1 | /* Subroutines used by or related to instruction recognition.
|
---|
2 | Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
|
---|
3 | 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
---|
4 |
|
---|
5 | This file is part of GCC.
|
---|
6 |
|
---|
7 | GCC is free software; you can redistribute it and/or modify it under
|
---|
8 | the terms of the GNU General Public License as published by the Free
|
---|
9 | Software Foundation; either version 2, or (at your option) any later
|
---|
10 | version.
|
---|
11 |
|
---|
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
---|
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
---|
15 | for more details.
|
---|
16 |
|
---|
17 | You should have received a copy of the GNU General Public License
|
---|
18 | along with GCC; see the file COPYING. If not, write to the Free
|
---|
19 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
---|
20 | 02111-1307, USA. */
|
---|
21 |
|
---|
22 |
|
---|
23 | #include "config.h"
|
---|
24 | #include "system.h"
|
---|
25 | #include "rtl.h"
|
---|
26 | #include "tm_p.h"
|
---|
27 | #include "insn-config.h"
|
---|
28 | #include "insn-attr.h"
|
---|
29 | #include "hard-reg-set.h"
|
---|
30 | #include "recog.h"
|
---|
31 | #include "regs.h"
|
---|
32 | #include "expr.h"
|
---|
33 | #include "function.h"
|
---|
34 | #include "flags.h"
|
---|
35 | #include "real.h"
|
---|
36 | #include "toplev.h"
|
---|
37 | #include "basic-block.h"
|
---|
38 | #include "output.h"
|
---|
39 | #include "reload.h"
|
---|
40 |
|
---|
41 | #ifndef STACK_PUSH_CODE
|
---|
42 | #ifdef STACK_GROWS_DOWNWARD
|
---|
43 | #define STACK_PUSH_CODE PRE_DEC
|
---|
44 | #else
|
---|
45 | #define STACK_PUSH_CODE PRE_INC
|
---|
46 | #endif
|
---|
47 | #endif
|
---|
48 |
|
---|
49 | #ifndef STACK_POP_CODE
|
---|
50 | #ifdef STACK_GROWS_DOWNWARD
|
---|
51 | #define STACK_POP_CODE POST_INC
|
---|
52 | #else
|
---|
53 | #define STACK_POP_CODE POST_DEC
|
---|
54 | #endif
|
---|
55 | #endif
|
---|
56 |
|
---|
57 | static void validate_replace_rtx_1 PARAMS ((rtx *, rtx, rtx, rtx));
|
---|
58 | static rtx *find_single_use_1 PARAMS ((rtx, rtx *));
|
---|
59 | static void validate_replace_src_1 PARAMS ((rtx *, void *));
|
---|
60 | static rtx split_insn PARAMS ((rtx));
|
---|
61 |
|
---|
62 | /* Nonzero means allow operands to be volatile.
|
---|
63 | This should be 0 if you are generating rtl, such as if you are calling
|
---|
64 | the functions in optabs.c and expmed.c (most of the time).
|
---|
65 | This should be 1 if all valid insns need to be recognized,
|
---|
66 | such as in regclass.c and final.c and reload.c.
|
---|
67 |
|
---|
68 | init_recog and init_recog_no_volatile are responsible for setting this. */
|
---|
69 |
|
---|
70 | int volatile_ok;
|
---|
71 |
|
---|
72 | struct recog_data recog_data;
|
---|
73 |
|
---|
74 | /* Contains a vector of operand_alternative structures for every operand.
|
---|
75 | Set up by preprocess_constraints. */
|
---|
76 | struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
|
---|
77 |
|
---|
78 | /* On return from `constrain_operands', indicate which alternative
|
---|
79 | was satisfied. */
|
---|
80 |
|
---|
81 | int which_alternative;
|
---|
82 |
|
---|
83 | /* Nonzero after end of reload pass.
|
---|
84 | Set to 1 or 0 by toplev.c.
|
---|
85 | Controls the significance of (SUBREG (MEM)). */
|
---|
86 |
|
---|
87 | int reload_completed;
|
---|
88 |
|
---|
89 | /* Initialize data used by the function `recog'.
|
---|
90 | This must be called once in the compilation of a function
|
---|
91 | before any insn recognition may be done in the function. */
|
---|
92 |
|
---|
93 | void
|
---|
94 | init_recog_no_volatile ()
|
---|
95 | {
|
---|
96 | volatile_ok = 0;
|
---|
97 | }
|
---|
98 |
|
---|
99 | void
|
---|
100 | init_recog ()
|
---|
101 | {
|
---|
102 | volatile_ok = 1;
|
---|
103 | }
|
---|
104 |
|
---|
105 | /* Try recognizing the instruction INSN,
|
---|
106 | and return the code number that results.
|
---|
107 | Remember the code so that repeated calls do not
|
---|
108 | need to spend the time for actual rerecognition.
|
---|
109 |
|
---|
110 | This function is the normal interface to instruction recognition.
|
---|
111 | The automatically-generated function `recog' is normally called
|
---|
112 | through this one. (The only exception is in combine.c.) */
|
---|
113 |
|
---|
114 | int
|
---|
115 | recog_memoized_1 (insn)
|
---|
116 | rtx insn;
|
---|
117 | {
|
---|
118 | if (INSN_CODE (insn) < 0)
|
---|
119 | INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
|
---|
120 | return INSN_CODE (insn);
|
---|
121 | }
|
---|
122 | |
---|
123 |
|
---|
124 | /* Check that X is an insn-body for an `asm' with operands
|
---|
125 | and that the operands mentioned in it are legitimate. */
|
---|
126 |
|
---|
127 | int
|
---|
128 | check_asm_operands (x)
|
---|
129 | rtx x;
|
---|
130 | {
|
---|
131 | int noperands;
|
---|
132 | rtx *operands;
|
---|
133 | const char **constraints;
|
---|
134 | int i;
|
---|
135 |
|
---|
136 | /* Post-reload, be more strict with things. */
|
---|
137 | if (reload_completed)
|
---|
138 | {
|
---|
139 | /* ??? Doh! We've not got the wrapping insn. Cook one up. */
|
---|
140 | extract_insn (make_insn_raw (x));
|
---|
141 | constrain_operands (1);
|
---|
142 | return which_alternative >= 0;
|
---|
143 | }
|
---|
144 |
|
---|
145 | noperands = asm_noperands (x);
|
---|
146 | if (noperands < 0)
|
---|
147 | return 0;
|
---|
148 | if (noperands == 0)
|
---|
149 | return 1;
|
---|
150 |
|
---|
151 | operands = (rtx *) alloca (noperands * sizeof (rtx));
|
---|
152 | constraints = (const char **) alloca (noperands * sizeof (char *));
|
---|
153 |
|
---|
154 | decode_asm_operands (x, operands, NULL, constraints, NULL);
|
---|
155 |
|
---|
156 | for (i = 0; i < noperands; i++)
|
---|
157 | {
|
---|
158 | const char *c = constraints[i];
|
---|
159 | if (c[0] == '%')
|
---|
160 | c++;
|
---|
161 | if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
|
---|
162 | c = constraints[c[0] - '0'];
|
---|
163 |
|
---|
164 | if (! asm_operand_ok (operands[i], c))
|
---|
165 | return 0;
|
---|
166 | }
|
---|
167 |
|
---|
168 | return 1;
|
---|
169 | }
|
---|
170 | |
---|
171 |
|
---|
172 | /* Static data for the next two routines. */
|
---|
173 |
|
---|
174 | typedef struct change_t
|
---|
175 | {
|
---|
176 | rtx object;
|
---|
177 | int old_code;
|
---|
178 | rtx *loc;
|
---|
179 | rtx old;
|
---|
180 | } change_t;
|
---|
181 |
|
---|
182 | static change_t *changes;
|
---|
183 | static int changes_allocated;
|
---|
184 |
|
---|
185 | static int num_changes = 0;
|
---|
186 |
|
---|
187 | /* Validate a proposed change to OBJECT. LOC is the location in the rtl
|
---|
188 | at which NEW will be placed. If OBJECT is zero, no validation is done,
|
---|
189 | the change is simply made.
|
---|
190 |
|
---|
191 | Two types of objects are supported: If OBJECT is a MEM, memory_address_p
|
---|
192 | will be called with the address and mode as parameters. If OBJECT is
|
---|
193 | an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
|
---|
194 | the change in place.
|
---|
195 |
|
---|
196 | IN_GROUP is nonzero if this is part of a group of changes that must be
|
---|
197 | performed as a group. In that case, the changes will be stored. The
|
---|
198 | function `apply_change_group' will validate and apply the changes.
|
---|
199 |
|
---|
200 | If IN_GROUP is zero, this is a single change. Try to recognize the insn
|
---|
201 | or validate the memory reference with the change applied. If the result
|
---|
202 | is not valid for the machine, suppress the change and return zero.
|
---|
203 | Otherwise, perform the change and return 1. */
|
---|
204 |
|
---|
205 | int
|
---|
206 | validate_change (object, loc, new, in_group)
|
---|
207 | rtx object;
|
---|
208 | rtx *loc;
|
---|
209 | rtx new;
|
---|
210 | int in_group;
|
---|
211 | {
|
---|
212 | rtx old = *loc;
|
---|
213 |
|
---|
214 | if (old == new || rtx_equal_p (old, new))
|
---|
215 | return 1;
|
---|
216 |
|
---|
217 | if (in_group == 0 && num_changes != 0)
|
---|
218 | abort ();
|
---|
219 |
|
---|
220 | *loc = new;
|
---|
221 |
|
---|
222 | /* Save the information describing this change. */
|
---|
223 | if (num_changes >= changes_allocated)
|
---|
224 | {
|
---|
225 | if (changes_allocated == 0)
|
---|
226 | /* This value allows for repeated substitutions inside complex
|
---|
227 | indexed addresses, or changes in up to 5 insns. */
|
---|
228 | changes_allocated = MAX_RECOG_OPERANDS * 5;
|
---|
229 | else
|
---|
230 | changes_allocated *= 2;
|
---|
231 |
|
---|
232 | changes =
|
---|
233 | (change_t*) xrealloc (changes,
|
---|
234 | sizeof (change_t) * changes_allocated);
|
---|
235 | }
|
---|
236 |
|
---|
237 | changes[num_changes].object = object;
|
---|
238 | changes[num_changes].loc = loc;
|
---|
239 | changes[num_changes].old = old;
|
---|
240 |
|
---|
241 | if (object && GET_CODE (object) != MEM)
|
---|
242 | {
|
---|
243 | /* Set INSN_CODE to force rerecognition of insn. Save old code in
|
---|
244 | case invalid. */
|
---|
245 | changes[num_changes].old_code = INSN_CODE (object);
|
---|
246 | INSN_CODE (object) = -1;
|
---|
247 | }
|
---|
248 |
|
---|
249 | num_changes++;
|
---|
250 |
|
---|
251 | /* If we are making a group of changes, return 1. Otherwise, validate the
|
---|
252 | change group we made. */
|
---|
253 |
|
---|
254 | if (in_group)
|
---|
255 | return 1;
|
---|
256 | else
|
---|
257 | return apply_change_group ();
|
---|
258 | }
|
---|
259 |
|
---|
260 | /* This subroutine of apply_change_group verifies whether the changes to INSN
|
---|
261 | were valid; i.e. whether INSN can still be recognized. */
|
---|
262 |
|
---|
263 | int
|
---|
264 | insn_invalid_p (insn)
|
---|
265 | rtx insn;
|
---|
266 | {
|
---|
267 | rtx pat = PATTERN (insn);
|
---|
268 | int num_clobbers = 0;
|
---|
269 | /* If we are before reload and the pattern is a SET, see if we can add
|
---|
270 | clobbers. */
|
---|
271 | int icode = recog (pat, insn,
|
---|
272 | (GET_CODE (pat) == SET
|
---|
273 | && ! reload_completed && ! reload_in_progress)
|
---|
274 | ? &num_clobbers : 0);
|
---|
275 | int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
|
---|
276 |
|
---|
277 |
|
---|
278 | /* If this is an asm and the operand aren't legal, then fail. Likewise if
|
---|
279 | this is not an asm and the insn wasn't recognized. */
|
---|
280 | if ((is_asm && ! check_asm_operands (PATTERN (insn)))
|
---|
281 | || (!is_asm && icode < 0))
|
---|
282 | return 1;
|
---|
283 |
|
---|
284 | /* If we have to add CLOBBERs, fail if we have to add ones that reference
|
---|
285 | hard registers since our callers can't know if they are live or not.
|
---|
286 | Otherwise, add them. */
|
---|
287 | if (num_clobbers > 0)
|
---|
288 | {
|
---|
289 | rtx newpat;
|
---|
290 |
|
---|
291 | if (added_clobbers_hard_reg_p (icode))
|
---|
292 | return 1;
|
---|
293 |
|
---|
294 | newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
|
---|
295 | XVECEXP (newpat, 0, 0) = pat;
|
---|
296 | add_clobbers (newpat, icode);
|
---|
297 | PATTERN (insn) = pat = newpat;
|
---|
298 | }
|
---|
299 |
|
---|
300 | /* After reload, verify that all constraints are satisfied. */
|
---|
301 | if (reload_completed)
|
---|
302 | {
|
---|
303 | extract_insn (insn);
|
---|
304 |
|
---|
305 | if (! constrain_operands (1))
|
---|
306 | return 1;
|
---|
307 | }
|
---|
308 |
|
---|
309 | INSN_CODE (insn) = icode;
|
---|
310 | return 0;
|
---|
311 | }
|
---|
312 |
|
---|
313 | /* Return number of changes made and not validated yet. */
|
---|
314 | int
|
---|
315 | num_changes_pending ()
|
---|
316 | {
|
---|
317 | return num_changes;
|
---|
318 | }
|
---|
319 |
|
---|
320 | /* Apply a group of changes previously issued with `validate_change'.
|
---|
321 | Return 1 if all changes are valid, zero otherwise. */
|
---|
322 |
|
---|
323 | int
|
---|
324 | apply_change_group ()
|
---|
325 | {
|
---|
326 | int i;
|
---|
327 | rtx last_validated = NULL_RTX;
|
---|
328 |
|
---|
329 | /* The changes have been applied and all INSN_CODEs have been reset to force
|
---|
330 | rerecognition.
|
---|
331 |
|
---|
332 | The changes are valid if we aren't given an object, or if we are
|
---|
333 | given a MEM and it still is a valid address, or if this is in insn
|
---|
334 | and it is recognized. In the latter case, if reload has completed,
|
---|
335 | we also require that the operands meet the constraints for
|
---|
336 | the insn. */
|
---|
337 |
|
---|
338 | for (i = 0; i < num_changes; i++)
|
---|
339 | {
|
---|
340 | rtx object = changes[i].object;
|
---|
341 |
|
---|
342 | /* if there is no object to test or if it is the same as the one we
|
---|
343 | already tested, ignore it. */
|
---|
344 | if (object == 0 || object == last_validated)
|
---|
345 | continue;
|
---|
346 |
|
---|
347 | if (GET_CODE (object) == MEM)
|
---|
348 | {
|
---|
349 | if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
|
---|
350 | break;
|
---|
351 | }
|
---|
352 | else if (insn_invalid_p (object))
|
---|
353 | {
|
---|
354 | rtx pat = PATTERN (object);
|
---|
355 |
|
---|
356 | /* Perhaps we couldn't recognize the insn because there were
|
---|
357 | extra CLOBBERs at the end. If so, try to re-recognize
|
---|
358 | without the last CLOBBER (later iterations will cause each of
|
---|
359 | them to be eliminated, in turn). But don't do this if we
|
---|
360 | have an ASM_OPERAND. */
|
---|
361 | if (GET_CODE (pat) == PARALLEL
|
---|
362 | && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
|
---|
363 | && asm_noperands (PATTERN (object)) < 0)
|
---|
364 | {
|
---|
365 | rtx newpat;
|
---|
366 |
|
---|
367 | if (XVECLEN (pat, 0) == 2)
|
---|
368 | newpat = XVECEXP (pat, 0, 0);
|
---|
369 | else
|
---|
370 | {
|
---|
371 | int j;
|
---|
372 |
|
---|
373 | newpat
|
---|
374 | = gen_rtx_PARALLEL (VOIDmode,
|
---|
375 | rtvec_alloc (XVECLEN (pat, 0) - 1));
|
---|
376 | for (j = 0; j < XVECLEN (newpat, 0); j++)
|
---|
377 | XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
|
---|
378 | }
|
---|
379 |
|
---|
380 | /* Add a new change to this group to replace the pattern
|
---|
381 | with this new pattern. Then consider this change
|
---|
382 | as having succeeded. The change we added will
|
---|
383 | cause the entire call to fail if things remain invalid.
