
|
---|
| 977 | dist--; /* dist = match distance - 1 */
|
---|
| 978 | Assert((ush)dist < (ush)MAX_DIST &&
|
---|
| 979 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
---|
| 980 | (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
|
---|
| 981 |
|
---|
| 982 | dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
|
---|
| 983 | dyn_dtree[d_code(dist)].Freq++;
|
---|
| 984 |
|
---|
| 985 | d_buf[last_dist++] = (ush)dist;
|
---|
| 986 | flags |= flag_bit;
|
---|
| 987 | }
|
---|
| 988 | flag_bit <<= 1;
|
---|
| 989 |
|
---|
| 990 | /* Output the flags if they fill a byte: */
|
---|
| 991 | if ((last_lit & 7) == 0) {
|
---|
| 992 | flag_buf[last_flags++] = flags;
|
---|
| 993 | flags = 0, flag_bit = 1;
|
---|
| 994 | }
|
---|
| 995 | /* Try to guess if it is profitable to stop the current block here */
|
---|
| 996 | if (level > 2 && (last_lit & 0xfff) == 0) {
|
---|
| 997 | /* Compute an upper bound for the compressed length */
|
---|
| 998 | ulg out_length = (ulg)last_lit*8L;
|
---|
| 999 | ulg in_length = (ulg)strstart-block_start;
|
---|
| 1000 | int dcode;
|
---|
| 1001 | for (dcode = 0; dcode < D_CODES; dcode++) {
|
---|
| 1002 | out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
|
---|
| 1003 | }
|
---|
| 1004 | out_length >>= 3;
|
---|
| 1005 | Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
|
---|
| 1006 | last_lit, last_dist, in_length, out_length,
|
---|
| 1007 | 100L - out_length*100L/in_length));
|
---|
| 1008 | if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
|
---|
| 1009 | }
|
---|
| 1010 | return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
|
---|
| 1011 | /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
|
---|
| 1012 | * on 16 bit machines and because stored blocks are restricted to
|
---|
| 1013 | * 64K-1 bytes.
|
---|
| 1014 | */
|
---|
| 1015 | }
|
---|
| 1016 |
|
---|
| 1017 | /* ===========================================================================
|
---|
| 1018 | * Send the block data compressed using the given Huffman trees
|
---|
| 1019 | */
|
---|
| 1020 | local void compress_block(ltree, dtree)
|
---|
| 1021 | ct_data near *ltree; /* literal tree */
|
---|
| 1022 | ct_data near *dtree; /* distance tree */
|
---|
| 1023 | {
|
---|
| 1024 | unsigned dist; /* distance of matched string */
|
---|
| 1025 | int lc; /* match length or unmatched char (if dist == 0) */
|
---|
| 1026 | unsigned lx = 0; /* running index in l_buf */
|
---|
| 1027 | unsigned dx = 0; /* running index in d_buf */
|
---|
| 1028 | unsigned fx = 0; /* running index in flag_buf */
|
---|
| 1029 | uch flag = 0; /* current flags */
|
---|
| 1030 | unsigned code; /* the code to send */
|
---|
| 1031 | int extra; /* number of extra bits to send */
|
---|
| 1032 |
|
---|
| 1033 | if (last_lit != 0) do {
|
---|
| 1034 | if ((lx & 7) == 0) flag = flag_buf[fx++];
|
---|
| 1035 | lc = l_buf[lx++];
|
---|
| 1036 | if ((flag & 1) == 0) {
|
---|
| 1037 | send_code(lc, ltree); /* send a literal byte */
|
---|
| 1038 | Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
---|
| 1039 | } else {
|
---|
| 1040 | /* Here, lc is the match length - MIN_MATCH */
|
---|
| 1041 | code = length_code[lc];
|
---|
| 1042 | send_code(code+LITERALS+1, ltree); /* send the length code */
|
---|
| 1043 | extra = extra_lbits[code];
|
---|
| 1044 | if (extra != 0) {
|
---|
| 1045 | lc -= base_length[code];
|
---|
| 1046 | send_bits(lc, extra); /* send the extra length bits */
|
---|
| 1047 | }
|
---|
| 1048 | dist = d_buf[dx++];
|
---|
| 1049 | /* Here, dist is the match distance - 1 */
|
---|
| 1050 | code = d_code(dist);
|
---|
| 1051 | Assert (code < D_CODES, "bad d_code");
|
---|
| 1052 |
|
---|
| 1053 | send_code(code, dtree); /* send the distance code */
|
---|
| 1054 | extra = extra_dbits[code];
|
---|
| 1055 | if (extra != 0) {
|
---|
| 1056 | dist -= base_dist[code];
|
---|
| 1057 | send_bits(dist, extra); /* send the extra distance bits */
|
---|
| 1058 | }
|
---|
| 1059 | } /* literal or match pair ? */
|
---|
| 1060 | flag >>= 1;
|
---|
| 1061 | } while (lx < last_lit);
|
---|
| 1062 |
|
---|
| 1063 | send_code(END_BLOCK, ltree);
|
---|
| 1064 | }
|
---|
| 1065 |
|
---|
| 1066 | /* ===========================================================================
|
---|
| 1067 | * Set the file type to ASCII or BINARY, using a crude approximation:
|
---|
| 1068 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
|
---|
| 1069 | * IN assertion: the fields freq of dyn_ltree are set and the total of all
|
---|
| 1070 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
|
---|
| 1071 | */
|
---|
| 1072 | local void set_file_type()
|
---|
| 1073 | {
|
---|
| 1074 | int n = 0;
|
---|
| 1075 | unsigned ascii_freq = 0;
|
---|
| 1076 | unsigned bin_freq = 0;
|
---|
| 1077 | while (n < 7) bin_freq += dyn_ltree[n++].Freq;
|
---|
| 1078 | while (n < 128) ascii_freq += dyn_ltree[n++].Freq;
|
---|
| 1079 | while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
|
---|
| 1080 | *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
|
---|
| 1081 | if (*file_type == BINARY && translate_eol) {
|
---|
| 1082 | warning ("-l used on binary file");
|
---|
| 1083 | }
|
---|
| 1084 | }
|
---|