1 | /* trees.c -- output deflated data using Huffman coding
|
---|
2 |
|
---|
3 | Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
|
---|
4 | Copyright (C) 1992-1993 Jean-loup Gailly
|
---|
5 |
|
---|
6 | This program is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2, or (at your option)
|
---|
9 | any later version.
|
---|
10 |
|
---|
11 | This program is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | GNU General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with this program; if not, write to the Free Software Foundation,
|
---|
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * PURPOSE
|
---|
22 | *
|
---|
23 | * Encode various sets of source values using variable-length
|
---|
24 | * binary code trees.
|
---|
25 | *
|
---|
26 | * DISCUSSION
|
---|
27 | *
|
---|
28 | * The PKZIP "deflation" process uses several Huffman trees. The more
|
---|
29 | * common source values are represented by shorter bit sequences.
|
---|
30 | *
|
---|
31 | * Each code tree is stored in the ZIP file in a compressed form
|
---|
32 | * which is itself a Huffman encoding of the lengths of
|
---|
33 | * all the code strings (in ascending order by source values).
|
---|
34 | * The actual code strings are reconstructed from the lengths in
|
---|
35 | * the UNZIP process, as described in the "application note"
|
---|
36 | * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
|
---|
37 | *
|
---|
38 | * REFERENCES
|
---|
39 | *
|
---|
40 | * Lynch, Thomas J.
|
---|
41 | * Data Compression: Techniques and Applications, pp. 53-55.
|
---|
42 | * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
|
---|
43 | *
|
---|
44 | * Storer, James A.
|
---|
45 | * Data Compression: Methods and Theory, pp. 49-50.
|
---|
46 | * Computer Science Press, 1988. ISBN 0-7167-8156-5.
|
---|
47 | *
|
---|
48 | * Sedgewick, R.
|
---|
49 | * Algorithms, p290.
|
---|
50 | * Addison-Wesley, 1983. ISBN 0-201-06672-6.
|
---|
51 | *
|
---|
52 | * INTERFACE
|
---|
53 | *
|
---|
54 | * void ct_init (ush *attr, int *methodp)
|
---|
55 | * Allocate the match buffer, initialize the various tables and save
|
---|
56 | * the location of the internal file attribute (ascii/binary) and
|
---|
57 | * method (DEFLATE/STORE)
|
---|
58 | *
|
---|
59 | * void ct_tally (int dist, int lc);
|
---|
60 | * Save the match info and tally the frequency counts.
|
---|
61 | *
|
---|
62 | * off_t flush_block (char *buf, ulg stored_len, int eof)
|
---|
63 | * Determine the best encoding for the current block: dynamic trees,
|
---|
64 | * static trees or store, and output the encoded block to the zip
|
---|
65 | * file. Returns the total compressed length for the file so far.
|
---|
66 | *
|
---|
67 | */
|
---|
68 |
|
---|
69 | #include <config.h>
|
---|
70 | #include <ctype.h>
|
---|
71 |
|
---|
72 | #include "tailor.h"
|
---|
73 | #include "gzip.h"
|
---|
74 |
|
---|
75 | #ifdef RCSID
|
---|
76 | static char rcsid[] = "$Id: trees.c,v 1.4 2006/11/20 08:40:33 eggert Exp $";
|
---|
77 | #endif
|
---|
78 |
|
---|
79 | /* ===========================================================================
|
---|
80 | * Constants
|
---|
81 | */
|
---|
82 |
|
---|
83 | #define MAX_BITS 15
|
---|
84 | /* All codes must not exceed MAX_BITS bits */
|
---|
85 |
|
---|
86 | #define MAX_BL_BITS 7
|
---|
87 | /* Bit length codes must not exceed MAX_BL_BITS bits */
|
---|
88 |
|
---|
89 | #define LENGTH_CODES 29
|
---|
90 | /* number of length codes, not counting the special END_BLOCK code */
|
---|
91 |
|
---|
92 | #define LITERALS 256
|
---|
93 | /* number of literal bytes 0..255 */
|
---|
94 |
|
---|
95 | #define END_BLOCK 256
|
---|
96 | /* end of block literal code */
|
---|
97 |
|
---|
98 | #define L_CODES (LITERALS+1+LENGTH_CODES)
|
---|
99 | /* number of Literal or Length codes, including the END_BLOCK code */
|
---|
100 |
|
---|
101 | #define D_CODES 30
|
---|
102 | /* number of distance codes */
|
---|
103 |
|
---|
104 | #define BL_CODES 19
|
---|
105 | /* number of codes used to transfer the bit lengths */
|
---|
106 |
|
---|
107 |
|
---|
108 | local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
|
---|
109 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
|
---|
110 |
|
---|
111 | local int near extra_dbits[D_CODES] /* extra bits for each distance code */
|
---|
112 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
|
---|
113 |
|
---|
114 | local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
|
---|
115 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
|
---|
116 |
|
---|
117 | #define STORED_BLOCK 0
|
---|
118 | #define STATIC_TREES 1
|
---|
119 | #define DYN_TREES 2
|
---|
120 | /* The three kinds of block type */
|
---|
121 |
|
---|
122 | #ifndef LIT_BUFSIZE
|
---|
123 | # ifdef SMALL_MEM
|
---|
124 | # define LIT_BUFSIZE 0x2000
|
---|
125 | # else
|
---|
126 | # ifdef MEDIUM_MEM
|
---|
127 | # define LIT_BUFSIZE 0x4000
|
---|
128 | # else
|
---|
129 | # define LIT_BUFSIZE 0x8000
|
---|
130 | # endif
|
---|
131 | # endif
|
---|
132 | #endif
|
---|
133 | #ifndef DIST_BUFSIZE
|
---|
134 | # define DIST_BUFSIZE LIT_BUFSIZE
|
---|
135 | #endif
|
---|
136 | /* Sizes of match buffers for literals/lengths and distances. There are
|
---|
137 | * 4 reasons for limiting LIT_BUFSIZE to 64K:
|
---|
138 | * - frequencies can be kept in 16 bit counters
|
---|
139 | * - if compression is not successful for the first block, all input data is
|
---|
140 | * still in the window so we can still emit a stored block even when input
|
---|
141 | * comes from standard input. (This can also be done for all blocks if
|
---|
142 | * LIT_BUFSIZE is not greater than 32K.)
|
---|
143 | * - if compression is not successful for a file smaller than 64K, we can
|
---|
144 | * even emit a stored file instead of a stored block (saving 5 bytes).