|
---|
384 |
|
---|
385 | Note that this can lose if a later change than the one
|
---|
386 | we are processing specified &XVECEXP (PATTERN (object), 0, X)
|
---|
387 | but this shouldn't occur. */
|
---|
388 |
|
---|
389 | validate_change (object, &PATTERN (object), newpat, 1);
|
---|
390 | continue;
|
---|
391 | }
|
---|
392 | else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
|
---|
393 | /* If this insn is a CLOBBER or USE, it is always valid, but is
|
---|
394 | never recognized. */
|
---|
395 | continue;
|
---|
396 | else
|
---|
397 | break;
|
---|
398 | }
|
---|
399 | last_validated = object;
|
---|
400 | }
|
---|
401 |
|
---|
402 | if (i == num_changes)
|
---|
403 | {
|
---|
404 | basic_block bb;
|
---|
405 |
|
---|
406 | for (i = 0; i < num_changes; i++)
|
---|
407 | if (changes[i].object
|
---|
408 | && INSN_P (changes[i].object)
|
---|
409 | && (bb = BLOCK_FOR_INSN (changes[i].object)))
|
---|
410 | bb->flags |= BB_DIRTY;
|
---|
411 |
|
---|
412 | num_changes = 0;
|
---|
413 | return 1;
|
---|
414 | }
|
---|
415 | else
|
---|
416 | {
|
---|
417 | cancel_changes (0);
|
---|
418 | return 0;
|
---|
419 | }
|
---|
420 | }
|
---|
421 |
|
---|
422 | /* Return the number of changes so far in the current group. */
|
---|
423 |
|
---|
424 | int
|
---|
425 | num_validated_changes ()
|
---|
426 | {
|
---|
427 | return num_changes;
|
---|
428 | }
|
---|
429 |
|
---|
430 | /* Retract the changes numbered NUM and up. */
|
---|
431 |
|
---|
432 | void
|
---|
433 | cancel_changes (num)
|
---|
434 | int num;
|
---|
435 | {
|
---|
436 | int i;
|
---|
437 |
|
---|
438 | /* Back out all the changes. Do this in the opposite order in which
|
---|
439 | they were made. */
|
---|
440 | for (i = num_changes - 1; i >= num; i--)
|
---|
441 | {
|
---|
442 | *changes[i].loc = changes[i].old;
|
---|
443 | if (changes[i].object && GET_CODE (changes[i].object) != MEM)
|
---|
444 | INSN_CODE (changes[i].object) = changes[i].old_code;
|
---|
445 | }
|
---|
446 | num_changes = num;
|
---|
447 | }
|
---|
448 |
|
---|
449 | /* Replace every occurrence of FROM in X with TO. Mark each change with
|
---|
450 | validate_change passing OBJECT. */
|
---|
451 |
|
---|
452 | static void
|
---|
453 | validate_replace_rtx_1 (loc, from, to, object)
|
---|
454 | rtx *loc;
|
---|
455 | rtx from, to, object;
|
---|
456 | {
|
---|
457 | int i, j;
|
---|
458 | const char *fmt;
|
---|
459 | rtx x = *loc;
|
---|
460 | enum rtx_code code;
|
---|
461 | enum machine_mode op0_mode = VOIDmode;
|
---|
462 | int prev_changes = num_changes;
|
---|
463 | rtx new;
|
---|
464 |
|
---|
465 | if (!x)
|
---|
466 | return;
|
---|
467 |
|
---|
468 | code = GET_CODE (x);
|
---|
469 | fmt = GET_RTX_FORMAT (code);
|
---|
470 | if (fmt[0] == 'e')
|
---|
471 | op0_mode = GET_MODE (XEXP (x, 0));
|
---|
472 |
|
---|
473 | /* X matches FROM if it is the same rtx or they are both referring to the
|
---|
474 | same register in the same mode. Avoid calling rtx_equal_p unless the
|
---|
475 | operands look similar. */
|
---|
476 |
|
---|
477 | if (x == from
|
---|
478 | || (GET_CODE (x) == REG && GET_CODE (from) == REG
|
---|
479 | && GET_MODE (x) == GET_MODE (from)
|
---|
480 | && REGNO (x) == REGNO (from))
|
---|
481 | || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
|
---|
482 | && rtx_equal_p (x, from)))
|
---|
483 | {
|
---|
484 | validate_change (object, loc, to, 1);
|
---|
485 | return;
|
---|
486 | }
|
---|
487 |
|
---|
488 | /* Call ourself recursively to perform the replacements. */
|
---|
489 |
|
---|
490 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
---|
491 | {
|
---|
492 | if (fmt[i] == 'e')
|
---|
493 | validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
|
---|
494 | else if (fmt[i] == 'E')
|
---|
495 | for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
---|
496 | validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
|
---|
497 | }
|
---|
498 |
|
---|
499 | /* If we didn't substitute, there is nothing more to do. */
|
---|
500 | if (num_changes == prev_changes)
|
---|
501 | return;
|
---|
502 |
|
---|
503 | /* Allow substituted expression to have different mode. This is used by
|
---|
504 | regmove to change mode of pseudo register. */
|
---|
505 | if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
|
---|
506 | op0_mode = GET_MODE (XEXP (x, 0));
|
---|
507 |
|
---|
508 | /* Do changes needed to keep rtx consistent. Don't do any other
|
---|
509 | simplifications, as it is not our job. */
|
---|
510 |
|
---|
511 | if ((GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
|
---|
512 | && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
---|
513 | {
|
---|
514 | validate_change (object, loc,
|
---|
515 | gen_rtx_fmt_ee (GET_RTX_CLASS (code) == 'c' ? code
|
---|
516 | : swap_condition (code),
|
---|
517 | GET_MODE (x), XEXP (x, 1),
|
---|
518 | XEXP (x, 0)), 1);
|
---|
519 | x = *loc;
|
---|
520 | code = GET_CODE (x);
|
---|
521 | }
|
---|
522 |
|
---|
523 | switch (code)
|
---|
524 | {
|
---|
525 | case PLUS:
|
---|
526 | /* If we have a PLUS whose second operand is now a CONST_INT, use
|
---|
527 | simplify_gen_binary to try to simplify it.
|
---|
528 | ??? We may want later to remove this, once simplification is
|
---|
529 | separated from this function. */
|
---|
530 | if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
|
---|
531 | validate_change (object, loc,
|
---|
532 | simplify_gen_binary
|
---|
533 | (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
|
---|
534 | break;
|
---|
535 | case MINUS:
|
---|
536 | if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
---|
537 | || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
|
---|
538 | validate_change (object, loc,
|
---|
539 | simplify_gen_binary
|
---|
540 | (PLUS, GET_MODE (x), XEXP (x, 0),
|
---|
541 | simplify_gen_unary (NEG,
|
---|
542 | GET_MODE (x), XEXP (x, 1),
|
---|
543 | GET_MODE (x))), 1);
|
---|
544 | break;
|
---|
545 | case ZERO_EXTEND:
|
---|
546 | case SIGN_EXTEND:
|
---|
547 | if (GET_MODE (XEXP (x, 0)) == VOIDmode)
|
---|
548 | {
|
---|
549 | new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
|
---|
550 | op0_mode);
|
---|
551 | /* If any of the above failed, substitute in something that
|
---|
552 | we know won't be recognized. */
|
---|
553 | if (!new)
|
---|
554 | new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
---|
555 | validate_change (object, loc, new, 1);
|
---|
556 | }
|
---|
557 | break;
|
---|
558 | case SUBREG:
|
---|
559 | /* All subregs possible to simplify should be simplified. */
|
---|
560 | new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
|
---|
561 | SUBREG_BYTE (x));
|
---|
562 |
|
---|
563 | /* Subregs of VOIDmode operands are incorrect. */
|
---|
564 | if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
|
---|
565 | new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
---|
566 | if (new)
|
---|
567 | validate_change (object, loc, new, 1);
|
---|
568 | break;
|
---|
569 | case ZERO_EXTRACT:
|
---|
570 | case SIGN_EXTRACT:
|
---|
571 | /* If we are replacing a register with memory, try to change the memory
|
---|
572 | to be the mode required for memory in extract operations (this isn't
|
---|
573 | likely to be an insertion operation; if it was, nothing bad will
|
---|
574 | happen, we might just fail in some cases). */
|
---|
575 |
|
---|
576 | if (GET_CODE (XEXP (x, 0)) == MEM
|
---|
577 | && GET_CODE (XEXP (x, 1)) == CONST_INT
|
---|
578 | && GET_CODE (XEXP (x, 2)) == CONST_INT
|
---|
579 | && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
|
---|
580 | && !MEM_VOLATILE_P (XEXP (x, 0)))
|
---|
581 | {
|
---|
582 | enum machine_mode wanted_mode = VOIDmode;
|
---|
583 | enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
|
---|
584 | int pos = INTVAL (XEXP (x, 2));
|
---|
585 |
|
---|
586 | if (GET_CODE (x) == ZERO_EXTRACT)
|
---|
587 | {
|
---|
588 | enum machine_mode new_mode
|
---|
589 | = mode_for_extraction (EP_extzv, 1);
|
---|
590 | if (new_mode != MAX_MACHINE_MODE)
|
---|
591 | wanted_mode = new_mode;
|
---|
592 | }
|
---|
593 | else if (GET_CODE (x) == SIGN_EXTRACT)
|
---|
594 | {
|
---|
595 | enum machine_mode new_mode
|
---|
596 | = mode_for_extraction (EP_extv, 1);
|
---|
597 | if (new_mode != MAX_MACHINE_MODE)
|
---|
598 | wanted_mode = new_mode;
|
---|
599 | }
|
---|
600 |
|
---|
601 | /* If we have a narrower mode, we can do something. */
|
---|
602 | if (wanted_mode != VOIDmode
|
---|
603 | && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
|
---|
604 | {
|
---|
605 | int offset = pos / BITS_PER_UNIT;
|
---|
606 | rtx newmem;
|
---|
607 |
|
---|
608 | /* If the bytes and bits are counted differently, we
|
---|
609 | must adjust the offset. */
|
---|
610 | if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
|
---|
611 | offset =
|
---|
612 | (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
|
---|
613 | offset);
|
---|
614 |
|
---|
615 | pos %= GET_MODE_BITSIZE (wanted_mode);
|
---|
616 |
|
---|
617 | newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
|
---|
618 |
|
---|
619 | validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
|
---|
620 | validate_change (object, &XEXP (x, 0), newmem, 1);
|
---|
621 | }
|
---|
622 | }
|
---|
623 |
|
---|
624 | break;
|
---|
625 |
|
---|
626 | default:
|
---|
627 | break;
|
---|
628 | }
|
---|
629 | }
|
---|
630 |
|
---|
631 | /* Try replacing every occurrence of FROM in subexpression LOC of INSN
|
---|
632 | with TO. After all changes have been made, validate by seeing
|
---|
633 | if INSN is still valid. */
|
---|
634 |
|
---|
635 | int
|
---|
636 | validate_replace_rtx_subexp (from, to, insn, loc)
|
---|
637 | rtx from, to, insn, *loc;
|
---|
638 | {
|
---|
639 | validate_replace_rtx_1 (loc, from, to, insn);
|
---|
640 | return apply_change_group ();
|
---|
641 | }
|
---|
642 |
|
---|
643 | /* Try replacing every occurrence of FROM in INSN with TO. After all
|
---|
644 | changes have been made, validate by seeing if INSN is still valid. */
|
---|
645 |
|
---|
646 | int
|
---|
647 | validate_replace_rtx (from, to, insn)
|
---|
648 | rtx from, to, insn;
|
---|
649 | {
|
---|
650 | validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
|
---|
651 | return apply_change_group ();
|
---|
652 | }
|
---|
653 |
|
---|
654 | /* Try replacing every occurrence of FROM in INSN with TO. */
|
---|
655 |
|
---|
656 | void
|
---|
657 | validate_replace_rtx_group (from, to, insn)
|
---|
658 | rtx from, to, insn;
|
---|
659 | {
|
---|
660 | validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
|
---|
661 | }
|
---|
662 |
|
---|
663 | /* Function called by note_uses to replace used subexpressions. */
|
---|
664 | struct validate_replace_src_data
|
---|
665 | {
|
---|
666 | rtx from; /* Old RTX */
|
---|
667 | rtx to; /* New RTX */
|
---|
668 | rtx insn; /* Insn in which substitution is occurring. */
|
---|
669 | };
|
---|
670 |
|
---|
671 | static void
|
---|
672 | validate_replace_src_1 (x, data)
|
---|
673 | rtx *x;
|
---|
674 | void *data;
|
---|
675 | {
|
---|
676 | struct validate_replace_src_data *d
|
---|
677 | = (struct validate_replace_src_data *) data;
|
---|
678 |
|
---|
679 | validate_replace_rtx_1 (x, d->from, d->to, d->insn);
|
---|
680 | }
|
---|
681 |
|
---|
682 | /* Try replacing every occurrence of FROM in INSN with TO, avoiding
|
---|
683 | SET_DESTs. */
|
---|
684 |
|
---|
685 | void
|
---|
686 | validate_replace_src_group (from, to, insn)
|
---|
687 | rtx from, to, insn;
|
---|
688 | {
|
---|
689 | struct validate_replace_src_data d;
|
---|
690 |
|
---|
691 | d.from = from;
|
---|
692 | d.to = to;
|
---|
693 | d.insn = insn;
|
---|
694 | note_uses (&PATTERN (insn), validate_replace_src_1, &d);
|
---|
695 | }
|
---|
696 |
|
---|
697 | /* Same as validate_repalace_src_group, but validate by seeing if
|
---|
698 | INSN is still valid. */
|
---|
699 | int
|
---|
700 | validate_replace_src (from, to, insn)
|
---|
701 | rtx from, to, insn;
|
---|
702 | {
|
---|
703 | validate_replace_src_group (from, to, insn);
|
---|
704 | return apply_change_group ();
|
---|
705 | }
|
---|
706 | |
---|
707 |
|
---|
708 | #ifdef HAVE_cc0
|
---|
709 | /* Return 1 if the insn using CC0 set by INSN does not contain
|
---|
710 | any ordered tests applied to the condition codes.
|
---|
711 | EQ and NE tests do not count. */
|
---|
712 |
|
---|
713 | int
|
---|
714 | next_insn_tests_no_inequality (insn)
|
---|
715 | rtx insn;
|
---|
716 | {
|
---|
717 | rtx next = next_cc0_user (insn);
|
---|
718 |
|
---|
719 | /* If there is no next insn, we have to take the conservative choice. */
|
---|
720 | if (next == 0)
|
---|
721 | return 0;
|
---|
722 |
|
---|
723 | return ((GET_CODE (next) == JUMP_INSN
|
---|
724 | || GET_CODE (next) == INSN
|
---|
725 | || GET_CODE (next) == CALL_INSN)
|
---|
726 | && ! inequality_comparisons_p (PATTERN (next)));
|
---|
727 | }
|
---|
728 |
|
---|
729 | #if 0 /* This is useless since the insn that sets the cc's
|
---|
730 | must be followed immediately by the use of them. */
|
---|
731 | /* Return 1 if the CC value set up by INSN is not used. */
|
---|
732 |
|
---|
733 | int
|
---|
734 | next_insns_test_no_inequality (insn)
|
---|
735 | rtx insn;
|
---|
736 | {
|
---|
737 | rtx next = NEXT_INSN (insn);
|
---|
738 |
|
---|
739 | for (; next != 0; next = NEXT_INSN (next))
|
---|
740 | {
|
---|
741 | if (GET_CODE (next) == CODE_LABEL
|
---|
742 | || GET_CODE (next) == BARRIER)
|
---|
743 | return 1;
|
---|
744 | if (GET_CODE (next) == NOTE)
|
---|
745 | continue;
|
---|
746 | if (inequality_comparisons_p (PATTERN (next)))
|
---|
747 | return 0;
|
---|
748 | if (sets_cc0_p (PATTERN (next)) == 1)
|
---|
749 | return 1;
|
---|
750 | if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
|
---|
751 | return 1;
|
---|
752 | }
|
---|
753 | return 1;
|
---|
754 | }
|
---|
755 | #endif
|
---|
756 | #endif
|
---|
757 | |
---|
758 |
|
---|
759 | /* This is used by find_single_use to locate an rtx that contains exactly one
|
---|
760 | use of DEST, which is typically either a REG or CC0. It returns a
|
---|
761 | pointer to the innermost rtx expression containing DEST. Appearances of
|
---|
762 | DEST that are being used to totally replace it are not counted. */
|
---|
763 |
|
---|
764 | static rtx *
|
---|
765 | find_single_use_1 (dest, loc)
|
---|
766 | rtx dest;
|
---|
767 | rtx *loc;
|
---|
768 | {
|
---|
769 | rtx x = *loc;
|
---|
770 | enum rtx_code code = GET_CODE (x);
|
---|
771 | rtx *result = 0;
|
---|
772 | rtx *this_result;
|
---|
773 | int i;
|
---|
774 | const char *fmt;
|
---|
775 |
|
---|
776 | switch (code)
|
---|
777 | {
|
---|
778 | case CONST_INT:
|
---|
779 | case CONST:
|
---|
780 | case LABEL_REF:
|
---|
781 | case SYMBOL_REF:
|
---|
782 | case CONST_DOUBLE:
|
---|
783 | case CONST_VECTOR:
|
---|
784 | case CLOBBER:
|
---|
785 | return 0;
|
---|
786 |
|
---|
787 | case SET:
|
---|
788 | /* If the destination is anything other than CC0, PC, a REG or a SUBREG
|
---|
789 | of a REG that occupies all of the REG, the insn uses DEST if
|
---|
790 | it is mentioned in the destination or the source. Otherwise, we
|
---|
791 | need just check the source. */
|
---|
792 | if (GET_CODE (SET_DEST (x)) != CC0
|
---|
793 | && GET_CODE (SET_DEST (x)) != PC
|
---|
794 | && GET_CODE (SET_DEST (x)) != REG
|
---|
795 | && ! (GET_CODE (SET_DEST (x)) == SUBREG
|
---|
796 | && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
|
---|
797 | && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
|
---|
798 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
---|
799 | == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
|
---|
800 | + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
|
---|
801 | break;
|
---|
802 |
|
---|
803 | return find_single_use_1 (dest, &SET_SRC (x));
|
---|
804 |
|
---|
805 | case MEM:
|
---|
806 | case SUBREG:
|
---|
807 | return find_single_use_1 (dest, &XEXP (x, 0));
|
---|
808 |
|
---|
809 | default:
|
---|
810 | break;
|
---|
811 | }
|
---|
812 |
|
---|
813 | /* If it wasn't one of the common cases above, check each expression and
|
---|
814 | vector of this code. Look for a unique usage of DEST. */
|
---|
815 |
|
---|
816 | fmt = GET_RTX_FORMAT (code);
|
---|
817 | for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
---|
818 | {
|
---|
819 | if (fmt[i] == 'e')
|
---|
820 | {
|
---|
821 | if (dest == XEXP (x, i)
|
---|
822 | || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
|
---|
823 | && REGNO (dest) == REGNO (XEXP (x, i))))
|
---|
824 | this_result = loc;
|
---|
825 | else
|
---|
826 | this_result = find_single_use_1 (dest, &XEXP (x, i));
|
---|
827 |
|
---|
828 | if (result == 0)
|
---|
829 | result = this_result;
|
---|
830 | else if (this_result)
|
---|
831 | /* Duplicate usage. */
|
---|
832 | return 0;
|
---|
833 | }
|
---|
834 | else if (fmt[i] == 'E')
|
---|
835 | {
|
---|
836 | int j;
|
---|
837 |
|
---|
838 | for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
---|
839 | {
|
---|
840 | if (XVECEXP (x, i, j) == dest
|
---|
841 | || (GET_CODE (dest) == REG
|
---|
842 | && GET_CODE (XVECEXP (x, i, j)) == REG
|
---|
843 | && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
|
---|
844 | this_result = loc;
|
---|
845 | else
|
---|
846 | this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
|
---|
847 |
|
---|
848 | if (result == 0)
|
---|
849 | result = this_result;
|
---|
850 | else if (this_result)
|
---|
851 | return 0;
|
---|
852 | }
|
---|
853 | }
|
---|
854 | }
|
---|
855 |
|
---|
856 | return result;
|
---|
857 | }
|
---|
858 | |
---|
859 |
|
---|
860 | /* See if DEST, produced in INSN, is used only a single time in the
|
---|
861 | sequel. If so, return a pointer to the innermost rtx expression in which
|
---|
862 | it is used.
|
---|
863 |
|
---|
864 | If PLOC is nonzero, *PLOC is set to the insn containing the single use.
|
---|
865 |
|
---|
866 | This routine will return usually zero either before flow is called (because
|
---|
867 | there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
|
---|
868 | note can't be trusted).
|
---|
869 |
|
---|
870 | If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
|
---|
871 | care about REG_DEAD notes or LOG_LINKS.
