1 | /* Subroutines used by or related to instruction recognition.
|
---|
2 | Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
|
---|
3 | 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
---|
4 |
|
---|
5 | This file is part of GCC.
|
---|
6 |
|
---|
7 | GCC is free software; you can redistribute it and/or modify it under
|
---|
8 | the terms of the GNU General Public License as published by the Free
|
---|
9 | Software Foundation; either version 2, or (at your option) any later
|
---|
10 | version.
|
---|
11 |
|
---|
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
---|
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
---|
15 | for more details.
|
---|
16 |
|
---|
17 | You should have received a copy of the GNU General Public License
|
---|
18 | along with GCC; see the file COPYING. If not, write to the Free
|
---|
19 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
---|
20 | 02111-1307, USA. */
|
---|
21 |
|
---|
22 |
|
---|
23 | #include "config.h"
|
---|
24 | #include "system.h"
|
---|
25 | #include "rtl.h"
|
---|
26 | #include "tm_p.h"
|
---|
27 | #include "insn-config.h"
|
---|
28 | #include "insn-attr.h"
|
---|
29 | #include "hard-reg-set.h"
|
---|
30 | #include "recog.h"
|
---|
31 | #include "regs.h"
|
---|
32 | #include "expr.h"
|
---|
33 | #include "function.h"
|
---|
34 | #include "flags.h"
|
---|
35 | #include "real.h"
|
---|
36 | #include "toplev.h"
|
---|
37 | #include "basic-block.h"
|
---|
38 | #include "output.h"
|
---|
39 | #include "reload.h"
|
---|
40 |
|
---|
41 | #ifndef STACK_PUSH_CODE
|
---|
42 | #ifdef STACK_GROWS_DOWNWARD
|
---|
43 | #define STACK_PUSH_CODE PRE_DEC
|
---|
44 | #else
|
---|
45 | #define STACK_PUSH_CODE PRE_INC
|
---|
46 | #endif
|
---|
47 | #endif
|
---|
48 |
|
---|
49 | #ifndef STACK_POP_CODE
|
---|
50 | #ifdef STACK_GROWS_DOWNWARD
|
---|
51 | #define STACK_POP_CODE POST_INC
|
---|
52 | #else
|
---|
53 | #define STACK_POP_CODE POST_DEC
|
---|
54 | #endif
|
---|
55 | #endif
|
---|
56 |
|
---|
57 | static void validate_replace_rtx_1 PARAMS ((rtx *, rtx, rtx, rtx));
|
---|
58 | static rtx *find_single_use_1 PARAMS ((rtx, rtx *));
|
---|
59 | static void validate_replace_src_1 PARAMS ((rtx *, void *));
|
---|
60 | static rtx split_insn PARAMS ((rtx));
|
---|
61 |
|
---|
62 | /* Nonzero means allow operands to be volatile.
|
---|
63 | This should be 0 if you are generating rtl, such as if you are calling
|
---|
64 | the functions in optabs.c and expmed.c (most of the time).
|
---|
65 | This should be 1 if all valid insns need to be recognized,
|
---|
66 | such as in regclass.c and final.c and reload.c.
|
---|
67 |
|
---|
68 | init_recog and init_recog_no_volatile are responsible for setting this. */
|
---|
69 |
|
---|
70 | int volatile_ok;
|
---|
71 |
|
---|
72 | struct recog_data recog_data;
|
---|
73 |
|
---|
74 | /* Contains a vector of operand_alternative structures for every operand.
|
---|
75 | Set up by preprocess_constraints. */
|
---|
76 | struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
|
---|
77 |
|
---|
78 | /* On return from `constrain_operands', indicate which alternative
|
---|
79 | was satisfied. */
|
---|
80 |
|
---|
81 | int which_alternative;
|
---|
82 |
|
---|
83 | /* Nonzero after end of reload pass.
|
---|
84 | Set to 1 or 0 by toplev.c.
|
---|
85 | Controls the significance of (SUBREG (MEM)). */
|
---|
86 |
|
---|
87 | int reload_completed;
|
---|
88 |
|
---|
89 | /* Initialize data used by the function `recog'.
|
---|
90 | This must be called once in the compilation of a function
|
---|
91 | before any insn recognition may be done in the function. */
|
---|
92 |
|
---|
93 | void
|
---|
94 | init_recog_no_volatile ()
|
---|
95 | {
|
---|
96 | volatile_ok = 0;
|
---|
97 | }
|
---|
98 |
|
---|
99 | void
|
---|
100 | init_recog ()
|
---|
101 | {
|
---|
102 | volatile_ok = 1;
|
---|
103 | }
|
---|
104 |
|
---|
105 | /* Try recognizing the instruction INSN,
|
---|
106 | and return the code number that results.
|
---|
107 | Remember the code so that repeated calls do not
|
---|
108 | need to spend the time for actual rerecognition.
|
---|
109 |
|
---|
110 | This function is the normal interface to instruction recognition.
|
---|
111 | The automatically-generated function `recog' is normally called
|
---|
112 | through this one. (The only exception is in combine.c.) */
|
---|
113 |
|
---|
114 | int
|
---|
115 | recog_memoized_1 (insn)
|
---|
116 | rtx insn;
|
---|
117 | {
|
---|
118 | if (INSN_CODE (insn) < 0)
|
---|
119 | INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
|
---|
120 | return INSN_CODE (insn);
|
---|
121 | }
|
---|
122 | |
---|
123 |
|
---|
124 | /* Check that X is an insn-body for an `asm' with operands
|
---|
125 | and that the operands mentioned in it are legitimate. */
|
---|
126 |
|
---|
127 | int
|
---|
128 | check_asm_operands (x)
|
---|
129 | rtx x;
|
---|
130 | {
|
---|
131 | int noperands;
|
---|
132 | rtx *operands;
|
---|
133 | const char **constraints;
|
---|
134 | int i;
|
---|
135 |
|
---|
136 | /* Post-reload, be more strict with things. */
|
---|
137 | if (reload_completed)
|
---|
138 | {
|
---|
139 | /* ??? Doh! We've not got the wrapping insn. Cook one up. */
|
---|
140 | extract_insn (make_insn_raw (x));
|
---|
141 | constrain_operands (1);
|
---|
142 | return which_alternative >= 0;
|
---|
143 | }
|
---|
144 |
|
---|
145 | noperands = asm_noperands (x);
|
---|
146 | if (noperands < 0)
|
---|
147 | return 0;
|
---|
148 | if (noperands == 0)
|
---|
149 | return 1;
|
---|
150 |
|
---|
151 | operands = (rtx *) alloca (noperands * sizeof (rtx));
|
---|
152 | constraints = (const char **) alloca (noperands * sizeof (char *));
|
---|
153 |
|
---|
154 | decode_asm_operands (x, operands, NULL, constraints, NULL);
|
---|
155 |
|
---|
156 | for (i = 0; i < noperands; i++)
|
---|
157 | {
|
---|
158 | const char *c = constraints[i];
|
---|
159 | if (c[0] == '%')
|
---|
160 | c++;
|
---|
161 | if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
|
---|
162 | c = constraints[c[0] - '0'];
|
---|
163 |
|
---|
164 | if (! asm_operand_ok (operands[i], c))
|
---|
165 | return 0;
|
---|
166 | }
|
---|
167 |
|
---|
168 | return 1;
|
---|
169 | }
|
---|
170 | |
---|
171 |
|
---|
172 | /* Static data for the next two routines. */
|
---|
173 |
|
---|
174 | typedef struct change_t
|
---|
175 | {
|
---|
176 | rtx object;
|
---|
177 | int old_code;
|
---|
178 | rtx *loc;
|
---|
179 | rtx old;
|
---|
180 | } change_t;
|
---|
181 |
|
---|
182 | static change_t *changes;
|
---|
183 | static int changes_allocated;
|
---|
184 |
|
---|
185 | static int num_changes = 0;
|
---|
186 |
|
---|
187 | /* Validate a proposed change to OBJECT. LOC is the location in the rtl
|
---|
188 | at which NEW will be placed. If OBJECT is zero, no validation is done,
|
---|
189 | the change is simply made.
|
---|
190 |
|
---|
191 | Two types of objects are supported: If OBJECT is a MEM, memory_address_p
|
---|
192 | will be called with the address and mode as parameters. If OBJECT is
|
---|
193 | an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
|
---|
194 | the change in place.
|
---|
195 |
|
---|
196 | IN_GROUP is non-zero if this is part of a group of changes that must be
|
---|
197 | performed as a group. In that case, the changes will be stored. The
|
---|
198 | function `apply_change_group' will validate and apply the changes.
|
---|
199 |
|
---|
200 | If IN_GROUP is zero, this is a single change. Try to recognize the insn
|
---|
201 | or validate the memory reference with the change applied. If the result
|
---|
202 | is not valid for the machine, suppress the change and return zero.
|
---|
203 | Otherwise, perform the change and return 1. */
|
---|
204 |
|
---|
205 | int
|
---|
206 | validate_change (object, loc, new, in_group)
|
---|
207 | rtx object;
|
---|
208 | rtx *loc;
|
---|
209 | rtx new;
|
---|
210 | int in_group;
|
---|
211 | {
|
---|
212 | rtx old = *loc;
|
---|
213 |
|
---|
214 | if (old == new || rtx_equal_p (old, new))
|
---|
215 | return 1;
|
---|
216 |
|
---|
217 | if (in_group == 0 && num_changes != 0)
|
---|
218 | abort ();
|
---|
219 |
|
---|
220 | *loc = new;
|
---|
221 |
|
---|
222 | /* Save the information describing this change. */
|
---|
223 | if (num_changes >= changes_allocated)
|
---|
224 | {
|
---|
225 | if (changes_allocated == 0)
|
---|
226 | /* This value allows for repeated substitutions inside complex
|
---|
227 | indexed addresses, or changes in up to 5 insns. */
|
---|
228 | changes_allocated = MAX_RECOG_OPERANDS * 5;
|
---|
229 | else
|
---|
230 | changes_allocated *= 2;
|
---|
231 |
|
---|
232 | changes =
|
---|
233 | (change_t*) xrealloc (changes,
|
---|
234 | sizeof (change_t) * changes_allocated);
|
---|
235 | }
|
---|
236 |
|
---|
237 | changes[num_changes].object = object;
|
---|
238 | changes[num_changes].loc = loc;
|
---|
239 | changes[num_changes].old = old;
|
---|
240 |
|
---|
241 | if (object && GET_CODE (object) != MEM)
|
---|
242 | {
|
---|
243 | /* Set INSN_CODE to force rerecognition of insn. Save old code in
|
---|
244 | case invalid. */
|
---|
245 | changes[num_changes].old_code = INSN_CODE (object);
|
---|
246 | INSN_CODE (object) = -1;
|
---|
247 | }
|
---|
248 |
|
---|
249 | num_changes++;
|
---|
250 |
|
---|
251 | /* If we are making a group of changes, return 1. Otherwise, validate the
|
---|
252 | change group we made. */
|
---|
253 |
|
---|
254 | if (in_group)
|
---|
255 | return 1;
|
---|
256 | else
|
---|
257 | return apply_change_group ();
|
---|
258 | }
|
---|
259 |
|
---|
260 | /* This subroutine of apply_change_group verifies whether the changes to INSN
|
---|
261 | were valid; i.e. whether INSN can still be recognized. */
|
---|
262 |
|
---|
263 | int
|
---|
264 | insn_invalid_p (insn)
|
---|
265 | rtx insn;
|
---|
266 | {
|
---|
267 | rtx pat = PATTERN (insn);
|
---|
268 | int num_clobbers = 0;
|
---|
269 | /* If we are before reload and the pattern is a SET, see if we can add
|
---|
270 | clobbers. */
|
---|
271 | int icode = recog (pat, insn,
|
---|
272 | (GET_CODE (pat) == SET
|
---|
273 | && ! reload_completed && ! reload_in_progress)
|
---|
274 | ? &num_clobbers : 0);
|
---|
275 | int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
|
---|
276 |
|
---|
277 |
|
---|
278 | /* If this is an asm and the operand aren't legal, then fail. Likewise if
|
---|
279 | this is not an asm and the insn wasn't recognized. */
|
---|
280 | if ((is_asm && ! check_asm_operands (PATTERN (insn)))
|
---|
281 | || (!is_asm && icode < 0))
|
---|
282 | return 1;
|
---|
283 |
|
---|
284 | /* If we have to add CLOBBERs, fail if we have to add ones that reference
|
---|
285 | hard registers since our callers can't know if they are live or not.
|
---|
286 | Otherwise, add them. */
|
---|
287 | if (num_clobbers > 0)
|
---|
288 | {
|
---|
289 | rtx newpat;
|
---|
290 |
|
---|
291 | if (added_clobbers_hard_reg_p (icode))
|
---|
292 | return 1;
|
---|
293 |
|
---|
294 | newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
|
---|
295 | XVECEXP (newpat, 0, 0) = pat;
|
---|
296 | add_clobbers (newpat, icode);
|
---|
297 | PATTERN (insn) = pat = newpat;
|
---|
298 | }
|
---|
299 |
|
---|
300 | /* After reload, verify that all constraints are satisfied. */
|
---|
301 | if (reload_completed)
|
---|
302 | {
|
---|
303 | extract_insn (insn);
|
---|
304 |
|
---|
305 | if (! constrain_operands (1))
|
---|
306 | return 1;
|
---|
307 | }
|
---|
308 |
|
---|
309 | INSN_CODE (insn) = icode;
|
---|
310 | return 0;
|
---|
311 | }
|
---|
312 |
|
---|
313 | /* Apply a group of changes previously issued with `validate_change'.
|
---|
314 | Return 1 if all changes are valid, zero otherwise. */
|
---|
315 |
|
---|
316 | int
|
---|
317 | apply_change_group ()
|
---|
318 | {
|
---|
319 | int i;
|
---|
320 | rtx last_validated = NULL_RTX;
|
---|
321 |
|
---|
322 | /* The changes have been applied and all INSN_CODEs have been reset to force
|
---|
323 | rerecognition.
|
---|
324 |
|
---|
325 | The changes are valid if we aren't given an object, or if we are
|
---|
326 | given a MEM and it still is a valid address, or if this is in insn
|
---|
327 | and it is recognized. In the latter case, if reload has completed,
|
---|
328 | we also require that the operands meet the constraints for
|
---|
329 | the insn. */
|
---|
330 |
|
---|
331 | for (i = 0; i < num_changes; i++)
|
---|
332 | {
|
---|
333 | rtx object = changes[i].object;
|
---|
334 |
|
---|
335 | /* if there is no object to test or if it is the same as the one we
|
---|
336 | already tested, ignore it. */
|
---|
337 | if (object == 0 || object == last_validated)
|
---|
338 | continue;
|
---|
339 |
|
---|
340 | if (GET_CODE (object) == MEM)
|
---|
341 | {
|
---|
342 | if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
|
---|
343 | break;
|
---|
344 | }
|
---|
345 | else if (insn_invalid_p (object))
|
---|
346 | {
|
---|
347 | rtx pat = PATTERN (object);
|
---|
348 |
|
---|
349 | /* Perhaps we couldn't recognize the insn because there were
|
---|
350 | extra CLOBBERs at the end. If so, try to re-recognize
|
---|
351 | without the last CLOBBER (later iterations will cause each of
|
---|
352 | them to be eliminated, in turn). But don't do this if we
|
---|
353 | have an ASM_OPERAND. */
|
---|
354 | if (GET_CODE (pat) == PARALLEL
|
---|
355 | && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
|
---|
356 | && asm_noperands (PATTERN (object)) < 0)
|
---|
357 | {
|
---|
358 | rtx newpat;
|
---|
359 |
|
---|
360 | if (XVECLEN (pat, 0) == 2)
|
---|
361 | newpat = XVECEXP (pat, 0, 0);
|
---|
362 | else
|
---|
363 | {
|
---|
364 | int j;
|
---|
365 |
|
---|
366 | newpat
|
---|
367 | = gen_rtx_PARALLEL (VOIDmode,
|
---|
368 | rtvec_alloc (XVECLEN (pat, 0) - 1));
|
---|
369 | for (j = 0; j < XVECLEN (newpat, 0); j++)
|
---|
370 | XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
|
---|
371 | }
|
---|
372 |
|
---|
373 | /* Add a new change to this group to replace the pattern
|
---|
374 | with this new pattern. Then consider this change
|
---|
375 | as having succeeded. The change we added will
|
---|
376 | cause the entire call to fail if things remain invalid.