|
---|
145 | * - creating new Huffman trees less frequently may not provide fast
|
---|
146 | * adaptation to changes in the input data statistics. (Take for
|
---|
147 | * example a binary file with poorly compressible code followed by
|
---|
148 | * a highly compressible string table.) Smaller buffer sizes give
|
---|
149 | * fast adaptation but have of course the overhead of transmitting trees
|
---|
150 | * more frequently.
|
---|
151 | * - I can't count above 4
|
---|
152 | * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
|
---|
153 | * memory at the expense of compression). Some optimizations would be possible
|
---|
154 | * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
|
---|
155 | */
|
---|
156 | #if LIT_BUFSIZE > INBUFSIZ
|
---|
157 | error cannot overlay l_buf and inbuf
|
---|
158 | #endif
|
---|
159 |
|
---|
160 | #define REP_3_6 16
|
---|
161 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */
|
---|
162 |
|
---|
163 | #define REPZ_3_10 17
|
---|
164 | /* repeat a zero length 3-10 times (3 bits of repeat count) */
|
---|
165 |
|
---|
166 | #define REPZ_11_138 18
|
---|
167 | /* repeat a zero length 11-138 times (7 bits of repeat count) */
|
---|
168 |
|
---|
169 | /* ===========================================================================
|
---|
170 | * Local data
|
---|
171 | */
|
---|
172 |
|
---|
173 | /* Data structure describing a single value and its code string. */
|
---|
174 | typedef struct ct_data {
|
---|
175 | union {
|
---|
176 | ush freq; /* frequency count */
|
---|
177 | ush code; /* bit string */
|
---|
178 | } fc;
|
---|
179 | union {
|
---|
180 | ush dad; /* father node in Huffman tree */
|
---|
181 | ush len; /* length of bit string */
|
---|
182 | } dl;
|
---|
183 | } ct_data;
|
---|
184 |
|
---|
185 | #define Freq fc.freq
|
---|
186 | #define Code fc.code
|
---|
187 | #define Dad dl.dad
|
---|
188 | #define Len dl.len
|
---|
189 |
|
---|
190 | #define HEAP_SIZE (2*L_CODES+1)
|
---|
191 | /* maximum heap size */
|
---|
192 |
|
---|
193 | local ct_data near dyn_ltree[HEAP_SIZE]; /* literal and length tree */
|
---|
194 | local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
|
---|
195 |
|
---|
196 | local ct_data near static_ltree[L_CODES+2];
|
---|
197 | /* The static literal tree. Since the bit lengths are imposed, there is no
|
---|
198 | * need for the L_CODES extra codes used during heap construction. However
|
---|
199 | * The codes 286 and 287 are needed to build a canonical tree (see ct_init
|
---|
200 | * below).
|
---|
201 | */
|
---|
202 |
|
---|
203 | local ct_data near static_dtree[D_CODES];
|
---|
204 | /* The static distance tree. (Actually a trivial tree since all codes use
|
---|
205 | * 5 bits.)
|
---|
206 | */
|
---|
207 |
|
---|
208 | local ct_data near bl_tree[2*BL_CODES+1];
|
---|
209 | /* Huffman tree for the bit lengths */
|
---|
210 |
|
---|
211 | typedef struct tree_desc {
|
---|
212 | ct_data near *dyn_tree; /* the dynamic tree */
|
---|
213 | ct_data near *static_tree; /* corresponding static tree or NULL */
|
---|
214 | int near *extra_bits; /* extra bits for each code or NULL */
|
---|
215 | int extra_base; /* base index for extra_bits */
|
---|
216 | int elems; /* max number of elements in the tree */
|
---|
217 | int max_length; /* max bit length for the codes */
|
---|
218 | int max_code; /* largest code with non zero frequency */
|
---|
219 | } tree_desc;
|
---|
220 |
|
---|
221 | local tree_desc near l_desc =
|
---|
222 | {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
|
---|
223 |
|
---|
224 | local tree_desc near d_desc =
|
---|
225 | {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0};
|
---|
226 |
|
---|
227 | local tree_desc near bl_desc =
|
---|
228 | {bl_tree, (ct_data near *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0};
|
---|
229 |
|
---|
230 |
|
---|
231 | local ush near bl_count[MAX_BITS+1];
|
---|
232 | /* number of codes at each bit length for an optimal tree */
|
---|
233 |
|
---|
234 | local uch near bl_order[BL_CODES]
|
---|
235 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
|
---|
236 | /* The lengths of the bit length codes are sent in order of decreasing
|
---|
237 | * probability, to avoid transmitting the lengths for unused bit length codes.
|
---|
238 | */
|
---|
239 |
|
---|
240 | local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
|
---|
241 | local int heap_len; /* number of elements in the heap */
|
---|
242 | local int heap_max; /* element of largest frequency */
|
---|
243 | /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
|
---|
244 | * The same heap array is used to build all trees.
|
---|
245 | */
|
---|
246 |
|
---|
247 | local uch near depth[2*L_CODES+1];
|
---|
248 | /* Depth of each subtree used as tie breaker for trees of equal frequency */
|
---|
249 |
|
---|
250 | local uch length_code[MAX_MATCH-MIN_MATCH+1];
|
---|
251 | /* length code for each normalized match length (0 == MIN_MATCH) */
|
---|
252 |
|
---|
253 | local uch dist_code[512];
|
---|
254 | /* distance codes. The first 256 values correspond to the distances
|
---|
255 | * 3 .. 258, the last 256 values correspond to the top 8 bits of
|
---|
256 | * the 15 bit distances.
|
---|
257 | */
|
---|
258 |
|
---|
259 | local int near base_length[LENGTH_CODES];
|
---|
260 | /* First normalized length for each code (0 = MIN_MATCH) */
|
---|
261 |
|
---|
262 | local int near base_dist[D_CODES];
|
---|
263 | /* First normalized distance for each code (0 = distance of 1) */
|
---|
264 |
|
---|
265 | #define l_buf inbuf
|
---|
266 | /* DECLARE(uch, l_buf, LIT_BUFSIZE); buffer for literals or lengths */
|
---|
267 |
|
---|
268 | /* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
|
---|
269 |
|
---|
270 | local uch near flag_buf[(LIT_BUFSIZE/8)];
|
---|
271 | /* flag_buf is a bit array distinguishing literals from lengths in
|
---|
272 | * l_buf, thus indicating the presence or absence of a distance.
|
---|
273 | */
|
---|
274 |
|
---|
275 | local unsigned last_lit; /* running index in l_buf */
|
---|
276 | local unsigned last_dist; /* running index in d_buf */
|
---|
277 | local unsigned last_flags; /* running index in flag_buf */
|
---|
278 | local uch flags; /* current flags not yet saved in flag_buf */
|
---|
279 | local uch flag_bit; /* current bit used in flags */
|
---|
280 | /* bits are filled in flags starting at bit 0 (least significant).