|
---|
872 |
|
---|
873 | Otherwise, we find the single use by finding an insn that has a
|
---|
874 | LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
|
---|
875 | only referenced once in that insn, we know that it must be the first
|
---|
876 | and last insn referencing DEST. */
|
---|
877 |
|
---|
878 | rtx *
|
---|
879 | find_single_use (dest, insn, ploc)
|
---|
880 | rtx dest;
|
---|
881 | rtx insn;
|
---|
882 | rtx *ploc;
|
---|
883 | {
|
---|
884 | rtx next;
|
---|
885 | rtx *result;
|
---|
886 | rtx link;
|
---|
887 |
|
---|
888 | #ifdef HAVE_cc0
|
---|
889 | if (dest == cc0_rtx)
|
---|
890 | {
|
---|
891 | next = NEXT_INSN (insn);
|
---|
892 | if (next == 0
|
---|
893 | || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
|
---|
894 | return 0;
|
---|
895 |
|
---|
896 | result = find_single_use_1 (dest, &PATTERN (next));
|
---|
897 | if (result && ploc)
|
---|
898 | *ploc = next;
|
---|
899 | return result;
|
---|
900 | }
|
---|
901 | #endif
|
---|
902 |
|
---|
903 | if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
|
---|
904 | return 0;
|
---|
905 |
|
---|
906 | for (next = next_nonnote_insn (insn);
|
---|
907 | next != 0 && GET_CODE (next) != CODE_LABEL;
|
---|
908 | next = next_nonnote_insn (next))
|
---|
909 | if (INSN_P (next) && dead_or_set_p (next, dest))
|
---|
910 | {
|
---|
911 | for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
|
---|
912 | if (XEXP (link, 0) == insn)
|
---|
913 | break;
|
---|
914 |
|
---|
915 | if (link)
|
---|
916 | {
|
---|
917 | result = find_single_use_1 (dest, &PATTERN (next));
|
---|
918 | if (ploc)
|
---|
919 | *ploc = next;
|
---|
920 | return result;
|
---|
921 | }
|
---|
922 | }
|
---|
923 |
|
---|
924 | return 0;
|
---|
925 | }
|
---|
926 | |
---|
927 |
|
---|
928 | /* Return 1 if OP is a valid general operand for machine mode MODE.
|
---|
929 | This is either a register reference, a memory reference,
|
---|
930 | or a constant. In the case of a memory reference, the address
|
---|
931 | is checked for general validity for the target machine.
|
---|
932 |
|
---|
933 | Register and memory references must have mode MODE in order to be valid,
|
---|
934 | but some constants have no machine mode and are valid for any mode.
|
---|
935 |
|
---|
936 | If MODE is VOIDmode, OP is checked for validity for whatever mode
|
---|
937 | it has.
|
---|
938 |
|
---|
939 | The main use of this function is as a predicate in match_operand
|
---|
940 | expressions in the machine description.
|
---|
941 |
|
---|
942 | For an explanation of this function's behavior for registers of
|
---|
943 | class NO_REGS, see the comment for `register_operand'. */
|
---|
944 |
|
---|
945 | int
|
---|
946 | general_operand (op, mode)
|
---|
947 | rtx op;
|
---|
948 | enum machine_mode mode;
|
---|
949 | {
|
---|
950 | enum rtx_code code = GET_CODE (op);
|
---|
951 |
|
---|
952 | if (mode == VOIDmode)
|
---|
953 | mode = GET_MODE (op);
|
---|
954 |
|
---|
955 | /* Don't accept CONST_INT or anything similar
|
---|
956 | if the caller wants something floating. */
|
---|
957 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
958 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
959 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
960 | return 0;
|
---|
961 |
|
---|
962 | if (GET_CODE (op) == CONST_INT
|
---|
963 | && mode != VOIDmode
|
---|
964 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
965 | return 0;
|
---|
966 |
|
---|
967 | if (CONSTANT_P (op))
|
---|
968 | return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
|
---|
969 | || mode == VOIDmode)
|
---|
970 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
971 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
972 | #endif
|
---|
973 | && LEGITIMATE_CONSTANT_P (op));
|
---|
974 |
|
---|
975 | /* Except for certain constants with VOIDmode, already checked for,
|
---|
976 | OP's mode must match MODE if MODE specifies a mode. */
|
---|
977 |
|
---|
978 | if (GET_MODE (op) != mode)
|
---|
979 | return 0;
|
---|
980 |
|
---|
981 | if (code == SUBREG)
|
---|
982 | {
|
---|
983 | rtx sub = SUBREG_REG (op);
|
---|
984 |
|
---|
985 | #ifdef INSN_SCHEDULING
|
---|
986 | /* On machines that have insn scheduling, we want all memory
|
---|
987 | reference to be explicit, so outlaw paradoxical SUBREGs. */
|
---|
988 | if (GET_CODE (sub) == MEM
|
---|
989 | && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
|
---|
990 | return 0;
|
---|
991 | #endif
|
---|
992 | /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
|
---|
993 | may result in incorrect reference. We should simplify all valid
|
---|
994 | subregs of MEM anyway. But allow this after reload because we
|
---|
995 | might be called from cleanup_subreg_operands.
|
---|
996 |
|
---|
997 | ??? This is a kludge. */
|
---|
998 | if (!reload_completed && SUBREG_BYTE (op) != 0
|
---|
999 | && GET_CODE (sub) == MEM)
|
---|
1000 | return 0;
|
---|
1001 |
|
---|
1002 | /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
|
---|
1003 | create such rtl, and we must reject it. */
|
---|
1004 | if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
---|
1005 | && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
|
---|
1006 | return 0;
|
---|
1007 |
|
---|
1008 | op = sub;
|
---|
1009 | code = GET_CODE (op);
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | if (code == REG)
|
---|
1013 | /* A register whose class is NO_REGS is not a general operand. */
|
---|
1014 | return (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
---|
1015 | || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
|
---|
1016 |
|
---|
1017 | if (code == MEM)
|
---|
1018 | {
|
---|
1019 | rtx y = XEXP (op, 0);
|
---|
1020 |
|
---|
1021 | if (! volatile_ok && MEM_VOLATILE_P (op))
|
---|
1022 | return 0;
|
---|
1023 |
|
---|
1024 | if (GET_CODE (y) == ADDRESSOF)
|
---|
1025 | return 1;
|
---|
1026 |
|
---|
1027 | /* Use the mem's mode, since it will be reloaded thus. */
|
---|
1028 | mode = GET_MODE (op);
|
---|
1029 | GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | /* Pretend this is an operand for now; we'll run force_operand
|
---|
1033 | on its replacement in fixup_var_refs_1. */
|
---|
1034 | if (code == ADDRESSOF)
|
---|
1035 | return 1;
|
---|
1036 |
|
---|
1037 | return 0;
|
---|
1038 |
|
---|
1039 | win:
|
---|
1040 | return 1;
|
---|
1041 | }
|
---|
1042 | |
---|
1043 |
|
---|
1044 | /* Return 1 if OP is a valid memory address for a memory reference
|
---|
1045 | of mode MODE.
|
---|
1046 |
|
---|
1047 | The main use of this function is as a predicate in match_operand
|
---|
1048 | expressions in the machine description. */
|
---|
1049 |
|
---|
1050 | int
|
---|
1051 | address_operand (op, mode)
|
---|
1052 | rtx op;
|
---|
1053 | enum machine_mode mode;
|
---|
1054 | {
|
---|
1055 | return memory_address_p (mode, op);
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | /* Return 1 if OP is a register reference of mode MODE.
|
---|
1059 | If MODE is VOIDmode, accept a register in any mode.
|
---|
1060 |
|
---|
1061 | The main use of this function is as a predicate in match_operand
|
---|
1062 | expressions in the machine description.
|
---|
1063 |
|
---|
1064 | As a special exception, registers whose class is NO_REGS are
|
---|
1065 | not accepted by `register_operand'. The reason for this change
|
---|
1066 | is to allow the representation of special architecture artifacts
|
---|
1067 | (such as a condition code register) without extending the rtl
|
---|
1068 | definitions. Since registers of class NO_REGS cannot be used
|
---|
1069 | as registers in any case where register classes are examined,
|
---|
1070 | it is most consistent to keep this function from accepting them. */
|
---|
1071 |
|
---|
1072 | int
|
---|
1073 | register_operand (op, mode)
|
---|
1074 | rtx op;
|
---|
1075 | enum machine_mode mode;
|
---|
1076 | {
|
---|
1077 | if (GET_MODE (op) != mode && mode != VOIDmode)
|
---|
1078 | return 0;
|
---|
1079 |
|
---|
1080 | if (GET_CODE (op) == SUBREG)
|
---|
1081 | {
|
---|
1082 | rtx sub = SUBREG_REG (op);
|
---|
1083 |
|
---|
1084 | /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
---|
1085 | because it is guaranteed to be reloaded into one.
|
---|
1086 | Just make sure the MEM is valid in itself.
|
---|
1087 | (Ideally, (SUBREG (MEM)...) should not exist after reload,
|
---|
1088 | but currently it does result from (SUBREG (REG)...) where the
|
---|
1089 | reg went on the stack.) */
|
---|
1090 | if (! reload_completed && GET_CODE (sub) == MEM)
|
---|
1091 | return general_operand (op, mode);
|
---|
1092 |
|
---|
1093 | #ifdef CANNOT_CHANGE_MODE_CLASS
|
---|
1094 | if (GET_CODE (sub) == REG
|
---|
1095 | && REGNO (sub) < FIRST_PSEUDO_REGISTER
|
---|
1096 | && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
|
---|
1097 | && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
|
---|
1098 | && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
|
---|
1099 | return 0;
|
---|
1100 | #endif
|
---|
1101 |
|
---|
1102 | /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
|
---|
1103 | create such rtl, and we must reject it. */
|
---|
1104 | if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
---|
1105 | && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
|
---|
1106 | return 0;
|
---|
1107 |
|
---|
1108 | op = sub;
|
---|
1109 | }
|
---|
1110 |
|
---|
1111 | /* If we have an ADDRESSOF, consider it valid since it will be
|
---|
1112 | converted into something that will not be a MEM. */
|
---|
1113 | if (GET_CODE (op) == ADDRESSOF)
|
---|
1114 | return 1;
|
---|
1115 |
|
---|
1116 | /* We don't consider registers whose class is NO_REGS
|
---|
1117 | to be a register operand. */
|
---|
1118 | return (GET_CODE (op) == REG
|
---|
1119 | && (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
---|
1120 | || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | /* Return 1 for a register in Pmode; ignore the tested mode. */
|
---|
1124 |
|
---|
1125 | int
|
---|
1126 | pmode_register_operand (op, mode)
|
---|
1127 | rtx op;
|
---|
1128 | enum machine_mode mode ATTRIBUTE_UNUSED;
|
---|
1129 | {
|
---|
1130 | return register_operand (op, Pmode);
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 | /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
|
---|
1134 | or a hard register. */
|
---|
1135 |
|
---|
1136 | int
|
---|
1137 | scratch_operand (op, mode)
|
---|
1138 | rtx op;
|
---|
1139 | enum machine_mode mode;
|
---|
1140 | {
|
---|
1141 | if (GET_MODE (op) != mode && mode != VOIDmode)
|
---|
1142 | return 0;
|
---|
1143 |
|
---|
1144 | return (GET_CODE (op) == SCRATCH
|
---|
1145 | || (GET_CODE (op) == REG
|
---|
1146 | && REGNO (op) < FIRST_PSEUDO_REGISTER));
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | /* Return 1 if OP is a valid immediate operand for mode MODE.
|
---|
1150 |
|
---|
1151 | The main use of this function is as a predicate in match_operand
|
---|
1152 | expressions in the machine description. */
|
---|
1153 |
|
---|
1154 | int
|
---|
1155 | immediate_operand (op, mode)
|
---|
1156 | rtx op;
|
---|
1157 | enum machine_mode mode;
|
---|
1158 | {
|
---|
1159 | /* Don't accept CONST_INT or anything similar
|
---|
1160 | if the caller wants something floating. */
|
---|
1161 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
1162 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
1163 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
1164 | return 0;
|
---|
1165 |
|
---|
1166 | if (GET_CODE (op) == CONST_INT
|
---|
1167 | && mode != VOIDmode
|
---|
1168 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
1169 | return 0;
|
---|
1170 |
|
---|
1171 | /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
|
---|
1172 | result in 0/1. It seems a safe assumption that this is
|
---|
1173 | in range for everyone. */
|
---|
1174 | if (GET_CODE (op) == CONSTANT_P_RTX)
|
---|
1175 | return 1;
|
---|
1176 |
|
---|
1177 | return (CONSTANT_P (op)
|
---|
1178 | && (GET_MODE (op) == mode || mode == VOIDmode
|
---|
1179 | || GET_MODE (op) == VOIDmode)
|
---|
1180 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
1181 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
1182 | #endif
|
---|
1183 | && LEGITIMATE_CONSTANT_P (op));
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | /* Returns 1 if OP is an operand that is a CONST_INT. */
|
---|
1187 |
|
---|
1188 | int
|
---|
1189 | const_int_operand (op, mode)
|
---|
1190 | rtx op;
|
---|
1191 | enum machine_mode mode;
|
---|
1192 | {
|
---|
1193 | if (GET_CODE (op) != CONST_INT)
|
---|
1194 | return 0;
|
---|
1195 |
|
---|
1196 | if (mode != VOIDmode
|
---|
1197 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
1198 | return 0;
|
---|
1199 |
|
---|
1200 | return 1;
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | /* Returns 1 if OP is an operand that is a constant integer or constant
|
---|
1204 | floating-point number. */
|
---|
1205 |
|
---|
1206 | int
|
---|
1207 | const_double_operand (op, mode)
|
---|
1208 | rtx op;
|
---|
1209 | enum machine_mode mode;
|
---|
1210 | {
|
---|
1211 | /* Don't accept CONST_INT or anything similar
|
---|
1212 | if the caller wants something floating. */
|
---|
1213 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
1214 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
1215 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
1216 | return 0;
|
---|
1217 |
|
---|
1218 | return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
|
---|
1219 | && (mode == VOIDmode || GET_MODE (op) == mode
|
---|
1220 | || GET_MODE (op) == VOIDmode));
|
---|
1221 | }
|
---|
1222 |
|
---|
1223 | /* Return 1 if OP is a general operand that is not an immediate operand. */
|
---|
1224 |
|
---|
1225 | int
|
---|
1226 | nonimmediate_operand (op, mode)
|
---|
1227 | rtx op;
|
---|
1228 | enum machine_mode mode;
|
---|
1229 | {
|
---|
1230 | return (general_operand (op, mode) && ! CONSTANT_P (op));
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | /* Return 1 if OP is a register reference or immediate value of mode MODE. */
|
---|
1234 |
|
---|
1235 | int
|
---|
1236 | nonmemory_operand (op, mode)
|
---|
1237 | rtx op;
|
---|
1238 | enum machine_mode mode;
|
---|
1239 | {
|
---|
1240 | if (CONSTANT_P (op))
|
---|
1241 | {
|
---|
1242 | /* Don't accept CONST_INT or anything similar
|
---|
1243 | if the caller wants something floating. */
|
---|
1244 | if (GET_MODE (op) == VOIDmode && mode != VOIDmode
|
---|
1245 | && GET_MODE_CLASS (mode) != MODE_INT
|
---|
1246 | && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
|
---|
1247 | return 0;
|
---|
1248 |
|
---|
1249 | if (GET_CODE (op) == CONST_INT
|
---|
1250 | && mode != VOIDmode
|
---|
1251 | && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
|
---|
1252 | return 0;
|
---|
1253 |
|
---|
1254 | return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
|
---|
1255 | || mode == VOIDmode)
|
---|
1256 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
1257 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
1258 | #endif
|
---|
1259 | && LEGITIMATE_CONSTANT_P (op));
|
---|
1260 | }
|
---|
1261 |
|
---|
1262 | if (GET_MODE (op) != mode && mode != VOIDmode)
|
---|
1263 | return 0;
|
---|
1264 |
|
---|
1265 | if (GET_CODE (op) == SUBREG)
|
---|
1266 | {
|
---|
1267 | /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
|
---|
1268 | because it is guaranteed to be reloaded into one.
|
---|
1269 | Just make sure the MEM is valid in itself.
|
---|
1270 | (Ideally, (SUBREG (MEM)...) should not exist after reload,
|
---|
1271 | but currently it does result from (SUBREG (REG)...) where the
|
---|
1272 | reg went on the stack.) */
|
---|
1273 | if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
|
---|
1274 | return general_operand (op, mode);
|
---|
1275 | op = SUBREG_REG (op);
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 | /* We don't consider registers whose class is NO_REGS
|
---|
1279 | to be a register operand. */
|
---|
1280 | return (GET_CODE (op) == REG
|
---|
1281 | && (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
---|
1282 | || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
|
---|
1283 | }
|
---|
1284 |
|
---|
1285 | /* Return 1 if OP is a valid operand that stands for pushing a
|
---|
1286 | value of mode MODE onto the stack.
|
---|
1287 |
|
---|
1288 | The main use of this function is as a predicate in match_operand
|
---|
1289 | expressions in the machine description. */
|
---|
1290 |
|
---|
1291 | int
|
---|
1292 | push_operand (op, mode)
|
---|
1293 | rtx op;
|
---|
1294 | enum machine_mode mode;
|
---|
1295 | {
|
---|
1296 | unsigned int rounded_size = GET_MODE_SIZE (mode);
|
---|
1297 |
|
---|
1298 | #ifdef PUSH_ROUNDING
|
---|
1299 | rounded_size = PUSH_ROUNDING (rounded_size);
|
---|
1300 | #endif
|
---|
1301 |
|
---|
1302 | if (GET_CODE (op) != MEM)
|
---|
1303 | return 0;
|
---|
1304 |
|
---|
1305 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1306 | return 0;
|
---|
1307 |
|
---|
1308 | op = XEXP (op, 0);
|
---|
1309 |
|
---|
1310 | if (rounded_size == GET_MODE_SIZE (mode))
|
---|
1311 | {
|
---|
1312 | if (GET_CODE (op) != STACK_PUSH_CODE)
|
---|
1313 | return 0;
|
---|
1314 | }
|
---|
1315 | else
|
---|
1316 | {
|
---|
1317 | if (GET_CODE (op) != PRE_MODIFY
|
---|
1318 | || GET_CODE (XEXP (op, 1)) != PLUS
|
---|
1319 | || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
|
---|
1320 | || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
|
---|
1321 | #ifdef STACK_GROWS_DOWNWARD
|
---|
1322 | || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
|
---|
1323 | #else
|
---|
1324 | || INTVAL (XEXP (XEXP (op, 1), 1)) != rounded_size
|
---|
1325 | #endif
|
---|
1326 | )
|
---|
1327 | return 0;
|
---|
1328 | }
|
---|
1329 |
|
---|
1330 | return XEXP (op, 0) == stack_pointer_rtx;
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | /* Return 1 if OP is a valid operand that stands for popping a
|
---|
1334 | value of mode MODE off the stack.
|
---|
1335 |
|
---|
1336 | The main use of this function is as a predicate in match_operand
|
---|
1337 | expressions in the machine description. */
|
---|
1338 |
|
---|
1339 | int
|
---|
1340 | pop_operand (op, mode)
|
---|
1341 | rtx op;
|
---|
1342 | enum machine_mode mode;
|
---|
1343 | {
|
---|
1344 | if (GET_CODE (op) != MEM)
|
---|
1345 | return 0;
|
---|
1346 |
|
---|
1347 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1348 | return 0;
|
---|
1349 |
|
---|
1350 | op = XEXP (op, 0);
|
---|
1351 |
|
---|
1352 | if (GET_CODE (op) != STACK_POP_CODE)
|
---|
1353 | return 0;
|
---|
1354 |
|
---|
1355 | return XEXP (op, 0) == stack_pointer_rtx;
|
---|
1356 | }
|
---|
1357 |
|
---|
1358 | /* Return 1 if ADDR is a valid memory address for mode MODE. */
|
---|
1359 |
|
---|
1360 | int
|
---|
1361 | memory_address_p (mode, addr)
|
---|
1362 | enum machine_mode mode ATTRIBUTE_UNUSED;
|
---|
1363 | rtx addr;
|
---|
1364 | {
|
---|
1365 | if (GET_CODE (addr) == ADDRESSOF)
|
---|
1366 | return 1;
|
---|
1367 |
|
---|
1368 | GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
|
---|
1369 | return 0;
|
---|
1370 |
|
---|
1371 | win:
|
---|
1372 | return 1;
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | /* Return 1 if OP is a valid memory reference with mode MODE,
|
---|
1376 | including a valid address.
