1 | /* Branch prediction routines for the GNU compiler.
|
---|
2 | Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of GCC.
|
---|
5 |
|
---|
6 | GCC is free software; you can redistribute it and/or modify it under
|
---|
7 | the terms of the GNU General Public License as published by the Free
|
---|
8 | Software Foundation; either version 2, or (at your option) any later
|
---|
9 | version.
|
---|
10 |
|
---|
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
---|
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
---|
14 | for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with GCC; see the file COPYING. If not, write to the Free
|
---|
18 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
---|
19 | 02111-1307, USA. */
|
---|
20 |
|
---|
21 | /* References:
|
---|
22 |
|
---|
23 | [1] "Branch Prediction for Free"
|
---|
24 | Ball and Larus; PLDI '93.
|
---|
25 | [2] "Static Branch Frequency and Program Profile Analysis"
|
---|
26 | Wu and Larus; MICRO-27.
|
---|
27 | [3] "Corpus-based Static Branch Prediction"
|
---|
28 | Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
|
---|
29 |
|
---|
30 |
|
---|
31 | #include "config.h"
|
---|
32 | #include "system.h"
|
---|
33 | #include "tree.h"
|
---|
34 | #include "rtl.h"
|
---|
35 | #include "tm_p.h"
|
---|
36 | #include "hard-reg-set.h"
|
---|
37 | #include "basic-block.h"
|
---|
38 | #include "insn-config.h"
|
---|
39 | #include "regs.h"
|
---|
40 | #include "flags.h"
|
---|
41 | #include "output.h"
|
---|
42 | #include "function.h"
|
---|
43 | #include "except.h"
|
---|
44 | #include "toplev.h"
|
---|
45 | #include "recog.h"
|
---|
46 | #include "expr.h"
|
---|
47 | #include "predict.h"
|
---|
48 |
|
---|
49 | /* Random guesstimation given names. */
|
---|
50 | #define PROB_NEVER (0)
|
---|
51 | #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
|
---|
52 | #define PROB_UNLIKELY (REG_BR_PROB_BASE * 4 / 10 - 1)
|
---|
53 | #define PROB_EVEN (REG_BR_PROB_BASE / 2)
|
---|
54 | #define PROB_LIKELY (REG_BR_PROB_BASE - PROB_UNLIKELY)
|
---|
55 | #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
|
---|
56 | #define PROB_ALWAYS (REG_BR_PROB_BASE)
|
---|
57 |
|
---|
58 | static void combine_predictions_for_insn PARAMS ((rtx, basic_block));
|
---|
59 | static void dump_prediction PARAMS ((enum br_predictor, int,
|
---|
60 | basic_block, int));
|
---|
61 | static void estimate_loops_at_level PARAMS ((struct loop *loop));
|
---|
62 | static void propagate_freq PARAMS ((basic_block));
|
---|
63 | static void estimate_bb_frequencies PARAMS ((struct loops *));
|
---|
64 | static void counts_to_freqs PARAMS ((void));
|
---|
65 |
|
---|
66 | /* Information we hold about each branch predictor.