|
---|
281 | * Note: these flags are overkill in the current code since we don't
|
---|
282 | * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
|
---|
283 | */
|
---|
284 |
|
---|
285 | local ulg opt_len; /* bit length of current block with optimal trees */
|
---|
286 | local ulg static_len; /* bit length of current block with static trees */
|
---|
287 |
|
---|
288 | local off_t compressed_len; /* total bit length of compressed file */
|
---|
289 |
|
---|
290 | local off_t input_len; /* total byte length of input file */
|
---|
291 | /* input_len is for debugging only since we can get it by other means. */
|
---|
292 |
|
---|
293 | ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
|
---|
294 | int *file_method; /* pointer to DEFLATE or STORE */
|
---|
295 |
|
---|
296 | #ifdef DEBUG
|
---|
297 | extern off_t bits_sent; /* bit length of the compressed data */
|
---|
298 | #endif
|
---|
299 |
|
---|
300 | extern long block_start; /* window offset of current block */
|
---|
301 | extern unsigned near strstart; /* window offset of current string */
|
---|
302 |
|
---|
303 | /* ===========================================================================
|
---|
304 | * Local (static) routines in this file.
|
---|
305 | */
|
---|
306 |
|
---|
307 | local void init_block OF((void));
|
---|
308 | local void pqdownheap OF((ct_data near *tree, int k));
|
---|
309 | local void gen_bitlen OF((tree_desc near *desc));
|
---|
310 | local void gen_codes OF((ct_data near *tree, int max_code));
|
---|
311 | local void build_tree OF((tree_desc near *desc));
|
---|
312 | local void scan_tree OF((ct_data near *tree, int max_code));
|
---|
313 | local void send_tree OF((ct_data near *tree, int max_code));
|
---|
314 | local int build_bl_tree OF((void));
|
---|
315 | local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
|
---|
316 | local void compress_block OF((ct_data near *ltree, ct_data near *dtree));
|
---|
317 | local void set_file_type OF((void));
|
---|
318 |
|
---|
319 |
|
---|
320 | #ifndef DEBUG
|
---|
321 | # define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
|
---|
322 | /* Send a code of the given tree. c and tree must not have side effects */
|
---|
323 |
|
---|
324 | #else /* DEBUG */
|
---|
325 | # define send_code(c, tree) \
|
---|
326 | { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
|
---|
327 | send_bits(tree[c].Code, tree[c].Len); }
|
---|
328 | #endif
|
---|
329 |
|
---|
330 | #define d_code(dist) \
|
---|
331 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
|
---|
332 | /* Mapping from a distance to a distance code. dist is the distance - 1 and
|
---|
333 | * must not have side effects. dist_code[256] and dist_code[257] are never
|
---|
334 | * used.
|
---|
335 | */
|
---|
336 |
|
---|
337 | #define MAX(a,b) (a >= b ? a : b)
|
---|
338 | /* the arguments must not have side effects */
|
---|
339 |
|
---|
340 | /* ===========================================================================
|
---|
341 | * Allocate the match buffer, initialize the various tables and save the
|
---|
342 | * location of the internal file attribute (ascii/binary) and method
|
---|
343 | * (DEFLATE/STORE).
|
---|
344 | */
|
---|
345 | void ct_init(attr, methodp)
|
---|
346 | ush *attr; /* pointer to internal file attribute */
|
---|
347 | int *methodp; /* pointer to compression method */
|
---|
348 | {
|
---|
349 | int n; /* iterates over tree elements */
|
---|
350 | int bits; /* bit counter */
|
---|
351 | int length; /* length value */
|
---|
352 | int code; /* code value */
|
---|
353 | int dist; /* distance index */
|
---|
354 |
|
---|
355 | file_type = attr;
|
---|
356 | file_method = methodp;
|
---|
357 | compressed_len = input_len = 0L;
|
---|
358 |
|
---|
359 | if (static_dtree[0].Len != 0) return; /* ct_init already called */
|
---|
360 |
|
---|
361 | /* Initialize the mapping length (0..255) -> length code (0..28) */
|
---|
362 | length = 0;
|
---|
363 | for (code = 0; code < LENGTH_CODES-1; code++) {
|
---|
364 | base_length[code] = length;
|
---|
365 | for (n = 0; n < (1<<extra_lbits[code]); n++) {
|
---|
366 | length_code[length++] = (uch)code;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | Assert (length == 256, "ct_init: length != 256");
|
---|
370 | /* Note that the length 255 (match length 258) can be represented
|
---|
371 | * in two different ways: code 284 + 5 bits or code 285, so we
|
---|
372 | * overwrite length_code[255] to use the best encoding:
|
---|
373 | */
|
---|
374 | length_code[length-1] = (uch)code;
|
---|
375 |
|
---|
376 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
|
---|
377 | dist = 0;
|
---|
378 | for (code = 0 ; code < 16; code++) {
|
---|
379 | base_dist[code] = dist;
|
---|
380 | for (n = 0; n < (1<<extra_dbits[code]); n++) {
|
---|
381 | dist_code[dist++] = (uch)code;
|
---|
382 | }
|
---|
383 | }
|
---|
384 | Assert (dist == 256, "ct_init: dist != 256");
|
---|
385 | dist >>= 7; /* from now on, all distances are divided by 128 */
|
---|
386 | for ( ; code < D_CODES; code++) {
|
---|
387 | base_dist[code] = dist << 7;
|
---|
388 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
|
---|
389 | dist_code[256 + dist++] = (uch)code;
|
---|
390 | }
|
---|
391 | }
|
---|
392 | Assert (dist == 256, "ct_init: 256+dist != 512");
|
---|
393 |
|
---|
394 | /* Construct the codes of the static literal tree */
|
---|
395 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
|
---|
396 | n = 0;
|
---|
397 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
|
---|
398 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
|
---|
399 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
|
---|
400 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
|
---|
401 | /* Codes 286 and 287 do not exist, but we must include them in the
|
---|
402 | * tree construction to get a canonical Huffman tree (longest code
|
---|
403 | * all ones)
|
---|
404 | */
|
---|
405 | gen_codes((ct_data near *)static_ltree, L_CODES+1);
|
---|
406 |
|
---|
407 | /* The static distance tree is trivial: */
|
---|
408 | for (n = 0; n < D_CODES; n++) {
|
---|
409 | static_dtree[n].Len = 5;
|
---|
410 | static_dtree[n].Code = bi_reverse(n, 5);
|
---|
411 | }
|
---|
412 |
|
---|
413 | /* Initialize the first block of the first file: */
|
---|
414 | init_block();
|
---|
415 | }
|
---|
416 |
|
---|
417 | /* ===========================================================================
|
---|
418 | * Initialize a new block.