|
---|
377 |
|
---|
378 | Note that this can lose if a later change than the one
|
---|
379 | we are processing specified &XVECEXP (PATTERN (object), 0, X)
|
---|
380 | but this shouldn't occur. */
|
---|
381 |
|
---|
382 | validate_change (object, &PATTERN (object), newpat, 1);
|
---|
383 | continue;
|
---|
384 | }
|
---|
385 | else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
---|
386 | /* If this insn is a CLOBBER or USE, it is always valid, but is
|
---|
387 | never recognized. */
|
---|
388 | continue;
|
---|
389 | else
|
---|
390 | break;
|
---|
391 | }
|
---|
392 | last_validated = object;
|
---|
393 | }
|
---|
394 |
|
---|
395 | if (i == num_changes)
|
---|
396 | {
|
---|
397 | num_changes = 0;
|
---|
398 | return 1;
|
---|
399 | }
|
---|
400 | else
|
---|
401 | {
|
---|
402 | cancel_changes (0);
|
---|
403 | return 0;
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 | /* Return the number of changes so far in the current group. */
|
---|
408 |
|
---|
409 | int
|
---|
410 | num_validated_changes ()
|
---|
411 | {
|
---|
412 | return num_changes;
|
---|
413 | }
|
---|
414 |
|
---|
415 | /* Retract the changes numbered NUM and up. */
|
---|
416 |
|
---|
417 | void
|
---|
418 | cancel_changes (num)
|
---|
419 | int num;
|
---|
420 | {
|
---|
421 | int i;
|
---|
422 |
|
---|
423 | /* Back out all the changes. Do this in the opposite order in which
|
---|
424 | they were made. */
|
---|
425 | for (i = num_changes - 1; i >= num; i--)
|
---|
426 | {
|
---|
427 | *changes[i].loc = changes[i].old;
|
---|
428 | if (changes[i].object && GET_CODE (changes[i].object) != MEM)
|
---|
429 | INSN_CODE (changes[i].object) = changes[i].old_code;
|
---|
430 | }
|
---|
431 | num_changes = num;
|
---|
432 | }
|
---|
433 |
|
---|
434 | /* Replace every occurrence of FROM in X with TO. Mark each change with
|
---|
435 | validate_change passing OBJECT. */
|
---|
436 |
|
---|
437 | static void
|
---|
438 | validate_replace_rtx_1 (loc, from, to, object)
|
---|
439 | rtx *loc;
|
---|
440 | rtx from, to, object;
|
---|
441 | {
|
---|
442 | int i, j;
|
---|
443 | const char *fmt;
|
---|
444 | rtx x = *loc;
|
---|
445 | enum rtx_code code;
|
---|
446 | enum machine_mode op0_mode = VOIDmode;
|
---|
447 | int prev_changes = num_changes;
|
---|
448 | rtx new;
|
---|
449 |
|
---|
450 | if (!x)
|
---|
451 | return;
|
---|
452 |
|
---|
453 | code = GET_CODE (x);
|
---|
454 | fmt = GET_RTX_FORMAT (code);
|
---|
455 | if (fmt[0] == 'e')
|
---|
456 | op0_mode = GET_MODE (XEXP (x, 0));
|
---|
457 |
|
---|
458 | /* X matches FROM if it is the same rtx or they are both referring to the
|
---|
459 | same register in the same mode. Avoid calling rtx_equal_p unless the
|
---|
460 | operands look similar. */
|
---|
461 |
|
---|
462 | if (x == from
|
---|
463 | || (GET_CODE (x) == REG && GET_CODE (from) == REG
|
---|
464 | && GET_MODE (x) == GET_MODE (from)
|
---|
465 | && REGNO (x) == REGNO (from))
|
---|
466 | || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
|
---|
467 | && rtx_equal_p (x, from)))
|
---|
468 | {
|
---|
469 | validate_change (object, loc, to, 1);
|
---|
470 | return;
|
---|
471 | }
|
---|
472 |
|
---|
473 | /* Call ourself recursively to perform the replacements. */
|
---|
474 |
|
---|
475 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
---|
476 | {
|
---|
477 | if (fmt[i] == 'e')
|
---|
478 | validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
|
---|
479 | else if (fmt[i] == 'E')
|
---|
480 | for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
---|
481 | validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
|
---|
482 | }
|
---|
483 |
|
---|
484 | /* If we didn't substitute, there is nothing more to do. */
|
---|
485 | if (num_changes == prev_changes)
|
---|
486 | return;
|
---|
487 |
|
---|
488 | /* Allow substituted expression to have different mode. This is used by
|
---|
489 | regmove to change mode of pseudo register. */
|
---|
490 | if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
|
---|
491 | op0_mode = GET_MODE (XEXP (x, 0));
|
---|
492 |
|
---|
493 | /* Do changes needed to keep rtx consistent. Don't do any other
|
---|
494 | simplifications, as it is not our job. */
|
---|
495 |
|
---|
496 | if ((GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
|
---|
497 | && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
---|
498 | {
|
---|
499 | validate_change (object, loc,
|
---|
500 | gen_rtx_fmt_ee (GET_RTX_CLASS (code) == 'c' ? code
|
---|
501 | : swap_condition (code),
|
---|
502 | GET_MODE (x), XEXP (x, 1),
|
---|
503 | XEXP (x, 0)), 1);
|
---|
504 | x = *loc;
|
---|
505 | code = GET_CODE (x);
|
---|
506 | }
|
---|
507 |
|
---|
508 | switch (code)
|
---|
509 | {
|
---|
510 | case PLUS:
|
---|
511 | /* If we have a PLUS whose second operand is now a CONST_INT, use
|
---|
512 | simplify_gen_binary to try to simplify it.
|
---|
513 | ??? We may want later to remove this, once simplification is
|
---|
514 | separated from this function. */
|
---|
515 | if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
|
---|
516 | validate_change (object, loc,
|
---|
517 | simplify_gen_binary
|
---|
518 | (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
|
---|
519 | break;
|
---|
520 | case MINUS:
|
---|
521 | if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
---|
522 | || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
|
---|
523 | validate_change (object, loc,
|
---|
524 | simplify_gen_binary
|
---|
525 | (PLUS, GET_MODE (x), XEXP (x, 0),
|
---|
526 | simplify_gen_unary (NEG,
|
---|
527 | GET_MODE (x), XEXP (x, 1),
|
---|
528 | GET_MODE (x))), 1);
|
---|
529 | break;
|
---|
530 | case ZERO_EXTEND:
|
---|
531 | case SIGN_EXTEND:
|
---|
532 | if (GET_MODE (XEXP (x, 0)) == VOIDmode)
|
---|
533 | {
|
---|
534 | new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
|
---|
535 | op0_mode);
|
---|
536 | /* If any of the above failed, substitute in something that
|
---|
537 | we know won't be recognized. */
|
---|
538 | if (!new)
|
---|
539 | new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
---|
540 | validate_change (object, loc, new, 1);
|
---|
541 | }
|
---|
542 | break;
|
---|
543 | case SUBREG:
|
---|
544 | /* All subregs possible to simplify should be simplified. */
|
---|
545 | new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
|
---|
546 | SUBREG_BYTE (x));
|
---|
547 |
|
---|
548 | /* Subregs of VOIDmode operands are incorrect. */
|
---|
549 | if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
|
---|
550 | new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
---|
551 | if (new)
|
---|
552 | validate_change (object, loc, new, 1);
|
---|
553 | break;
|
---|
554 | case ZERO_EXTRACT:
|
---|
555 | case SIGN_EXTRACT:
|
---|
556 | /* If we are replacing a register with memory, try to change the memory
|
---|
557 | to be the mode required for memory in extract operations (this isn't
|
---|
558 | likely to be an insertion operation; if it was, nothing bad will
|
---|
559 | happen, we might just fail in some cases). */
|
---|
560 |
|
---|
561 | if (GET_CODE (XEXP (x, 0)) == MEM
|
---|
562 | && GET_CODE (XEXP (x, 1)) == CONST_INT
|
---|
563 | && GET_CODE (XEXP (x, 2)) == CONST_INT
|
---|
564 | && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
|
---|
565 | && !MEM_VOLATILE_P (XEXP (x, 0)))
|
---|
566 | {
|
---|
567 | enum machine_mode wanted_mode = VOIDmode;
|
---|
568 | enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
|
---|
569 | int pos = INTVAL (XEXP (x, 2));
|
---|
570 |
|
---|
571 | if (GET_CODE (x) == ZERO_EXTRACT)
|
---|
572 | {
|
---|
573 | enum machine_mode new_mode
|
---|
574 | = mode_for_extraction (EP_extzv, 1);
|
---|
575 | if (new_mode != MAX_MACHINE_MODE)
|
---|
576 | wanted_mode = new_mode;
|
---|
577 | }
|
---|
578 | else if (GET_CODE (x) == SIGN_EXTRACT)
|
---|
579 | {
|
---|
580 | enum machine_mode new_mode
|
---|
581 | = mode_for_extraction (EP_extv, 1);
|
---|
582 | if (new_mode != MAX_MACHINE_MODE)
|
---|
583 | wanted_mode = new_mode;
|
---|
584 | }
|
---|
585 |
|
---|
586 | /* If we have a narrower mode, we can do something. */
|
---|
587 | if (wanted_mode != VOIDmode
|
---|
588 | && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
|
---|
589 | {
|
---|
590 | int offset = pos / BITS_PER_UNIT;
|
---|
591 | rtx newmem;
|
---|
592 |
|
---|
593 | /* If the bytes and bits are counted differently, we
|
---|
594 | must adjust the offset. */
|
---|
595 | if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
|
---|
596 | offset =
|
---|
597 | (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
|
---|
598 | offset);
|
---|
599 |
|
---|
600 | pos %= GET_MODE_BITSIZE (wanted_mode);
|
---|
601 |
|
---|
602 | newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
|
---|
603 |
|
---|
604 | validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
|
---|
605 | validate_change (object, &XEXP (x, 0), newmem, 1);
|
---|
606 | }
|
---|
607 | }
|
---|
608 |
|
---|
609 | break;
|
---|
610 |
|
---|
611 | default:
|
---|
612 | break;
|
---|
613 | }
|
---|
614 | }
|
---|
615 |
|
---|
616 | /* Try replacing every occurrence of FROM in subexpression LOC of INSN
|
---|
617 | with TO. After all changes have been made, validate by seeing
|
---|
618 | if INSN is still valid. */
|
---|
619 |
|
---|
620 | int
|
---|
621 | validate_replace_rtx_subexp (from, to, insn, loc)
|
---|
622 | rtx from, to, insn, *loc;
|
---|
623 | {
|
---|
624 | validate_replace_rtx_1 (loc, from, to, insn);
|
---|
625 | return apply_change_group ();
|
---|
626 | }
|
---|
627 |
|
---|
628 | /* Try replacing every occurrence of FROM in INSN with TO. After all
|
---|
629 | changes have been made, validate by seeing if INSN is still valid. */
|
---|
630 |
|
---|
631 | int
|
---|
632 | validate_replace_rtx (from, to, insn)
|
---|
633 | rtx from, to, insn;
|
---|
634 | {
|
---|
635 | validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
|
---|
636 | return apply_change_group ();
|
---|
637 | }
|
---|
638 |
|
---|
639 | /* Try replacing every occurrence of FROM in INSN with TO. */
|
---|
640 |
|
---|
641 | void
|
---|
642 | validate_replace_rtx_group (from, to, insn)
|
---|
643 | rtx from, to, insn;
|
---|
644 | {
|
---|
645 | validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
|
---|
646 | }
|
---|
647 |
|
---|
648 | /* Function called by note_uses to replace used subexpressions. */
|
---|
649 | struct validate_replace_src_data
|
---|
650 | {
|
---|
651 | rtx from; /* Old RTX */
|
---|
652 | rtx to; /* New RTX */
|
---|
653 | rtx insn; /* Insn in which substitution is occurring. */
|
---|
654 | };
|
---|
655 |
|
---|
656 | static void
|
---|
657 | validate_replace_src_1 (x, data)
|
---|
658 | rtx *x;
|
---|
659 | void *data;
|
---|
660 | {
|
---|
661 | struct validate_replace_src_data *d
|
---|
662 | = (struct validate_replace_src_data *) data;
|
---|
663 |
|
---|
664 | validate_replace_rtx_1 (x, d->from, d->to, d->insn);
|
---|
665 | }
|
---|
666 |
|
---|
667 | /* Try replacing every occurrence of FROM in INSN with TO, avoiding
|
---|
668 | SET_DESTs. After all changes have been made, validate by seeing if
|
---|
669 | INSN is still valid. */
|
---|
670 |
|
---|
671 | int
|
---|
672 | validate_replace_src (from, to, insn)
|
---|
673 | rtx from, to, insn;
|
---|
674 | {
|
---|
675 | struct validate_replace_src_data d;
|
---|
676 |
|
---|
677 | d.from = from;
|
---|
678 | d.to = to;
|
---|
679 | d.insn = insn;
|
---|
680 | note_uses (&PATTERN (insn), validate_replace_src_1, &d);
|
---|
681 | return apply_change_group ();
|
---|
682 | }
|
---|
683 | |
---|
684 |
|
---|
685 | #ifdef HAVE_cc0
|
---|
686 | /* Return 1 if the insn using CC0 set by INSN does not contain
|
---|
687 | any ordered tests applied to the condition codes.
|
---|
688 | EQ and NE tests do not count. */
|
---|
689 |
|
---|
690 | int
|
---|
691 | next_insn_tests_no_inequality (insn)
|
---|
692 | rtx insn;
|
---|
693 | {
|
---|
694 | rtx next = next_cc0_user (insn);
|
---|
695 |
|
---|
696 | /* If there is no next insn, we have to take the conservative choice. */
|
---|
697 | if (next == 0)
|
---|
698 | return 0;
|
---|
699 |
|
---|
700 | return ((GET_CODE (next) == JUMP_INSN
|
---|
701 | || GET_CODE (next) == INSN
|
---|
702 | || GET_CODE (next) == CALL_INSN)
|
---|
703 | && ! inequality_comparisons_p (PATTERN (next)));
|
---|
704 | }
|
---|
705 |
|
---|
706 | #if 0 /* This is useless since the insn that sets the cc's
|
---|
707 | must be followed immediately by the use of them. */
|
---|
708 | /* Return 1 if the CC value set up by INSN is not used. */
|
---|
709 |
|
---|
710 | int
|
---|
711 | next_insns_test_no_inequality (insn)
|
---|
712 | rtx insn;
|
---|
713 | {
|
---|
714 | rtx next = NEXT_INSN (insn);
|
---|
715 |
|
---|
716 | for (; next != 0; next = NEXT_INSN (next))
|
---|
717 | {
|
---|
718 | if (GET_CODE (next) == CODE_LABEL
|
---|
719 | || GET_CODE (next) == BARRIER)
|
---|
720 | return 1;
|
---|
721 | if (GET_CODE (next) == NOTE)
|
---|
722 | continue;
|
---|
723 | if (inequality_comparisons_p (PATTERN (next)))
|
---|
724 | return 0;
|
---|
725 | if (sets_cc0_p (PATTERN (next)) == 1)
|
---|
726 | return 1;
|
---|
727 | if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
|
---|
728 | return 1;
|
---|
729 | }
|
---|
730 | return 1;
|
---|
731 | }
|
---|
732 | #endif
|
---|
733 | #endif
|
---|
734 | |
---|
735 |
|
---|
736 | /* This is used by find_single_use to locate an rtx that contains exactly one
|
---|
737 | use of DEST, which is typically either a REG or CC0. It returns a
|
---|
738 | pointer to the innermost rtx expression containing DEST. Appearances of
|
---|
739 | DEST that are being used to totally replace it are not counted. */
|
---|
740 |
|
---|
741 | static rtx *
|
---|
742 | find_single_use_1 (dest, loc)
|
---|
743 | rtx dest;
|
---|
744 | rtx *loc;
|
---|
745 | {
|
---|
746 | rtx x = *loc;
|
---|
747 | enum rtx_code code = GET_CODE (x);
|
---|
748 | rtx *result = 0;
|
---|
749 | rtx *this_result;
|
---|
750 | int i;
|
---|
751 | const char *fmt;
|
---|
752 |
|
---|
753 | switch (code)
|
---|
754 | {
|
---|
755 | case CONST_INT:
|
---|
756 | case CONST:
|
---|
757 | case LABEL_REF:
|
---|
758 | case SYMBOL_REF:
|
---|
759 | case CONST_DOUBLE:
|
---|
760 | case CONST_VECTOR:
|
---|
761 | case CLOBBER:
|
---|
762 | return 0;
|
---|
763 |
|
---|
764 | case SET:
|
---|
765 | /* If the destination is anything other than CC0, PC, a REG or a SUBREG
|
---|
766 | of a REG that occupies all of the REG, the insn uses DEST if
|
---|
767 | it is mentioned in the destination or the source. Otherwise, we
|
---|
768 | need just check the source. */
|
---|
769 | if (GET_CODE (SET_DEST (x)) != CC0
|
---|
770 | && GET_CODE (SET_DEST (x)) != PC
|
---|
771 | && GET_CODE (SET_DEST (x)) != REG
|
---|
772 | && ! (GET_CODE (SET_DEST (x)) == SUBREG
|
---|
773 | && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
|
---|
774 | && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
|
---|
775 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
---|
776 | == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
|
---|
777 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
|
---|
778 | break;
|
---|
779 |
|
---|
780 | return find_single_use_1 (dest, &SET_SRC (x));
|
---|
781 |
|
---|
782 | case MEM:
|
---|
783 | case SUBREG:
|
---|
784 | return find_single_use_1 (dest, &XEXP (x, 0));
|
---|
785 |
|
---|
786 | default:
|
---|
787 | break;
|
---|
788 | }
|
---|
789 |
|
---|
790 | /* If it wasn't one of the common cases above, check each expression and
|
---|
791 | vector of this code. Look for a unique usage of DEST. */
|
---|
792 |
|
---|
793 | fmt = GET_RTX_FORMAT (code);
|
---|
794 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
---|
795 | {
|
---|
796 | if (fmt[i] == 'e')
|
---|
797 | {
|
---|
798 | if (dest == XEXP (x, i)
|
---|
799 | || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
|
---|
800 | && REGNO (dest) == REGNO (XEXP (x, i))))
|
---|
801 | this_result = loc;
|
---|
802 | else
|
---|
803 | this_result = find_single_use_1 (dest, &XEXP (x, i));
|
---|
804 |
|
---|
805 | if (result == 0)
|
---|
806 | result = this_result;
|
---|
807 | else if (this_result)
|
---|
808 | /* Duplicate usage. */
|
---|
809 | return 0;
|
---|
810 | }
|
---|
811 | else if (fmt[i] == 'E')
|
---|
812 | {
|
---|
813 | int j;
|
---|
814 |
|
---|
815 | for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
---|
816 | {
|
---|
817 | if (XVECEXP (x, i, j) == dest
|
---|
818 | || (GET_CODE (dest) == REG
|
---|
819 | && GET_CODE (XVECEXP (x, i, j)) == REG
|
---|
820 | && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
|
---|
821 | this_result = loc;
|
---|
822 | else
|
---|
823 | this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
|
---|
824 |
|
---|
825 | if (result == 0)
|
---|
826 | result = this_result;
|
---|
827 | else if (this_result)
|
---|
828 | return 0;
|
---|
829 | }
|
---|
830 | }
|
---|
831 | }
|
---|
832 |
|
---|
833 | return result;
|
---|
834 | }
|
---|
835 | |
---|
836 |
|
---|
837 | /* See if DEST, produced in INSN, is used only a single time in the
|
---|
838 | sequel. If so, return a pointer to the innermost rtx expression in which
|
---|
839 | it is used.