|
---|
67 | Filled using information from predict.def. */
|
---|
68 |
|
---|
69 | struct predictor_info
|
---|
70 | {
|
---|
71 | const char *const name; /* Name used in the debugging dumps. */
|
---|
72 | const int hitrate; /* Expected hitrate used by
|
---|
73 | predict_insn_def call. */
|
---|
74 | const int flags;
|
---|
75 | };
|
---|
76 |
|
---|
77 | /* Use given predictor without Dempster-Shaffer theory if it matches
|
---|
78 | using first_match heuristics. */
|
---|
79 | #define PRED_FLAG_FIRST_MATCH 1
|
---|
80 |
|
---|
81 | /* Recompute hitrate in percent to our representation. */
|
---|
82 |
|
---|
83 | #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
|
---|
84 |
|
---|
85 | #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
|
---|
86 | static const struct predictor_info predictor_info[]= {
|
---|
87 | #include "predict.def"
|
---|
88 |
|
---|
89 | /* Upper bound on predictors. */
|
---|
90 | {NULL, 0, 0}
|
---|
91 | };
|
---|
92 | #undef DEF_PREDICTOR
|
---|
93 |
|
---|
94 | void
|
---|
95 | predict_insn (insn, predictor, probability)
|
---|
96 | rtx insn;
|
---|
97 | int probability;
|
---|
98 | enum br_predictor predictor;
|
---|
99 | {
|
---|
100 | if (!any_condjump_p (insn))
|
---|
101 | abort ();
|
---|
102 |
|
---|
103 | REG_NOTES (insn)
|
---|
104 | = gen_rtx_EXPR_LIST (REG_BR_PRED,
|
---|
105 | gen_rtx_CONCAT (VOIDmode,
|
---|
106 | GEN_INT ((int) predictor),
|
---|
107 | GEN_INT ((int) probability)),
|
---|
108 | REG_NOTES (insn));
|
---|
109 | }
|
---|
110 |
|
---|
111 | /* Predict insn by given predictor. */
|
---|
112 |
|
---|
113 | void
|
---|
114 | predict_insn_def (insn, predictor, taken)
|
---|
115 | rtx insn;
|
---|
116 | enum br_predictor predictor;
|
---|
117 | enum prediction taken;
|
---|
118 | {
|
---|
119 | int probability = predictor_info[(int) predictor].hitrate;
|
---|
120 |
|
---|
121 | if (taken != TAKEN)
|
---|
122 | probability = REG_BR_PROB_BASE - probability;
|
---|
123 |
|
---|
124 | predict_insn (insn, predictor, probability);
|
---|
125 | }
|
---|
126 |
|
---|
127 | /* Predict edge E with given probability if possible. */
|
---|
128 |
|
---|
129 | void
|
---|
130 | predict_edge (e, predictor, probability)
|
---|
131 | edge e;
|
---|
132 | int probability;
|
---|
133 | enum br_predictor predictor;
|
---|
134 | {
|
---|
135 | rtx last_insn;
|
---|
136 | last_insn = e->src->end;
|
---|
137 |
|
---|
138 | /* We can store the branch prediction information only about
|
---|
139 | conditional jumps. */
|
---|
140 | if (!any_condjump_p (last_insn))
|
---|
141 | return;
|
---|
142 |
|
---|
143 | /* We always store probability of branching. */
|
---|
144 | if (e->flags & EDGE_FALLTHRU)
|
---|
145 | probability = REG_BR_PROB_BASE - probability;
|
---|
146 |
|
---|
147 | predict_insn (last_insn, predictor, probability);
|
---|
148 | }
|
---|
149 |
|
---|
150 | /* Predict edge E by given predictor if possible. */
|
---|
151 |
|
---|
152 | void
|
---|
153 | predict_edge_def (e, predictor, taken)
|
---|
154 | edge e;
|
---|
155 | enum br_predictor predictor;
|
---|
156 | enum prediction taken;
|
---|
157 | {
|
---|
158 | int probability = predictor_info[(int) predictor].hitrate;
|
---|
159 |
|
---|
160 | if (taken != TAKEN)
|
---|
161 | probability = REG_BR_PROB_BASE - probability;
|
---|
162 |
|
---|
163 | predict_edge (e, predictor, probability);
|
---|
164 | }
|
---|
165 |
|
---|
166 | /* Invert all branch predictions or probability notes in the INSN. This needs
|
---|
167 | to be done each time we invert the condition used by the jump. */
|
---|
168 |
|
---|
169 | void
|
---|
170 | invert_br_probabilities (insn)
|
---|
171 | rtx insn;
|
---|
172 | {
|
---|
173 | rtx note;
|
---|
174 |