|
---|
419 | */
|
---|
420 | local void init_block()
|
---|
421 | {
|
---|
422 | int n; /* iterates over tree elements */
|
---|
423 |
|
---|
424 | /* Initialize the trees. */
|
---|
425 | for (n = 0; n < L_CODES; n++) dyn_ltree[n].Freq = 0;
|
---|
426 | for (n = 0; n < D_CODES; n++) dyn_dtree[n].Freq = 0;
|
---|
427 | for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
|
---|
428 |
|
---|
429 | dyn_ltree[END_BLOCK].Freq = 1;
|
---|
430 | opt_len = static_len = 0L;
|
---|
431 | last_lit = last_dist = last_flags = 0;
|
---|
432 | flags = 0; flag_bit = 1;
|
---|
433 | }
|
---|
434 |
|
---|
435 | #define SMALLEST 1
|
---|
436 | /* Index within the heap array of least frequent node in the Huffman tree */
|
---|
437 |
|
---|
438 |
|
---|
439 | /* ===========================================================================
|
---|
440 | * Remove the smallest element from the heap and recreate the heap with
|
---|
441 | * one less element. Updates heap and heap_len.
|
---|
442 | */
|
---|
443 | #define pqremove(tree, top) \
|
---|
444 | {\
|
---|
445 | top = heap[SMALLEST]; \
|
---|
446 | heap[SMALLEST] = heap[heap_len--]; \
|
---|
447 | pqdownheap(tree, SMALLEST); \
|
---|
448 | }
|
---|
449 |
|
---|
450 | /* ===========================================================================
|
---|
451 | * Compares to subtrees, using the tree depth as tie breaker when
|
---|
452 | * the subtrees have equal frequency. This minimizes the worst case length.
|
---|
453 | */
|
---|
454 | #define smaller(tree, n, m) \
|
---|
455 | (tree[n].Freq < tree[m].Freq || \
|
---|
456 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
|
---|
457 |
|
---|
458 | /* ===========================================================================
|
---|
459 | * Restore the heap property by moving down the tree starting at node k,
|
---|
460 | * exchanging a node with the smallest of its two sons if necessary, stopping
|
---|
461 | * when the heap property is re-established (each father smaller than its
|
---|
462 | * two sons).
|
---|
463 | */
|
---|
464 | local void pqdownheap(tree, k)
|
---|
465 | ct_data near *tree; /* the tree to restore */
|
---|
466 | int k; /* node to move down */
|
---|
467 | {
|
---|
468 | int v = heap[k];
|
---|
469 | int j = k << 1; /* left son of k */
|
---|
470 | while (j <= heap_len) {
|
---|
471 | /* Set j to the smallest of the two sons: */
|
---|
472 | if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
|
---|
473 |
|
---|
474 | /* Exit if v is smaller than both sons */
|
---|
475 | if (smaller(tree, v, heap[j])) break;
|
---|
476 |
|
---|
477 | /* Exchange v with the smallest son */
|
---|
478 | heap[k] = heap[j]; k = j;
|
---|
479 |
|
---|
480 | /* And continue down the tree, setting j to the left son of k */
|
---|
481 | j <<= 1;
|
---|
482 | }
|
---|
483 | heap[k] = v;
|
---|
484 | }
|
---|
485 |
|
---|
486 | /* ===========================================================================
|
---|
487 | * Compute the optimal bit lengths for a tree and update the total bit length
|
---|
488 | * for the current block.
|
---|
489 | * IN assertion: the fields freq and dad are set, heap[heap_max] and
|
---|
490 | * above are the tree nodes sorted by increasing frequency.
|
---|
491 | * OUT assertions: the field len is set to the optimal bit length, the
|
---|
492 | * array bl_count contains the frequencies for each bit length.
|
---|
493 | * The length opt_len is updated; static_len is also updated if stree is
|
---|
494 | * not null.
|
---|
495 | */
|
---|
496 | local void gen_bitlen(desc)
|
---|
497 | tree_desc near *desc; /* the tree descriptor */
|
---|
498 | {
|
---|
499 | ct_data near *tree = desc->dyn_tree;
|
---|
500 | int near *extra = desc->extra_bits;
|
---|
501 | int base = desc->extra_base;
|
---|
502 | int max_code = desc->max_code;
|
---|
503 | int max_length = desc->max_length;
|
---|
504 | ct_data near *stree = desc->static_tree;
|
---|
505 | int h; /* heap index */
|
---|
506 | int n, m; /* iterate over the tree elements */
|
---|
507 | int bits; /* bit length */
|
---|
508 | int xbits; /* extra bits */
|
---|
509 | ush f; /* frequency */
|
---|
510 | int overflow = 0; /* number of elements with bit length too large */
|
---|
511 |
|
---|
512 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
|
---|
513 |
|
---|
514 | /* In a first pass, compute the optimal bit lengths (which may
|
---|
515 | * overflow in the case of the bit length tree).
|
---|
516 | */
|
---|
517 | tree[heap[heap_max]].Len = 0; /* root of the heap */
|
---|
518 |
|
---|
519 | for (h = heap_max+1; h < HEAP_SIZE; h++) {
|
---|
520 | n = heap[h];
|
---|
521 | bits = tree[tree[n].Dad].Len + 1;
|
---|
522 | if (bits > max_length) bits = max_length, overflow++;
|
---|
523 | tree[n].Len = (ush)bits;
|
---|
524 | /* We overwrite tree[n].Dad which is no longer needed */
|
---|
525 |
|
---|
526 | if (n > max_code) continue; /* not a leaf node */
|
---|
527 |
|
---|
528 | bl_count[bits]++;
|
---|
529 | xbits = 0;
|
---|
530 | if (n >= base) xbits = extra[n-base];
|
---|
531 | f = tree[n].Freq;
|
---|
532 | opt_len += (ulg)f * (bits + xbits);
|
---|
533 | if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
|
---|
534 | }
|
---|
535 | if (overflow == 0) return;
|
---|
536 |
|
---|
537 | Trace((stderr,"\nbit length overflow\n"));
|
---|
538 | /* This happens for example on obj2 and pic of the Calgary corpus */
|
---|
539 |
|
---|
540 | /* Find the first bit length which could increase: */
|
---|
541 | do {
|
---|
542 | bits = max_length-1;
|
---|
543 | while (bl_count[bits] == 0) bits--;
|
---|
544 | bl_count[bits]--; /* move one leaf down the tree */
|
---|
545 | bl_count[bits+1] += 2; /* move one overflow item as its brother */
|
---|
546 | bl_count[max_length]--;
|
---|
547 | /* The brother of the overflow item also moves one step up,
|
---|
548 | * but this does not affect bl_count[max_length]
|
---|
549 | */
|
---|
550 | overflow -= 2;
|
---|
551 | } while (overflow > 0);
|
---|
552 |
|
---|
553 | /* Now recompute all bit lengths, scanning in increasing frequency.