|
---|
840 |
|
---|
841 | If PLOC is non-zero, *PLOC is set to the insn containing the single use.
|
---|
842 |
|
---|
843 | This routine will return usually zero either before flow is called (because
|
---|
844 | there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
|
---|
845 | note can't be trusted).
|
---|
846 |
|
---|
847 | If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
|
---|
848 | care about REG_DEAD notes or LOG_LINKS.
|
---|
849 |
|
---|
850 | Otherwise, we find the single use by finding an insn that has a
|
---|
851 | LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
|
---|
852 | only referenced once in that insn, we know that it must be the first
|
---|
853 | and last insn referencing DEST. */
|
---|
854 |
|
---|
855 | rtx *
|
---|
856 | find_single_use (dest, insn, ploc)
|
---|
857 | rtx dest;
|
---|
858 | rtx insn;
|
---|
859 | rtx *ploc;
|
---|
860 | {
|
---|
861 | rtx next;
|
---|
862 | rtx *result;
|
---|
863 | rtx link;
|
---|
864 |
|
---|
865 | #ifdef HAVE_cc0
|
---|
866 | if (dest == cc0_rtx)
|
---|
867 | {
|
---|
868 | next = NEXT_INSN (insn);
|
---|
869 | if (next == 0
|
---|
870 | || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
|
---|
871 | return 0;
|
---|
872 |
|
---|
873 | result = find_single_use_1 (dest, &PATTERN (next));
|
---|
874 | if (result && ploc)
|
---|
875 | *ploc = next;
|
---|
876 | return result;
|
---|
877 | }
|
---|
878 | #endif
|
---|
879 |
|
---|
880 | if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
|
---|
881 | return 0;
|
---|
882 |
|
---|
883 | for (next = next_nonnote_insn (insn);
|
---|
884 | next != 0 && GET_CODE (next) != CODE_LABEL;
|
---|
885 | next = next_nonnote_insn (next))
|
---|
886 | if (INSN_P (next) && dead_or_set_p (next, dest))
|
---|
887 | {
|
---|
888 | for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
|
---|
889 | if (XEXP (link, 0) == insn)
|
---|
890 | break;
|
---|
891 |
|
---|
892 | if (link)
|
---|
893 | {
|
---|
894 | result = find_single_use_1 (dest, &PATTERN (next));
|
---|
895 | if (ploc)
|
---|
896 | *ploc = next;
|
---|
897 | return result;
|
---|
898 | }
|
---|
899 | }
|
---|
900 |
|
---|
901 | return 0;
|
---|
902 | }
|
---|
903 | |
---|
904 |
|
---|
905 | /* Return 1 if OP is a valid general operand for machine mode MODE.
|
---|
906 | This is either a register reference, a memory reference,
|
---|
907 | or a constant. In the case of a memory reference, the address
|
---|
908 | is checked for general validity for the target machine.
|
---|
909 |
|
---|
910 | Register and memory references must have mode MODE in order to be valid,
|
---|
911 | but some constants have no machine mode and are valid for any mode.
|
---|
912 |
|
---|
913 | If MODE is VOIDmode, OP is checked for validity for whatever mode
|
---|
914 | it has.
|
---|
915 |
|
---|
916 | The main use of this function is as a predicate in match_operand
|
---|
917 | expressions in the machine description.
|
---|
918 |
|
---|
919 | For an explanation of this function's behavior for registers of
|
---|
920 | class NO_REGS, see the comment for `register_operand'. */
|
---|
921 |
|
---|
922 | int
|
---|
923 | general_operand (op, mode)
|
---|
924 | rtx op;
|
---|
925 | enum machine_mode mode;
|
---|
926 | {
|
---|
927 | enum rtx_code code = GET_CODE (op);
|
---|
928 |
|
---|
929 | if (mode == VOIDmode)
|
---|
930 | mode = GET_MODE (op);
|
---|
931 |
|
---|
932 | /* Don't accept CONST_INT or anything similar
|
---|
933 | if the caller wants something floating. */
|
---|
934 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
935 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
936 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
937 | return 0;
|
---|
938 |
|
---|
939 | if (GET_CODE (op) == CONST_INT
|
---|
940 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
941 | return 0;
|
---|
942 |
|
---|
943 | if (CONSTANT_P (op))
|
---|
944 | return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
|
---|
945 | || mode == VOIDmode)
|
---|
946 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
947 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
948 | #endif
|
---|
949 | && LEGITIMATE_CONSTANT_P (op));
|
---|
950 |
|
---|
951 | /* Except for certain constants with VOIDmode, already checked for,
|
---|
952 | OP's mode must match MODE if MODE specifies a mode. */
|
---|
953 |
|
---|
954 | if (GET_MODE (op) != mode)
|
---|
955 | return 0;
|
---|
956 |
|
---|
957 | if (code == SUBREG)
|
---|
958 | {
|
---|
959 | rtx sub = SUBREG_REG (op);
|
---|
960 |
|
---|
961 | #ifdef INSN_SCHEDULING
|
---|
962 | /* On machines that have insn scheduling, we want all memory
|
---|
963 | reference to be explicit, so outlaw paradoxical SUBREGs. */
|
---|
964 | if (GET_CODE (sub) == MEM
|
---|
965 | && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
|
---|
966 | return 0;
|
---|
967 | #endif
|
---|
968 | /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
|
---|
969 | may result in incorrect reference. We should simplify all valid
|
---|
970 | subregs of MEM anyway. But allow this after reload because we
|
---|
971 | might be called from cleanup_subreg_operands.
|
---|
972 |
|
---|
973 | ??? This is a kludge. */
|
---|
974 | if (!reload_completed && SUBREG_BYTE (op) != 0
|
---|
975 | && GET_CODE (sub) == MEM)
|
---|
976 | return 0;
|
---|
977 |
|
---|
978 | /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
|
---|
979 | create such rtl, and we must reject it. */
|
---|
980 | if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
---|
981 | && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
|
---|
982 | return 0;
|
---|
983 |
|
---|
984 | op = sub;
|
---|
985 | code = GET_CODE (op);
|
---|
986 | }
|
---|
987 |
|
---|
988 | if (code == REG)
|
---|
989 | /* A register whose class is NO_REGS is not a general operand. */
|
---|
990 | return (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
---|
991 | || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
|
---|
992 |
|
---|
993 | if (code == MEM)
|
---|
994 | {
|
---|
995 | rtx y = XEXP (op, 0);
|
---|
996 |
|
---|
997 | if (! volatile_ok && MEM_VOLATILE_P (op))
|
---|
998 | return 0;
|
---|
999 |
|
---|
1000 | if (GET_CODE (y) == ADDRESSOF)
|
---|
1001 | return 1;
|
---|
1002 |
|
---|
1003 | /* Use the mem's mode, since it will be reloaded thus. */
|
---|
1004 | mode = GET_MODE (op);
|
---|
1005 | GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | /* Pretend this is an operand for now; we'll run force_operand
|
---|
1009 | on its replacement in fixup_var_refs_1. */
|
---|
1010 | if (code == ADDRESSOF)
|
---|
1011 | return 1;
|
---|
1012 |
|
---|
1013 | return 0;
|
---|
1014 |
|
---|
1015 | win:
|
---|
1016 | return 1;
|
---|
1017 | }
|
---|
1018 | |
---|
1019 |
|
---|
1020 | /* Return 1 if OP is a valid memory address for a memory reference
|
---|
1021 | of mode MODE.
|
---|
1022 |
|
---|
1023 | The main use of this function is as a predicate in match_operand
|
---|
1024 | expressions in the machine description. */
|
---|
1025 |
|
---|
1026 | int
|
---|
1027 | address_operand (op, mode)
|
---|
1028 | rtx op;
|
---|
1029 | enum machine_mode mode;
|
---|
1030 | {
|
---|
1031 | return memory_address_p (mode, op);
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 | /* Return 1 if OP is a register reference of mode MODE.
|
---|
1035 | If MODE is VOIDmode, accept a register in any mode.
|
---|
1036 |
|
---|
1037 | The main use of this function is as a predicate in match_operand
|
---|
1038 | expressions in the machine description.
|
---|
1039 |
|
---|
1040 | As a special exception, registers whose class is NO_REGS are
|
---|
1041 | not accepted by `register_operand'. The reason for this change
|
---|
1042 | is to allow the representation of special architecture artifacts
|
---|
1043 | (such as a condition code register) without extending the rtl
|
---|
1044 | definitions. Since registers of class NO_REGS cannot be used
|
---|
1045 | as registers in any case where register classes are examined,
|
---|
1046 | it is most consistent to keep this function from accepting them. */
|
---|
1047 |
|
---|
1048 | int
|
---|
1049 | register_operand (op, mode)
|
---|
1050 | rtx op;
|
---|
1051 | enum machine_mode mode;
|
---|
1052 | {
|
---|
1053 | if (GET_MODE (op) != mode && mode != VOIDmode)
|
---|
1054 | return 0;
|
---|
1055 |
|
---|
1056 | if (GET_CODE (op) == SUBREG)
|
---|
1057 | {
|
---|
1058 | rtx sub = SUBREG_REG (op);
|
---|
1059 |
|
---|
1060 | /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
---|
1061 | because it is guaranteed to be reloaded into one.
|
---|
1062 | Just make sure the MEM is valid in itself.
|
---|
1063 | (Ideally, (SUBREG (MEM)...) should not exist after reload,
|
---|
1064 | but currently it does result from (SUBREG (REG)...) where the
|
---|
1065 | reg went on the stack.) */
|
---|
1066 | if (! reload_completed && GET_CODE (sub) == MEM)
|
---|
1067 | return general_operand (op, mode);
|
---|
1068 |
|
---|
1069 | #ifdef CLASS_CANNOT_CHANGE_MODE
|
---|
1070 | if (GET_CODE (sub) == REG
|
---|
1071 | && REGNO (sub) < FIRST_PSEUDO_REGISTER
|
---|
1072 | && (TEST_HARD_REG_BIT
|
---|
1073 | (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
|
---|
1074 | REGNO (sub)))
|
---|
1075 | && CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (sub))
|
---|
1076 | && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
|
---|
1077 | && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
|
---|
1078 | return 0;
|
---|
1079 | #endif
|
---|
1080 |
|
---|
1081 | /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
|
---|
1082 | create such rtl, and we must reject it. */
|
---|
1083 | if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
---|
1084 | && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
|
---|
1085 | return 0;
|
---|
1086 |
|
---|
1087 | op = sub;
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | /* If we have an ADDRESSOF, consider it valid since it will be
|
---|
1091 | converted into something that will not be a MEM. */
|
---|
1092 | if (GET_CODE (op) == ADDRESSOF)
|
---|
1093 | return 1;
|
---|
1094 |
|
---|
1095 | /* We don't consider registers whose class is NO_REGS
|
---|
1096 | to be a register operand. */
|
---|
1097 | return (GET_CODE (op) == REG
|
---|
1098 | && (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
---|
1099 | || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
---|
1100 | }
|
---|
1101 |
|
---|
1102 | /* Return 1 for a register in Pmode; ignore the tested mode. */
|
---|
1103 |
|
---|
1104 | int
|
---|
1105 | pmode_register_operand (op, mode)
|
---|
1106 | rtx op;
|
---|
1107 | enum machine_mode mode ATTRIBUTE_UNUSED;
|
---|
1108 | {
|
---|
1109 | return register_operand (op, Pmode);
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
|
---|
1113 | or a hard register. */
|
---|
1114 |
|
---|
1115 | int
|
---|
1116 | scratch_operand (op, mode)
|
---|
1117 | rtx op;
|
---|
1118 | enum machine_mode mode;
|
---|
1119 | {
|
---|
1120 | if (GET_MODE (op) != mode && mode != VOIDmode)
|
---|
1121 | return 0;
|
---|
1122 |
|
---|
1123 | return (GET_CODE (op) == SCRATCH
|
---|
1124 | || (GET_CODE (op) == REG
|
---|
1125 | && REGNO (op) < FIRST_PSEUDO_REGISTER));
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 | /* Return 1 if OP is a valid immediate operand for mode MODE.
|
---|
1129 |
|
---|
1130 | The main use of this function is as a predicate in match_operand
|
---|
1131 | expressions in the machine description. */
|
---|
1132 |
|
---|
1133 | int
|
---|
1134 | immediate_operand (op, mode)
|
---|
1135 | rtx op;
|
---|
1136 | enum machine_mode mode;
|
---|
1137 | {
|
---|
1138 | /* Don't accept CONST_INT or anything similar
|
---|
1139 | if the caller wants something floating. */
|
---|
1140 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
1141 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
1142 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
1143 | return 0;
|
---|
1144 |
|
---|
1145 | if (GET_CODE (op) == CONST_INT
|
---|
1146 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
1147 | return 0;
|
---|
1148 |
|
---|
1149 | /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
|
---|
1150 | result in 0/1. It seems a safe assumption that this is
|
---|
1151 | in range for everyone. */
|
---|
1152 | if (GET_CODE (op) == CONSTANT_P_RTX)
|
---|
1153 | return 1;
|
---|
1154 |
|
---|
1155 | return (CONSTANT_P (op)
|
---|
1156 | && (GET_MODE (op) == mode || mode == VOIDmode
|
---|
1157 | || GET_MODE (op) == VOIDmode)
|
---|
1158 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
1159 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
1160 | #endif
|
---|
1161 | && LEGITIMATE_CONSTANT_P (op));
|
---|
1162 | }
|
---|
1163 |
|
---|
1164 | /* Returns 1 if OP is an operand that is a CONST_INT. */
|
---|
1165 |
|
---|
1166 | int
|
---|
1167 | const_int_operand (op, mode)
|
---|
1168 | rtx op;
|
---|
1169 | enum machine_mode mode;
|
---|
1170 | {
|
---|
1171 | if (GET_CODE (op) != CONST_INT)
|
---|
1172 | return 0;
|
---|
1173 |
|
---|
1174 | if (mode != VOIDmode
|
---|
1175 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
1176 | return 0;
|
---|
1177 |
|
---|
1178 | return 1;
|
---|
1179 | }
|
---|
1180 |
|
---|
1181 | /* Returns 1 if OP is an operand that is a constant integer or constant
|
---|
1182 | floating-point number. */
|
---|
1183 |
|
---|
1184 | int
|
---|
1185 | const_double_operand (op, mode)
|
---|
1186 | rtx op;
|
---|
1187 | enum machine_mode mode;
|
---|
1188 | {
|
---|
1189 | /* Don't accept CONST_INT or anything similar
|
---|
1190 | if the caller wants something floating. */
|
---|
1191 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
1192 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
1193 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
1194 | return 0;
|
---|
1195 |
|
---|
1196 | return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
|
---|
1197 | && (mode == VOIDmode || GET_MODE (op) == mode
|
---|
1198 | || GET_MODE (op) == VOIDmode));
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | /* Return 1 if OP is a general operand that is not an immediate operand. */
|
---|
1202 |
|
---|
1203 | int
|
---|
1204 | nonimmediate_operand (op, mode)
|
---|
1205 | rtx op;
|
---|
1206 | enum machine_mode mode;
|
---|
1207 | {
|
---|
1208 | return (general_operand (op, mode) && ! CONSTANT_P (op));
|
---|
1209 | }
|
---|
1210 |
|
---|
1211 | /* Return 1 if OP is a register reference or immediate value of mode MODE. */
|
---|
1212 |
|
---|
1213 | int
|
---|
1214 | nonmemory_operand (op, mode)
|
---|
1215 | rtx op;
|
---|
1216 | enum machine_mode mode;
|
---|
1217 | {
|
---|
1218 | if (CONSTANT_P (op))
|
---|
1219 | {
|
---|
1220 | /* Don't accept CONST_INT or anything similar
|
---|
1221 | if the caller wants something floating. */
|
---|
1222 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
1223 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
1224 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
1225 | return 0;
|
---|
1226 |
|
---|
1227 | if (GET_CODE (op) == CONST_INT
|
---|
1228 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
1229 | return 0;
|
---|
1230 |
|
---|
1231 | return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
|
---|
1232 | || mode == VOIDmode)
|
---|
1233 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
1234 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
1235 | #endif
|
---|
1236 | && LEGITIMATE_CONSTANT_P (op));
|
---|
1237 | }
|
---|
1238 |
|
---|
1239 | if (GET_MODE (op) != mode && mode != VOIDmode)
|
---|
1240 | return 0;
|
---|
1241 |
|
---|
1242 | if (GET_CODE (op) == SUBREG)
|
---|
1243 | {
|
---|
1244 | /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
---|
1245 | because it is guaranteed to be reloaded into one.
|
---|
1246 | Just make sure the MEM is valid in itself.
|
---|
1247 | (Ideally, (SUBREG (MEM)...) should not exist after reload,
|
---|
1248 | but currently it does result from (SUBREG (REG)...) where the
|
---|
1249 | reg went on the stack.) */
|
---|
1250 | if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
|
---|
1251 | return general_operand (op, mode);
|
---|
1252 | op = SUBREG_REG (op);
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 | /* We don't consider registers whose class is NO_REGS
|
---|
1256 | to be a register operand. */
|
---|
1257 | return (GET_CODE (op) == REG
|
---|
1258 | && (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
---|
1259 | || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
---|
1260 | }
|
---|
1261 |
|
---|
1262 | /* Return 1 if OP is a valid operand that stands for pushing a
|
---|
1263 | value of mode MODE onto the stack.