|
---|
1377 |
|
---|
1378 | The main use of this function is as a predicate in match_operand
|
---|
1379 | expressions in the machine description. */
|
---|
1380 |
|
---|
1381 | int
|
---|
1382 | memory_operand (op, mode)
|
---|
1383 | rtx op;
|
---|
1384 | enum machine_mode mode;
|
---|
1385 | {
|
---|
1386 | rtx inner;
|
---|
1387 |
|
---|
1388 | if (! reload_completed)
|
---|
1389 | /* Note that no SUBREG is a memory operand before end of reload pass,
|
---|
1390 | because (SUBREG (MEM...)) forces reloading into a register. */
|
---|
1391 | return GET_CODE (op) == MEM && general_operand (op, mode);
|
---|
1392 |
|
---|
1393 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1394 | return 0;
|
---|
1395 |
|
---|
1396 | inner = op;
|
---|
1397 | if (GET_CODE (inner) == SUBREG)
|
---|
1398 | inner = SUBREG_REG (inner);
|
---|
1399 |
|
---|
1400 | return (GET_CODE (inner) == MEM && general_operand (op, mode));
|
---|
1401 | }
|
---|
1402 |
|
---|
1403 | /* Return 1 if OP is a valid indirect memory reference with mode MODE;
|
---|
1404 | that is, a memory reference whose address is a general_operand. */
|
---|
1405 |
|
---|
1406 | int
|
---|
1407 | indirect_operand (op, mode)
|
---|
1408 | rtx op;
|
---|
1409 | enum machine_mode mode;
|
---|
1410 | {
|
---|
1411 | /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
|
---|
1412 | if (! reload_completed
|
---|
1413 | && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
|
---|
1414 | {
|
---|
1415 | int offset = SUBREG_BYTE (op);
|
---|
1416 | rtx inner = SUBREG_REG (op);
|
---|
1417 |
|
---|
1418 | if (mode != VOIDmode && GET_MODE (op) != mode)
|
---|
1419 | return 0;
|
---|
1420 |
|
---|
1421 | /* The only way that we can have a general_operand as the resulting
|
---|
1422 | address is if OFFSET is zero and the address already is an operand
|
---|
1423 | or if the address is (plus Y (const_int -OFFSET)) and Y is an
|
---|
1424 | operand. */
|
---|
1425 |
|
---|
1426 | return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
|
---|
1427 | || (GET_CODE (XEXP (inner, 0)) == PLUS
|
---|
1428 | && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
|
---|
1429 | && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
|
---|
1430 | && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 | return (GET_CODE (op) == MEM
|
---|
1434 | && memory_operand (op, mode)
|
---|
1435 | && general_operand (XEXP (op, 0), Pmode));
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 | /* Return 1 if this is a comparison operator. This allows the use of
|
---|
1439 | MATCH_OPERATOR to recognize all the branch insns. */
|
---|
1440 |
|
---|
1441 | int
|
---|
1442 | comparison_operator (op, mode)
|
---|
1443 | rtx op;
|
---|
1444 | enum machine_mode mode;
|
---|
1445 | {
|
---|
1446 | return ((mode == VOIDmode || GET_MODE (op) == mode)
|
---|
1447 | && GET_RTX_CLASS (GET_CODE (op)) == '<');
|
---|
1448 | }
|
---|
1449 | |
---|
1450 |
|
---|
1451 | /* If BODY is an insn body that uses ASM_OPERANDS,
|
---|
1452 | return the number of operands (both input and output) in the insn.
|
---|
1453 | Otherwise return -1. */
|
---|
1454 |
|
---|
1455 | int
|
---|
1456 | asm_noperands (body)
|
---|
1457 | rtx body;
|
---|
1458 | {
|
---|
1459 | switch (GET_CODE (body))
|
---|
1460 | {
|
---|
1461 | case ASM_OPERANDS:
|
---|
1462 | /* No output operands: return number of input operands. */
|
---|
1463 | return ASM_OPERANDS_INPUT_LENGTH (body);
|
---|
1464 | case SET:
|
---|
1465 | if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
---|
1466 | /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
|
---|
1467 | return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
|
---|
1468 | else
|
---|
1469 | return -1;
|
---|
1470 | case PARALLEL:
|
---|
1471 | if (GET_CODE (XVECEXP (body, 0, 0)) == SET
|
---|
1472 | && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
---|
1473 | {
|
---|
1474 | /* Multiple output operands, or 1 output plus some clobbers:
|
---|
1475 | body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
|
---|
1476 | int i;
|
---|
1477 | int n_sets;
|
---|
1478 |
|
---|
1479 | /* Count backwards through CLOBBERs to determine number of SETs. */
|
---|
1480 | for (i = XVECLEN (body, 0); i > 0; i--)
|
---|
1481 | {
|
---|
1482 | if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
|
---|
1483 | break;
|
---|
1484 | if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
|
---|
1485 | return -1;
|
---|
1486 | }
|
---|
1487 |
|
---|
1488 | /* N_SETS is now number of output operands. */
|
---|
1489 | n_sets = i;
|
---|
1490 |
|
---|
1491 | /* Verify that all the SETs we have
|
---|
1492 | came from a single original asm_operands insn
|
---|
1493 | (so that invalid combinations are blocked). */
|
---|
1494 | for (i = 0; i < n_sets; i++)
|
---|
1495 | {
|
---|
1496 | rtx elt = XVECEXP (body, 0, i);
|
---|
1497 | if (GET_CODE (elt) != SET)
|
---|
1498 | return -1;
|
---|
1499 | if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
|
---|
1500 | return -1;
|
---|
1501 | /* If these ASM_OPERANDS rtx's came from different original insns
|
---|
1502 | then they aren't allowed together. */
|
---|
1503 | if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
|
---|
1504 | != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
|
---|
1505 | return -1;
|
---|
1506 | }
|
---|
1507 | return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
|
---|
1508 | + n_sets);
|
---|
1509 | }
|
---|
1510 | else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
---|
1511 | {
|
---|
1512 | /* 0 outputs, but some clobbers:
|
---|
1513 | body is [(asm_operands ...) (clobber (reg ...))...]. */
|
---|
1514 | int i;
|
---|
1515 |
|
---|
1516 | /* Make sure all the other parallel things really are clobbers. */
|
---|
1517 | for (i = XVECLEN (body, 0) - 1; i > 0; i--)
|
---|
1518 | if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
|
---|
1519 | return -1;
|
---|
1520 |
|
---|
1521 | return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
|
---|
1522 | }
|
---|
1523 | else
|
---|
1524 | return -1;
|
---|
1525 | default:
|
---|
1526 | return -1;
|
---|
1527 | }
|
---|
1528 | }
|
---|
1529 |
|
---|
1530 | /* Assuming BODY is an insn body that uses ASM_OPERANDS,
|
---|
1531 | copy its operands (both input and output) into the vector OPERANDS,
|
---|
1532 | the locations of the operands within the insn into the vector OPERAND_LOCS,
|
---|
1533 | and the constraints for the operands into CONSTRAINTS.
|
---|
1534 | Write the modes of the operands into MODES.
|
---|
1535 | Return the assembler-template.
|
---|
1536 |
|
---|
1537 | If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
|
---|
1538 | we don't store that info. */
|
---|
1539 |
|
---|
1540 | const char *
|
---|
1541 | decode_asm_operands (body, operands, operand_locs, constraints, modes)
|
---|
1542 | rtx body;
|
---|
1543 | rtx *operands;
|
---|
1544 | rtx **operand_locs;
|
---|
1545 | const char **constraints;
|
---|
1546 | enum machine_mode *modes;
|
---|
1547 | {
|
---|
1548 | int i;
|
---|
1549 | int noperands;
|
---|
1550 | const char *template = 0;
|
---|
1551 |
|
---|
1552 | if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
---|
1553 | {
|
---|
1554 | rtx asmop = SET_SRC (body);
|
---|
1555 | /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
|
---|
1556 |
|
---|
1557 | noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
|
---|
1558 |
|
---|
1559 | for (i = 1; i < noperands; i++)
|
---|
1560 | {
|
---|
1561 | if (operand_locs)
|
---|
1562 | operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
|
---|
1563 | if (operands)
|
---|
1564 | operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
|
---|
1565 | if (constraints)
|
---|
1566 | constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
|
---|
1567 | if (modes)
|
---|
1568 | modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 | /* The output is in the SET.
|
---|
1572 | Its constraint is in the ASM_OPERANDS itself. */
|
---|
1573 | if (operands)
|
---|
1574 | operands[0] = SET_DEST (body);
|
---|
1575 | if (operand_locs)
|
---|
1576 | operand_locs[0] = &SET_DEST (body);
|
---|
1577 | if (constraints)
|
---|
1578 | constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
|
---|
1579 | if (modes)
|
---|
1580 | modes[0] = GET_MODE (SET_DEST (body));
|
---|
1581 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1582 | }
|
---|
1583 | else if (GET_CODE (body) == ASM_OPERANDS)
|
---|
1584 | {
|
---|
1585 | rtx asmop = body;
|
---|
1586 | /* No output operands: BODY is (asm_operands ....). */
|
---|
1587 |
|
---|
1588 | noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
---|
1589 |
|
---|
1590 | /* The input operands are found in the 1st element vector. */
|
---|
1591 | /* Constraints for inputs are in the 2nd element vector. */
|
---|
1592 | for (i = 0; i < noperands; i++)
|
---|
1593 | {
|
---|
1594 | if (operand_locs)
|
---|
1595 | operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
---|
1596 | if (operands)
|
---|
1597 | operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
---|
1598 | if (constraints)
|
---|
1599 | constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
---|
1600 | if (modes)
|
---|
1601 | modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
---|
1602 | }
|
---|
1603 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1604 | }
|
---|
1605 | else if (GET_CODE (body) == PARALLEL
|
---|
1606 | && GET_CODE (XVECEXP (body, 0, 0)) == SET
|
---|
1607 | && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
---|
1608 | {
|
---|
1609 | rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
|
---|
1610 | int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
|
---|
1611 | int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
---|
1612 | int nout = 0; /* Does not include CLOBBERs. */
|
---|
1613 |
|
---|
1614 | /* At least one output, plus some CLOBBERs. */
|
---|
1615 |
|
---|
1616 | /* The outputs are in the SETs.
|
---|
1617 | Their constraints are in the ASM_OPERANDS itself. */
|
---|
1618 | for (i = 0; i < nparallel; i++)
|
---|
1619 | {
|
---|
1620 | if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
|
---|
1621 | break; /* Past last SET */
|
---|
1622 |
|
---|
1623 | if (operands)
|
---|
1624 | operands[i] = SET_DEST (XVECEXP (body, 0, i));
|
---|
1625 | if (operand_locs)
|
---|
1626 | operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
|
---|
1627 | if (constraints)
|
---|
1628 | constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
|
---|
1629 | if (modes)
|
---|
1630 | modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
|
---|
1631 | nout++;
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 | for (i = 0; i < nin; i++)
|
---|
1635 | {
|
---|
1636 | if (operand_locs)
|
---|
1637 | operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
|
---|
1638 | if (operands)
|
---|
1639 | operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
|
---|
1640 | if (constraints)
|
---|
1641 | constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
---|
1642 | if (modes)
|
---|
1643 | modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
---|
1644 | }
|
---|
1645 |
|
---|
1646 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1647 | }
|
---|
1648 | else if (GET_CODE (body) == PARALLEL
|
---|
1649 | && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
---|
1650 | {
|
---|
1651 | /* No outputs, but some CLOBBERs. */
|
---|
1652 |
|
---|
1653 | rtx asmop = XVECEXP (body, 0, 0);
|
---|
1654 | int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
|
---|
1655 |
|
---|
1656 | for (i = 0; i < nin; i++)
|
---|
1657 | {
|
---|
1658 | if (operand_locs)
|
---|
1659 | operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
|
---|
1660 | if (operands)
|
---|
1661 | operands[i] = ASM_OPERANDS_INPUT (asmop, i);
|
---|
1662 | if (constraints)
|
---|
1663 | constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
|
---|
1664 | if (modes)
|
---|
1665 | modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
|
---|
1666 | }
|
---|
1667 |
|
---|
1668 | template = ASM_OPERANDS_TEMPLATE (asmop);
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 | return template;
|
---|
1672 | }
|
---|
1673 |
|
---|
1674 | /* Check if an asm_operand matches it's constraints.
|
---|
1675 | Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
|
---|
1676 |
|
---|
1677 | int
|
---|
1678 | asm_operand_ok (op, constraint)
|
---|
1679 | rtx op;
|
---|
1680 | const char *constraint;
|
---|
1681 | {
|
---|
1682 | int result = 0;
|
---|
1683 |
|
---|
1684 | /* Use constrain_operands after reload. */
|
---|
1685 | if (reload_completed)
|
---|
1686 | abort ();
|
---|
1687 |
|
---|
1688 | while (*constraint)
|
---|
1689 | {
|
---|
1690 | char c = *constraint++;
|
---|
1691 | switch (c)
|
---|
1692 | {
|
---|
1693 | case '=':
|
---|
1694 | case '+':
|
---|
1695 | case '*':
|
---|
1696 | case '%':
|
---|
1697 | case '?':
|
---|
1698 | case '!':
|
---|
1699 | case '#':
|
---|
1700 | case '&':
|
---|
1701 | case ',':
|
---|
1702 | break;
|
---|
1703 |
|
---|
1704 | case '0': case '1': case '2': case '3': case '4':
|
---|
1705 | case '5': case '6': case '7': case '8': case '9':
|
---|
1706 | /* For best results, our caller should have given us the
|
---|
1707 | proper matching constraint, but we can't actually fail
|
---|
1708 | the check if they didn't. Indicate that results are
|
---|
1709 | inconclusive. */
|
---|
1710 | while (ISDIGIT (*constraint))
|
---|
1711 | constraint++;
|
---|
1712 | result = -1;
|
---|
1713 | break;
|
---|
1714 |
|
---|
1715 | case 'p':
|
---|
1716 | if (address_operand (op, VOIDmode))
|
---|
1717 | return 1;
|
---|
1718 | break;
|
---|
1719 |
|
---|
1720 | case 'm':
|
---|
1721 | case 'V': /* non-offsettable */
|
---|
1722 | if (memory_operand (op, VOIDmode))
|
---|
1723 | return 1;
|
---|
1724 | break;
|
---|
1725 |
|
---|
1726 | case 'o': /* offsettable */
|
---|
1727 | if (offsettable_nonstrict_memref_p (op))
|
---|
1728 | return 1;
|
---|
1729 | break;
|
---|
1730 |
|
---|
1731 | case '<':
|
---|
1732 | /* ??? Before flow, auto inc/dec insns are not supposed to exist,
|
---|
1733 | excepting those that expand_call created. Further, on some
|
---|
1734 | machines which do not have generalized auto inc/dec, an inc/dec
|
---|
1735 | is not a memory_operand.
|
---|
1736 |
|
---|
1737 | Match any memory and hope things are resolved after reload. */
|
---|
1738 |
|
---|
1739 | if (GET_CODE (op) == MEM
|
---|
1740 | && (1
|
---|
1741 | || GET_CODE (XEXP (op, 0)) == PRE_DEC
|
---|
1742 | || GET_CODE (XEXP (op, 0)) == POST_DEC))
|
---|
1743 | return 1;
|
---|
1744 | break;
|
---|
1745 |
|
---|
1746 | case '>':
|
---|
1747 | if (GET_CODE (op) == MEM
|
---|
1748 | && (1
|
---|
1749 | || GET_CODE (XEXP (op, 0)) == PRE_INC
|
---|
1750 | || GET_CODE (XEXP (op, 0)) == POST_INC))
|
---|
1751 | return 1;
|
---|
1752 | break;
|
---|
1753 |
|
---|
1754 | case 'E':
|
---|
1755 | case 'F':
|
---|
1756 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
1757 | || (GET_CODE (op) == CONST_VECTOR
|
---|
1758 | && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
|
---|
1759 | return 1;
|
---|
1760 | break;
|
---|
1761 |
|
---|
1762 | case 'G':
|
---|
1763 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
1764 | && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'G'))
|
---|
1765 | return 1;
|
---|
1766 | break;
|
---|
1767 | case 'H':
|
---|
1768 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
1769 | && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'H'))
|
---|
1770 | return 1;
|
---|
1771 | break;
|
---|
1772 |
|
---|
1773 | case 's':
|
---|
1774 | if (GET_CODE (op) == CONST_INT
|
---|
1775 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
1776 | && GET_MODE (op) == VOIDmode))
|
---|
1777 | break;
|
---|
1778 | /* FALLTHRU */
|
---|
1779 |
|
---|
1780 | case 'i':
|
---|
1781 | if (CONSTANT_P (op)
|
---|
1782 | #ifdef LEGITIMATE_PIC_OPERAND_P
|
---|
1783 | && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
|
---|
1784 | #endif
|
---|
1785 | )
|
---|
1786 | return 1;
|
---|
1787 | break;
|
---|
1788 |
|
---|
1789 | case 'n':
|
---|
1790 | if (GET_CODE (op) == CONST_INT
|
---|
1791 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
1792 | && GET_MODE (op) == VOIDmode))
|
---|
1793 | return 1;
|
---|
1794 | break;
|
---|
1795 |
|
---|
1796 | case 'I':
|
---|
1797 | if (GET_CODE (op) == CONST_INT
|
---|
1798 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I'))
|
---|
1799 | return 1;
|
---|
1800 | break;
|
---|
1801 | case 'J':
|
---|
1802 | if (GET_CODE (op) == CONST_INT
|
---|
1803 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'J'))
|
---|
1804 | return 1;
|
---|
1805 | break;
|
---|
1806 | case 'K':
|
---|
1807 | if (GET_CODE (op) == CONST_INT
|
---|
1808 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
|
---|
1809 | return 1;
|
---|
1810 | break;
|
---|
1811 | case 'L':
|
---|
1812 | if (GET_CODE (op) == CONST_INT
|
---|
1813 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'))
|
---|
1814 | return 1;
|
---|
1815 | break;
|
---|
1816 | case 'M':
|
---|
1817 | if (GET_CODE (op) == CONST_INT
|
---|
1818 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'M'))
|
---|
1819 | return 1;
|
---|
1820 | break;
|
---|
1821 | case 'N':
|
---|
1822 | if (GET_CODE (op) == CONST_INT
|
---|
1823 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'N'))
|
---|
1824 | return 1;
|
---|
1825 | break;
|
---|
1826 | case 'O':
|
---|
1827 | if (GET_CODE (op) == CONST_INT
|
---|
1828 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'))
|
---|
1829 | return 1;
|
---|
1830 | break;
|
---|
1831 | case 'P':
|
---|
1832 | if (GET_CODE (op) == CONST_INT
|
---|
1833 | && CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'))
|
---|
1834 | return 1;
|
---|
1835 | break;
|
---|
1836 |
|
---|
1837 | case 'X':
|
---|
1838 | return 1;
|
---|
1839 |
|
---|
1840 | case 'g':
|
---|
1841 | if (general_operand (op, VOIDmode))
|
---|
1842 | return 1;
|
---|
1843 | break;
|
---|
1844 |
|
---|
1845 | default:
|
---|
1846 | /* For all other letters, we first check for a register class,
|
---|
1847 | otherwise it is an EXTRA_CONSTRAINT. */
|
---|
1848 | if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
|
---|
1849 | {
|
---|
1850 | case 'r':
|
---|
1851 | if (GET_MODE (op) == BLKmode)
|
---|
1852 | break;
|
---|
1853 | if (register_operand (op, VOIDmode))
|
---|
1854 | return 1;
|
---|
1855 | }
|
---|
1856 | #ifdef EXTRA_CONSTRAINT
|
---|
1857 | if (EXTRA_CONSTRAINT (op, c))
|
---|
1858 | return 1;
|
---|
1859 | if (EXTRA_MEMORY_CONSTRAINT (c))
|
---|
1860 | {
|
---|
1861 | /* Every memory operand can be reloaded to fit. */
|
---|
1862 | if (memory_operand (op, VOIDmode))
|
---|
1863 | return 1;
|
---|
1864 | }
|
---|
1865 | if (EXTRA_ADDRESS_CONSTRAINT (c))
|
---|
1866 | {
|
---|
1867 | /* Every address operand can be reloaded to fit. */
|
---|
1868 | if (address_operand (op, VOIDmode))
|
---|
1869 | return 1;
|
---|
1870 | }
|
---|
1871 | #endif
|
---|
1872 | break;
|
---|
1873 | }
|
---|
1874 | }
|
---|
1875 |
|
---|
1876 | return result;
|
---|
1877 | }
|
---|
1878 | |
---|
1879 |
|
---|
1880 | /* Given an rtx *P, if it is a sum containing an integer constant term,
|
---|
1881 | return the location (type rtx *) of the pointer to that constant term.