|
---|
554 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
|
---|
555 | * lengths instead of fixing only the wrong ones. This idea is taken
|
---|
556 | * from 'ar' written by Haruhiko Okumura.)
|
---|
557 | */
|
---|
558 | for (bits = max_length; bits != 0; bits--) {
|
---|
559 | n = bl_count[bits];
|
---|
560 | while (n != 0) {
|
---|
561 | m = heap[--h];
|
---|
562 | if (m > max_code) continue;
|
---|
563 | if (tree[m].Len != (unsigned) bits) {
|
---|
564 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
|
---|
565 | opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
|
---|
566 | tree[m].Len = (ush)bits;
|
---|
567 | }
|
---|
568 | n--;
|
---|
569 | }
|
---|
570 | }
|
---|
571 | }
|
---|
572 |
|
---|
573 | /* ===========================================================================
|
---|
574 | * Generate the codes for a given tree and bit counts (which need not be
|
---|
575 | * optimal).
|
---|
576 | * IN assertion: the array bl_count contains the bit length statistics for
|
---|
577 | * the given tree and the field len is set for all tree elements.
|
---|
578 | * OUT assertion: the field code is set for all tree elements of non
|
---|
579 | * zero code length.
|
---|
580 | */
|
---|
581 | local void gen_codes (tree, max_code)
|
---|
582 | ct_data near *tree; /* the tree to decorate */
|
---|
583 | int max_code; /* largest code with non zero frequency */
|
---|
584 | {
|
---|
585 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */
|
---|
586 | ush code = 0; /* running code value */
|
---|
587 | int bits; /* bit index */
|
---|
588 | int n; /* code index */
|
---|
589 |
|
---|
590 | /* The distribution counts are first used to generate the code values
|
---|
591 | * without bit reversal.
|
---|
592 | */
|
---|
593 | for (bits = 1; bits <= MAX_BITS; bits++) {
|
---|
594 | next_code[bits] = code = (code + bl_count[bits-1]) << 1;
|
---|
595 | }
|
---|
596 | /* Check that the bit counts in bl_count are consistent. The last code
|
---|
597 | * must be all ones.
|
---|
598 | */
|
---|
599 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
|
---|
600 | "inconsistent bit counts");
|
---|
601 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
|
---|
602 |
|
---|
603 | for (n = 0; n <= max_code; n++) {
|
---|
604 | int len = tree[n].Len;
|
---|
605 | if (len == 0) continue;
|
---|
606 | /* Now reverse the bits */
|
---|
607 | tree[n].Code = bi_reverse(next_code[len]++, len);
|
---|
608 |
|
---|
609 | Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
|
---|
610 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
|
---|
611 | }
|
---|
612 | }
|
---|
613 |
|
---|
614 | /* ===========================================================================
|
---|
615 | * Construct one Huffman tree and assigns the code bit strings and lengths.
|
---|
616 | * Update the total bit length for the current block.
|
---|
617 | * IN assertion: the field freq is set for all tree elements.
|
---|
618 | * OUT assertions: the fields len and code are set to the optimal bit length
|
---|
619 | * and corresponding code. The length opt_len is updated; static_len is
|
---|
620 | * also updated if stree is not null. The field max_code is set.
|
---|
621 | */
|
---|
622 | local void build_tree(desc)
|
---|
623 | tree_desc near *desc; /* the tree descriptor */
|
---|
624 | {
|
---|
625 | ct_data near *tree = desc->dyn_tree;
|
---|
626 | ct_data near *stree = desc->static_tree;
|
---|
627 | int elems = desc->elems;
|
---|
628 | int n, m; /* iterate over heap elements */
|
---|
629 | int max_code = -1; /* largest code with non zero frequency */
|
---|
630 | int node = elems; /* next internal node of the tree */
|
---|
631 |
|
---|
632 | /* Construct the initial heap, with least frequent element in
|
---|
633 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
|
---|
634 | * heap[0] is not used.
|
---|
635 | */
|
---|
636 | heap_len = 0, heap_max = HEAP_SIZE;
|
---|
637 |
|
---|
638 | for (n = 0; n < elems; n++) {
|
---|
639 | if (tree[n].Freq != 0) {
|
---|
640 | heap[++heap_len] = max_code = n;
|
---|
641 | depth[n] = 0;
|
---|
642 | } else {
|
---|
643 | tree[n].Len = 0;
|
---|
644 | }
|
---|
645 | }
|
---|
646 |
|
---|
647 | /* The pkzip format requires that at least one distance code exists,
|
---|
648 | * and that at least one bit should be sent even if there is only one
|
---|
649 | * possible code. So to avoid special checks later on we force at least
|
---|
650 | * two codes of non zero frequency.
|
---|
651 | */
|
---|
652 | while (heap_len < 2) {
|
---|
653 | int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
|
---|
654 | tree[new].Freq = 1;
|
---|
655 | depth[new] = 0;
|
---|
656 | opt_len--; if (stree) static_len -= stree[new].Len;
|
---|
657 | /* new is 0 or 1 so it does not have extra bits */
|
---|
658 | }
|
---|
659 | desc->max_code = max_code;
|
---|
660 |
|
---|
661 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
|
---|
662 | * establish sub-heaps of increasing lengths:
|
---|
663 | */
|
---|
664 | for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
|
---|
665 |
|
---|
666 | /* Construct the Huffman tree by repeatedly combining the least two
|
---|
667 | * frequent nodes.
|
---|
668 | */
|
---|
669 | do {
|
---|
670 | pqremove(tree, n); /* n = node of least frequency */
|
---|
671 | m = heap[SMALLEST]; /* m = node of next least frequency */
|
---|
672 |
|
---|
673 | heap[--heap_max] = n; /* keep the nodes sorted by frequency */
|
---|
674 | heap[--heap_max] = m;
|
---|
675 |
|
---|
676 | /* Create a new node father of n and m */
|
---|
677 | tree[node].Freq = tree[n].Freq + tree[m].Freq;
|
---|
678 | depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
|
---|
679 | tree[n].Dad = tree[m].Dad = (ush)node;
|
---|
680 | #ifdef DUMP_BL_TREE
|
---|
681 | if (tree == bl_tree) {
|
---|
682 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
|
---|
683 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
|
---|
684 | }
|
---|
685 | #endif
|
---|
686 | /* and insert the new node in the heap */
|
---|
687 | heap[SMALLEST] = node++;
|
---|
688 | pqdownheap(tree, SMALLEST);
|
---|
689 |
|
---|
690 | } while (heap_len >= 2);
|
---|
691 |
|
---|
692 | heap[--heap_max] = heap[SMALLEST];
|
---|
693 |
|
---|
694 | /* At this point, the fields freq and dad are set. We can now
|
---|
695 | * generate the bit lengths.