|
---|
175 | for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
---|
176 | if (REG_NOTE_KIND (note) == REG_BR_PROB)
|
---|
177 | XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
|
---|
178 | else if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
---|
179 | XEXP (XEXP (note, 0), 1)
|
---|
180 | = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
|
---|
181 | }
|
---|
182 |
|
---|
183 | /* Dump information about the branch prediction to the output file. */
|
---|
184 |
|
---|
185 | static void
|
---|
186 | dump_prediction (predictor, probability, bb, used)
|
---|
187 | enum br_predictor predictor;
|
---|
188 | int probability;
|
---|
189 | basic_block bb;
|
---|
190 | int used;
|
---|
191 | {
|
---|
192 | edge e = bb->succ;
|
---|
193 |
|
---|
194 | if (!rtl_dump_file)
|
---|
195 | return;
|
---|
196 |
|
---|
197 | while (e->flags & EDGE_FALLTHRU)
|
---|
198 | e = e->succ_next;
|
---|
199 |
|
---|
200 | fprintf (rtl_dump_file, " %s heuristics%s: %.1f%%",
|
---|
201 | predictor_info[predictor].name,
|
---|
202 | used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
|
---|
203 |
|
---|
204 | if (bb->count)
|
---|
205 | {
|
---|
206 | fprintf (rtl_dump_file, " exec ");
|
---|
207 | fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
|
---|
208 | fprintf (rtl_dump_file, " hit ");
|
---|
209 | fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC, e->count);
|
---|
210 | fprintf (rtl_dump_file, " (%.1f%%)", e->count * 100.0 / bb->count);
|
---|
211 | }
|
---|
212 |
|
---|
213 | fprintf (rtl_dump_file, "\n");
|
---|
214 | }
|
---|
215 |
|
---|
216 | /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
|
---|
217 | note if not already present. Remove now useless REG_BR_PRED notes. */
|
---|
218 |
|
---|
219 | static void
|
---|
220 | combine_predictions_for_insn (insn, bb)
|
---|
221 | rtx insn;
|
---|
222 | basic_block bb;
|
---|
223 | {
|
---|
224 | rtx prob_note = find_reg_note (insn, REG_BR_PROB, 0);
|
---|
225 | rtx *pnote = ®_NOTES (insn);
|
---|
226 | rtx note;
|
---|
227 | int best_probability = PROB_EVEN;
|
---|
228 | int best_predictor = END_PREDICTORS;
|
---|
229 | int combined_probability = REG_BR_PROB_BASE / 2;
|
---|
230 | int d;
|
---|
231 | bool first_match = false;
|
---|
232 | bool found = false;
|
---|
233 |
|
---|
234 | if (rtl_dump_file)
|
---|
235 | fprintf (rtl_dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
|
---|
236 | bb->index);
|
---|
237 |
|
---|
238 | /* We implement "first match" heuristics and use probability guessed
|
---|
239 | by predictor with smallest index. In the future we will use better
|
---|
240 | probability combination techniques. */
|
---|
241 | for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
---|
242 | if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
---|
243 | {
|
---|
244 | int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
|
---|
245 | int probability = INTVAL (XEXP (XEXP (note, 0), 1));
|
---|
246 |
|
---|
247 | found = true;
|
---|
248 | if (best_predictor > predictor)
|
---|
249 | best_probability = probability, best_predictor = predictor;
|
---|
250 |
|
---|
251 | d = (combined_probability * probability
|
---|
252 | + (REG_BR_PROB_BASE - combined_probability)
|
---|
253 | * (REG_BR_PROB_BASE - probability));
|
---|
254 |
|
---|
255 | /* Use FP math to avoid overflows of 32bit integers. */
|
---|
256 | if (d == 0)
|
---|
257 | /* If one probability is 0% and one 100%, avoid division by zero. */
|
---|
258 | combined_probability = REG_BR_PROB_BASE / 2;
|
---|
259 | else
|
---|
260 | combined_probability = (((double) combined_probability) * probability
|
---|
261 | * REG_BR_PROB_BASE / d + 0.5);
|
---|
262 | }
|
---|
263 |
|