|
---|
1882 | Otherwise, return a null pointer. */
|
---|
1883 |
|
---|
1884 | rtx *
|
---|
1885 | find_constant_term_loc (p)
|
---|
1886 | rtx *p;
|
---|
1887 | {
|
---|
1888 | rtx *tem;
|
---|
1889 | enum rtx_code code = GET_CODE (*p);
|
---|
1890 |
|
---|
1891 | /* If *P IS such a constant term, P is its location. */
|
---|
1892 |
|
---|
1893 | if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
|
---|
1894 | || code == CONST)
|
---|
1895 | return p;
|
---|
1896 |
|
---|
1897 | /* Otherwise, if not a sum, it has no constant term. */
|
---|
1898 |
|
---|
1899 | if (GET_CODE (*p) != PLUS)
|
---|
1900 | return 0;
|
---|
1901 |
|
---|
1902 | /* If one of the summands is constant, return its location. */
|
---|
1903 |
|
---|
1904 | if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
|
---|
1905 | && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
|
---|
1906 | return p;
|
---|
1907 |
|
---|
1908 | /* Otherwise, check each summand for containing a constant term. */
|
---|
1909 |
|
---|
1910 | if (XEXP (*p, 0) != 0)
|
---|
1911 | {
|
---|
1912 | tem = find_constant_term_loc (&XEXP (*p, 0));
|
---|
1913 | if (tem != 0)
|
---|
1914 | return tem;
|
---|
1915 | }
|
---|
1916 |
|
---|
1917 | if (XEXP (*p, 1) != 0)
|
---|
1918 | {
|
---|
1919 | tem = find_constant_term_loc (&XEXP (*p, 1));
|
---|
1920 | if (tem != 0)
|
---|
1921 | return tem;
|
---|
1922 | }
|
---|
1923 |
|
---|
1924 | return 0;
|
---|
1925 | }
|
---|
1926 | |
---|
1927 |
|
---|
1928 | /* Return 1 if OP is a memory reference
|
---|
1929 | whose address contains no side effects
|
---|
1930 | and remains valid after the addition
|
---|
1931 | of a positive integer less than the
|
---|
1932 | size of the object being referenced.
|
---|
1933 |
|
---|
1934 | We assume that the original address is valid and do not check it.
|
---|
1935 |
|
---|
1936 | This uses strict_memory_address_p as a subroutine, so
|
---|
1937 | don't use it before reload. */
|
---|
1938 |
|
---|
1939 | int
|
---|
1940 | offsettable_memref_p (op)
|
---|
1941 | rtx op;
|
---|
1942 | {
|
---|
1943 | return ((GET_CODE (op) == MEM)
|
---|
1944 | && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
|
---|
1945 | }
|
---|
1946 |
|
---|
1947 | /* Similar, but don't require a strictly valid mem ref:
|
---|
1948 | consider pseudo-regs valid as index or base regs. */
|
---|
1949 |
|
---|
1950 | int
|
---|
1951 | offsettable_nonstrict_memref_p (op)
|
---|
1952 | rtx op;
|
---|
1953 | {
|
---|
1954 | return ((GET_CODE (op) == MEM)
|
---|
1955 | && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
|
---|
1956 | }
|
---|
1957 |
|
---|
1958 | /* Return 1 if Y is a memory address which contains no side effects
|
---|
1959 | and would remain valid after the addition of a positive integer
|
---|
1960 | less than the size of that mode.
|
---|
1961 |
|
---|
1962 | We assume that the original address is valid and do not check it.
|
---|
1963 | We do check that it is valid for narrower modes.
|
---|
1964 |
|
---|
1965 | If STRICTP is nonzero, we require a strictly valid address,
|
---|
1966 | for the sake of use in reload.c. */
|
---|
1967 |
|
---|
1968 | int
|
---|
1969 | offsettable_address_p (strictp, mode, y)
|
---|
1970 | int strictp;
|
---|
1971 | enum machine_mode mode;
|
---|
1972 | rtx y;
|
---|
1973 | {
|
---|
1974 | enum rtx_code ycode = GET_CODE (y);
|
---|
1975 | rtx z;
|
---|
1976 | rtx y1 = y;
|
---|
1977 | rtx *y2;
|
---|
1978 | int (*addressp) PARAMS ((enum machine_mode, rtx)) =
|
---|
1979 | (strictp ? strict_memory_address_p : memory_address_p);
|
---|
1980 | unsigned int mode_sz = GET_MODE_SIZE (mode);
|
---|
1981 |
|
---|
1982 | if (CONSTANT_ADDRESS_P (y))
|
---|
1983 | return 1;
|
---|
1984 |
|
---|
1985 | /* Adjusting an offsettable address involves changing to a narrower mode.
|
---|
1986 | Make sure that's OK. */
|
---|
1987 |
|
---|
1988 | if (mode_dependent_address_p (y))
|
---|
1989 | return 0;
|
---|
1990 |
|
---|
1991 | /* ??? How much offset does an offsettable BLKmode reference need?
|
---|
1992 | Clearly that depends on the situation in which it's being used.
|
---|
1993 | However, the current situation in which we test 0xffffffff is
|
---|
1994 | less than ideal. Caveat user. */
|
---|
1995 | if (mode_sz == 0)
|
---|
1996 | mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
---|
1997 |
|
---|
1998 | /* If the expression contains a constant term,
|
---|
1999 | see if it remains valid when max possible offset is added. */
|
---|
2000 |
|
---|
2001 | if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
|
---|
2002 | {
|
---|
2003 | int good;
|
---|
2004 |
|
---|
2005 | y1 = *y2;
|
---|
2006 | *y2 = plus_constant (*y2, mode_sz - 1);
|
---|
2007 | /* Use QImode because an odd displacement may be automatically invalid
|
---|
2008 | for any wider mode. But it should be valid for a single byte. */
|
---|
2009 | good = (*addressp) (QImode, y);
|
---|
2010 |
|
---|
2011 | /* In any case, restore old contents of memory. */
|
---|
2012 | *y2 = y1;
|
---|
2013 | return good;
|
---|
2014 | }
|
---|
2015 |
|
---|
2016 | if (GET_RTX_CLASS (ycode) == 'a')
|
---|
2017 | return 0;
|
---|
2018 |
|
---|
2019 | /* The offset added here is chosen as the maximum offset that
|
---|
2020 | any instruction could need to add when operating on something
|
---|
2021 | of the specified mode. We assume that if Y and Y+c are
|
---|
2022 | valid addresses then so is Y+d for all 0<d<c. adjust_address will
|
---|
2023 | go inside a LO_SUM here, so we do so as well. */
|
---|
2024 | if (GET_CODE (y) == LO_SUM
|
---|
2025 | && mode != BLKmode
|
---|
2026 | && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
|
---|
2027 | z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
|
---|
2028 | plus_constant (XEXP (y, 1), mode_sz - 1));
|
---|
2029 | else
|
---|
2030 | z = plus_constant (y, mode_sz - 1);
|
---|
2031 |
|
---|
2032 | /* Use QImode because an odd displacement may be automatically invalid
|
---|
2033 | for any wider mode. But it should be valid for a single byte. */
|
---|
2034 | return (*addressp) (QImode, z);
|
---|
2035 | }
|
---|
2036 |
|
---|
2037 | /* Return 1 if ADDR is an address-expression whose effect depends
|
---|
2038 | on the mode of the memory reference it is used in.
|
---|
2039 |
|
---|
2040 | Autoincrement addressing is a typical example of mode-dependence
|
---|
2041 | because the amount of the increment depends on the mode. */
|
---|
2042 |
|
---|
2043 | int
|
---|
2044 | mode_dependent_address_p (addr)
|
---|
2045 | rtx addr ATTRIBUTE_UNUSED; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
|
---|
2046 | {
|
---|
2047 | GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
|
---|
2048 | return 0;
|
---|
2049 | /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
|
---|
2050 | win: ATTRIBUTE_UNUSED_LABEL
|
---|
2051 | return 1;
|
---|
2052 | }
|
---|
2053 |
|
---|
2054 | /* Return 1 if OP is a general operand
|
---|
2055 | other than a memory ref with a mode dependent address. */
|
---|
2056 |
|
---|
2057 | int
|
---|
2058 | mode_independent_operand (op, mode)
|
---|
2059 | enum machine_mode mode;
|
---|
2060 | rtx op;
|
---|
2061 | {
|
---|
2062 | rtx addr;
|
---|
2063 |
|
---|
2064 | if (! general_operand (op, mode))
|
---|
2065 | return 0;
|
---|
2066 |
|
---|
2067 | if (GET_CODE (op) != MEM)
|
---|
2068 | return 1;
|
---|
2069 |
|
---|
2070 | addr = XEXP (op, 0);
|
---|
2071 | GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
|
---|
2072 | return 1;
|
---|
2073 | /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
|
---|
2074 | lose: ATTRIBUTE_UNUSED_LABEL
|
---|
2075 | return 0;
|
---|
2076 | }
|
---|
2077 | |
---|
2078 |
|
---|
2079 | /* Like extract_insn, but save insn extracted and don't extract again, when
|
---|
2080 | called again for the same insn expecting that recog_data still contain the
|
---|
2081 | valid information. This is used primary by gen_attr infrastructure that
|
---|
2082 | often does extract insn again and again. */
|
---|
2083 | void
|
---|
2084 | extract_insn_cached (insn)
|
---|
2085 | rtx insn;
|
---|
2086 | {
|
---|
2087 | if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
|
---|
2088 | return;
|
---|
2089 | extract_insn (insn);
|
---|
2090 | recog_data.insn = insn;
|
---|
2091 | }
|
---|
2092 | /* Do cached extract_insn, constrain_operand and complain about failures.
|
---|
2093 | Used by insn_attrtab. */
|
---|
2094 | void
|
---|
2095 | extract_constrain_insn_cached (insn)
|
---|
2096 | rtx insn;
|
---|
2097 | {
|
---|
2098 | extract_insn_cached (insn);
|
---|
2099 | if (which_alternative == -1
|
---|
2100 | && !constrain_operands (reload_completed))
|
---|
2101 | fatal_insn_not_found (insn);
|
---|
2102 | }
|
---|
2103 | /* Do cached constrain_operand and complain about failures. */
|
---|
2104 | int
|
---|
2105 | constrain_operands_cached (strict)
|
---|
2106 | int strict;
|
---|
2107 | {
|
---|
2108 | if (which_alternative == -1)
|
---|
2109 | return constrain_operands (strict);
|
---|
2110 | else
|
---|
2111 | return 1;
|
---|
2112 | }
|
---|
2113 | |
---|
2114 |
|
---|
2115 | /* Analyze INSN and fill in recog_data. */
|
---|
2116 |
|
---|
2117 | void
|
---|
2118 | extract_insn (insn)
|
---|
2119 | rtx insn;
|
---|
2120 | {
|
---|
2121 | int i;
|
---|
2122 | int icode;
|
---|
2123 | int noperands;
|
---|
2124 | rtx body = PATTERN (insn);
|
---|
2125 |
|
---|
2126 | recog_data.insn = NULL;
|
---|
2127 | recog_data.n_operands = 0;
|
---|
2128 | recog_data.n_alternatives = 0;
|
---|
2129 | recog_data.n_dups = 0;
|
---|
2130 | which_alternative = -1;
|
---|
2131 |
|
---|
2132 | switch (GET_CODE (body))
|
---|
2133 | {
|
---|
2134 | case USE:
|
---|
2135 | case CLOBBER:
|
---|
2136 | case ASM_INPUT:
|
---|
2137 | case ADDR_VEC:
|
---|
2138 | case ADDR_DIFF_VEC:
|
---|
2139 | return;
|
---|
2140 |
|
---|
2141 | case SET:
|
---|
2142 | if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
|
---|
2143 | goto asm_insn;
|
---|
2144 | else
|
---|
2145 | goto normal_insn;
|
---|
2146 | case PARALLEL:
|
---|
2147 | if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
|
---|
2148 | && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
|
---|
2149 | || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
|
---|
2150 | goto asm_insn;
|
---|
2151 | else
|
---|
2152 | goto normal_insn;
|
---|
2153 | case ASM_OPERANDS:
|
---|
2154 | asm_insn:
|
---|
2155 | recog_data.n_operands = noperands = asm_noperands (body);
|
---|
2156 | if (noperands >= 0)
|
---|
2157 | {
|
---|
2158 | /* This insn is an `asm' with operands. */
|
---|
2159 |
|
---|
2160 | /* expand_asm_operands makes sure there aren't too many operands. */
|
---|
2161 | if (noperands > MAX_RECOG_OPERANDS)
|
---|
2162 | abort ();
|
---|
2163 |
|
---|
2164 | /* Now get the operand values and constraints out of the insn. */
|
---|
2165 | decode_asm_operands (body, recog_data.operand,
|
---|
2166 | recog_data.operand_loc,
|
---|
2167 | recog_data.constraints,
|
---|
2168 | recog_data.operand_mode);
|
---|
2169 | if (noperands > 0)
|
---|
2170 | {
|
---|
2171 | const char *p = recog_data.constraints[0];
|
---|
2172 | recog_data.n_alternatives = 1;
|
---|
2173 | while (*p)
|
---|
2174 | recog_data.n_alternatives += (*p++ == ',');
|
---|
2175 | }
|
---|
2176 | break;
|
---|
2177 | }
|
---|
2178 | fatal_insn_not_found (insn);
|
---|
2179 |
|
---|
2180 | default:
|
---|
2181 | normal_insn:
|
---|
2182 | /* Ordinary insn: recognize it, get the operands via insn_extract
|
---|
2183 | and get the constraints. */
|
---|
2184 |
|
---|
2185 | icode = recog_memoized (insn);
|
---|
2186 | if (icode < 0)
|
---|
2187 | fatal_insn_not_found (insn);
|
---|
2188 |
|
---|
2189 | recog_data.n_operands = noperands = insn_data[icode].n_operands;
|
---|
2190 | recog_data.n_alternatives = insn_data[icode].n_alternatives;
|
---|
2191 | recog_data.n_dups = insn_data[icode].n_dups;
|
---|
2192 |
|
---|
2193 | insn_extract (insn);
|
---|
2194 |
|
---|
2195 | for (i = 0; i < noperands; i++)
|
---|
2196 | {
|
---|
2197 | recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
|
---|
2198 | recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
|
---|
2199 | /* VOIDmode match_operands gets mode from their real operand. */
|
---|
2200 | if (recog_data.operand_mode[i] == VOIDmode)
|
---|
2201 | recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
|
---|
2202 | }
|
---|
2203 | }
|
---|
2204 | for (i = 0; i < noperands; i++)
|
---|
2205 | recog_data.operand_type[i]
|
---|
2206 | = (recog_data.constraints[i][0] == '=' ? OP_OUT
|
---|
2207 | : recog_data.constraints[i][0] == '+' ? OP_INOUT
|
---|
2208 | : OP_IN);
|
---|
2209 |
|
---|
2210 | if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
|
---|
2211 | abort ();
|
---|
2212 | }
|
---|
2213 |
|
---|
2214 | /* After calling extract_insn, you can use this function to extract some
|
---|
2215 | information from the constraint strings into a more usable form.