|
---|
696 | */
|
---|
697 | gen_bitlen((tree_desc near *)desc);
|
---|
698 |
|
---|
699 | /* The field len is now set, we can generate the bit codes */
|
---|
700 | gen_codes ((ct_data near *)tree, max_code);
|
---|
701 | }
|
---|
702 |
|
---|
703 | /* ===========================================================================
|
---|
704 | * Scan a literal or distance tree to determine the frequencies of the codes
|
---|
705 | * in the bit length tree. Updates opt_len to take into account the repeat
|
---|
706 | * counts. (The contribution of the bit length codes will be added later
|
---|
707 | * during the construction of bl_tree.)
|
---|
708 | */
|
---|
709 | local void scan_tree (tree, max_code)
|
---|
710 | ct_data near *tree; /* the tree to be scanned */
|
---|
711 | int max_code; /* and its largest code of non zero frequency */
|
---|
712 | {
|
---|
713 | int n; /* iterates over all tree elements */
|
---|
714 | int prevlen = -1; /* last emitted length */
|
---|
715 | int curlen; /* length of current code */
|
---|
716 | int nextlen = tree[0].Len; /* length of next code */
|
---|
717 | int count = 0; /* repeat count of the current code */
|
---|
718 | int max_count = 7; /* max repeat count */
|
---|
719 | int min_count = 4; /* min repeat count */
|
---|
720 |
|
---|
721 | if (nextlen == 0) max_count = 138, min_count = 3;
|
---|
722 | tree[max_code+1].Len = (ush)0xffff; /* guard */
|
---|
723 |
|
---|
724 | for (n = 0; n <= max_code; n++) {
|
---|
725 | curlen = nextlen; nextlen = tree[n+1].Len;
|
---|
726 | if (++count < max_count && curlen == nextlen) {
|
---|
727 | continue;
|
---|
728 | } else if (count < min_count) {
|
---|
729 | bl_tree[curlen].Freq += count;
|
---|
730 | } else if (curlen != 0) {
|
---|
731 | if (curlen != prevlen) bl_tree[curlen].Freq++;
|
---|
732 | bl_tree[REP_3_6].Freq++;
|
---|
733 | } else if (count <= 10) {
|
---|
734 | bl_tree[REPZ_3_10].Freq++;
|
---|
735 | } else {
|
---|
736 | bl_tree[REPZ_11_138].Freq++;
|
---|
737 | }
|
---|
738 | count = 0; prevlen = curlen;
|
---|
739 | if (nextlen == 0) {
|
---|
740 | max_count = 138, min_count = 3;
|
---|
741 | } else if (curlen == nextlen) {
|
---|
742 | max_count = 6, min_count = 3;
|
---|
743 | } else {
|
---|
744 | max_count = 7, min_count = 4;
|
---|
745 | }
|
---|
746 | }
|
---|
747 | }
|
---|
748 |
|
---|
749 | /* ===========================================================================
|
---|
750 | * Send a literal or distance tree in compressed form, using the codes in
|
---|
751 | * bl_tree.
|
---|
752 | */
|
---|
753 | local void send_tree (tree, max_code)
|
---|
754 | ct_data near *tree; /* the tree to be scanned */
|
---|
755 | int max_code; /* and its largest code of non zero frequency */
|
---|
756 | {
|
---|
757 | int n; /* iterates over all tree elements */
|
---|
758 | int prevlen = -1; /* last emitted length */
|
---|
759 | int curlen; /* length of current code */
|
---|
760 | int nextlen = tree[0].Len; /* length of next code */
|
---|
761 | int count = 0; /* repeat count of the current code */
|
---|
762 | int max_count = 7; /* max repeat count */
|
---|
763 | int min_count = 4; /* min repeat count */
|
---|
764 |
|
---|
765 | /* tree[max_code+1].Len = -1; */ /* guard already set */
|
---|
766 | if (nextlen == 0) max_count = 138, min_count = 3;
|
---|
767 |
|
---|
768 | for (n = 0; n <= max_code; n++) {
|
---|
769 | curlen = nextlen; nextlen = tree[n+1].Len;
|
---|
770 | if (++count < max_count && curlen == nextlen) {
|
---|
771 | continue;
|
---|
772 | } else if (count < min_count) {
|
---|
773 | do { send_code(curlen, bl_tree); } while (--count != 0);
|
---|
774 |
|
---|
775 | } else if (curlen != 0) {
|
---|
776 | if (curlen != prevlen) {
|
---|
777 | send_code(curlen, bl_tree); count--;
|
---|
778 | }
|
---|
779 | Assert(count >= 3 && count <= 6, " 3_6?");
|
---|
780 | send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
|
---|
781 |
|
---|
782 | } else if (count <= 10) {
|
---|
783 | send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
|
---|
784 |
|
---|
785 | } else {
|
---|
786 | send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
|
---|
787 | }
|
---|
788 | count = 0; prevlen = curlen;
|
---|
789 | if (nextlen == 0) {
|
---|
790 | max_count = 138, min_count = 3;
|
---|
791 | } else if (curlen == nextlen) {
|
---|
792 | max_count = 6, min_count = 3;
|
---|
793 | } else {
|
---|
794 | max_count = 7, min_count = 4;
|
---|
795 | }
|
---|
796 | }
|
---|
797 | }
|
---|
798 |
|
---|
799 | /* ===========================================================================
|
---|
800 | * Construct the Huffman tree for the bit lengths and return the index in
|
---|
801 | * bl_order of the last bit length code to send.
|
---|
802 | */
|
---|
803 | local int build_bl_tree()
|
---|
804 | {
|
---|
805 | int max_blindex; /* index of last bit length code of non zero freq */
|
---|
806 |
|
---|
807 | /* Determine the bit length frequencies for literal and distance trees */
|
---|
808 | scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
|
---|
809 | scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
|
---|
810 |
|
---|
811 | /* Build the bit length tree: */
|
---|
812 | build_tree((tree_desc near *)(&bl_desc));
|
---|
813 | /* opt_len now includes the length of the tree representations, except
|
---|
814 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
|
---|
815 | */
|
---|
816 |
|
---|
817 | /* Determine the number of bit length codes to send. The pkzip format
|
---|
818 | * requires that at least 4 bit length codes be sent. (appnote.txt says
|
---|
819 | * 3 but the actual value used is 4.)