|
---|
1264 |
|
---|
1265 | The main use of this function is as a predicate in match_operand
|
---|
1266 | expressions in the machine description. */
|
---|
1267 |
|
---|
1268 | int
|
---|
1269 | push_operand (op, mode)
|
---|
1270 | rtx op;
|
---|
1271 | enum machine_mode mode;
|
---|
1272 | {
|
---|
1273 | unsigned int rounded_size = GET_MODE_SIZE (mode);
|
---|
1274 |
|
---|
1275 | #ifdef PUSH_ROUNDING
|
---|
1276 | rounded_size = PUSH_ROUNDING (rounded_size);
|
---|
1277 | #endif
|
---|
1278 |
|
---|
1279 | if (GET_CODE (op) != MEM)
|
---|
1280 | return 0;
|
---|
1281 |
|
---|
1282 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1283 | return 0;
|
---|
1284 |
|
---|
1285 | op = XEXP (op, 0);
|
---|
1286 |
|
---|
1287 | if (rounded_size == GET_MODE_SIZE (mode))
|
---|
1288 | {
|
---|
1289 | if (GET_CODE (op) != STACK_PUSH_CODE)
|
---|
1290 | return 0;
|
---|
1291 | }
|
---|
1292 | else
|
---|
1293 | {
|
---|
1294 | if (GET_CODE (op) != PRE_MODIFY
|
---|
1295 | || GET_CODE (XEXP (op, 1)) != PLUS
|
---|
1296 | || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
|
---|
1297 | || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
|
---|
1298 | #ifdef STACK_GROWS_DOWNWARD
|
---|
1299 | || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
|
---|
1300 | #else
|
---|
1301 | || INTVAL (XEXP (XEXP (op, 1), 1)) != rounded_size
|
---|
1302 | #endif
|
---|
1303 | )
|
---|
1304 | return 0;
|
---|
1305 | }
|
---|
1306 |
|
---|
1307 | return XEXP (op, 0) == stack_pointer_rtx;
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | /* Return 1 if OP is a valid operand that stands for popping a
|
---|
1311 | value of mode MODE off the stack.
|
---|
1312 |
|
---|
1313 | The main use of this function is as a predicate in match_operand
|
---|
1314 | expressions in the machine description. */
|
---|
1315 |
|
---|
1316 | int
|
---|
1317 | pop_operand (op, mode)
|
---|
1318 | rtx op;
|
---|
1319 | enum machine_mode mode;
|
---|
1320 | {
|
---|
1321 | if (GET_CODE (op) != MEM)
|
---|
1322 | return 0;
|
---|
1323 |
|
---|
1324 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1325 | return 0;
|
---|
1326 |
|
---|
1327 | op = XEXP (op, 0);
|
---|
1328 |
|
---|
1329 | if (GET_CODE (op) != STACK_POP_CODE)
|
---|
1330 | return 0;
|
---|
1331 |
|
---|
1332 | return XEXP (op, 0) == stack_pointer_rtx;
|
---|
1333 | }
|
---|
1334 |
|
---|
1335 | /* Return 1 if ADDR is a valid memory address for mode MODE. */
|
---|
1336 |
|
---|
1337 | int
|
---|
1338 | memory_address_p (mode, addr)
|
---|
1339 | enum machine_mode mode ATTRIBUTE_UNUSED;
|
---|
1340 | rtx addr;
|
---|
1341 | {
|
---|
1342 | if (GET_CODE (addr) == ADDRESSOF)
|
---|
1343 | return 1;
|
---|
1344 |
|
---|
1345 | GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
|
---|
1346 | return 0;
|
---|
1347 |
|
---|
1348 | win:
|
---|
1349 | return 1;
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 | /* Return 1 if OP is a valid memory reference with mode MODE,
|
---|
1353 | including a valid address.
|
---|
1354 |
|
---|
1355 | The main use of this function is as a predicate in match_operand
|
---|
1356 | expressions in the machine description. */
|
---|
1357 |
|
---|
1358 | int
|
---|
1359 | memory_operand (op, mode)
|
---|
1360 | rtx op;
|
---|
1361 | enum machine_mode mode;
|
---|
1362 | {
|
---|
1363 | rtx inner;
|
---|
1364 |
|
---|
1365 | if (! reload_completed)
|
---|
1366 | /* Note that no SUBREG is a memory operand before end of reload pass,
|
---|
1367 | because (SUBREG (MEM...)) forces reloading into a register. */
|
---|
1368 | return GET_CODE (op) == MEM && general_operand (op, mode);
|
---|
1369 |
|
---|
1370 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1371 | return 0;
|
---|
1372 |
|
---|
1373 | inner = op;
|
---|
1374 | if (GET_CODE (inner) == SUBREG)
|
---|
1375 | inner = SUBREG_REG (inner);
|
---|
1376 |
|
---|
1377 | return (GET_CODE (inner) == MEM && general_operand (op, mode));
|
---|
1378 | }
|
---|
1379 |
|
---|
1380 | /* Return 1 if OP is a valid indirect memory reference with mode MODE;
|
---|
1381 | that is, a memory reference whose address is a general_operand. */
|
---|
1382 |
|
---|
1383 | int
|
---|
1384 | indirect_operand (op, mode)
|
---|
1385 | rtx op;
|
---|
1386 | enum machine_mode mode;
|
---|
1387 | {
|
---|
1388 | /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
|
---|
1389 | if (! reload_completed
|
---|
1390 | && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
|
---|
1391 | {
|
---|
1392 | int offset = SUBREG_BYTE (op);
|
---|
1393 | rtx inner = SUBREG_REG (op);
|
---|
1394 |
|
---|
1395 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1396 | return 0;
|
---|
1397 |
|
---|
1398 | /* The only way that we can have a general_operand as the resulting
|
---|
1399 | address is if OFFSET is zero and the address already is an operand
|
---|
1400 | or if the address is (plus Y (const_int -OFFSET)) and Y is an
|
---|
1401 | operand. */
|
---|
1402 |
|
---|
1403 | return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
|
---|
1404 | || (GET_CODE (XEXP (inner, 0)) == PLUS
|
---|
1405 | && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
|
---|
1406 | && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
|
---|
1407 | && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 | return (GET_CODE (op) == MEM
|
---|
1411 | && memory_operand (op, mode)
|
---|
1412 | && general_operand (XEXP (op, 0), Pmode));
|
---|
1413 | }
|
---|
1414 |
|
---|
1415 | /* Return 1 if this is a comparison operator. This allows the use of
|
---|
1416 | MATCH_OPERATOR to recognize all the branch insns. */
|
---|
1417 |
|
---|
1418 | int
|
---|
1419 | comparison_operator (op, mode)
|
---|
1420 | rtx op;
|
---|
1421 | enum machine_mode mode;
|
---|
1422 | {
|
---|
1423 | return ((mode == VOIDmode || GET_MODE (op) == mode)
|
---|
1424 | && GET_RTX_CLASS (GET_CODE (op)) == '<');
|
---|
1425 | }
|
---|
1426 | |
---|
1427 |
|
---|
1428 | /* If BODY is an insn body that uses ASM_OPERANDS,
|
---|
1429 | return the number of operands (both input and output) in the insn.
|
---|
1430 | Otherwise return -1. */
|
---|
1431 |
|
---|
1432 | int
|
---|
1433 | asm_noperands (body)
|
---|
1434 | rtx body;
|
---|
1435 | {
|
---|
1436 | switch (GET_CODE (body))
|
---|
1437 | {
|
---|
1438 | case ASM_OPERANDS:
|
---|
1439 | /* No output operands: return number of input operands. */
|
---|
1440 | return ASM_OPERANDS_INPUT_LENGTH (body);
|
---|
1441 | case SET:
|
---|
1442 | if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
---|
1443 | /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
|
---|
1444 | return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
|
---|
1445 | else
|
---|
1446 | return -1;
|
---|
1447 | case PARALLEL:
|
---|
1448 | if (GET_CODE (XVECEXP (body, 0, 0)) == SET
|
---|
1449 | && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
---|
1450 | {
|
---|
1451 | /* Multiple output operands, or 1 output plus some clobbers:
|
---|
1452 | body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
|
---|
1453 | int i;
|
---|
1454 | int n_sets;
|
---|
1455 |
|
---|
1456 | /* Count backwards through CLOBBERs to determine number of SETs. */
|
---|
1457 | for (i = XVECLEN (body, 0); i > 0; i--)
|
---|
1458 | {
|
---|
1459 | if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
|
---|
1460 | break;
|
---|
1461 | if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
|
---|
1462 | return -1;
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 | /* N_SETS is now number of output operands. */
|
---|
1466 | n_sets = i;
|
---|
1467 |
|
---|
1468 | /* Verify that all the SETs we have
|
---|
1469 | came from a single original asm_operands insn
|
---|
1470 | (so that invalid combinations are blocked). */
|
---|
1471 | for (i = 0; i < n_sets; i++)
|
---|
1472 | {
|
---|
1473 | rtx elt = XVECEXP (body, 0, i);
|
---|
1474 | if (GET_CODE (elt) != SET)
|
---|
1475 | return -1;
|
---|
1476 | if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
|
---|
1477 | return -1;
|
---|
1478 | /* If these ASM_OPERANDS rtx's came from different original insns
|
---|
1479 | then they aren't allowed together. */
|
---|
1480 | if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
|
---|
1481 | != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
|
---|
1482 | return -1;
|
---|
1483 | }
|
---|
1484 | return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
|
---|
1485 | + n_sets);
|
---|
1486 | }
|
---|
1487 | else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
---|
1488 | {
|
---|
1489 | /* 0 outputs, but some clobbers:
|
---|
1490 | body is [(asm_operands ...) (clobber (reg ...))...]. */
|
---|
1491 | int i;
|
---|
1492 |
|
---|
1493 | /* Make sure all the other parallel things really are clobbers. */
|
---|
1494 | for (i = XVECLEN (body, 0) - 1; i > 0; i--)
|
---|
1495 | if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
|
---|
1496 | return -1;
|
---|
1497 |
|
---|
1498 | return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
|
---|
1499 | }
|
---|
1500 | else
|
---|
1501 | return -1;
|
---|
1502 | default:
|
---|
1503 | return -1;
|
---|
1504 | }
|
---|
1505 | }
|
---|
1506 |
|
---|
1507 | /* Assuming BODY is an insn body that uses ASM_OPERANDS,
|
---|
1508 | copy its operands (both input and output) into the vector OPERANDS,
|
---|
1509 | the locations of the operands within the insn into the vector OPERAND_LOCS,
|
---|
1510 | and the constraints for the operands into CONSTRAINTS.
|
---|
1511 | Write the modes of the operands into MODES.
|
---|
1512 | Return the assembler-template.
|
---|
1513 |
|
---|
1514 | If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
|
---|
1515 | we don't store that info. */
|
---|
1516 |
|
---|
1517 | const char *
|
---|
1518 | decode_asm_operands (body, operands, operand_locs, constraints, modes)
|
---|
1519 | rtx body;
|
---|
1520 | rtx *operands;
|
---|
1521 | rtx **operand_locs;
|
---|
1522 | const char **constraints;
|
---|
1523 | enum machine_mode *modes;
|
---|
1524 | {
|
---|
1525 | int i;
|
---|
1526 | int noperands;
|
---|
1527 | const char *template = 0;
|
---|
1528 |
|
---|
1529 | if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
---|
1530 | {
|
---|
1531 | rtx asmop = SET_SRC (body);
|
---|
1532 | /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
|
---|
1533 |
|
---|
1534 | noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
|
---|
1535 |
|
---|
1536 | for (i = 1; i < noperands; i++)
|
---|
1537 | {
|
---|
1538 | if (operand_locs)
|
---|
1539 | operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
|
---|
1540 | if (operands)
|
---|
1541 | operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
|
---|
1542 | if (constraints)
|
---|
1543 | constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
|
---|
1544 | if (modes)
|
---|
1545 | modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
|
---|
1546 | }
|
---|
1547 |
|
---|
1548 | /* The output is in the SET.
|
---|
1549 | Its constraint is in the ASM_OPERANDS itself. */
|
---|
1550 | if (operands)
|
---|
1551 | operands[0] = SET_DEST (body);
|
---|
1552 | if (operand_locs)
|
---|
1553 | operand_locs[0] = &SET_DEST (body);
|
---|
1554 | if (constraints)
|
---|
1555 | constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
|
---|
1556 | if (modes)
|
---|
1557 | modes[0] = GET_MODE (SET_DEST (body));
|
---|
1558 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1559 | }
|
---|
1560 | else if (GET_CODE (body) == ASM_OPERANDS)
|
---|
1561 | {
|
---|
1562 | rtx asmop = body;
|
---|
1563 | /* No output operands: BODY is (asm_operands ....). */
|
---|
1564 |
|
---|
1565 | noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
---|
1566 |
|
---|
1567 | /* The input operands are found in the 1st element vector. */
|
---|
1568 | /* Constraints for inputs are in the 2nd element vector. */
|
---|
1569 | for (i = 0; i < noperands; i++)
|
---|
1570 | {
|
---|
1571 | if (operand_locs)
|
---|
1572 | operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
---|
1573 | if (operands)
|
---|
1574 | operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
---|
1575 | if (constraints)
|
---|
1576 | constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
---|
1577 | if (modes)
|
---|
1578 | modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
---|
1579 | }
|
---|
1580 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1581 | }
|
---|
1582 | else if (GET_CODE (body) == PARALLEL
|
---|
1583 | && GET_CODE (XVECEXP (body, 0, 0)) == SET
|
---|
1584 | && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
---|
1585 | {
|
---|
1586 | rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
|
---|
1587 | int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
|
---|
1588 | int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
---|
1589 | int nout = 0; /* Does not include CLOBBERs. */
|
---|
1590 |
|
---|
1591 | /* At least one output, plus some CLOBBERs. */
|
---|
1592 |
|
---|
1593 | /* The outputs are in the SETs.
|
---|
1594 | Their constraints are in the ASM_OPERANDS itself. */
|
---|
1595 | for (i = 0; i < nparallel; i++)
|
---|
1596 | {
|
---|
1597 | if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
---|
1598 | break; /* Past last SET */
|
---|
1599 |
|
---|
1600 | if (operands)
|
---|
1601 | operands[i] = SET_DEST (XVECEXP (body, 0, i));
|
---|
1602 | if (operand_locs)
|
---|
1603 | operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
|
---|
1604 | if (constraints)
|
---|
1605 | constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
|
---|
1606 | if (modes)
|
---|
1607 | modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
|
---|
1608 | nout++;
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | for (i = 0; i < nin; i++)
|
---|
1612 | {
|
---|
1613 | if (operand_locs)
|
---|
1614 | operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
|
---|
1615 | if (operands)
|
---|
1616 | operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
|
---|
1617 | if (constraints)
|
---|
1618 | constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
---|
1619 | if (modes)
|
---|
1620 | modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
---|
1621 | }
|
---|
1622 |
|
---|
1623 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1624 | }
|
---|
1625 | else if (GET_CODE (body) == PARALLEL
|
---|
1626 | && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
---|
1627 | {
|
---|
1628 | /* No outputs, but some CLOBBERs. */
|
---|
1629 |
|
---|
1630 | rtx asmop = XVECEXP (body, 0, 0);
|
---|
1631 | int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
---|
1632 |
|
---|
1633 | for (i = 0; i < nin; i++)
|
---|
1634 | {
|
---|
1635 | if (operand_locs)
|
---|
1636 | operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
---|
1637 | if (operands)
|
---|
1638 | operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
---|
1639 | if (constraints)
|
---|
1640 | constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
---|
1641 | if (modes)
|
---|
1642 | modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
---|
1643 | }
|
---|
1644 |
|
---|
1645 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1646 | }
|
---|
1647 |
|
---|
1648 | return template;
|
---|
1649 | }
|
---|
1650 |
|
---|
1651 | /* Check if an asm_operand matches it's constraints.
|
---|
1652 | Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
|
---|
1653 |
|
---|
1654 | int
|
---|
1655 | asm_operand_ok (op, constraint)
|
---|
1656 | rtx op;
|
---|
1657 | const char *constraint;
|
---|
1658 | {
|
---|
1659 | int result = 0;
|
---|
1660 |
|
---|
1661 | /* Use constrain_operands after reload. */
|
---|
1662 | if (reload_completed)
|
---|
1663 | abort ();
|
---|
1664 |
|
---|
1665 | while (*constraint)
|
---|
1666 | {
|
---|
1667 | char c = *constraint++;
|
---|
1668 | switch (c)
|
---|
1669 | {
|
---|
1670 | case '=':
|
---|
1671 | case '+':
|
---|
1672 | case '*':
|
---|
1673 | case '%':
|
---|
1674 | case '?':
|
---|
1675 | case '!':
|
---|
1676 | case '#':
|
---|
1677 | case '&':
|
---|
1678 | case ',':
|
---|
1679 | break;
|
---|
1680 |
|
---|
1681 | case '0': case '1': case '2': case '3': case '4':
|
---|
1682 | case '5': case '6': case '7': case '8': case '9':
|
---|
1683 | /* For best results, our caller should have given us the
|
---|
1684 | proper matching constraint, but we can't actually fail
|
---|
1685 | the check if they didn't. Indicate that results are
|
---|
1686 | inconclusive. */
|
---|
1687 | while (ISDIGIT (*constraint))
|
---|
1688 | constraint++;
|
---|
1689 | result = -1;
|
---|
1690 | break;
|
---|
1691 |
|
---|
1692 | case 'p':
|
---|
1693 | if (address_operand (op, VOIDmode))
|
---|
1694 | return 1;
|
---|
1695 | break;
|
---|
1696 |
|
---|
1697 | case 'm':
|
---|
1698 | case 'V': /* non-offsettable */
|
---|
1699 | if (memory_operand (op, VOIDmode))
|
---|
1700 | return 1;
|
---|
1701 | break;
|
---|
1702 |
|
---|
1703 | case 'o': /* offsettable */
|
---|
1704 | if (offsettable_nonstrict_memref_p (op))
|
---|
1705 | return 1;
|
---|
1706 | break;
|
---|
1707 |
|
---|
1708 | case '<':
|
---|
1709 | /* ??? Before flow, auto inc/dec insns are not supposed to exist,
|
---|
1710 | excepting those that expand_call created. Further, on some
|
---|
1711 | machines which do not have generalized auto inc/dec, an inc/dec
|
---|
1712 | is not a memory_operand.