---|
264 | /* Decide which heuristic to use. In case we didn't match anything,
|
---|
265 | use no_prediction heuristic, in case we did match, use either
|
---|
266 | first match or Dempster-Shaffer theory depending on the flags. */
|
---|
267 |
|
---|
268 | if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
|
---|
269 | first_match = true;
|
---|
270 |
|
---|
271 | if (!found)
|
---|
272 | dump_prediction (PRED_NO_PREDICTION, combined_probability, bb, true);
|
---|
273 | else
|
---|
274 | {
|
---|
275 | dump_prediction (PRED_DS_THEORY, combined_probability, bb, !first_match);
|
---|
276 | dump_prediction (PRED_FIRST_MATCH, best_probability, bb, first_match);
|
---|
277 | }
|
---|
278 |
|
---|
279 | if (first_match)
|
---|
280 | combined_probability = best_probability;
|
---|
281 | dump_prediction (PRED_COMBINED, combined_probability, bb, true);
|
---|
282 |
|
---|
283 | while (*pnote)
|
---|
284 | {
|
---|
285 | if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
|
---|
286 | {
|
---|
287 | int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
|
---|
288 | int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
|
---|
289 |
|
---|
290 | dump_prediction (predictor, probability, bb,
|
---|
291 | !first_match || best_predictor == predictor);
|
---|
292 | *pnote = XEXP (*pnote, 1);
|
---|
293 | }
|
---|
294 | else
|
---|
295 | pnote = &XEXP (*pnote, 1);
|
---|
296 | }
|
---|
297 |
|
---|
298 | if (!prob_note)
|
---|
299 | {
|
---|
300 | REG_NOTES (insn)
|
---|
301 | = gen_rtx_EXPR_LIST (REG_BR_PROB,
|
---|
302 | GEN_INT (combined_probability), REG_NOTES (insn));
|
---|
303 |
|
---|
304 | /* Save the prediction into CFG in case we are seeing non-degenerated
|
---|
305 | conditional jump. */
|
---|
306 | if (bb->succ->succ_next)
|
---|
307 | {
|
---|
308 | BRANCH_EDGE (bb)->probability = combined_probability;
|
---|
309 | FALLTHRU_EDGE (bb)->probability
|
---|
310 | = REG_BR_PROB_BASE - combined_probability;
|
---|
311 | }
|
---|
312 | }
|
---|
313 | }
|
---|
314 |
|
---|
315 | /* Statically estimate the probability that a branch will be taken.
|
---|
316 | ??? In the next revision there will be a number of other predictors added
|
---|
317 | from the above references. Further, each heuristic will be factored out
|
---|
318 | into its own function for clarity (and to facilitate the combination of
|
---|
319 | predictions). */
|
---|
320 |
|
---|
321 | void
|
---|
322 | estimate_probability (loops_info)
|
---|
323 | struct loops *loops_info;
|
---|
324 | {
|
---|
325 | sbitmap *dominators, *post_dominators;
|
---|
326 | int i;
|
---|
327 | int found_noreturn = 0;
|
---|
328 |
|
---|
329 | dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
---|
330 | post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
|
---|
331 | calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
|
---|
332 | calculate_dominance_info (NULL, post_dominators, CDI_POST_DOMINATORS);
|
---|
333 |
|
---|
334 | /* Try to predict out blocks in a loop that are not part of a
|
---|
335 | natural loop. */
|
---|
336 | for (i = 0; i < loops_info->num; i++)
|
---|
337 | {
|
---|
338 | int j;
|
---|
339 | int exits;
|
---|
340 | struct loop *loop = &loops_info->array[i];
|
---|
341 |
|
---|
342 | flow_loop_scan (loops_info, loop, LOOP_EXIT_EDGES);
|
---|
343 | exits = loop->num_exits;
|
---|
344 |
|
---|
345 | for (j = loop->first->index; j <= loop->last->index; ++j)
|
---|
346 | if (TEST_BIT (loop->nodes, j))
|
---|
347 | {
|
---|
348 | int header_found = 0;
|
---|
349 | edge e;
|
---|
350 |
|
---|
351 | /* Loop branch heuristics - predict an edge back to a
|
---|
352 | loop's head as taken. */
|
---|
353 | for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