|
---|
2216 | The collected data is stored in recog_op_alt. */
|
---|
2217 | void
|
---|
2218 | preprocess_constraints ()
|
---|
2219 | {
|
---|
2220 | int i;
|
---|
2221 |
|
---|
2222 | memset (recog_op_alt, 0, sizeof recog_op_alt);
|
---|
2223 | for (i = 0; i < recog_data.n_operands; i++)
|
---|
2224 | {
|
---|
2225 | int j;
|
---|
2226 | struct operand_alternative *op_alt;
|
---|
2227 | const char *p = recog_data.constraints[i];
|
---|
2228 |
|
---|
2229 | op_alt = recog_op_alt[i];
|
---|
2230 |
|
---|
2231 | for (j = 0; j < recog_data.n_alternatives; j++)
|
---|
2232 | {
|
---|
2233 | op_alt[j].class = NO_REGS;
|
---|
2234 | op_alt[j].constraint = p;
|
---|
2235 | op_alt[j].matches = -1;
|
---|
2236 | op_alt[j].matched = -1;
|
---|
2237 |
|
---|
2238 | if (*p == '\0' || *p == ',')
|
---|
2239 | {
|
---|
2240 | op_alt[j].anything_ok = 1;
|
---|
2241 | continue;
|
---|
2242 | }
|
---|
2243 |
|
---|
2244 | for (;;)
|
---|
2245 | {
|
---|
2246 | char c = *p++;
|
---|
2247 | if (c == '#')
|
---|
2248 | do
|
---|
2249 | c = *p++;
|
---|
2250 | while (c != ',' && c != '\0');
|
---|
2251 | if (c == ',' || c == '\0')
|
---|
2252 | break;
|
---|
2253 |
|
---|
2254 | switch (c)
|
---|
2255 | {
|
---|
2256 | case '=': case '+': case '*': case '%':
|
---|
2257 | case 'E': case 'F': case 'G': case 'H':
|
---|
2258 | case 's': case 'i': case 'n':
|
---|
2259 | case 'I': case 'J': case 'K': case 'L':
|
---|
2260 | case 'M': case 'N': case 'O': case 'P':
|
---|
2261 | /* These don't say anything we care about. */
|
---|
2262 | break;
|
---|
2263 |
|
---|
2264 | case '?':
|
---|
2265 | op_alt[j].reject += 6;
|
---|
2266 | break;
|
---|
2267 | case '!':
|
---|
2268 | op_alt[j].reject += 600;
|
---|
2269 | break;
|
---|
2270 | case '&':
|
---|
2271 | op_alt[j].earlyclobber = 1;
|
---|
2272 | break;
|
---|
2273 |
|
---|
2274 | case '0': case '1': case '2': case '3': case '4':
|
---|
2275 | case '5': case '6': case '7': case '8': case '9':
|
---|
2276 | {
|
---|
2277 | char *end;
|
---|
2278 | op_alt[j].matches = strtoul (p - 1, &end, 10);
|
---|
2279 | recog_op_alt[op_alt[j].matches][j].matched = i;
|
---|
2280 | p = end;
|
---|
2281 | }
|
---|
2282 | break;
|
---|
2283 |
|
---|
2284 | case 'm':
|
---|
2285 | op_alt[j].memory_ok = 1;
|
---|
2286 | break;
|
---|
2287 | case '<':
|
---|
2288 | op_alt[j].decmem_ok = 1;
|
---|
2289 | break;
|
---|
2290 | case '>':
|
---|
2291 | op_alt[j].incmem_ok = 1;
|
---|
2292 | break;
|
---|
2293 | case 'V':
|
---|
2294 | op_alt[j].nonoffmem_ok = 1;
|
---|
2295 | break;
|
---|
2296 | case 'o':
|
---|
2297 | op_alt[j].offmem_ok = 1;
|
---|
2298 | break;
|
---|
2299 | case 'X':
|
---|
2300 | op_alt[j].anything_ok = 1;
|
---|
2301 | break;
|
---|
2302 |
|
---|
2303 | case 'p':
|
---|
2304 | op_alt[j].is_address = 1;
|
---|
2305 | op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
|
---|
2306 | [(int) MODE_BASE_REG_CLASS (VOIDmode)];
|
---|
2307 | break;
|
---|
2308 |
|
---|
2309 | case 'g': case 'r':
|
---|
2310 | op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
|
---|
2311 | break;
|
---|
2312 |
|
---|
2313 | default:
|
---|
2314 | if (EXTRA_MEMORY_CONSTRAINT (c))
|
---|
2315 | {
|
---|
2316 | op_alt[j].memory_ok = 1;
|
---|
2317 | break;
|
---|
2318 | }
|
---|
2319 | if (EXTRA_ADDRESS_CONSTRAINT (c))
|
---|
2320 | {
|
---|
2321 | op_alt[j].is_address = 1;
|
---|
2322 | op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
|
---|
2323 | [(int) MODE_BASE_REG_CLASS (VOIDmode)];
|
---|
2324 | break;
|
---|
2325 | }
|
---|
2326 |
|
---|
2327 | op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
|
---|
2328 | break;
|
---|
2329 | }
|
---|
2330 | }
|
---|
2331 | }
|
---|
2332 | }
|
---|
2333 | }
|
---|
2334 |
|
---|
2335 | /* Check the operands of an insn against the insn's operand constraints
|
---|
2336 | and return 1 if they are valid.
|
---|
2337 | The information about the insn's operands, constraints, operand modes
|
---|
2338 | etc. is obtained from the global variables set up by extract_insn.
|
---|
2339 |
|
---|
2340 | WHICH_ALTERNATIVE is set to a number which indicates which
|
---|
2341 | alternative of constraints was matched: 0 for the first alternative,
|
---|
2342 | 1 for the next, etc.
|
---|
2343 |
|
---|
2344 | In addition, when two operands are match
|
---|
2345 | and it happens that the output operand is (reg) while the
|
---|
2346 | input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
|
---|
2347 | make the output operand look like the input.
|
---|
2348 | This is because the output operand is the one the template will print.
|
---|
2349 |
|
---|
2350 | This is used in final, just before printing the assembler code and by
|
---|
2351 | the routines that determine an insn's attribute.
|
---|
2352 |
|
---|
2353 | If STRICT is a positive nonzero value, it means that we have been
|
---|
2354 | called after reload has been completed. In that case, we must
|
---|
2355 | do all checks strictly. If it is zero, it means that we have been called
|
---|
2356 | before reload has completed. In that case, we first try to see if we can
|
---|
2357 | find an alternative that matches strictly. If not, we try again, this
|
---|
2358 | time assuming that reload will fix up the insn. This provides a "best
|
---|
2359 | guess" for the alternative and is used to compute attributes of insns prior
|
---|
2360 | to reload. A negative value of STRICT is used for this internal call. */
|
---|
2361 |
|
---|
2362 | struct funny_match
|
---|
2363 | {
|
---|
2364 | int this, other;
|
---|
2365 | };
|
---|
2366 |
|
---|
2367 | int
|
---|
2368 | constrain_operands (strict)
|
---|
2369 | int strict;
|
---|
2370 | {
|
---|
2371 | const char *constraints[MAX_RECOG_OPERANDS];
|
---|
2372 | int matching_operands[MAX_RECOG_OPERANDS];
|
---|
2373 | int earlyclobber[MAX_RECOG_OPERANDS];
|
---|
2374 | int c;
|
---|
2375 |
|
---|
2376 | struct funny_match funny_match[MAX_RECOG_OPERANDS];
|
---|
2377 | int funny_match_index;
|
---|
2378 |
|
---|
2379 | which_alternative = 0;
|
---|
2380 | if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
|
---|
2381 | return 1;
|
---|
2382 |
|
---|
2383 | for (c = 0; c < recog_data.n_operands; c++)
|
---|
2384 | {
|
---|
2385 | constraints[c] = recog_data.constraints[c];
|
---|
2386 | matching_operands[c] = -1;
|
---|
2387 | }
|
---|
2388 |
|
---|
2389 | do
|
---|
2390 | {
|
---|
2391 | int opno;
|
---|
2392 | int lose = 0;
|
---|
2393 | funny_match_index = 0;
|
---|
2394 |
|
---|
2395 | for (opno = 0; opno < recog_data.n_operands; opno++)
|
---|
2396 | {
|
---|
2397 | rtx op = recog_data.operand[opno];
|
---|
2398 | enum machine_mode mode = GET_MODE (op);
|
---|
2399 | const char *p = constraints[opno];
|
---|
2400 | int offset = 0;
|
---|
2401 | int win = 0;
|
---|
2402 | int val;
|
---|
2403 |
|
---|
2404 | earlyclobber[opno] = 0;
|
---|
2405 |
|
---|
2406 | /* A unary operator may be accepted by the predicate, but it
|
---|
2407 | is irrelevant for matching constraints. */
|
---|
2408 | if (GET_RTX_CLASS (GET_CODE (op)) == '1')
|
---|
2409 | op = XEXP (op, 0);
|
---|
2410 |
|
---|
2411 | if (GET_CODE (op) == SUBREG)
|
---|
2412 | {
|
---|
2413 | if (GET_CODE (SUBREG_REG (op)) == REG
|
---|
2414 | && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
|
---|
2415 | offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
|
---|
2416 | GET_MODE (SUBREG_REG (op)),
|
---|
2417 | SUBREG_BYTE (op),
|
---|
2418 | GET_MODE (op));
|
---|
2419 | op = SUBREG_REG (op);
|
---|
2420 | }
|
---|
2421 |
|
---|
2422 | /* An empty constraint or empty alternative
|
---|
2423 | allows anything which matched the pattern. */
|
---|
2424 | if (*p == 0 || *p == ',')
|
---|
2425 | win = 1;
|
---|
2426 |
|
---|
2427 | while (*p && (c = *p++) != ',')
|
---|
2428 | switch (c)
|
---|
2429 | {
|
---|
2430 | case '?': case '!': case '*': case '%':
|
---|
2431 | case '=': case '+':
|
---|
2432 | break;
|
---|
2433 |
|
---|
2434 | case '#':
|
---|
2435 | /* Ignore rest of this alternative as far as
|
---|
2436 | constraint checking is concerned. */
|
---|
2437 | while (*p && *p != ',')
|
---|
2438 | p++;
|
---|
2439 | break;
|
---|
2440 |
|
---|
2441 | case '&':
|
---|
2442 | earlyclobber[opno] = 1;
|
---|
2443 | break;
|
---|
2444 |
|
---|
2445 | case '0': case '1': case '2': case '3': case '4':
|
---|
2446 | case '5': case '6': case '7': case '8': case '9':
|
---|
2447 | {
|
---|
2448 | /* This operand must be the same as a previous one.
|
---|
2449 | This kind of constraint is used for instructions such
|
---|
2450 | as add when they take only two operands.
|
---|
2451 |
|
---|
2452 | Note that the lower-numbered operand is passed first.
|
---|
2453 |
|
---|
2454 | If we are not testing strictly, assume that this
|
---|
2455 | constraint will be satisfied. */
|
---|
2456 |
|
---|
2457 | char *end;
|
---|
2458 | int match;
|
---|
2459 |
|
---|
2460 | match = strtoul (p - 1, &end, 10);
|
---|
2461 | p = end;
|
---|
2462 |
|
---|
2463 | if (strict < 0)
|
---|
2464 | val = 1;
|
---|
2465 | else
|
---|
2466 | {
|
---|
2467 | rtx op1 = recog_data.operand[match];
|
---|
2468 | rtx op2 = recog_data.operand[opno];
|
---|
2469 |
|
---|
2470 | /* A unary operator may be accepted by the predicate,
|
---|
2471 | but it is irrelevant for matching constraints. */
|
---|
2472 | if (GET_RTX_CLASS (GET_CODE (op1)) == '1')
|
---|
2473 | op1 = XEXP (op1, 0);
|
---|
2474 | if (GET_RTX_CLASS (GET_CODE (op2)) == '1')
|
---|
2475 | op2 = XEXP (op2, 0);
|
---|
2476 |
|
---|
2477 | val = operands_match_p (op1, op2);
|
---|
2478 | }
|
---|
2479 |
|
---|
2480 | matching_operands[opno] = match;
|
---|
2481 | matching_operands[match] = opno;
|
---|
2482 |
|
---|
2483 | if (val != 0)
|
---|
2484 | win = 1;
|
---|
2485 |
|
---|
2486 | /* If output is *x and input is *--x, arrange later
|
---|
2487 | to change the output to *--x as well, since the
|
---|
2488 | output op is the one that will be printed. */
|
---|
2489 | if (val == 2 && strict > 0)
|
---|
2490 | {
|
---|
2491 | funny_match[funny_match_index].this = opno;
|
---|
2492 | funny_match[funny_match_index++].other = match;
|
---|
2493 | }
|
---|
2494 | }
|
---|
2495 | break;
|
---|
2496 |
|
---|
2497 | case 'p':
|
---|
2498 | /* p is used for address_operands. When we are called by
|
---|
2499 | gen_reload, no one will have checked that the address is
|
---|
2500 | strictly valid, i.e., that all pseudos requiring hard regs
|
---|
2501 | have gotten them. */
|
---|
2502 | if (strict <= 0
|
---|
2503 | || (strict_memory_address_p (recog_data.operand_mode[opno],
|
---|
2504 | op)))
|
---|
2505 | win = 1;
|
---|
2506 | break;
|
---|
2507 |
|
---|
2508 | /* No need to check general_operand again;
|
---|
2509 | it was done in insn-recog.c. */
|
---|
2510 | case 'g':
|
---|
2511 | /* Anything goes unless it is a REG and really has a hard reg
|
---|
2512 | but the hard reg is not in the class GENERAL_REGS. */
|
---|
2513 | if (strict < 0
|
---|
2514 | || GENERAL_REGS == ALL_REGS
|
---|
2515 | || GET_CODE (op) != REG
|
---|
2516 | || (reload_in_progress
|
---|
2517 | && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
---|
2518 | || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
|
---|
2519 | win = 1;
|
---|
2520 | break;
|
---|
2521 |
|
---|
2522 | case 'X':
|
---|
2523 | /* This is used for a MATCH_SCRATCH in the cases when
|
---|
2524 | we don't actually need anything. So anything goes
|
---|
2525 | any time. */
|
---|
2526 | win = 1;
|
---|
2527 | break;
|
---|
2528 |
|
---|
2529 | case 'm':
|
---|
2530 | /* Memory operands must be valid, to the extent
|
---|
2531 | required by STRICT. */
|
---|
2532 | if (GET_CODE (op) == MEM)
|
---|
2533 | {
|
---|
2534 | if (strict > 0
|
---|
2535 | && !strict_memory_address_p (GET_MODE (op),
|
---|
2536 | XEXP (op, 0)))
|
---|
2537 | break;
|
---|
2538 | if (strict == 0
|
---|
2539 | && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
|
---|
2540 | break;
|
---|
2541 | win = 1;
|
---|
2542 | }
|
---|
2543 | /* Before reload, accept what reload can turn into mem. */
|
---|
2544 | else if (strict < 0 && CONSTANT_P (op))
|
---|
2545 | win = 1;
|
---|
2546 | /* During reload, accept a pseudo */
|
---|
2547 | else if (reload_in_progress && GET_CODE (op) == REG
|
---|
2548 | && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
---|
2549 | win = 1;
|
---|
2550 | break;
|
---|
2551 |
|
---|
2552 | case '<':
|
---|
2553 | if (GET_CODE (op) == MEM
|
---|
2554 | && (GET_CODE (XEXP (op, 0)) == PRE_DEC
|
---|
2555 | || GET_CODE (XEXP (op, 0)) == POST_DEC))
|
---|
2556 | win = 1;
|
---|
2557 | break;
|
---|
2558 |
|
---|
2559 | case '>':
|
---|
2560 | if (GET_CODE (op) == MEM
|
---|
2561 | && (GET_CODE (XEXP (op, 0)) == PRE_INC
|
---|
2562 | || GET_CODE (XEXP (op, 0)) == POST_INC))
|
---|
2563 | win = 1;
|
---|
2564 | break;
|
---|
2565 |
|
---|
2566 | case 'E':
|
---|
2567 | case 'F':
|
---|
2568 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
2569 | || (GET_CODE (op) == CONST_VECTOR
|
---|
2570 | && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
|
---|
2571 | win = 1;
|
---|
2572 | break;
|
---|
2573 |
|
---|
2574 | case 'G':
|
---|
2575 | case 'H':
|
---|
2576 | if (GET_CODE (op) == CONST_DOUBLE
|
---|
2577 | && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
|
---|
2578 | win = 1;
|
---|
2579 | break;
|
---|
2580 |
|
---|
2581 | case 's':
|
---|
2582 | if (GET_CODE (op) == CONST_INT
|
---|
2583 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
2584 | && GET_MODE (op) == VOIDmode))
|
---|
2585 | break;
|
---|
2586 | case 'i':
|
---|
2587 | if (CONSTANT_P (op))
|
---|
2588 | win = 1;
|
---|
2589 | break;
|
---|
2590 |
|
---|
2591 | case 'n':
|
---|
2592 | if (GET_CODE (op) == CONST_INT
|
---|
2593 | || (GET_CODE (op) == CONST_DOUBLE
|
---|
2594 | && GET_MODE (op) == VOIDmode))
|
---|
2595 | win = 1;
|
---|
2596 | break;
|
---|
2597 |
|
---|
2598 | case 'I':
|
---|
2599 | case 'J':
|
---|
2600 | case 'K':
|
---|
2601 | case 'L':
|
---|
2602 | case 'M':
|
---|
2603 | case 'N':
|
---|
2604 | case 'O':
|
---|
2605 | case 'P':
|
---|
2606 | if (GET_CODE (op) == CONST_INT
|
---|
2607 | && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
|
---|
2608 | win = 1;
|
---|
2609 | break;
|
---|
2610 |
|
---|
2611 | case 'V':
|
---|
2612 | if (GET_CODE (op) == MEM
|
---|
2613 | && ((strict > 0 && ! offsettable_memref_p (op))
|
---|
2614 | || (strict < 0
|
---|
2615 | && !(CONSTANT_P (op) || GET_CODE (op) == MEM))
|
---|
2616 | || (reload_in_progress
|
---|
2617 | && !(GET_CODE (op) == REG
|
---|
2618 | && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
|
---|
2619 | win = 1;
|
---|
2620 | break;
|
---|
2621 |
|
---|
2622 | case 'o':
|
---|
2623 | if ((strict > 0 && offsettable_memref_p (op))
|
---|
2624 | || (strict == 0 && offsettable_nonstrict_memref_p (op))
|
---|
2625 | /* Before reload, accept what reload can handle. */
|
---|
2626 | || (strict < 0
|
---|
2627 | && (CONSTANT_P (op) || GET_CODE (op) == MEM))
|
---|
2628 | /* During reload, accept a pseudo */
|
---|
2629 | || (reload_in_progress && GET_CODE (op) == REG
|
---|
2630 | && REGNO (op) >= FIRST_PSEUDO_REGISTER))
|
---|
2631 | win = 1;
|
---|
2632 | break;
|
---|
2633 |
|
---|
2634 | default:
|
---|
2635 | {
|
---|
2636 | enum reg_class class;
|
---|
2637 |
|
---|
2638 | class = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (c));
|
---|
2639 | if (class != NO_REGS)
|
---|
2640 | {
|
---|
2641 | if (strict < 0
|
---|
2642 | || (strict == 0
|
---|
2643 | && GET_CODE (op) == REG
|
---|
2644 | && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
---|
2645 | || (strict == 0 && GET_CODE (op) == SCRATCH)
|
---|
2646 | || (GET_CODE (op) == REG
|
---|
2647 | && reg_fits_class_p (op, class, offset, mode)))
|
---|
2648 | win = 1;
|
---|
2649 | }
|
---|
2650 | #ifdef EXTRA_CONSTRAINT
|
---|
2651 | else if (EXTRA_CONSTRAINT (op, c))
|
---|
2652 | win = 1;
|
---|
2653 |
|
---|
2654 | if (EXTRA_MEMORY_CONSTRAINT (c))
|
---|
2655 | {
|
---|
2656 | /* Every memory operand can be reloaded to fit. */
|
---|
2657 | if (strict < 0 && GET_CODE (op) == MEM)
|
---|
2658 | win = 1;
|
---|
2659 |
|
---|
2660 | /* Before reload, accept what reload can turn into mem. */
|
---|
2661 | if (strict < 0 && CONSTANT_P (op))
|
---|
2662 | win = 1;
|
---|
2663 |
|
---|
2664 | /* During reload, accept a pseudo */
|
---|
2665 | if (reload_in_progress && GET_CODE (op) == REG
|
---|
2666 | && REGNO (op) >= FIRST_PSEUDO_REGISTER)
|
---|
2667 | win = 1;
|
---|
2668 | }
|
---|
2669 | if (EXTRA_ADDRESS_CONSTRAINT (c))
|
---|
2670 | {
|
---|
2671 | /* Every address operand can be reloaded to fit. */
|
---|
2672 | if (strict < 0)
|
---|
2673 | win = 1;
|
---|
2674 | }
|
---|
2675 | #endif
|
---|
2676 | break;
|
---|
2677 | }
|
---|
2678 | }
|
---|
2679 |
|
---|
2680 | constraints[opno] = p;
|
---|
2681 | /* If this operand did not win somehow,
|
---|
2682 | this alternative loses. */
|
---|
2683 | if (! win)
|
---|
2684 | lose = 1;
|
---|
2685 | }
|
---|
2686 | /* This alternative won; the operands are ok.