|
---|
1713 |
|
---|
1714 | Match any memory and hope things are resolved after reload. */
|
---|
1715 |
|
---|
1716 | if (GET_CODE (op) == MEM
|
---|
1717 | && (1
|
---|
1718 | || GET_CODE (XEXP (op, 0)) == PRE_DEC
|
---|
1719 | || GET_CODE (XEXP (op, 0)) == POST_DEC))
|
---|
1720 | return 1;
|
---|
1721 | break;
|
---|
1722 |
|
---|
1723 | case '>':
|
---|
1724 | if (GET_CODE (op) == MEM
|
---|
1725 | && (1
|
---|
1726 | || GET_CODE (XEXP (op, 0)) == PRE_INC
|
---|
1727 | || GET_CODE (XEXP (op, 0)) == POST_INC))
|
---|
1728 | return 1;
|
---|
1729 | break;
|
---|
1730 |
|
---|
1731 | case 'E':
|
---|
1732 | #ifndef REAL_ARITHMETIC
|
---|
1733 | /* Match any floating double constant, but only if
|
---|
1734 | we can examine the bits of it reliably. */
|
---|
1735 | if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|
---|
1736 | || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
|
---|
1737 | && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
|
---|
1738 | break;
|
---|
1739 | #endif
|
---|
1740 | /* FALLTHRU */
|
---|
1741 |
|
---|
1742 | case 'F':
|
---|
1743 | if (GET_CODE (op) == CONST_DOUBLE)
|
---|
1744 | return 1;
|
---|
1745 | break;
|
---|
1746 |
|
---|
1747 | case 'G':
|
---|
1748 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
1749 | && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'G'))
|
---|
1750 | return 1;
|
---|
1751 | break;
|
---|
1752 | case 'H':
|
---|
1753 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
1754 | && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'H'))
|
---|
1755 | return 1;
|
---|
1756 | break;
|
---|
1757 |
|
---|
1758 | case 's':
|
---|
1759 | if (GET_CODE (op) == CONST_INT
|
---|
1760 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
1761 | && GET_MODE (op) == VOIDmode))
|
---|
1762 | break;
|
---|
1763 | /* FALLTHRU */
|
---|
1764 |
|
---|
1765 | case 'i':
|
---|
1766 | if (CONSTANT_P (op)
|
---|
1767 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
1768 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
1769 | #endif
|
---|
1770 | )
|
---|
1771 | return 1;
|
---|
1772 | break;
|
---|
1773 |
|
---|
1774 | case 'n':
|
---|
1775 | if (GET_CODE (op) == CONST_INT
|
---|
1776 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
1777 | && GET_MODE (op) == VOIDmode))
|
---|
1778 | return 1;
|
---|
1779 | break;
|
---|
1780 |
|
---|
1781 | case 'I':
|
---|
1782 | if (GET_CODE (op) == CONST_INT
|
---|
1783 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I'))
|
---|
1784 | return 1;
|
---|
1785 | break;
|
---|
1786 | case 'J':
|
---|
1787 | if (GET_CODE (op) == CONST_INT
|
---|
1788 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'J'))
|
---|
1789 | return 1;
|
---|
1790 | break;
|
---|
1791 | case 'K':
|
---|
1792 | if (GET_CODE (op) == CONST_INT
|
---|
1793 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
|
---|
1794 | return 1;
|
---|
1795 | break;
|
---|
1796 | case 'L':
|
---|
1797 | if (GET_CODE (op) == CONST_INT
|
---|
1798 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'))
|
---|
1799 | return 1;
|
---|
1800 | break;
|
---|
1801 | case 'M':
|
---|
1802 | if (GET_CODE (op) == CONST_INT
|
---|
1803 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'M'))
|
---|
1804 | return 1;
|
---|
1805 | break;
|
---|
1806 | case 'N':
|
---|
1807 | if (GET_CODE (op) == CONST_INT
|
---|
1808 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'N'))
|
---|
1809 | return 1;
|
---|
1810 | break;
|
---|
1811 | case 'O':
|
---|
1812 | if (GET_CODE (op) == CONST_INT
|
---|
1813 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'))
|
---|
1814 | return 1;
|
---|
1815 | break;
|
---|
1816 | case 'P':
|
---|
1817 | if (GET_CODE (op) == CONST_INT
|
---|
1818 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'))
|
---|
1819 | return 1;
|
---|
1820 | break;
|
---|
1821 |
|
---|
1822 | case 'X':
|
---|
1823 | return 1;
|
---|
1824 |
|
---|
1825 | case 'g':
|
---|
1826 | if (general_operand (op, VOIDmode))
|
---|
1827 | return 1;
|
---|
1828 | break;
|
---|
1829 |
|
---|
1830 | default:
|
---|
1831 | /* For all other letters, we first check for a register class,
|
---|
1832 | otherwise it is an EXTRA_CONSTRAINT. */
|
---|
1833 | if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
|
---|
1834 | {
|
---|
1835 | case 'r':
|
---|
1836 | if (GET_MODE (op) == BLKmode)
|
---|
1837 | break;
|
---|
1838 | if (register_operand (op, VOIDmode))
|
---|
1839 | return 1;
|
---|
1840 | }
|
---|
1841 | #ifdef EXTRA_CONSTRAINT
|
---|
1842 | if (EXTRA_CONSTRAINT (op, c))
|
---|
1843 | return 1;
|
---|
1844 | #endif
|
---|
1845 | break;
|
---|
1846 | }
|
---|
1847 | }
|
---|
1848 |
|
---|
1849 | return result;
|
---|
1850 | }
|
---|
1851 | |
---|
1852 |
|
---|
1853 | /* Given an rtx *P, if it is a sum containing an integer constant term,
|
---|
1854 | return the location (type rtx *) of the pointer to that constant term.
|
---|
1855 | Otherwise, return a null pointer. */
|
---|
1856 |
|
---|
1857 | rtx *
|
---|
1858 | find_constant_term_loc (p)
|
---|
1859 | rtx *p;
|
---|
1860 | {
|
---|
1861 | rtx *tem;
|
---|
1862 | enum rtx_code code = GET_CODE (*p);
|
---|
1863 |
|
---|
1864 | /* If *P IS such a constant term, P is its location. */
|
---|
1865 |
|
---|
1866 | if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
|
---|
1867 | || code == CONST)
|
---|
1868 | return p;
|
---|
1869 |
|
---|
1870 | /* Otherwise, if not a sum, it has no constant term. */
|
---|
1871 |
|
---|
1872 | if (GET_CODE (*p) != PLUS)
|
---|
1873 | return 0;
|
---|
1874 |
|
---|
1875 | /* If one of the summands is constant, return its location. */
|
---|
1876 |
|
---|
1877 | if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
|
---|
1878 | && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
|
---|
1879 | return p;
|
---|
1880 |
|
---|
1881 | /* Otherwise, check each summand for containing a constant term. */
|
---|
1882 |
|
---|
1883 | if (XEXP (*p, 0) != 0)
|
---|
1884 | {
|
---|
1885 | tem = find_constant_term_loc (&XEXP (*p, 0));
|
---|
1886 | if (tem != 0)
|
---|
1887 | return tem;
|
---|
1888 | }
|
---|
1889 |
|
---|
1890 | if (XEXP (*p, 1) != 0)
|
---|
1891 | {
|
---|
1892 | tem = find_constant_term_loc (&XEXP (*p, 1));
|
---|
1893 | if (tem != 0)
|
---|
1894 | return tem;
|
---|
1895 | }
|
---|
1896 |
|
---|
1897 | return 0;
|
---|
1898 | }
|
---|
1899 | |
---|
1900 |
|
---|
1901 | /* Return 1 if OP is a memory reference
|
---|
1902 | whose address contains no side effects
|
---|
1903 | and remains valid after the addition
|
---|
1904 | of a positive integer less than the
|
---|
1905 | size of the object being referenced.
|
---|
1906 |
|
---|
1907 | We assume that the original address is valid and do not check it.
|
---|
1908 |
|
---|
1909 | This uses strict_memory_address_p as a subroutine, so
|
---|
1910 | don't use it before reload. */
|
---|
1911 |
|
---|
1912 | int
|
---|
1913 | offsettable_memref_p (op)
|
---|
1914 | rtx op;
|
---|
1915 | {
|
---|
1916 | return ((GET_CODE (op) == MEM)
|
---|
1917 | && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
|
---|
1918 | }
|
---|
1919 |
|
---|
1920 | /* Similar, but don't require a strictly valid mem ref:
|
---|
1921 | consider pseudo-regs valid as index or base regs. */
|
---|
1922 |
|
---|
1923 | int
|
---|
1924 | offsettable_nonstrict_memref_p (op)
|
---|
1925 | rtx op;
|
---|
1926 | {
|
---|
1927 | return ((GET_CODE (op) == MEM)
|
---|
1928 | && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
|
---|
1929 | }
|
---|
1930 |
|
---|
1931 | /* Return 1 if Y is a memory address which contains no side effects
|
---|
1932 | and would remain valid after the addition of a positive integer
|
---|
1933 | less than the size of that mode.
|
---|
1934 |
|
---|
1935 | We assume that the original address is valid and do not check it.
|
---|
1936 | We do check that it is valid for narrower modes.
|
---|
1937 |
|
---|
1938 | If STRICTP is nonzero, we require a strictly valid address,
|
---|
1939 | for the sake of use in reload.c. */
|
---|
1940 |
|
---|
1941 | int
|
---|
1942 | offsettable_address_p (strictp, mode, y)
|
---|
1943 | int strictp;
|
---|
1944 | enum machine_mode mode;
|
---|
1945 | rtx y;
|
---|
1946 | {
|
---|
1947 | enum rtx_code ycode = GET_CODE (y);
|
---|
1948 | rtx z;
|
---|
1949 | rtx y1 = y;
|
---|
1950 | rtx *y2;
|
---|
1951 | int (*addressp) PARAMS ((enum machine_mode, rtx)) =
|
---|
1952 | (strictp ? strict_memory_address_p : memory_address_p);
|
---|
1953 | unsigned int mode_sz = GET_MODE_SIZE (mode);
|
---|
1954 |
|
---|
1955 | if (CONSTANT_ADDRESS_P (y))
|
---|
1956 | return 1;
|
---|
1957 |
|
---|
1958 | /* Adjusting an offsettable address involves changing to a narrower mode.
|
---|
1959 | Make sure that's OK. */
|
---|
1960 |
|
---|
1961 | if (mode_dependent_address_p (y))
|
---|
1962 | return 0;
|
---|
1963 |
|
---|
1964 | /* ??? How much offset does an offsettable BLKmode reference need?
|
---|
1965 | Clearly that depends on the situation in which it's being used.
|
---|
1966 | However, the current situation in which we test 0xffffffff is
|
---|
1967 | less than ideal. Caveat user. */
|
---|
1968 | if (mode_sz == 0)
|
---|
1969 | mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
---|
1970 |
|
---|
1971 | /* If the expression contains a constant term,
|
---|
1972 | see if it remains valid when max possible offset is added. */
|
---|
1973 |
|
---|
1974 | if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
|
---|
1975 | {
|
---|
1976 | int good;
|
---|
1977 |
|
---|
1978 | y1 = *y2;
|
---|
1979 | *y2 = plus_constant (*y2, mode_sz - 1);
|
---|
1980 | /* Use QImode because an odd displacement may be automatically invalid
|
---|
1981 | for any wider mode. But it should be valid for a single byte. */
|
---|
1982 | good = (*addressp) (QImode, y);
|
---|
1983 |
|
---|
1984 | /* In any case, restore old contents of memory. */
|
---|
1985 | *y2 = y1;
|
---|
1986 | return good;
|
---|
1987 | }
|
---|
1988 |
|
---|
1989 | if (GET_RTX_CLASS (ycode) == 'a')
|
---|
1990 | return 0;
|
---|
1991 |
|
---|
1992 | /* The offset added here is chosen as the maximum offset that
|
---|
1993 | any instruction could need to add when operating on something
|
---|
1994 | of the specified mode. We assume that if Y and Y+c are
|
---|
1995 | valid addresses then so is Y+d for all 0<d<c. adjust_address will
|
---|
1996 | go inside a LO_SUM here, so we do so as well. */
|
---|
1997 | if (GET_CODE (y) == LO_SUM
|
---|
1998 | && mode != BLKmode
|
---|
1999 | && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
|
---|
2000 | z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
|
---|
2001 | plus_constant (XEXP (y, 1), mode_sz - 1));
|
---|
2002 | else
|
---|
2003 | z = plus_constant (y, mode_sz - 1);
|
---|
2004 |
|
---|
2005 | /* Use QImode because an odd displacement may be automatically invalid
|
---|
2006 | for any wider mode. But it should be valid for a single byte. */
|
---|
2007 | return (*addressp) (QImode, z);
|
---|
2008 | }
|
---|
2009 |
|
---|
2010 | /* Return 1 if ADDR is an address-expression whose effect depends
|
---|
2011 | on the mode of the memory reference it is used in.
|
---|
2012 |
|
---|
2013 | Autoincrement addressing is a typical example of mode-dependence
|
---|
2014 | because the amount of the increment depends on the mode. */
|
---|
2015 |
|
---|
2016 | int
|
---|
2017 | mode_dependent_address_p (addr)
|
---|
2018 | rtx addr ATTRIBUTE_UNUSED; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
|
---|
2019 | {
|
---|
2020 | GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
|
---|
2021 | return 0;
|
---|
2022 | /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
|
---|
2023 | win: ATTRIBUTE_UNUSED_LABEL
|
---|
2024 | return 1;
|
---|
2025 | }
|
---|
2026 |
|
---|
2027 | /* Return 1 if OP is a general operand
|
---|
2028 | other than a memory ref with a mode dependent address. */
|
---|
2029 |
|
---|
2030 | int
|
---|
2031 | mode_independent_operand (op, mode)
|
---|
2032 | enum machine_mode mode;
|
---|
2033 | rtx op;
|
---|
2034 | {
|
---|
2035 | rtx addr;
|
---|
2036 |
|
---|
2037 | if (! general_operand (op, mode))
|
---|
2038 | return 0;
|
---|
2039 |
|
---|
2040 | if (GET_CODE (op) != MEM)
|
---|
2041 | return 1;
|
---|
2042 |
|
---|
2043 | addr = XEXP (op, 0);
|
---|
2044 | GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
|
---|
2045 | return 1;
|
---|
2046 | /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
|
---|
2047 | lose: ATTRIBUTE_UNUSED_LABEL
|
---|
2048 | return 0;
|
---|
2049 | }
|
---|
2050 | |
---|
2051 |
|
---|
2052 | /* Like extract_insn, but save insn extracted and don't extract again, when
|
---|
2053 | called again for the same insn expecting that recog_data still contain the
|
---|
2054 | valid information. This is used primary by gen_attr infrastructure that
|
---|
2055 | often does extract insn again and again. */
|
---|
2056 | void
|
---|
2057 | extract_insn_cached (insn)
|
---|
2058 | rtx insn;
|
---|
2059 | {
|
---|
2060 | if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
|
---|
2061 | return;
|
---|
2062 | extract_insn (insn);
|
---|
2063 | recog_data.insn = insn;
|
---|
2064 | }
|
---|
2065 | /* Do cached extract_insn, constrain_operand and complain about failures.