|
---|
820 | */
|
---|
821 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
|
---|
822 | if (bl_tree[bl_order[max_blindex]].Len != 0) break;
|
---|
823 | }
|
---|
824 | /* Update opt_len to include the bit length tree and counts */
|
---|
825 | opt_len += 3*(max_blindex+1) + 5+5+4;
|
---|
826 | Tracev((stderr, "\ndyn trees: dyn %lu, stat %lu", opt_len, static_len));
|
---|
827 |
|
---|
828 | return max_blindex;
|
---|
829 | }
|
---|
830 |
|
---|
831 | /* ===========================================================================
|
---|
832 | * Send the header for a block using dynamic Huffman trees: the counts, the
|
---|
833 | * lengths of the bit length codes, the literal tree and the distance tree.
|
---|
834 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
|
---|
835 | */
|
---|
836 | local void send_all_trees(lcodes, dcodes, blcodes)
|
---|
837 | int lcodes, dcodes, blcodes; /* number of codes for each tree */
|
---|
838 | {
|
---|
839 | int rank; /* index in bl_order */
|
---|
840 |
|
---|
841 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
|
---|
842 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
|
---|
843 | "too many codes");
|
---|
844 | Tracev((stderr, "\nbl counts: "));
|
---|
845 | send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
|
---|
846 | send_bits(dcodes-1, 5);
|
---|
847 | send_bits(blcodes-4, 4); /* not -3 as stated in appnote.txt */
|
---|
848 | for (rank = 0; rank < blcodes; rank++) {
|
---|
849 | Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
|
---|
850 | send_bits(bl_tree[bl_order[rank]].Len, 3);
|
---|
851 | }
|
---|
852 |
|
---|
853 | send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
|
---|
854 |
|
---|
855 | send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
|
---|
856 | }
|
---|
857 |
|
---|
858 | /* ===========================================================================
|
---|
859 | * Determine the best encoding for the current block: dynamic trees, static
|
---|
860 | * trees or store, and output the encoded block to the zip file. This function
|
---|
861 | * returns the total compressed length for the file so far.
|
---|
862 | */
|
---|
863 | off_t flush_block(buf, stored_len, eof)
|
---|
864 | char *buf; /* input block, or NULL if too old */
|
---|
865 | ulg stored_len; /* length of input block */
|
---|
866 | int eof; /* true if this is the last block for a file */
|
---|
867 | {
|
---|
868 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
|
---|
869 | int max_blindex; /* index of last bit length code of non zero freq */
|
---|
870 |
|
---|
871 | flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
|
---|
872 |
|
---|
873 | /* Check if the file is ascii or binary */
|
---|
874 | if (*file_type == (ush)UNKNOWN) set_file_type();
|
---|
875 |
|
---|
876 | /* Construct the literal and distance trees */
|
---|
877 | build_tree((tree_desc near *)(&l_desc));
|
---|
878 | Tracev((stderr, "\nlit data: dyn %lu, stat %lu", opt_len, static_len));
|
---|
879 |
|
---|
880 | build_tree((tree_desc near *)(&d_desc));
|
---|
881 | Tracev((stderr, "\ndist data: dyn %lu, stat %lu", opt_len, static_len));
|
---|
882 | /* At this point, opt_len and static_len are the total bit lengths of
|
---|
883 | * the compressed block data, excluding the tree representations.
|
---|
884 | */
|
---|
885 |
|
---|
886 | /* Build the bit length tree for the above two trees, and get the index
|
---|
887 | * in bl_order of the last bit length code to send.
|
---|
888 | */
|
---|
889 | max_blindex = build_bl_tree();
|
---|
890 |
|
---|
891 | /* Determine the best encoding. Compute first the block length in bytes */
|
---|
892 | opt_lenb = (opt_len+3+7)>>3;
|
---|
893 | static_lenb = (static_len+3+7)>>3;
|
---|
894 | input_len += stored_len; /* for debugging only */
|
---|
895 |
|
---|
896 | Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
|
---|
897 | opt_lenb, opt_len, static_lenb, static_len, stored_len,
|
---|
898 | last_lit, last_dist));
|
---|
899 |
|
---|
900 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
|
---|
901 |
|
---|
902 | /* If compression failed and this is the first and last block,
|
---|
903 | * and if the zip file can be seeked (to rewrite the local header),
|
---|
904 | * the whole file is transformed into a stored file:
|
---|
905 | */
|
---|
906 | #ifdef FORCE_METHOD
|
---|
907 | if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
|
---|
908 | #else
|
---|
909 | if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
|
---|
910 | #endif
|
---|
911 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
|
---|
912 | if (!buf)
|
---|
913 | gzip_error ("block vanished");
|
---|
914 |
|
---|
915 | copy_block(buf, (unsigned)stored_len, 0); /* without header */
|
---|
916 | compressed_len = stored_len << 3;
|
---|
917 | *file_method = STORED;
|
---|
918 |
|
---|
919 | #ifdef FORCE_METHOD
|
---|
920 | } else if (level == 2 && buf != (char*)0) { /* force stored block */
|
---|
921 | #else
|
---|
922 | } else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
|
---|
923 | /* 4: two words for the lengths */
|
---|
924 | #endif
|
---|
925 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
|
---|
926 | * Otherwise we can't have processed more than WSIZE input bytes since
|
---|
927 | * the last block flush, because compression would have been
|
---|
928 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
|
---|
929 | * transform a block into a stored block.
|
---|
930 | */
|
---|
931 | send_bits((STORED_BLOCK<<1)+eof, 3); /* send block type */
|
---|
932 | compressed_len = (compressed_len + 3 + 7) & ~7L;
|
---|
933 | compressed_len += (stored_len + 4) << 3;
|
---|
934 |
|
---|
935 | copy_block(buf, (unsigned)stored_len, 1); /* with header */
|
---|
936 |
|
---|
937 | #ifdef FORCE_METHOD
|
---|
938 | } else if (level == 3) { /* force static trees */
|
---|
939 | #else
|
---|
940 | } else if (static_lenb == opt_lenb) {
|
---|
941 | #endif
|
---|
942 | send_bits((STATIC_TREES<<1)+eof, 3);
|
---|
943 | compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree);
|
---|
944 | compressed_len += 3 + static_len;
|
---|
945 | } else {
|
---|
946 | send_bits((DYN_TREES<<1)+eof, 3);
|
---|
947 | send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
|
---|
948 | compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
|
---|
949 | compressed_len += 3 + opt_len;
|
---|
950 | }
|
---|
951 | Assert (compressed_len == bits_sent, "bad compressed size");
|
---|
952 | init_block();
|
---|
953 |
|
---|
954 | if (eof) {
|
---|
955 | Assert (input_len == bytes_in, "bad input size");
|
---|
956 | bi_windup();
|
---|
957 | compressed_len += 7; /* align on byte boundary */
|
---|
958 | }
|
---|
959 |
|
---|
960 | return compressed_len >> 3;
|
---|
961 | }
|
---|
962 |
|
---|
963 | /* ===========================================================================
|
---|
964 | * Save the match info and tally the frequency counts. Return true if
|
---|
965 | * the current block must be flushed.