|
---|
2687 | Change whichever operands this alternative says to change. */
|
---|
2688 | if (! lose)
|
---|
2689 | {
|
---|
2690 | int opno, eopno;
|
---|
2691 |
|
---|
2692 | /* See if any earlyclobber operand conflicts with some other
|
---|
2693 | operand. */
|
---|
2694 |
|
---|
2695 | if (strict > 0)
|
---|
2696 | for (eopno = 0; eopno < recog_data.n_operands; eopno++)
|
---|
2697 | /* Ignore earlyclobber operands now in memory,
|
---|
2698 | because we would often report failure when we have
|
---|
2699 | two memory operands, one of which was formerly a REG. */
|
---|
2700 | if (earlyclobber[eopno]
|
---|
2701 | && GET_CODE (recog_data.operand[eopno]) == REG)
|
---|
2702 | for (opno = 0; opno < recog_data.n_operands; opno++)
|
---|
2703 | if ((GET_CODE (recog_data.operand[opno]) == MEM
|
---|
2704 | || recog_data.operand_type[opno] != OP_OUT)
|
---|
2705 | && opno != eopno
|
---|
2706 | /* Ignore things like match_operator operands. */
|
---|
2707 | && *recog_data.constraints[opno] != 0
|
---|
2708 | && ! (matching_operands[opno] == eopno
|
---|
2709 | && operands_match_p (recog_data.operand[opno],
|
---|
2710 | recog_data.operand[eopno]))
|
---|
2711 | && ! safe_from_earlyclobber (recog_data.operand[opno],
|
---|
2712 | recog_data.operand[eopno]))
|
---|
2713 | lose = 1;
|
---|
2714 |
|
---|
2715 | if (! lose)
|
---|
2716 | {
|
---|
2717 | while (--funny_match_index >= 0)
|
---|
2718 | {
|
---|
2719 | recog_data.operand[funny_match[funny_match_index].other]
|
---|
2720 | = recog_data.operand[funny_match[funny_match_index].this];
|
---|
2721 | }
|
---|
2722 |
|
---|
2723 | return 1;
|
---|
2724 | }
|
---|
2725 | }
|
---|
2726 |
|
---|
2727 | which_alternative++;
|
---|
2728 | }
|
---|
2729 | while (which_alternative < recog_data.n_alternatives);
|
---|
2730 |
|
---|
2731 | which_alternative = -1;
|
---|
2732 | /* If we are about to reject this, but we are not to test strictly,
|
---|
2733 | try a very loose test. Only return failure if it fails also. */
|
---|
2734 | if (strict == 0)
|
---|
2735 | return constrain_operands (-1);
|
---|
2736 | else
|
---|
2737 | return 0;
|
---|
2738 | }
|
---|
2739 |
|
---|
2740 | /* Return 1 iff OPERAND (assumed to be a REG rtx)
|
---|
2741 | is a hard reg in class CLASS when its regno is offset by OFFSET
|
---|
2742 | and changed to mode MODE.
|
---|
2743 | If REG occupies multiple hard regs, all of them must be in CLASS. */
|
---|
2744 |
|
---|
2745 | int
|
---|
2746 | reg_fits_class_p (operand, class, offset, mode)
|
---|
2747 | rtx operand;
|
---|
2748 | enum reg_class class;
|
---|
2749 | int offset;
|
---|
2750 | enum machine_mode mode;
|
---|
2751 | {
|
---|
2752 | int regno = REGNO (operand);
|
---|
2753 | if (regno < FIRST_PSEUDO_REGISTER
|
---|
2754 | && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
|
---|
2755 | regno + offset))
|
---|
2756 | {
|
---|
2757 | int sr;
|
---|
2758 | regno += offset;
|
---|
2759 | for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
|
---|
2760 | sr > 0; sr--)
|
---|
2761 | if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
|
---|
2762 | regno + sr))
|
---|
2763 | break;
|
---|
2764 | return sr == 0;
|
---|
2765 | }
|
---|
2766 |
|
---|
2767 | return 0;
|
---|
2768 | }
|
---|
2769 | |
---|
2770 |
|
---|
2771 | /* Split single instruction. Helper function for split_all_insns and
|
---|
2772 | split_all_insns_noflow. Return last insn in the sequence if successful,
|
---|
2773 | or NULL if unsuccessful. */
|
---|
2774 |
|
---|
2775 | static rtx
|
---|
2776 | split_insn (insn)
|
---|
2777 | rtx insn;
|
---|
2778 | {
|
---|
2779 | /* Split insns here to get max fine-grain parallelism. */
|
---|
2780 | rtx first = PREV_INSN (insn);
|
---|
2781 | rtx last = try_split (PATTERN (insn), insn, 1);
|
---|
2782 |
|
---|
2783 | if (last == insn)
|
---|
2784 | return NULL_RTX;
|
---|
2785 |
|
---|
2786 | /* try_split returns the NOTE that INSN became. */
|
---|
2787 | PUT_CODE (insn, NOTE);
|
---|
2788 | NOTE_SOURCE_FILE (insn) = 0;
|
---|
2789 | NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
---|
2790 |
|
---|
2791 | /* ??? Coddle to md files that generate subregs in post-reload
|
---|
2792 | splitters instead of computing the proper hard register. */
|
---|
2793 | if (reload_completed && first != last)
|
---|
2794 | {
|
---|
2795 | first = NEXT_INSN (first);
|
---|
2796 | for (;;)
|
---|
2797 | {
|
---|
2798 | if (INSN_P (first))
|
---|
2799 | cleanup_subreg_operands (first);
|
---|
2800 | if (first == last)
|
---|
2801 | break;
|
---|
2802 | first = NEXT_INSN (first);
|
---|
2803 | }
|
---|
2804 | }
|
---|
2805 | return last;
|
---|
2806 | }
|
---|
2807 |
|
---|
2808 | /* Split all insns in the function. If UPD_LIFE, update life info after. */
|
---|
2809 |
|
---|
2810 | void
|
---|
2811 | split_all_insns (upd_life)
|
---|
2812 | int upd_life;
|
---|
2813 | {
|
---|
2814 | sbitmap blocks;
|
---|
2815 | bool changed;
|
---|
2816 | basic_block bb;
|
---|
2817 |
|
---|
2818 | blocks = sbitmap_alloc (last_basic_block);
|
---|
2819 | sbitmap_zero (blocks);
|
---|
2820 | changed = false;
|
---|
2821 |
|
---|
2822 | FOR_EACH_BB_REVERSE (bb)
|
---|
2823 | {
|
---|
2824 | rtx insn, next;
|
---|
2825 | bool finish = false;
|
---|
2826 |
|
---|
2827 | for (insn = bb->head; !finish ; insn = next)
|
---|
2828 | {
|
---|
2829 | /* Can't use `next_real_insn' because that might go across
|
---|
2830 | CODE_LABELS and short-out basic blocks. */
|
---|
2831 | next = NEXT_INSN (insn);
|
---|
2832 | finish = (insn == bb->end);
|
---|
2833 | if (INSN_P (insn))
|
---|
2834 | {
|
---|
2835 | rtx set = single_set (insn);
|
---|
2836 |
|
---|
2837 | /* Don't split no-op move insns. These should silently
|
---|
2838 | disappear later in final. Splitting such insns would
|
---|
2839 | break the code that handles REG_NO_CONFLICT blocks. */
|
---|
2840 | if (set && set_noop_p (set))
|
---|
2841 | {
|
---|
2842 | /* Nops get in the way while scheduling, so delete them
|
---|
2843 | now if register allocation has already been done. It
|
---|
2844 | is too risky to try to do this before register
|
---|
2845 | allocation, and there are unlikely to be very many
|
---|
2846 | nops then anyways. */
|
---|
2847 | if (reload_completed)
|
---|
2848 | {
|
---|
2849 | /* If the no-op set has a REG_UNUSED note, we need
|
---|
2850 | to update liveness information. */
|
---|
2851 | if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
|
---|
2852 | {
|
---|
2853 | SET_BIT (blocks, bb->index);
|
---|
2854 | changed = true;
|
---|
2855 | }
|
---|
2856 | /* ??? Is life info affected by deleting edges? */
|
---|
2857 | delete_insn_and_edges (insn);
|
---|
2858 | }
|
---|
2859 | }
|
---|
2860 | else
|
---|
2861 | {
|
---|
2862 | rtx last = split_insn (insn);
|
---|
2863 | if (last)
|
---|
2864 | {
|
---|
2865 | /* The split sequence may include barrier, but the
|
---|
2866 | BB boundary we are interested in will be set to
|
---|
2867 | previous one. */
|
---|
2868 |
|
---|
2869 | while (GET_CODE (last) == BARRIER)
|
---|
2870 | last = PREV_INSN (last);
|
---|
2871 | SET_BIT (blocks, bb->index);
|
---|
2872 | changed = true;
|
---|
2873 | }
|
---|
2874 | }
|
---|
2875 | }
|
---|
2876 | }
|
---|
2877 | }
|
---|
2878 |
|
---|
2879 | if (changed)
|
---|
2880 | {
|
---|
2881 | int old_last_basic_block = last_basic_block;
|
---|
2882 |
|
---|
2883 | find_many_sub_basic_blocks (blocks);
|
---|
2884 |
|
---|
2885 | if (old_last_basic_block != last_basic_block && upd_life)
|
---|
2886 | blocks = sbitmap_resize (blocks, last_basic_block, 1);
|
---|
2887 | }
|
---|
2888 |
|
---|
2889 | if (changed && upd_life)
|
---|
2890 | update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
|
---|
2891 | PROP_DEATH_NOTES | PROP_REG_INFO);
|
---|
2892 |
|
---|
2893 | #ifdef ENABLE_CHECKING
|
---|
2894 | verify_flow_info ();
|
---|
2895 | #endif
|
---|
2896 |
|
---|
2897 | sbitmap_free (blocks);
|
---|
2898 | }
|
---|
2899 |
|
---|
2900 | /* Same as split_all_insns, but do not expect CFG to be available.
|
---|
2901 | Used by machine depedent reorg passes. */
|
---|
2902 |
|
---|
2903 | void
|
---|
2904 | split_all_insns_noflow ()
|
---|
2905 | {
|
---|
2906 | rtx next, insn;
|
---|
2907 |
|
---|
2908 | for (insn = get_insns (); insn; insn = next)
|
---|
2909 | {
|
---|
2910 | next = NEXT_INSN (insn);
|
---|
2911 | if (INSN_P (insn))
|
---|
2912 | {
|
---|
2913 | /* Don't split no-op move insns. These should silently
|
---|
2914 | disappear later in final. Splitting such insns would
|
---|
2915 | break the code that handles REG_NO_CONFLICT blocks. */
|
---|
2916 | rtx set = single_set (insn);
|
---|
2917 | if (set && set_noop_p (set))
|
---|
2918 | {
|
---|
2919 | /* Nops get in the way while scheduling, so delete them
|
---|
2920 | now if register allocation has already been done. It
|
---|
2921 | is too risky to try to do this before register
|
---|
2922 | allocation, and there are unlikely to be very many
|
---|
2923 | nops then anyways.
|
---|
2924 |
|
---|
2925 | ??? Should we use delete_insn when the CFG isn't valid? */
|
---|
2926 | if (reload_completed)
|
---|
2927 | delete_insn_and_edges (insn);
|
---|
2928 | }
|
---|
2929 | else
|
---|
2930 | split_insn (insn);
|
---|
2931 | }
|
---|
2932 | }
|
---|
2933 | }
|
---|
2934 | |
---|
2935 |
|
---|
2936 | #ifdef HAVE_peephole2
|
---|
2937 | struct peep2_insn_data
|
---|
2938 | {
|
---|
2939 | rtx insn;
|
---|
2940 | regset live_before;
|
---|
2941 | };
|
---|
2942 |
|
---|
2943 | static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
|
---|
2944 | static int peep2_current;
|
---|
2945 |
|
---|
2946 | /* A non-insn marker indicating the last insn of the block.
|
---|
2947 | The live_before regset for this element is correct, indicating
|
---|
2948 | global_live_at_end for the block. */
|
---|
2949 | #define PEEP2_EOB pc_rtx
|
---|
2950 |
|
---|
2951 | /* Return the Nth non-note insn after `current', or return NULL_RTX if it
|
---|
2952 | does not exist. Used by the recognizer to find the next insn to match
|
---|
2953 | in a multi-insn pattern. */
|
---|
2954 |
|
---|
2955 | rtx
|
---|
2956 | peep2_next_insn (n)
|
---|
2957 | int n;
|
---|
2958 | {
|
---|
2959 | if (n >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2960 | abort ();
|
---|
2961 |
|
---|
2962 | n += peep2_current;
|
---|
2963 | if (n >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2964 | n -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
2965 |
|
---|
2966 | if (peep2_insn_data[n].insn == PEEP2_EOB)
|
---|
2967 | return NULL_RTX;
|
---|
2968 | return peep2_insn_data[n].insn;
|
---|
2969 | }
|
---|
2970 |
|
---|
2971 | /* Return true if REGNO is dead before the Nth non-note insn
|
---|
2972 | after `current'. */
|
---|
2973 |
|
---|
2974 | int
|
---|
2975 | peep2_regno_dead_p (ofs, regno)
|
---|
2976 | int ofs;
|
---|
2977 | int regno;
|
---|
2978 | {
|
---|
2979 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2980 | abort ();
|
---|
2981 |
|
---|
2982 | ofs += peep2_current;
|
---|
2983 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
2984 | ofs -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
2985 |
|
---|
2986 | if (peep2_insn_data[ofs].insn == NULL_RTX)
|
---|
2987 | abort ();
|
---|
2988 |
|
---|
2989 | return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 | /* Similarly for a REG. */
|
---|
2993 |
|
---|
2994 | int
|
---|
2995 | peep2_reg_dead_p (ofs, reg)
|
---|
2996 | int ofs;
|
---|
2997 | rtx reg;
|
---|
2998 | {
|
---|
2999 | int regno, n;
|
---|
3000 |
|
---|
3001 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3002 | abort ();
|
---|
3003 |
|
---|
3004 | ofs += peep2_current;
|
---|
3005 | if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3006 | ofs -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3007 |
|
---|
3008 | if (peep2_insn_data[ofs].insn == NULL_RTX)
|
---|
3009 | abort ();
|
---|
3010 |
|
---|
3011 | regno = REGNO (reg);
|
---|
3012 | n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
|
---|
3013 | while (--n >= 0)
|
---|
3014 | if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
|
---|
3015 | return 0;
|
---|
3016 | return 1;
|
---|
3017 | }
|
---|
3018 |
|
---|
3019 | /* Try to find a hard register of mode MODE, matching the register class in
|
---|
3020 | CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
|
---|
3021 | remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
|
---|
3022 | in which case the only condition is that the register must be available
|
---|
3023 | before CURRENT_INSN.
|
---|
3024 | Registers that already have bits set in REG_SET will not be considered.