|
---|
2066 | Used by insn_attrtab. */
|
---|
2067 | void
|
---|
2068 | extract_constrain_insn_cached (insn)
|
---|
2069 | rtx insn;
|
---|
2070 | {
|
---|
2071 | extract_insn_cached (insn);
|
---|
2072 | if (which_alternative == -1
|
---|
2073 | && !constrain_operands (reload_completed))
|
---|
2074 | fatal_insn_not_found (insn);
|
---|
2075 | }
|
---|
2076 | /* Do cached constrain_operand and complain about failures. */
|
---|
2077 | int
|
---|
2078 | constrain_operands_cached (strict)
|
---|
2079 | int strict;
|
---|
2080 | {
|
---|
2081 | if (which_alternative == -1)
|
---|
2082 | return constrain_operands (strict);
|
---|
2083 | else
|
---|
2084 | return 1;
|
---|
2085 | }
|
---|
2086 | |
---|
2087 |
|
---|
2088 | /* Analyze INSN and fill in recog_data. */
|
---|
2089 |
|
---|
2090 | void
|
---|
2091 | extract_insn (insn)
|
---|
2092 | rtx insn;
|
---|
2093 | {
|
---|
2094 | int i;
|
---|
2095 | int icode;
|
---|
2096 | int noperands;
|
---|
2097 | rtx body = PATTERN (insn);
|
---|
2098 |
|
---|
2099 | recog_data.insn = NULL;
|
---|
2100 | recog_data.n_operands = 0;
|
---|
2101 | recog_data.n_alternatives = 0;
|
---|
2102 | recog_data.n_dups = 0;
|
---|
2103 | which_alternative = -1;
|
---|
2104 |
|
---|
2105 | switch (GET_CODE (body))
|
---|
2106 | {
|
---|
2107 | case USE:
|
---|
2108 | case CLOBBER:
|
---|
2109 | case ASM_INPUT:
|
---|
2110 | case ADDR_VEC:
|
---|
2111 | case ADDR_DIFF_VEC:
|
---|
2112 | return;
|
---|
2113 |
|
---|
2114 | case SET:
|
---|
2115 | if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
---|
2116 | goto asm_insn;
|
---|
2117 | else
|
---|
2118 | goto normal_insn;
|
---|
2119 | case PARALLEL:
|
---|
2120 | if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
|
---|
2121 | && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
---|
2122 | || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
---|
2123 | goto asm_insn;
|
---|
2124 | else
|
---|
2125 | goto normal_insn;
|
---|
2126 | case ASM_OPERANDS:
|
---|
2127 | asm_insn:
|
---|
2128 | recog_data.n_operands = noperands = asm_noperands (body);
|
---|
2129 | if (noperands >= 0)
|
---|
2130 | {
|
---|
2131 | /* This insn is an `asm' with operands. */
|
---|
2132 |
|
---|
2133 | /* expand_asm_operands makes sure there aren't too many operands. */
|
---|
2134 | if (noperands > MAX_RECOG_OPERANDS)
|
---|
2135 | abort ();
|
---|
2136 |
|
---|
2137 | /* Now get the operand values and constraints out of the insn. */
|
---|
2138 | decode_asm_operands (body, recog_data.operand,
|
---|
2139 | recog_data.operand_loc,
|
---|
2140 | recog_data.constraints,
|
---|
2141 | recog_data.operand_mode);
|
---|
2142 | if (noperands > 0)
|
---|
2143 | {
|
---|
2144 | const char *p = recog_data.constraints[0];
|
---|
2145 | recog_data.n_alternatives = 1;
|
---|
2146 | while (*p)
|
---|
2147 | recog_data.n_alternatives += (*p++ == ',');
|
---|
2148 | }
|
---|
2149 | break;
|
---|
2150 | }
|
---|
2151 | fatal_insn_not_found (insn);
|
---|
2152 |
|
---|
2153 | default:
|
---|
2154 | normal_insn:
|
---|
2155 | /* Ordinary insn: recognize it, get the operands via insn_extract
|
---|
2156 | and get the constraints. */
|
---|
2157 |
|
---|
2158 | icode = recog_memoized (insn);
|
---|
2159 | if (icode < 0)
|
---|
2160 | fatal_insn_not_found (insn);
|
---|
2161 |
|
---|
2162 | recog_data.n_operands = noperands = insn_data[icode].n_operands;
|
---|
2163 | recog_data.n_alternatives = insn_data[icode].n_alternatives;
|
---|
2164 | recog_data.n_dups = insn_data[icode].n_dups;
|
---|
2165 |
|
---|
2166 | insn_extract (insn);
|
---|
2167 |
|
---|
2168 | for (i = 0; i < noperands; i++)
|
---|
2169 | {
|
---|
2170 | recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
|
---|
2171 | recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
|
---|
2172 | /* VOIDmode match_operands gets mode from their real operand. */
|
---|
2173 | if (recog_data.operand_mode[i] == VOIDmode)
|
---|
2174 | recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
|
---|
2175 | }
|
---|
2176 | }
|
---|
2177 | for (i = 0; i < noperands; i++)
|
---|
2178 | recog_data.operand_type[i]
|
---|
2179 | = (recog_data.constraints[i][0] == '=' ? OP_OUT
|
---|
2180 | : recog_data.constraints[i][0] == '+' ? OP_INOUT
|
---|
2181 | : OP_IN);
|
---|
2182 |
|
---|
2183 | if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
|
---|
2184 | abort ();
|
---|
2185 | }
|
---|
2186 |
|
---|
2187 | /* After calling extract_insn, you can use this function to extract some
|
---|
2188 | information from the constraint strings into a more usable form.
|
---|
2189 | The collected data is stored in recog_op_alt. */
|
---|
2190 | void
|
---|
2191 | preprocess_constraints ()
|
---|
2192 | {
|
---|
2193 | int i;
|
---|
2194 |
|
---|
2195 | memset (recog_op_alt, 0, sizeof recog_op_alt);
|
---|
2196 | for (i = 0; i < recog_data.n_operands; i++)
|
---|
2197 | {
|
---|
2198 | int j;
|
---|
2199 | struct operand_alternative *op_alt;
|
---|
2200 | const char *p = recog_data.constraints[i];
|
---|
2201 |
|
---|
2202 | op_alt = recog_op_alt[i];
|
---|
2203 |
|
---|
2204 | for (j = 0; j < recog_data.n_alternatives; j++)
|
---|
2205 | {
|
---|
2206 | op_alt[j].class = NO_REGS;
|
---|
2207 | op_alt[j].constraint = p;
|
---|
2208 | op_alt[j].matches = -1;
|
---|
2209 | op_alt[j].matched = -1;
|
---|
2210 |
|
---|
2211 | if (*p == '\0' || *p == ',')
|
---|
2212 | {
|
---|
2213 | op_alt[j].anything_ok = 1;
|
---|
2214 | continue;
|
---|
2215 | }
|
---|
2216 |
|
---|
2217 | for (;;)
|
---|
2218 | {
|
---|
2219 | char c = *p++;
|
---|
2220 | if (c == '#')
|
---|
2221 | do
|
---|
2222 | c = *p++;
|
---|
2223 | while (c != ',' && c != '\0');
|
---|
2224 | if (c == ',' || c == '\0')
|
---|
2225 | break;
|
---|
2226 |
|
---|
2227 | switch (c)
|
---|
2228 | {
|
---|
2229 | case '=': case '+': case '*': case '%':
|
---|
2230 | case 'E': case 'F': case 'G': case 'H':
|
---|
2231 | case 's': case 'i': case 'n':
|
---|
2232 | case 'I': case 'J': case 'K': case 'L':
|
---|
2233 | case 'M': case 'N': case 'O': case 'P':
|
---|
2234 | /* These don't say anything we care about. */
|
---|
2235 | break;
|
---|
2236 |
|
---|
2237 | case '?':
|
---|
2238 | op_alt[j].reject += 6;
|
---|
2239 | break;
|
---|
2240 | case '!':
|
---|
2241 | op_alt[j].reject += 600;
|
---|
2242 | break;
|
---|
2243 | case '&':
|
---|
2244 | op_alt[j].earlyclobber = 1;
|
---|
2245 | break;
|
---|
2246 |
|
---|
2247 | case '0': case '1': case '2': case '3': case '4':
|
---|
2248 | case '5': case '6': case '7': case '8': case '9':
|
---|
2249 | {
|
---|
2250 | char *end;
|
---|
2251 | op_alt[j].matches = strtoul (p - 1, &end, 10);
|
---|
2252 | recog_op_alt[op_alt[j].matches][j].matched = i;
|
---|
2253 | p = end;
|
---|
2254 | }
|
---|
2255 | break;
|
---|
2256 |
|
---|
2257 | case 'm':
|
---|
2258 | op_alt[j].memory_ok = 1;
|
---|
2259 | break;
|
---|
2260 | case '<':
|
---|
2261 | op_alt[j].decmem_ok = 1;
|
---|
2262 | break;
|
---|
2263 | case '>':
|
---|
2264 | op_alt[j].incmem_ok = 1;
|
---|
2265 | break;
|
---|
2266 | case 'V':
|
---|
2267 | op_alt[j].nonoffmem_ok = 1;
|
---|
2268 | break;
|
---|
2269 | case 'o':
|
---|
2270 | op_alt[j].offmem_ok = 1;
|
---|
2271 | break;
|
---|
2272 | case 'X':
|
---|
2273 | op_alt[j].anything_ok = 1;
|
---|
2274 | break;
|
---|
2275 |
|
---|
2276 | case 'p':
|
---|
2277 | op_alt[j].is_address = 1;
|
---|
2278 | op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
|
---|
2279 | [(int) MODE_BASE_REG_CLASS (VOIDmode)];
|
---|
2280 | break;
|
---|
2281 |
|
---|
2282 | case 'g': case 'r':
|
---|
2283 | op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
|
---|
2284 | break;
|
---|
2285 |
|
---|
2286 | default:
|
---|
2287 | op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
|
---|
2288 | break;
|
---|
2289 | }
|
---|
2290 | }
|
---|
2291 | }
|
---|
2292 | }
|
---|
2293 | }
|
---|
2294 |
|
---|
2295 | /* Check the operands of an insn against the insn's operand constraints
|
---|
2296 | and return 1 if they are valid.
|
---|
2297 | The information about the insn's operands, constraints, operand modes
|
---|
2298 | etc. is obtained from the global variables set up by extract_insn.
|
---|
2299 |
|
---|
2300 | WHICH_ALTERNATIVE is set to a number which indicates which
|
---|
2301 | alternative of constraints was matched: 0 for the first alternative,
|
---|
2302 | 1 for the next, etc.
|
---|
2303 |
|
---|
2304 | In addition, when two operands are match
|
---|
2305 | and it happens that the output operand is (reg) while the
|
---|
2306 | input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
|
---|
2307 | make the output operand look like the input.
|
---|
2308 | This is because the output operand is the one the template will print.
|
---|
2309 |
|
---|
2310 | This is used in final, just before printing the assembler code and by
|
---|
2311 | the routines that determine an insn's attribute.
|
---|
2312 |
|
---|
2313 | If STRICT is a positive non-zero value, it means that we have been
|
---|
2314 | called after reload has been completed. In that case, we must
|
---|
2315 | do all checks strictly. If it is zero, it means that we have been called
|
---|
2316 | before reload has completed. In that case, we first try to see if we can
|
---|
2317 | find an alternative that matches strictly. If not, we try again, this
|
---|
2318 | time assuming that reload will fix up the insn. This provides a "best
|
---|
2319 | guess" for the alternative and is used to compute attributes of insns prior
|
---|
2320 | to reload. A negative value of STRICT is used for this internal call. */
|
---|
2321 |
|
---|
2322 | struct funny_match
|
---|
2323 | {
|
---|
2324 | int this, other;
|
---|
2325 | };
|
---|
2326 |
|
---|
2327 | int
|
---|
2328 | constrain_operands (strict)
|
---|
2329 | int strict;
|
---|
2330 | {
|
---|
2331 | const char *constraints[MAX_RECOG_OPERANDS];
|
---|
2332 | int matching_operands[MAX_RECOG_OPERANDS];
|
---|
2333 | int earlyclobber[MAX_RECOG_OPERANDS];
|
---|
2334 | int c;
|
---|
2335 |
|
---|
2336 | struct funny_match funny_match[MAX_RECOG_OPERANDS];
|
---|
2337 | int funny_match_index;
|
---|
2338 |
|
---|
2339 | which_alternative = 0;
|
---|
2340 | if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
|
---|
2341 | return 1;
|
---|
2342 |
|
---|
2343 | for (c = 0; c < recog_data.n_operands; c++)
|
---|
2344 | {
|
---|
2345 | constraints[c] = recog_data.constraints[c];
|
---|
2346 | matching_operands[c] = -1;
|
---|
2347 | }
|
---|
2348 |
|
---|
2349 | do
|
---|
2350 | {
|
---|
2351 | int opno;
|
---|
2352 | int lose = 0;
|
---|
2353 | funny_match_index = 0;
|
---|
2354 |
|
---|
2355 | for (opno = 0; opno < recog_data.n_operands; opno++)
|
---|
2356 | {
|
---|
2357 | rtx op = recog_data.operand[opno];
|
---|
2358 | enum machine_mode mode = GET_MODE (op);
|
---|
2359 | const char *p = constraints[opno];
|
---|
2360 | int offset = 0;
|
---|
2361 | int win = 0;
|
---|
2362 | int val;
|
---|
2363 |
|
---|
2364 | earlyclobber[opno] = 0;
|
---|
2365 |
|
---|
2366 | /* A unary operator may be accepted by the predicate, but it
|
---|
2367 | is irrelevant for matching constraints. */
|
---|
2368 | if (GET_RTX_CLASS (GET_CODE (op)) == '1')
|
---|
2369 | op = XEXP (op, 0);
|
---|
2370 |
|
---|
2371 | if (GET_CODE (op) == SUBREG)
|
---|
2372 | {
|
---|
2373 | if (GET_CODE (SUBREG_REG (op)) == REG
|
---|
2374 | && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
|
---|
2375 | offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
---|
2376 | GET_MODE (SUBREG_REG (op)),
|
---|
2377 | SUBREG_BYTE (op),
|
---|
2378 | GET_MODE (op));
|
---|
2379 | op = SUBREG_REG (op);
|
---|
2380 | }
|
---|
2381 |
|
---|
2382 | /* An empty constraint or empty alternative
|
---|
2383 | allows anything which matched the pattern. */
|
---|
2384 | if (*p == 0 || *p == ',')
|
---|
2385 | win = 1;
|
---|
2386 |
|
---|
2387 | while (*p && (c = *p++) != ',')
|
---|
2388 | switch (c)
|
---|
2389 | {
|
---|
2390 | case '?': case '!': case '*': case '%':
|
---|
2391 | case '=': case '+':
|
---|
2392 | break;
|
---|
2393 |
|
---|
2394 | case '#':
|
---|
2395 | /* Ignore rest of this alternative as far as
|
---|
2396 | constraint checking is concerned. */
|
---|
2397 | while (*p && *p != ',')
|
---|
2398 | p++;
|
---|
2399 | break;
|
---|
2400 |
|
---|
2401 | case '&':
|
---|
2402 | earlyclobber[opno] = 1;
|
---|
2403 | break;
|
---|
2404 |
|
---|
2405 | case '0': case '1': case '2': case '3': case '4':
|
---|
2406 | case '5': case '6': case '7': case '8': case '9':
|
---|
2407 | {
|
---|
2408 | /* This operand must be the same as a previous one.
|
---|
2409 | This kind of constraint is used for instructions such
|
---|
2410 | as add when they take only two operands.
|
---|
2411 |
|
---|
2412 | Note that the lower-numbered operand is passed first.
|
---|
2413 |
|
---|
2414 | If we are not testing strictly, assume that this
|
---|
2415 | constraint will be satisfied. */
|
---|
2416 |
|
---|
2417 | char *end;
|
---|
2418 | int match;
|
---|
2419 |
|
---|
2420 | match = strtoul (p - 1, &end, 10);
|
---|
2421 | p = end;
|
---|
2422 |
|
---|
2423 | if (strict < 0)
|
---|
2424 | val = 1;
|
---|
2425 | else
|
---|
2426 | {
|
---|
2427 | rtx op1 = recog_data.operand[match];
|
---|
2428 | rtx op2 = recog_data.operand[opno];
|
---|
2429 |
|
---|
2430 | /* A unary operator may be accepted by the predicate,
|
---|
2431 | but it is irrelevant for matching constraints. */
|
---|
2432 | if (GET_RTX_CLASS (GET_CODE (op1)) == '1')
|
---|
2433 | op1 = XEXP (op1, 0);
|
---|
2434 | if (GET_RTX_CLASS (GET_CODE (op2)) == '1')
|
---|
2435 | op2 = XEXP (op2, 0);
|
---|
2436 |
|
---|
2437 | val = operands_match_p (op1, op2);
|
---|
2438 | }
|
---|
2439 |
|
---|
2440 | matching_operands[opno] = match;
|
---|
2441 | matching_operands[match] = opno;
|
---|
2442 |
|
---|
2443 | if (val != 0)
|
---|
2444 | win = 1;
|
---|
2445 |
|
---|
2446 | /* If output is *x and input is *--x, arrange later
|
---|
2447 | to change the output to *--x as well, since the
|
---|
2448 | output op is the one that will be printed. */
|
---|
2449 | if (val == 2 && strict > 0)
|
---|
2450 | {
|
---|
2451 | funny_match[funny_match_index].this = opno;
|
---|
2452 | funny_match[funny_match_index++].other = match;
|
---|
2453 | }
|
---|
2454 | }
|
---|
2455 | break;
|
---|
2456 |
|
---|
2457 | case 'p':
|
---|
2458 | /* p is used for address_operands. When we are called by
|
---|
2459 | gen_reload, no one will have checked that the address is
|
---|
2460 | strictly valid, i.e., that all pseudos requiring hard regs
|
---|
2461 | have gotten them. */
|
---|
2462 | if (strict <= 0
|
---|
2463 | || (strict_memory_address_p (recog_data.operand_mode[opno],
|
---|
2464 | op)))
|
---|
2465 | win = 1;
|
---|
2466 | break;
|
---|
2467 |
|
---|
2468 | /* No need to check general_operand again;
|
---|
2469 | it was done in insn-recog.c. */
|
---|
2470 | case 'g':
|
---|
2471 | /* Anything goes unless it is a REG and really has a hard reg
|
---|
2472 | but the hard reg is not in the class GENERAL_REGS. */
|
---|
2473 | if (strict < 0
|
---|
2474 | || GENERAL_REGS == ALL_REGS
|
---|
2475 | || GET_CODE (op) != REG
|
---|
2476 | || (reload_in_progress
|
---|
2477 | && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
---|
2478 | || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
|
---|
2479 | win = 1;
|
---|
2480 | break;
|
---|
2481 |
|
---|
2482 | case 'X':
|
---|
2483 | /* This is used for a MATCH_SCRATCH in the cases when
|
---|
2484 | we don't actually need anything. So anything goes
|
---|
2485 | any time. */
|
---|
2486 | win = 1;
|
---|
2487 | break;
|
---|
2488 |
|
---|
2489 | case 'm':
|
---|
2490 | if (GET_CODE (op) == MEM
|
---|
2491 | /* Before reload, accept what reload can turn into mem. */
|
---|
2492 | || (strict < 0 && CONSTANT_P (op))
|
---|
2493 | /* During reload, accept a pseudo */
|
---|
2494 | || (reload_in_progress && GET_CODE (op) == REG
|
---|
2495 | && REGNO (op) >= FIRST_PSEUDO_REGISTER))
|
---|
2496 | win = 1;
|
---|
2497 | break;
|
---|
2498 |
|
---|
2499 | case '<':
|
---|
2500 | if (GET_CODE (op) == MEM
|
---|
2501 | && (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
---|
2502 | || GET_CODE (XEXP (op, 0)) == POST_DEC))
|
---|
2503 | win = 1;
|
---|
2504 | break;
|
---|
2505 |
|
---|
2506 | case '>':
|
---|
2507 | if (GET_CODE (op) == MEM
|
---|
2508 | && (GET_CODE (XEXP (op, 0)) == PRE_INC
|
---|
2509 | || GET_CODE (XEXP (op, 0)) == POST_INC))
|
---|
2510 | win = 1;
|
---|
2511 | break;
|
---|
2512 |
|
---|
2513 | case 'E':
|
---|
2514 | #ifndef REAL_ARITHMETIC
|
---|
2515 | /* Match any CONST_DOUBLE, but only if
|
---|
2516 | we can examine the bits of it reliably. */
|
---|
2517 | if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
|
---|
2518 | || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
|
---|
2519 | && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
|
---|
2520 | break;
|
---|
2521 | #endif
|
---|
2522 | if (GET_CODE (op) == CONST_DOUBLE)
|
---|
2523 | win = 1;
|
---|
2524 | break;
|
---|
2525 |
|
---|
2526 | case 'F':
|
---|
2527 | if (GET_CODE (op) == CONST_DOUBLE)
|
---|
2528 | win = 1;
|
---|
2529 | break;
|
---|
2530 |
|
---|
2531 | case 'G':
|
---|
2532 | case 'H':
|
---|
2533 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
2534 | && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
|
---|
2535 | win = 1;
|
---|
2536 | break;
|
---|
2537 |
|
---|
2538 | case 's':
|
---|
2539 | if (GET_CODE (op) == CONST_INT
|
---|
2540 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
2541 | && GET_MODE (op) == VOIDmode))
|
---|
2542 | break;
|
---|
2543 | case 'i':
|
---|
2544 | if (CONSTANT_P (op))
|
---|
2545 | win = 1;
|
---|
2546 | break;
|
---|
2547 |
|
---|
2548 | case 'n':
|
---|
2549 | if (GET_CODE (op) == CONST_INT
|
---|
2550 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
2551 | && GET_MODE (op) == VOIDmode))
|
---|
2552 | win = 1;
|
---|
2553 | break;
|
---|
2554 |
|
---|
2555 | case 'I':
|
---|
2556 | case 'J':
|
---|
2557 | case 'K':
|
---|
2558 | case 'L':
|
---|
2559 | case 'M':
|
---|
2560 | case 'N':
|
---|
2561 | case 'O':
|
---|
2562 | case 'P':
|
---|
2563 | if (GET_CODE (op) == CONST_INT
|
---|
2564 | && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
|
---|
2565 | win = 1;
|
---|
2566 | break;
|
---|
2567 |
|
---|
2568 | case 'V':
|
---|
2569 | if (GET_CODE (op) == MEM
|
---|
2570 | && ((strict > 0 && ! offsettable_memref_p (op))
|
---|
2571 | || (strict < 0
|
---|
2572 | && !(CONSTANT_P (op) || GET_CODE (op) == MEM))
|
---|
2573 | || (reload_in_progress
|
---|
2574 | && !(GET_CODE (op) == REG
|
---|
2575 | && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
|
---|
2576 | win = 1;
|
---|
2577 | break;
|
---|
2578 |
|
---|
2579 | case 'o':
|
---|
2580 | if ((strict > 0 && offsettable_memref_p (op))
|
---|
2581 | || (strict == 0 && offsettable_nonstrict_memref_p (op))
|
---|
2582 | /* Before reload, accept what reload can handle. */
|
---|
2583 | || (strict < 0
|
---|
2584 | && (CONSTANT_P (op) || GET_CODE (op) == MEM))
|
---|
2585 | /* During reload, accept a pseudo */
|
---|
2586 | || (reload_in_progress && GET_CODE (op) == REG
|
---|
2587 | && REGNO (op) >= FIRST_PSEUDO_REGISTER))
|
---|
2588 | win = 1;
|
---|
2589 | break;
|
---|
2590 |
|
---|
2591 | default:
|
---|
2592 | {
|
---|
2593 | enum reg_class class;
|
---|
2594 |
|
---|
2595 | class = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (c));
|
---|
2596 | if (class != NO_REGS)
|
---|
2597 | {
|
---|
2598 | if (strict < 0
|
---|
2599 | || (strict == 0
|
---|
2600 | && GET_CODE (op) == REG
|
---|
2601 | && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
---|
2602 | || (strict == 0 && GET_CODE (op) == SCRATCH)
|
---|
2603 | || (GET_CODE (op) == REG
|
---|
2604 | && reg_fits_class_p (op, class, offset, mode)))
|
---|
2605 | win = 1;
|
---|
2606 | }
|
---|
2607 | #ifdef EXTRA_CONSTRAINT
|
---|
2608 | else if (EXTRA_CONSTRAINT (op, c))
|
---|
2609 | win = 1;
|
---|
2610 | #endif
|
---|
2611 | break;
|
---|
2612 | }
|
---|
2613 | }
|
---|
2614 |
|
---|
2615 | constraints[opno] = p;
|
---|
2616 | /* If this operand did not win somehow,
|
---|
2617 | this alternative loses. */
|
---|
2618 | if (! win)
|
---|
2619 | lose = 1;
|
---|
2620 | }
|
---|
2621 | /* This alternative won; the operands are ok.