|
---|
966 | */
|
---|
967 | int ct_tally (dist, lc)
|
---|
968 | int dist; /* distance of matched string */
|
---|
969 | int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
|
---|
970 | {
|
---|
971 | l_buf[last_lit++] = (uch)lc;
|
---|
972 | if (dist == 0) {
|
---|
973 | /* lc is the unmatched char */
|
---|
974 | dyn_ltree[lc].Freq++;
|
---|
975 | } else {
|
---|
976 | /* Here, lc is the match length - MIN_MATCH */
|
---|
977 | dist--; /* dist = match distance - 1 */
|
---|
978 | Assert((ush)dist < (ush)MAX_DIST &&
|
---|
979 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
|
---|
980 | (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
|
---|
981 |
|
---|
982 | dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
|
---|
983 | dyn_dtree[d_code(dist)].Freq++;
|
---|
984 |
|
---|
985 | d_buf[last_dist++] = (ush)dist;
|
---|
986 | flags |= flag_bit;
|
---|
987 | }
|
---|
988 | flag_bit <<= 1;
|
---|
989 |
|
---|
990 | /* Output the flags if they fill a byte: */
|
---|
991 | if ((last_lit & 7) == 0) {
|
---|
992 | flag_buf[last_flags++] = flags;
|
---|
993 | flags = 0, flag_bit = 1;
|
---|
994 | }
|
---|
995 | /* Try to guess if it is profitable to stop the current block here */
|
---|
996 | if (level > 2 && (last_lit & 0xfff) == 0) {
|
---|
997 | /* Compute an upper bound for the compressed length */
|
---|
998 | ulg out_length = (ulg)last_lit*8L;
|
---|
999 | ulg in_length = (ulg)strstart-block_start;
|
---|
1000 | int dcode;
|
---|
1001 | for (dcode = 0; dcode < D_CODES; dcode++) {
|
---|
1002 | out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
|
---|
1003 | }
|
---|
1004 | out_length >>= 3;
|
---|
1005 | Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
|
---|
1006 | last_lit, last_dist, in_length, out_length,
|
---|
1007 | 100L - out_length*100L/in_length));
|
---|
1008 | if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
|
---|
1009 | }
|
---|
1010 | return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
|
---|
1011 | /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
|
---|
1012 | * on 16 bit machines and because stored blocks are restricted to
|
---|
1013 | * 64K-1 bytes.
|
---|
1014 | */
|
---|
1015 | }
|
---|
1016 |
|
---|
1017 | /* ===========================================================================
|
---|
1018 | * Send the block data compressed using the given Huffman trees
|
---|
1019 | */
|
---|
1020 | local void compress_block(ltree, dtree)
|
---|
1021 | ct_data near *ltree; /* literal tree */
|
---|
1022 | ct_data near *dtree; /* distance tree */
|
---|
1023 | {
|
---|
1024 | unsigned dist; /* distance of matched string */
|
---|
1025 | int lc; /* match length or unmatched char (if dist == 0) */
|
---|
1026 | unsigned lx = 0; /* running index in l_buf */
|
---|
1027 | unsigned dx = 0; /* running index in d_buf */
|
---|
1028 | unsigned fx = 0; /* running index in flag_buf */
|
---|
1029 | uch flag = 0; /* current flags */
|
---|
1030 | unsigned code; /* the code to send */
|
---|
1031 | int extra; /* number of extra bits to send */
|
---|
1032 |
|
---|
1033 | if (last_lit != 0) do {
|
---|
1034 | if ((lx & 7) == 0) flag = flag_buf[fx++];
|
---|
1035 | lc = l_buf[lx++];
|
---|
1036 | if ((flag & 1) == 0) {
|
---|
1037 | send_code(lc, ltree); /* send a literal byte */
|
---|
1038 | Tracecv(isgraph(lc), (stderr," '%c' ", lc));
|
---|
1039 | } else {
|
---|
1040 | /* Here, lc is the match length - MIN_MATCH */
|
---|
1041 | code = length_code[lc];
|
---|
1042 | send_code(code+LITERALS+1, ltree); /* send the length code */
|
---|
1043 | extra = extra_lbits[code];
|
---|
1044 | if (extra != 0) {
|
---|
1045 | lc -= base_length[code];
|
---|
1046 | send_bits(lc, extra); /* send the extra length bits */
|
---|
1047 | }
|
---|
1048 | dist = d_buf[dx++];
|
---|
1049 | /* Here, dist is the match distance - 1 */
|
---|
1050 | code = d_code(dist);
|
---|
1051 | Assert (code < D_CODES, "bad d_code");
|
---|
1052 |
|
---|
1053 | send_code(code, dtree); /* send the distance code */
|
---|
1054 | extra = extra_dbits[code];
|
---|
1055 | if (extra != 0) {
|
---|
1056 | dist -= base_dist[code];
|
---|
1057 | send_bits(dist, extra); /* send the extra distance bits */
|
---|
1058 | }
|
---|
1059 | } /* literal or match pair ? */
|
---|
1060 | flag >>= 1;
|
---|
1061 | } while (lx < last_lit);
|
---|
1062 |
|
---|
1063 | send_code(END_BLOCK, ltree);
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | /* ===========================================================================
|
---|
1067 | * Set the file type to ASCII or BINARY, using a crude approximation:
|
---|
1068 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
|
---|
1069 | * IN assertion: the fields freq of dyn_ltree are set and the total of all
|
---|
1070 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
|
---|
1071 | */
|
---|
1072 | local void set_file_type()
|
---|
1073 | {
|
---|
1074 | int n = 0;
|
---|
1075 | unsigned ascii_freq = 0;
|
---|
1076 | unsigned bin_freq = 0;
|
---|
1077 | while (n < 7) bin_freq += dyn_ltree[n++].Freq;
|
---|
1078 | while (n < 128) ascii_freq += dyn_ltree[n++].Freq;
|
---|
1079 | while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
|
---|
1080 | *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
|
---|
1081 | if (*file_type == BINARY && translate_eol) {
|
---|
1082 | warning ("-l used on binary file");
|
---|
1083 | }
|
---|
1084 | }
|
---|