|
---|
3025 |
|
---|
3026 | If an appropriate register is available, it will be returned and the
|
---|
3027 | corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
|
---|
3028 | returned. */
|
---|
3029 |
|
---|
3030 | rtx
|
---|
3031 | peep2_find_free_register (from, to, class_str, mode, reg_set)
|
---|
3032 | int from, to;
|
---|
3033 | const char *class_str;
|
---|
3034 | enum machine_mode mode;
|
---|
3035 | HARD_REG_SET *reg_set;
|
---|
3036 | {
|
---|
3037 | static int search_ofs;
|
---|
3038 | enum reg_class class;
|
---|
3039 | HARD_REG_SET live;
|
---|
3040 | int i;
|
---|
3041 |
|
---|
3042 | if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3043 | abort ();
|
---|
3044 |
|
---|
3045 | from += peep2_current;
|
---|
3046 | if (from >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3047 | from -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3048 | to += peep2_current;
|
---|
3049 | if (to >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3050 | to -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3051 |
|
---|
3052 | if (peep2_insn_data[from].insn == NULL_RTX)
|
---|
3053 | abort ();
|
---|
3054 | REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
|
---|
3055 |
|
---|
3056 | while (from != to)
|
---|
3057 | {
|
---|
3058 | HARD_REG_SET this_live;
|
---|
3059 |
|
---|
3060 | if (++from >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3061 | from = 0;
|
---|
3062 | if (peep2_insn_data[from].insn == NULL_RTX)
|
---|
3063 | abort ();
|
---|
3064 | REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
|
---|
3065 | IOR_HARD_REG_SET (live, this_live);
|
---|
3066 | }
|
---|
3067 |
|
---|
3068 | class = (class_str[0] == 'r' ? GENERAL_REGS
|
---|
3069 | : REG_CLASS_FROM_LETTER (class_str[0]));
|
---|
3070 |
|
---|
3071 | for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
---|
3072 | {
|
---|
3073 | int raw_regno, regno, success, j;
|
---|
3074 |
|
---|
3075 | /* Distribute the free registers as much as possible. */
|
---|
3076 | raw_regno = search_ofs + i;
|
---|
3077 | if (raw_regno >= FIRST_PSEUDO_REGISTER)
|
---|
3078 | raw_regno -= FIRST_PSEUDO_REGISTER;
|
---|
3079 | #ifdef REG_ALLOC_ORDER
|
---|
3080 | regno = reg_alloc_order[raw_regno];
|
---|
3081 | #else
|
---|
3082 | regno = raw_regno;
|
---|
3083 | #endif
|
---|
3084 |
|
---|
3085 | /* Don't allocate fixed registers. */
|
---|
3086 | if (fixed_regs[regno])
|
---|
3087 | continue;
|
---|
3088 | /* Make sure the register is of the right class. */
|
---|
3089 | if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
|
---|
3090 | continue;
|
---|
3091 | /* And can support the mode we need. */
|
---|
3092 | if (! HARD_REGNO_MODE_OK (regno, mode))
|
---|
3093 | continue;
|
---|
3094 | /* And that we don't create an extra save/restore. */
|
---|
3095 | if (! call_used_regs[regno] && ! regs_ever_live[regno])
|
---|
3096 | continue;
|
---|
3097 | /* And we don't clobber traceback for noreturn functions. */
|
---|
3098 | if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
|
---|
3099 | && (! reload_completed || frame_pointer_needed))
|
---|
3100 | continue;
|
---|
3101 |
|
---|
3102 | success = 1;
|
---|
3103 | for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
|
---|
3104 | {
|
---|
3105 | if (TEST_HARD_REG_BIT (*reg_set, regno + j)
|
---|
3106 | || TEST_HARD_REG_BIT (live, regno + j))
|
---|
3107 | {
|
---|
3108 | success = 0;
|
---|
3109 | break;
|
---|
3110 | }
|
---|
3111 | }
|
---|
3112 | if (success)
|
---|
3113 | {
|
---|
3114 | for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
|
---|
3115 | SET_HARD_REG_BIT (*reg_set, regno + j);
|
---|
3116 |
|
---|
3117 | /* Start the next search with the next register. */
|
---|
3118 | if (++raw_regno >= FIRST_PSEUDO_REGISTER)
|
---|
3119 | raw_regno = 0;
|
---|
3120 | search_ofs = raw_regno;
|
---|
3121 |
|
---|
3122 | return gen_rtx_REG (mode, regno);
|
---|
3123 | }
|
---|
3124 | }
|
---|
3125 |
|
---|
3126 | search_ofs = 0;
|
---|
3127 | return NULL_RTX;
|
---|
3128 | }
|
---|
3129 |
|
---|
3130 | /* Perform the peephole2 optimization pass. */
|
---|
3131 |
|
---|
3132 | void
|
---|
3133 | peephole2_optimize (dump_file)
|
---|
3134 | FILE *dump_file ATTRIBUTE_UNUSED;
|
---|
3135 | {
|
---|
3136 | regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
|
---|
3137 | rtx insn, prev;
|
---|
3138 | regset live;
|
---|
3139 | int i;
|
---|
3140 | basic_block bb;
|
---|
3141 | #ifdef HAVE_conditional_execution
|
---|
3142 | sbitmap blocks;
|
---|
3143 | bool changed;
|
---|
3144 | #endif
|
---|
3145 | bool do_cleanup_cfg = false;
|
---|
3146 | bool do_rebuild_jump_labels = false;
|
---|
3147 |
|
---|
3148 | /* Initialize the regsets we're going to use. */
|
---|
3149 | for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
---|
3150 | peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
|
---|
3151 | live = INITIALIZE_REG_SET (rs_heads[i]);
|
---|
3152 |
|
---|
3153 | #ifdef HAVE_conditional_execution
|
---|
3154 | blocks = sbitmap_alloc (last_basic_block);
|
---|
3155 | sbitmap_zero (blocks);
|
---|
3156 | changed = false;
|
---|
3157 | #else
|
---|
3158 | count_or_remove_death_notes (NULL, 1);
|
---|
3159 | #endif
|
---|
3160 |
|
---|
3161 | FOR_EACH_BB_REVERSE (bb)
|
---|
3162 | {
|
---|
3163 | struct propagate_block_info *pbi;
|
---|
3164 |
|
---|
3165 | /* Indicate that all slots except the last holds invalid data. */
|
---|
3166 | for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
|
---|
3167 | peep2_insn_data[i].insn = NULL_RTX;
|
---|
3168 |
|
---|
3169 | /* Indicate that the last slot contains live_after data. */
|
---|
3170 | peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
|
---|
3171 | peep2_current = MAX_INSNS_PER_PEEP2;
|
---|
3172 |
|
---|
3173 | /* Start up propagation. */
|
---|
3174 | COPY_REG_SET (live, bb->global_live_at_end);
|
---|
3175 | COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
|
---|
3176 |
|
---|
3177 | #ifdef HAVE_conditional_execution
|
---|
3178 | pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
|
---|
3179 | #else
|
---|
3180 | pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
|
---|
3181 | #endif
|
---|
3182 |
|
---|
3183 | for (insn = bb->end; ; insn = prev)
|
---|
3184 | {
|
---|
3185 | prev = PREV_INSN (insn);
|
---|
3186 | if (INSN_P (insn))
|
---|
3187 | {
|
---|
3188 | rtx try, before_try, x;
|
---|
3189 | int match_len;
|
---|
3190 | rtx note;
|
---|
3191 | bool was_call = false;
|
---|
3192 |
|
---|
3193 | /* Record this insn. */
|
---|
3194 | if (--peep2_current < 0)
|
---|
3195 | peep2_current = MAX_INSNS_PER_PEEP2;
|
---|
3196 | peep2_insn_data[peep2_current].insn = insn;
|
---|
3197 | propagate_one_insn (pbi, insn);
|
---|
3198 | COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
|
---|
3199 |
|
---|
3200 | /* Match the peephole. */
|
---|
3201 | try = peephole2_insns (PATTERN (insn), insn, &match_len);
|
---|
3202 | if (try != NULL)
|
---|
3203 | {
|
---|
3204 | /* If we are splitting a CALL_INSN, look for the CALL_INSN
|
---|
3205 | in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
|
---|
3206 | cfg-related call notes. */
|
---|
3207 | for (i = 0; i <= match_len; ++i)
|
---|
3208 | {
|
---|
3209 | int j;
|
---|
3210 | rtx old_insn, new_insn, note;
|
---|
3211 |
|
---|
3212 | j = i + peep2_current;
|
---|
3213 | if (j >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3214 | j -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3215 | old_insn = peep2_insn_data[j].insn;
|
---|
3216 | if (GET_CODE (old_insn) != CALL_INSN)
|
---|
3217 | continue;
|
---|
3218 | was_call = true;
|
---|
3219 |
|
---|
3220 | new_insn = try;
|
---|
3221 | while (new_insn != NULL_RTX)
|
---|
3222 | {
|
---|
3223 | if (GET_CODE (new_insn) == CALL_INSN)
|
---|
3224 | break;
|
---|
3225 | new_insn = NEXT_INSN (new_insn);
|
---|
3226 | }
|
---|
3227 |
|
---|
3228 | if (new_insn == NULL_RTX)
|
---|
3229 | abort ();
|
---|
3230 |
|
---|
3231 | CALL_INSN_FUNCTION_USAGE (new_insn)
|
---|
3232 | = CALL_INSN_FUNCTION_USAGE (old_insn);
|
---|
3233 |
|
---|
3234 | for (note = REG_NOTES (old_insn);
|
---|
3235 | note;
|
---|
3236 | note = XEXP (note, 1))
|
---|
3237 | switch (REG_NOTE_KIND (note))
|
---|
3238 | {
|
---|
3239 | case REG_NORETURN:
|
---|
3240 | case REG_SETJMP:
|
---|
3241 | case REG_ALWAYS_RETURN:
|
---|
3242 | REG_NOTES (new_insn)
|
---|
3243 | = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
|
---|
3244 | XEXP (note, 0),
|
---|
3245 | REG_NOTES (new_insn));
|
---|
3246 | default:
|
---|
3247 | /* Discard all other reg notes. */
|
---|
3248 | break;
|
---|
3249 | }
|
---|
3250 |
|
---|
3251 | /* Croak if there is another call in the sequence. */
|
---|
3252 | while (++i <= match_len)
|
---|
3253 | {
|
---|
3254 | j = i + peep2_current;
|
---|
3255 | if (j >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3256 | j -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3257 | old_insn = peep2_insn_data[j].insn;
|
---|
3258 | if (GET_CODE (old_insn) == CALL_INSN)
|
---|
3259 | abort ();
|
---|
3260 | }
|
---|
3261 | break;
|
---|
3262 | }
|
---|
3263 |
|
---|
3264 | i = match_len + peep2_current;
|
---|
3265 | if (i >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3266 | i -= MAX_INSNS_PER_PEEP2 + 1;
|
---|
3267 |
|
---|
3268 | note = find_reg_note (peep2_insn_data[i].insn,
|
---|
3269 | REG_EH_REGION, NULL_RTX);
|
---|
3270 |
|
---|
3271 | /* Replace the old sequence with the new. */
|
---|
3272 | try = emit_insn_after_scope (try, peep2_insn_data[i].insn,
|
---|
3273 | INSN_SCOPE (peep2_insn_data[i].insn));
|
---|
3274 | before_try = PREV_INSN (insn);
|
---|
3275 | delete_insn_chain (insn, peep2_insn_data[i].insn);
|
---|
3276 |
|
---|
3277 | /* Re-insert the EH_REGION notes. */
|
---|
3278 | if (note || (was_call && nonlocal_goto_handler_labels))
|
---|
3279 | {
|
---|
3280 | edge eh_edge;
|
---|
3281 |
|
---|
3282 | for (eh_edge = bb->succ; eh_edge
|
---|
3283 | ; eh_edge = eh_edge->succ_next)
|
---|
3284 | if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
|
---|
3285 | break;
|
---|
3286 |
|
---|
3287 | for (x = try ; x != before_try ; x = PREV_INSN (x))
|
---|
3288 | if (GET_CODE (x) == CALL_INSN
|
---|
3289 | || (flag_non_call_exceptions
|
---|
3290 | && may_trap_p (PATTERN (x))
|
---|
3291 | && !find_reg_note (x, REG_EH_REGION, NULL)))
|
---|
3292 | {
|
---|
3293 | if (note)
|
---|
3294 | REG_NOTES (x)
|
---|
3295 | = gen_rtx_EXPR_LIST (REG_EH_REGION,
|
---|
3296 | XEXP (note, 0),
|
---|
3297 | REG_NOTES (x));
|
---|
3298 |
|
---|
3299 | if (x != bb->end && eh_edge)
|
---|
3300 | {
|
---|
3301 | edge nfte, nehe;
|
---|
3302 | int flags;
|
---|
3303 |
|
---|
3304 | nfte = split_block (bb, x);
|
---|
3305 | flags = (eh_edge->flags
|
---|
3306 | & (EDGE_EH | EDGE_ABNORMAL));
|
---|
3307 | if (GET_CODE (x) == CALL_INSN)
|
---|
3308 | flags |= EDGE_ABNORMAL_CALL;
|
---|
3309 | nehe = make_edge (nfte->src, eh_edge->dest,
|
---|
3310 | flags);
|
---|
3311 |
|
---|
3312 | nehe->probability = eh_edge->probability;
|
---|
3313 | nfte->probability
|
---|
3314 | = REG_BR_PROB_BASE - nehe->probability;
|
---|
3315 |
|
---|
3316 | do_cleanup_cfg |= purge_dead_edges (nfte->dest);
|
---|
3317 | #ifdef HAVE_conditional_execution
|
---|
3318 | SET_BIT (blocks, nfte->dest->index);
|
---|
3319 | changed = true;
|
---|
3320 | #endif
|
---|
3321 | bb = nfte->src;
|
---|
3322 | eh_edge = nehe;
|
---|
3323 | }
|
---|
3324 | }
|
---|
3325 |
|
---|
3326 | /* Converting possibly trapping insn to non-trapping is
|
---|
3327 | possible. Zap dummy outgoing edges. */
|
---|
3328 | do_cleanup_cfg |= purge_dead_edges (bb);
|
---|
3329 | }
|
---|
3330 |
|
---|
3331 | #ifdef HAVE_conditional_execution
|
---|
3332 | /* With conditional execution, we cannot back up the
|
---|
3333 | live information so easily, since the conditional
|
---|
3334 | death data structures are not so self-contained.
|
---|
3335 | So record that we've made a modification to this
|
---|
3336 | block and update life information at the end. */
|
---|
3337 | SET_BIT (blocks, bb->index);
|
---|
3338 | changed = true;
|
---|
3339 |
|
---|
3340 | for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
---|
3341 | peep2_insn_data[i].insn = NULL_RTX;
|
---|
3342 | peep2_insn_data[peep2_current].insn = PEEP2_EOB;
|
---|
3343 | #else
|
---|
3344 | /* Back up lifetime information past the end of the
|
---|
3345 | newly created sequence. */
|
---|
3346 | if (++i >= MAX_INSNS_PER_PEEP2 + 1)
|
---|
3347 | i = 0;
|
---|
3348 | COPY_REG_SET (live, peep2_insn_data[i].live_before);
|
---|
3349 |
|
---|
3350 | /* Update life information for the new sequence. */
|
---|
3351 | x = try;
|
---|
3352 | do
|
---|
3353 | {
|
---|
3354 | if (INSN_P (x))
|
---|
3355 | {
|
---|
3356 | if (--i < 0)
|
---|
3357 | i = MAX_INSNS_PER_PEEP2;
|
---|
3358 | peep2_insn_data[i].insn = x;
|
---|
3359 | propagate_one_insn (pbi, x);
|
---|
3360 | COPY_REG_SET (peep2_insn_data[i].live_before, live);
|
---|
3361 | }
|
---|
3362 | x = PREV_INSN (x);
|
---|
3363 | }
|
---|
3364 | while (x != prev);
|
---|
3365 |
|
---|
3366 | /* ??? Should verify that LIVE now matches what we
|
---|
3367 | had before the new sequence. */
|
---|
3368 |
|
---|
3369 | peep2_current = i;
|
---|
3370 | #endif
|
---|
3371 |
|
---|
3372 | /* If we generated a jump instruction, it won't have
|
---|
3373 | JUMP_LABEL set. Recompute after we're done. */
|
---|
3374 | for (x = try; x != before_try; x = PREV_INSN (x))
|
---|
3375 | if (GET_CODE (x) == JUMP_INSN)
|
---|
3376 | {
|
---|
3377 | do_rebuild_jump_labels = true;
|
---|
3378 | break;
|
---|
3379 | }
|
---|
3380 | }
|
---|
3381 | }
|
---|
3382 |
|
---|
3383 | if (insn == bb->head)
|
---|
3384 | break;
|
---|
3385 | }
|
---|
3386 |
|
---|
3387 | free_propagate_block_info (pbi);
|
---|
3388 | }
|
---|
3389 |
|
---|
3390 | for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
|
---|
3391 | FREE_REG_SET (peep2_insn_data[i].live_before);
|
---|
3392 | FREE_REG_SET (live);
|
---|
3393 |
|
---|
3394 | if (do_rebuild_jump_labels)
|
---|
3395 | rebuild_jump_labels (get_insns ());
|
---|
3396 |
|
---|
3397 | /* If we eliminated EH edges, we may be able to merge blocks. Further,
|
---|
3398 | we've changed global life since exception handlers are no longer
|
---|
3399 | reachable. */
|
---|
3400 | if (do_cleanup_cfg)
|
---|
3401 | {
|
---|
3402 | cleanup_cfg (0);
|
---|
3403 | update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
|
---|
3404 | }
|
---|
3405 | #ifdef HAVE_conditional_execution
|
---|
3406 | else
|
---|
3407 | {
|
---|
3408 | count_or_remove_death_notes (blocks, 1);
|
---|
3409 | update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
|
---|
3410 | }
|
---|
3411 | sbitmap_free (blocks);
|
---|
3412 | #endif
|
---|
3413 | }
|
---|
3414 | #endif /* HAVE_peephole2 */
|
---|
3415 |
|
---|
3416 | /* Common predicates for use with define_bypass. */
|
---|
3417 |
|
---|
3418 | /* True if the dependency between OUT_INSN and IN_INSN is on the store
|
---|
3419 | data not the address operand(s) of the store. IN_INSN must be
|
---|
3420 | single_set. OUT_INSN must be either a single_set or a PARALLEL with
|
---|
3421 | SETs inside. */
|
---|
3422 |
|
---|
3423 | int
|
---|
3424 | store_data_bypass_p (out_insn, in_insn)
|
---|
3425 | rtx out_insn, in_insn;
|
---|
3426 | {
|
---|
3427 | rtx out_set, in_set;
|
---|
3428 |
|
---|
3429 | in_set = single_set (in_insn);
|
---|
3430 | if (! in_set)
|
---|
3431 | abort ();
|
---|
3432 |
|
---|
3433 | if (GET_CODE (SET_DEST (in_set)) != MEM)
|
---|
3434 | return false;
|
---|
3435 |
|
---|
3436 | out_set = single_set (out_insn);
|
---|
3437 | if (out_set)
|
---|
3438 | {
|
---|
3439 | if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
|
---|
3440 | return false;
|
---|
3441 | }
|
---|
3442 | else
|
---|
3443 | {
|
---|
3444 | rtx out_pat;
|
---|
3445 | int i;
|
---|
3446 |
|
---|
3447 | out_pat = PATTERN (out_insn);
|
---|
3448 | if (GET_CODE (out_pat) != PARALLEL)
|
---|
3449 | abort ();
|
---|
3450 |
|
---|
3451 | for (i = 0; i < XVECLEN (out_pat, 0); i++)
|
---|
3452 | {
|
---|
3453 | rtx exp = XVECEXP (out_pat, 0, i);
|
---|
3454 |
|
---|
3455 | if (GET_CODE (exp) == CLOBBER)
|
---|
3456 | continue;
|
---|
3457 |
|
---|
3458 | if (GET_CODE (exp) != SET)
|
---|
3459 | abort ();
|
---|
3460 |
|
---|
3461 | if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
|
---|
3462 | return false;
|
---|
3463 | }
|
---|
3464 | }
|
---|
3465 |
|
---|
3466 | return true;
|
---|
3467 | }
|
---|
3468 |
|
---|
3469 | /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
|
---|
3470 | condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
|
---|
3471 | or multiple set; IN_INSN should be single_set for truth, but for convenience
|
---|
3472 | of insn categorization may be any JUMP or CALL insn. */
|
---|
3473 |
|
---|
3474 | int
|
---|
3475 | if_test_bypass_p (out_insn, in_insn)
|
---|
3476 | rtx out_insn, in_insn;
|
---|
3477 | {
|
---|
3478 | rtx out_set, in_set;
|
---|
3479 |
|
---|
3480 | in_set = single_set (in_insn);
|
---|
3481 | if (! in_set)
|
---|
3482 | {
|
---|
3483 | if (GET_CODE (in_insn) == JUMP_INSN || GET_CODE (in_insn) == CALL_INSN)
|
---|
3484 | return false;
|
---|
3485 | abort ();
|
---|
3486 | }
|
---|
3487 |
|
---|
3488 | if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
|
---|
3489 | return false;
|
---|
3490 | in_set = SET_SRC (in_set);
|
---|
3491 |
|
---|
3492 | out_set = single_set (out_insn);
|
---|
3493 | if (out_set)
|
---|
3494 | {
|
---|
3495 | if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
|
---|
3496 | || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
|
---|
3497 | return false;
|
---|
3498 | }
|
---|
3499 | else
|
---|
3500 | {
|
---|
3501 | rtx out_pat;
|
---|
3502 | int i;
|
---|
3503 |
|
---|
3504 | out_pat = PATTERN (out_insn);
|
---|
3505 | if (GET_CODE (out_pat) != PARALLEL)
|
---|
3506 | abort ();
|
---|
3507 |
|
---|
3508 | for (i = 0; i < XVECLEN (out_pat, 0); i++)
|
---|
3509 | {
|
---|
3510 | rtx exp = XVECEXP (out_pat, 0, i);
|
---|
3511 |
|
---|
3512 | if (GET_CODE (exp) == CLOBBER)
|
---|
3513 | continue;
|
---|
3514 |
|
---|
3515 | if (GET_CODE (exp) != SET)
|
---|
3516 | abort ();
|
---|
3517 |
|
---|
3518 | if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
|
---|
3519 | || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
|
---|
3520 | return false;
|
---|
3521 | }
|
---|
3522 | }
|
---|
3523 |
|
---|
3524 | return true;
|
---|
3525 | }
|
---|