|
---|
2622 | Change whichever operands this alternative says to change. */
|
---|
2623 | if (! lose)
|
---|
2624 | {
|
---|
2625 | int opno, eopno;
|
---|
2626 |
|
---|
2627 | /* See if any earlyclobber operand conflicts with some other
|
---|
2628 | operand. */
|
---|
2629 |
|
---|
2630 | if (strict > 0)
|
---|
2631 | for (eopno = 0; eopno < recog_data.n_operands; eopno++)
|
---|
2632 | /* Ignore earlyclobber operands now in memory,
|
---|
2633 | because we would often report failure when we have
|
---|
2634 | two memory operands, one of which was formerly a REG. */
|
---|
2635 | if (earlyclobber[eopno]
|
---|
2636 | && GET_CODE (recog_data.operand[eopno]) == REG)
|
---|
2637 | for (opno = 0; opno < recog_data.n_operands; opno++)
|
---|
2638 | if ((GET_CODE (recog_data.operand[opno]) == MEM
|
---|
2639 | || recog_data.operand_type[opno] != OP_OUT)
|
---|
2640 | && opno != eopno
|
---|
2641 | /* Ignore things like match_operator operands. */
|
---|
2642 | && *recog_data.constraints[opno] != 0
|
---|
2643 | && ! (matching_operands[opno] == eopno
|
---|
2644 | && operands_match_p (recog_data.operand[opno],
|
---|
2645 | recog_data.operand[eopno]))
|
---|
2646 | && ! safe_from_earlyclobber (recog_data.operand[opno],
|
---|
2647 | recog_data.operand[eopno]))
|
---|
2648 | lose = 1;
|
---|
2649 |
|
---|
2650 | if (! lose)
|
---|
2651 | {
|
---|
2652 | while (--funny_match_index >= 0)
|
---|
2653 | {
|
---|
2654 | recog_data.operand[funny_match[funny_match_index].other]
|
---|
2655 | = recog_data.operand[funny_match[funny_match_index].this];
|
---|
2656 | }
|
---|
2657 |
|
---|
2658 | return 1;
|
---|
2659 | }
|
---|
2660 | }
|
---|
2661 |
|
---|
2662 | which_alternative++;
|
---|
2663 | }
|
---|
2664 | while (which_alternative < recog_data.n_alternatives);
|
---|
2665 |
|
---|
2666 | which_alternative = -1;
|
---|
2667 | /* If we are about to reject this, but we are not to test strictly,
|
---|
2668 | try a very loose test. Only return failure if it fails also. */
|
---|
2669 | if (strict == 0)
|
---|
2670 | return constrain_operands (-1);
|
---|
2671 | else
|
---|
2672 | return 0;
|
---|
2673 | }
|
---|
2674 |
|
---|
2675 | /* Return 1 iff OPERAND (assumed to be a REG rtx)
|
---|
2676 | is a hard reg in class CLASS when its regno is offset by OFFSET
|
---|
2677 | and changed to mode MODE.
|
---|
2678 | If REG occupies multiple hard regs, all of them must be in CLASS. */
|
---|
2679 |
|
---|
2680 | int
|
---|
2681 | reg_fits_class_p (operand, class, offset, mode)
|
---|
2682 | rtx operand;
|
---|
2683 | enum reg_class class;
|
---|
2684 | int offset;
|
---|
2685 | enum machine_mode mode;
|
---|
2686 | {
|
---|
2687 | int regno = REGNO (operand);
|
---|
2688 | if (regno < FIRST_PSEUDO_REGISTER
|
---|
2689 | && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
|
---|
2690 | regno + offset))
|
---|
2691 | {
|
---|
2692 | int sr;
|
---|
2693 | regno += offset;
|
---|
2694 | for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
|
---|
2695 | sr > 0; sr--)
|
---|
2696 | if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
|
---|
2697 | regno + sr))
|
---|
2698 | break;
|
---|
2699 | return sr == 0;
|
---|
2700 | }
|
---|
2701 |
|
---|
2702 | return 0;
|
---|
2703 | }
|
---|
2704 | |
---|
2705 |
|
---|
2706 | /* Split single instruction. Helper function for split_all_insns.
|
---|
2707 | Return last insn in the sequence if successful, or NULL if unsuccessful. */
|
---|
2708 | static rtx
|
---|
2709 | split_insn (insn)
|
---|
2710 | rtx insn;
|
---|
2711 | {
|
---|
2712 | rtx set;
|
---|
2713 | if (!INSN_P (insn))
|
---|
2714 | ;
|
---|
2715 | /* Don't split no-op move insns. These should silently
|
---|
2716 | disappear later in final. Splitting such insns would
|
---|
2717 | break the code that handles REG_NO_CONFLICT blocks. */
|
---|
2718 |
|
---|
2719 | else if ((set = single_set (insn)) != NULL && set_noop_p (set))
|
---|
2720 | {
|
---|
2721 | /* Nops get in the way while scheduling, so delete them
|
---|
2722 | now if register allocation has already been done. It
|
---|
2723 | is too risky to try to do this before register
|
---|
2724 | allocation, and there are unlikely to be very many
|
---|
2725 | nops then anyways. */
|
---|
2726 | if (reload_completed)
|
---|
2727 | {
|
---|
2728 | PUT_CODE (insn, NOTE);
|
---|
2729 | NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
---|
2730 | NOTE_SOURCE_FILE (insn) = 0;
|
---|
2731 | }
|
---|
2732 | }
|
---|
2733 | else
|
---|
2734 | {
|
---|
2735 | /* Split insns here to get max fine-grain parallelism. */
|
---|
2736 | rtx first = PREV_INSN (insn);
|
---|
2737 | rtx last = try_split (PATTERN (insn), insn, 1);
|
---|
2738 |
|
---|
2739 | if (last != insn)
|
---|
2740 | {
|
---|
2741 | /* try_split returns the NOTE that INSN became. */
|
---|
2742 | PUT_CODE (insn, NOTE);
|
---|
2743 | NOTE_SOURCE_FILE (insn) = 0;
|
---|
2744 | NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
---|
2745 |
|
---|
2746 | /* ??? Coddle to md files that generate subregs in post-
|
---|
2747 | reload splitters instead of computing the proper
|
---|
2748 | hard register. */
|
---|
2749 | if (reload_completed && first != last)
|
---|
2750 | {
|
---|
2751 | first = NEXT_INSN (first);
|
---|
2752 | while (1)
|
---|
2753 | {
|
---|
2754 | if (INSN_P (first))
|
---|
2755 | cleanup_subreg_operands (first);
|
---|
2756 | if (first == last)
|
---|
2757 | break;
|
---|
2758 | first = NEXT_INSN (first);
|
---|
2759 | }
|
---|
2760 | }
|
---|
2761 | return last;
|
---|
2762 | }
|
---|
2763 | }
|
---|
2764 | return NULL_RTX;
|
---|
2765 | }
|
---|
2766 | /* Split all insns in the function. If UPD_LIFE, update life info after. */
|
---|
2767 |
|
---|
2768 | void
|
---|
2769 | split_all_insns (upd_life)
|
---|
2770 | int upd_life;
|
---|
2771 | {
|
---|
2772 | sbitmap blocks;
|
---|
2773 | int changed;
|
---|
2774 | int i;
|
---|
2775 |
|
---|
2776 | blocks = sbitmap_alloc (n_basic_blocks);
|
---|
2777 | sbitmap_zero (blocks);
|
---|
2778 | changed = 0;
|
---|
2779 |
|
---|
2780 | for (i = n_basic_blocks - 1; i >= 0; --i)
|
---|
2781 | {
|
---|
2782 | basic_block bb = BASIC_BLOCK (i);
|
---|
2783 | rtx insn, next;
|
---|
2784 |
|
---|
2785 | for (insn = bb->head; insn ; insn = next)
|
---|
2786 | {
|
---|
2787 | rtx last;
|
---|
2788 |
|
---|
2789 | /* Can't use `next_real_insn' because that might go across
|
---|
2790 | CODE_LABELS and short-out basic blocks. */
|
---|
2791 | next = NEXT_INSN (insn);
|
---|
2792 | last = split_insn (insn);
|
---|
2793 | if (last)
|
---|
2794 | {
|
---|
2795 | /* The split sequence may include barrier, but the
|
---|
2796 | BB boundary we are interested in will be set to previous
|
---|
2797 | one. */
|
---|
2798 |
|
---|
2799 | while (GET_CODE (last) == BARRIER)
|
---|
2800 | last = PREV_INSN (last);
|
---|
2801 | SET_BIT (blocks, i);
|
---|
2802 | changed = 1;
|
---|
2803 | insn = last;
|
---|
2804 | }
|
---|
2805 |
|
---|
2806 | if (insn == bb->end)
|
---|
2807 | break;
|
---|
2808 | }
|
---|
2809 |
|
---|
2810 | if (insn == NULL)
|
---|
2811 | abort ();
|
---|
2812 | }
|
---|
2813 |
|
---|
2814 | if (changed)
|
---|
2815 | {
|
---|
2816 | find_many_sub_basic_blocks (blocks);
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 | if (changed && upd_life)
|
---|
2820 | {
|
---|
2821 | count_or_remove_death_notes (blocks, 1);
|
---|
2822 | update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
|
---|
2823 | }
|
---|
2824 | #ifdef ENABLE_CHECKING
|
---|
2825 | verify_flow_info ();
|
---|
2826 | #endif
|
---|
2827 |
|
---|
2828 | sbitmap_free (blocks);
|
---|
2829 | }
|
---|
2830 |
|
---|
2831 | /* Same as split_all_insns, but do not expect CFG to be available.
|
---|
2832 | Used by machine depedent reorg passes. */
|
---|
2833 |
|
---|
2834 | void
|
---|
2835 | split_all_insns_noflow ()
|
---|
2836 | {
|
---|
2837 | rtx next, insn;
|
---|
2838 |
|
---|
2839 | for (insn = get_insns (); insn; insn = next)
|
---|
2840 | {
|
---|
2841 | next = NEXT_INSN (insn);
|
---|
2842 | split_insn (insn);
|
---|
2843 | }
|
---|
2844 | return;
|
---|
2845 | }
|
---|
2846 | |
---|
2847 |
|
---|
2848 | #ifdef HAVE_peephole2
|
---|
2849 | struct peep2_insn_data
|
---|
2850 | {
|
---|
2851 | rtx insn;
|
---|
2852 | regset live_before;
|
---|
2853 | };
|
---|
2854 |
|
---|
2855 | static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
|
---|
2856 | static int peep2_current;
|
---|
2857 |
|
---|
2858 | /* A non-insn marker indicating the last insn of the block.
|
---|
2859 | The live_before regset for this element is correct, indicating
|
---|
2860 | global_live_at_end for the block. */
|
---|
2861 | #define PEEP2_EOB pc_rtx
|
---|
2862 |
|
---|
2863 | /* Return the Nth non-note insn after `current', or return NULL_RTX if it
|
---|
2864 | does not exist. Used by the recognizer to find the next insn to match
|
---|
2865 | in a multi-insn pattern. */
|
---|
2866 |
|
---|
2867 | rtx
|
---|
2868 | peep2_next_insn (n)
|
---|
2869 | int n;
|
---|
2870 | {
|
---|
2871 | if (n >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2872 | abort ();
|
---|
2873 |
|
---|
2874 | n += peep2_current;
|
---|
2875 | if (n >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2876 | n -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
2877 |
|
---|
2878 | if (peep2_insn_data[n].insn == PEEP2_EOB)
|
---|
2879 | return NULL_RTX;
|
---|
2880 | return peep2_insn_data[n].insn;
|
---|
2881 | }
|
---|
2882 |
|
---|
2883 | /* Return true if REGNO is dead before the Nth non-note insn
|
---|
2884 | after `current'. */
|
---|
2885 |
|
---|
2886 | int
|
---|
2887 | peep2_regno_dead_p (ofs, regno)
|
---|
2888 | int ofs;
|
---|
2889 | int regno;
|
---|
2890 | {
|
---|
2891 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2892 | abort ();
|
---|
2893 |
|
---|
2894 | ofs += peep2_current;
|
---|
2895 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2896 | ofs -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
2897 |
|
---|
2898 | if (peep2_insn_data[ofs].insn == NULL_RTX)
|
---|
2899 | abort ();
|
---|
2900 |
|
---|
2901 | return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
|
---|
2902 | }
|
---|
2903 |
|
---|
2904 | /* Similarly for a REG. */
|
---|
2905 |
|
---|
2906 | int
|
---|
2907 | peep2_reg_dead_p (ofs, reg)
|
---|
2908 | int ofs;
|
---|
2909 | rtx reg;
|
---|
2910 | {
|
---|
2911 | int regno, n;
|
---|
2912 |
|
---|
2913 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2914 | abort ();
|
---|
2915 |
|
---|
2916 | ofs += peep2_current;
|
---|
2917 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2918 | ofs -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
2919 |
|
---|
2920 | if (peep2_insn_data[ofs].insn == NULL_RTX)
|
---|
2921 | abort ();
|
---|
2922 |
|
---|
2923 | regno = REGNO (reg);
|
---|
2924 | n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
|
---|
2925 | while (--n >= 0)
|
---|
2926 | if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
|
---|
2927 | return 0;
|
---|
2928 | return 1;
|
---|
2929 | }
|
---|
2930 |
|
---|
2931 | /* Try to find a hard register of mode MODE, matching the register class in
|
---|
2932 | CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
|
---|
2933 | remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
|
---|
2934 | in which case the only condition is that the register must be available
|
---|
2935 | before CURRENT_INSN.
|
---|
2936 | Registers that already have bits set in REG_SET will not be considered.
|
---|
2937 |
|
---|
2938 | If an appropriate register is available, it will be returned and the
|
---|
2939 | corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
|
---|
2940 | returned. */
|
---|
2941 |
|
---|
2942 | rtx
|
---|
2943 | peep2_find_free_register (from, to, class_str, mode, reg_set)
|
---|
2944 | int from, to;
|
---|
2945 | const char *class_str;
|
---|
2946 | enum machine_mode mode;
|
---|
2947 | HARD_REG_SET *reg_set;
|
---|
2948 | {
|
---|
2949 | static int search_ofs;
|
---|
2950 | enum reg_class class;
|
---|
2951 | HARD_REG_SET live;
|
---|
2952 | int i;
|
---|
2953 |
|
---|
2954 | if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2955 | abort ();
|
---|
2956 |
|
---|
2957 | from += peep2_current;
|
---|
2958 | if (from >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2959 | from -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
2960 | to += peep2_current;
|
---|
2961 | if (to >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2962 | to -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
2963 |
|
---|
2964 | if (peep2_insn_data[from].insn == NULL_RTX)
|
---|
2965 | abort ();
|
---|
2966 | REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
|
---|
2967 |
|
---|
2968 | while (from != to)
|
---|
2969 | {
|
---|
2970 | HARD_REG_SET this_live;
|
---|
2971 |
|
---|
2972 | if (++from >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2973 | from = 0;
|
---|
2974 | if (peep2_insn_data[from].insn == NULL_RTX)
|
---|
2975 | abort ();
|
---|
2976 | REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
|
---|
2977 | IOR_HARD_REG_SET (live, this_live);
|
---|
2978 | }
|
---|
2979 |
|
---|
2980 | class = (class_str[0] == 'r' ? GENERAL_REGS
|
---|
2981 | : REG_CLASS_FROM_LETTER (class_str[0]));
|
---|
2982 |
|
---|
2983 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
---|
2984 | {
|
---|
2985 | int raw_regno, regno, success, j;
|
---|
2986 |
|
---|
2987 | /* Distribute the free registers as much as possible. */
|
---|
2988 | raw_regno = search_ofs + i;
|
---|
2989 | if (raw_regno >= FIRST_PSEUDO_REGISTER)
|
---|
2990 | raw_regno -= FIRST_PSEUDO_REGISTER;
|
---|
2991 | #ifdef REG_ALLOC_ORDER
|
---|
2992 | regno = reg_alloc_order[raw_regno];
|
---|
2993 | #else
|
---|
2994 | regno = raw_regno;
|
---|
2995 | #endif
|
---|
2996 |
|
---|
2997 | /* Don't allocate fixed registers. */
|
---|
2998 | if (fixed_regs[regno])
|
---|
2999 | continue;
|
---|
3000 | /* Make sure the register is of the right class. */
|
---|
3001 | if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
|
---|
3002 | continue;
|
---|
3003 | /* And can support the mode we need. */
|
---|
3004 | if (! HARD_REGNO_MODE_OK (regno, mode))
|
---|
3005 | continue;
|
---|
3006 | /* And that we don't create an extra save/restore. */
|
---|
3007 | if (! call_used_regs[regno] && ! regs_ever_live[regno])
|
---|
3008 | continue;
|
---|
3009 | /* And we don't clobber traceback for noreturn functions. */
|
---|
3010 | if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
|
---|
3011 | && (! reload_completed || frame_pointer_needed))
|
---|
3012 | continue;
|
---|
3013 |
|
---|
3014 | success = 1;
|
---|
3015 | for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
|
---|
3016 | {
|
---|
3017 | if (TEST_HARD_REG_BIT (*reg_set, regno + j)
|
---|
3018 | || TEST_HARD_REG_BIT (live, regno + j))
|
---|
3019 | {
|
---|
3020 | success = 0;
|
---|
3021 | break;
|
---|
3022 | }
|
---|
3023 | }
|
---|
3024 | if (success)
|
---|
3025 | {
|
---|
3026 | for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
|
---|
3027 | SET_HARD_REG_BIT (*reg_set, regno + j);
|
---|
3028 |
|
---|
3029 | /* Start the next search with the next register. */
|
---|
3030 | if (++raw_regno >= FIRST_PSEUDO_REGISTER)
|
---|
3031 | raw_regno = 0;
|
---|
3032 | search_ofs = raw_regno;
|
---|
3033 |
|
---|
3034 | return gen_rtx_REG (mode, regno);
|
---|
3035 | }
|
---|
3036 | }
|
---|
3037 |
|
---|
3038 | search_ofs = 0;
|
---|
3039 | return NULL_RTX;
|
---|
3040 | }
|
---|
3041 |
|
---|
3042 | /* Perform the peephole2 optimization pass. */
|
---|
3043 |
|
---|
3044 | void
|
---|
3045 | peephole2_optimize (dump_file)
|
---|
3046 | FILE *dump_file ATTRIBUTE_UNUSED;
|
---|
3047 | {
|
---|
3048 | regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
|
---|
3049 | rtx insn, prev;
|
---|
3050 | regset live;
|
---|
3051 | int i, b;
|
---|
3052 | #ifdef HAVE_conditional_execution
|
---|
3053 | sbitmap blocks;
|
---|
3054 | bool changed;
|
---|
3055 | #endif
|
---|
3056 | bool do_cleanup_cfg = false;
|
---|
3057 | bool do_rebuild_jump_labels = false;
|
---|
3058 |
|
---|
3059 | /* Initialize the regsets we're going to use. */
|
---|
3060 | for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
---|
3061 | peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
|
---|
3062 | live = INITIALIZE_REG_SET (rs_heads[i]);
|
---|
3063 |
|
---|
3064 | #ifdef HAVE_conditional_execution
|
---|
3065 | blocks = sbitmap_alloc (n_basic_blocks);
|
---|
3066 | sbitmap_zero (blocks);
|
---|
3067 | changed = false;
|
---|
3068 | #else
|
---|
3069 | count_or_remove_death_notes (NULL, 1);
|
---|
3070 | #endif
|
---|
3071 |
|
---|
3072 | for (b = n_basic_blocks - 1; b >= 0; --b)
|
---|
3073 | {
|
---|
3074 | basic_block bb = BASIC_BLOCK (b);
|
---|
3075 | struct propagate_block_info *pbi;
|
---|
3076 |
|
---|
3077 | /* Indicate that all slots except the last holds invalid data. */
|
---|
3078 | for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
|
---|
3079 | peep2_insn_data[i].insn = NULL_RTX;
|
---|
3080 |
|
---|
3081 | /* Indicate that the last slot contains live_after data. */
|
---|
3082 | peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
|
---|
3083 | peep2_current = MAX_INSNS_PER_PEEP2;
|
---|
3084 |
|
---|
3085 | /* Start up propagation. */
|
---|
3086 | COPY_REG_SET (live, bb->global_live_at_end);
|
---|
3087 | COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
|
---|
3088 |
|
---|
3089 | #ifdef HAVE_conditional_execution
|
---|
3090 | pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
|
---|
3091 | #else
|
---|
3092 | pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
|
---|
3093 | #endif
|
---|
3094 |
|
---|
3095 | for (insn = bb->end; ; insn = prev)
|
---|
3096 | {
|
---|
3097 | prev = PREV_INSN (insn);
|
---|
3098 | if (INSN_P (insn))
|
---|
3099 | {
|
---|
3100 | rtx try, before_try, x;
|
---|
3101 | int match_len;
|
---|
3102 | rtx note;
|
---|
3103 |
|
---|
3104 | /* Record this insn. */
|
---|
3105 | if (--peep2_current < 0)
|
---|
3106 | peep2_current = MAX_INSNS_PER_PEEP2;
|
---|
3107 | peep2_insn_data[peep2_current].insn = insn;
|
---|
3108 | propagate_one_insn (pbi, insn);
|
---|
3109 | COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
|
---|
3110 |
|
---|
3111 | /* Match the peephole. */
|
---|
3112 | try = peephole2_insns (PATTERN (insn), insn, &match_len);
|
---|
3113 | if (try != NULL)
|
---|
3114 | {
|
---|
3115 | /* If we are splitting a CALL_INSN, look for the CALL_INSN
|
---|
3116 | in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
|
---|
3117 | cfg-related call notes. */
|
---|
3118 | for (i = 0; i <= match_len; ++i)
|
---|
3119 | {
|
---|
3120 | int j, k;
|
---|
3121 | rtx old_insn, new_insn, note;
|
---|
3122 |
|
---|
3123 | j = i + peep2_current;
|
---|
3124 | if (j >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3125 | j -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3126 | old_insn = peep2_insn_data[j].insn;
|
---|
3127 | if (GET_CODE (old_insn) != CALL_INSN)
|
---|
3128 | continue;
|
---|
3129 |
|
---|
3130 | new_insn = NULL_RTX;
|
---|
3131 | if (GET_CODE (try) == SEQUENCE)
|
---|
3132 | for (k = XVECLEN (try, 0) - 1; k >= 0; k--)
|
---|
3133 | {
|
---|
3134 | rtx x = XVECEXP (try, 0, k);
|
---|
3135 | if (GET_CODE (x) == CALL_INSN)
|
---|
3136 | {
|
---|
3137 | new_insn = x;
|
---|
3138 | break;
|
---|
3139 | }
|
---|
3140 | }
|
---|
3141 | else if (GET_CODE (try) == CALL_INSN)
|
---|
3142 | new_insn = try;
|
---|
3143 | if (! new_insn)
|
---|
3144 | abort ();
|
---|
3145 |
|
---|
3146 | CALL_INSN_FUNCTION_USAGE (new_insn)
|
---|
3147 | = CALL_INSN_FUNCTION_USAGE (old_insn);
|
---|
3148 |
|
---|
3149 | for (note = REG_NOTES (old_insn);
|
---|
3150 | note;
|
---|
3151 | note = XEXP (note, 1))
|
---|
3152 | switch (REG_NOTE_KIND (note))
|
---|
3153 | {
|
---|
3154 | case REG_NORETURN:
|
---|
3155 | case REG_SETJMP:
|
---|
3156 | case REG_ALWAYS_RETURN:
|
---|
3157 | REG_NOTES (new_insn)
|
---|
3158 | = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
|
---|
3159 | XEXP (note, 0),
|
---|
3160 | REG_NOTES (new_insn));
|
---|
3161 | default:
|
---|
3162 | /* Discard all other reg notes. */
|
---|
3163 | break;
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 | /* Croak if there is another call in the sequence. */
|
---|
3167 | while (++i <= match_len)
|
---|
3168 | {
|
---|
3169 | j = i + peep2_current;
|
---|
3170 | if (j >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3171 | j -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3172 | old_insn = peep2_insn_data[j].insn;
|
---|
3173 | if (GET_CODE (old_insn) == CALL_INSN)
|
---|
3174 | abort ();
|
---|
3175 | }
|
---|
3176 | break;
|
---|
3177 | }
|
---|
3178 |
|
---|
3179 | i = match_len + peep2_current;
|
---|
3180 | if (i >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3181 | i -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3182 |
|
---|
3183 | note = find_reg_note (peep2_insn_data[i].insn,
|
---|
3184 | REG_EH_REGION, NULL_RTX);
|
---|
3185 |
|
---|
3186 | /* Replace the old sequence with the new. */
|
---|
3187 | try = emit_insn_after (try, peep2_insn_data[i].insn);
|
---|
3188 | before_try = PREV_INSN (insn);
|
---|
3189 | delete_insn_chain (insn, peep2_insn_data[i].insn);
|
---|
3190 |
|
---|
3191 | /* Re-insert the EH_REGION notes. */
|
---|
3192 | if (note)
|
---|
3193 | {
|
---|
3194 | edge eh_edge;
|
---|
3195 |
|
---|
3196 | for (eh_edge = bb->succ; eh_edge
|
---|
3197 | ; eh_edge = eh_edge->succ_next)
|
---|
3198 | if (eh_edge->flags & EDGE_EH)
|
---|
3199 | break;
|
---|
3200 |
|
---|
3201 | for (x = try ; x != before_try ; x = PREV_INSN (x))
|
---|
3202 | if (GET_CODE (x) == CALL_INSN
|
---|
3203 | || (flag_non_call_exceptions
|
---|
3204 | && may_trap_p (PATTERN (x))
|
---|
3205 | && !find_reg_note (x, REG_EH_REGION, NULL)))
|
---|
3206 | {
|
---|
3207 | REG_NOTES (x)
|
---|
3208 | = gen_rtx_EXPR_LIST (REG_EH_REGION,
|
---|
3209 | XEXP (note, 0),
|
---|
3210 | REG_NOTES (x));
|
---|
3211 |
|
---|
3212 | if (x != bb->end && eh_edge)
|
---|
3213 | {
|
---|
3214 | edge nfte, nehe;
|
---|
3215 | int flags;
|
---|
3216 |
|
---|
3217 | nfte = split_block (bb, x);
|
---|
3218 | flags = EDGE_EH | EDGE_ABNORMAL;
|
---|
3219 | if (GET_CODE (x) == CALL_INSN)
|
---|
3220 | flags |= EDGE_ABNORMAL_CALL;
|
---|
3221 | nehe = make_edge (nfte->src, eh_edge->dest,
|
---|
3222 | flags);
|
---|
3223 |
|
---|
3224 | nehe->probability = eh_edge->probability;
|
---|
3225 | nfte->probability
|
---|
3226 | = REG_BR_PROB_BASE - nehe->probability;
|
---|
3227 |
|
---|
3228 | do_cleanup_cfg |= purge_dead_edges (nfte->dest);
|
---|
3229 | #ifdef HAVE_conditional_execution
|
---|
3230 | SET_BIT (blocks, nfte->dest->index);
|
---|
3231 | changed = true;
|
---|
3232 | #endif
|
---|
3233 | bb = nfte->src;
|
---|
3234 | eh_edge = nehe;
|
---|
3235 | }
|
---|
3236 | }
|
---|
3237 |
|
---|
3238 | /* Converting possibly trapping insn to non-trapping is
|
---|
3239 | possible. Zap dummy outgoing edges. */
|
---|
3240 | do_cleanup_cfg |= purge_dead_edges (bb);
|
---|
3241 | }
|
---|
3242 |
|
---|
3243 | #ifdef HAVE_conditional_execution
|
---|
3244 | /* With conditional execution, we cannot back up the
|
---|
3245 | live information so easily, since the conditional
|
---|
3246 | death data structures are not so self-contained.
|
---|
3247 | So record that we've made a modification to this
|
---|
3248 | block and update life information at the end. */
|
---|
3249 | SET_BIT (blocks, b);
|
---|
3250 | changed = true;
|
---|
3251 |
|
---|
3252 | for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
---|
3253 | peep2_insn_data[i].insn = NULL_RTX;
|
---|
3254 | peep2_insn_data[peep2_current].insn = PEEP2_EOB;
|
---|
3255 | #else
|
---|
3256 | /* Back up lifetime information past the end of the
|
---|
3257 | newly created sequence. */
|
---|
3258 | if (++i >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3259 | i = 0;
|
---|
3260 | COPY_REG_SET (live, peep2_insn_data[i].live_before);
|
---|
3261 |
|
---|
3262 | /* Update life information for the new sequence. */
|
---|
3263 | x = try;
|
---|
3264 | do
|
---|
3265 | {
|
---|
3266 | if (INSN_P (x))
|
---|
3267 | {
|
---|
3268 | if (--i < 0)
|
---|
3269 | i = MAX_INSNS_PER_PEEP2;
|
---|
3270 | peep2_insn_data[i].insn = x;
|
---|
3271 | propagate_one_insn (pbi, x);
|
---|
3272 | COPY_REG_SET (peep2_insn_data[i].live_before, live);
|
---|
3273 | }
|
---|
3274 | x = PREV_INSN (x);
|
---|
3275 | }
|
---|
3276 | while (x != prev);
|
---|
3277 |
|
---|
3278 | /* ??? Should verify that LIVE now matches what we
|
---|
3279 | had before the new sequence. */
|
---|
3280 |
|
---|
3281 | peep2_current = i;
|
---|
3282 | #endif
|
---|
3283 |
|
---|
3284 | /* If we generated a jump instruction, it won't have
|
---|
3285 | JUMP_LABEL set. Recompute after we're done. */
|
---|
3286 | for (x = try; x != before_try; x = PREV_INSN (x))
|
---|
3287 | if (GET_CODE (x) == JUMP_INSN)
|
---|
3288 | {
|
---|
3289 | do_rebuild_jump_labels = true;
|
---|
3290 | break;
|
---|
3291 | }
|
---|
3292 | }
|
---|
3293 | }
|
---|
3294 |
|
---|
3295 | if (insn == bb->head)
|
---|
3296 | break;
|
---|
3297 | }
|
---|
3298 |
|
---|
3299 | free_propagate_block_info (pbi);
|
---|
3300 | }
|
---|
3301 |
|
---|
3302 | for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
---|
3303 | FREE_REG_SET (peep2_insn_data[i].live_before);
|
---|
3304 | FREE_REG_SET (live);
|
---|
3305 |
|
---|
3306 | if (do_rebuild_jump_labels)
|
---|
3307 | rebuild_jump_labels (get_insns ());
|
---|
3308 |
|
---|
3309 | /* If we eliminated EH edges, we may be able to merge blocks. Further,
|
---|
3310 | we've changed global life since exception handlers are no longer
|
---|
3311 | reachable. */
|
---|
3312 | if (do_cleanup_cfg)
|
---|
3313 | {
|
---|
3314 | cleanup_cfg (0);
|
---|
3315 | update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
|
---|
3316 | }
|
---|
3317 | #ifdef HAVE_conditional_execution
|
---|
3318 | else
|
---|
3319 | {
|
---|
3320 | count_or_remove_death_notes (blocks, 1);
|
---|
3321 | update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
|
---|
3322 | }
|
---|
3323 | sbitmap_free (blocks);
|
---|
3324 | #endif
|
---|
3325 | }
|
---|
3326 | #endif /* HAVE_peephole2 */
|
---|