|
---|
354 | if (e->dest == loop->header
|
---|
355 | && e->src == loop->latch)
|
---|
356 | {
|
---|
357 | header_found = 1;
|
---|
358 | predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
|
---|
359 | }
|
---|
360 |
|
---|
361 | /* Loop exit heuristics - predict an edge exiting the loop if the
|
---|
362 | conditinal has no loop header successors as not taken. */
|
---|
363 | if (!header_found)
|
---|
364 | for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
|
---|
365 | if (e->dest->index < 0
|
---|
366 | || !TEST_BIT (loop->nodes, e->dest->index))
|
---|
367 | predict_edge
|
---|
368 | (e, PRED_LOOP_EXIT,
|
---|
369 | (REG_BR_PROB_BASE
|
---|
370 | - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
|
---|
371 | / exits);
|
---|
372 | }
|
---|
373 | }
|
---|
374 |
|
---|
375 | /* Attempt to predict conditional jumps using a number of heuristics. */
|
---|
376 | for (i = 0; i < n_basic_blocks; i++)
|
---|
377 | {
|
---|
378 | basic_block bb = BASIC_BLOCK (i);
|
---|
379 | rtx last_insn = bb->end;
|
---|
380 | rtx cond, earliest;
|
---|
381 | edge e;
|
---|
382 |
|
---|
383 | /* If block has no successor, predict all possible paths to it as
|
---|
384 | improbable, as the block contains a call to a noreturn function and
|
---|
385 | thus can be executed only once. */
|
---|
386 | if (bb->succ == NULL && !found_noreturn)
|
---|
387 | {
|
---|
388 | int y;
|
---|
389 |
|
---|
390 | /* ??? Postdominator claims each noreturn block to be postdominated
|
---|
391 | by each, so we need to run only once. This needs to be changed
|
---|
392 | once postdominace algorithm is updated to say something more
|
---|
393 | sane. */
|
---|
394 | found_noreturn = 1;
|
---|
395 | for (y = 0; y < n_basic_blocks; y++)
|
---|
396 | if (!TEST_BIT (post_dominators[y], i))
|
---|
397 | for (e = BASIC_BLOCK (y)->succ; e; e = e->succ_next)
|
---|
398 | if (e->dest->index >= 0
|
---|
399 | && TEST_BIT (post_dominators[e->dest->index], i))
|
---|
400 | predict_edge_def (e, PRED_NORETURN, NOT_TAKEN);
|
---|
401 | }
|
---|
402 |
|
---|
403 | if (GET_CODE (last_insn) != JUMP_INSN || ! any_condjump_p (last_insn))
|
---|
404 | continue;
|
---|
405 |
|
---|
406 | for (e = bb->succ; e; e = e->succ_next)
|
---|
407 | {
|
---|
408 | /* Predict edges to blocks that return immediately to be
|
---|
409 | improbable. These are usually used to signal error states. */
|
---|
410 | if (e->dest == EXIT_BLOCK_PTR
|
---|
411 | || (e->dest->succ && !e->dest->succ->succ_next
|
---|
412 | && e->dest->succ->dest == EXIT_BLOCK_PTR))
|
---|
413 | predict_edge_def (e, PRED_ERROR_RETURN, NOT_TAKEN);
|
---|
414 |
|
---|
415 | /* Look for block we are guarding (ie we dominate it,
|
---|
416 | but it doesn't postdominate us). */
|
---|
417 | if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
|
---|
418 | && TEST_BIT (dominators[e->dest->index], e->src->index)
|
---|
419 | && !TEST_BIT (post_dominators[e->src->index], e->dest->index))
|
---|
420 | {
|
---|
421 | rtx insn;
|
---|
422 |
|
---|
423 | /* The call heuristic claims that a guarded function call
|
---|
424 | is improbable. This is because such calls are often used
|
---|
425 | to signal exceptional situations such as printing error
|
---|
426 | messages. */
|
---|
427 | for (insn = e->dest->head; insn != NEXT_INSN (e->dest->end);
|
---|
428 | insn = NEXT_INSN (insn))
|
---|
429 | if (GET_CODE (insn) == CALL_INSN
|
---|
430 | /* Constant and pure calls are hardly used to signalize
|
---|
431 | something exceptional. */
|
---|
432 | && ! CONST_OR_PURE_CALL_P (insn))
|
---|
433 | {
|
---|
434 | predict_edge_def (e, PRED_CALL, NOT_TAKEN);
|
---|
435 | break;
|
---|
436 | }
|
---|
437 | }
|
---|
438 | }
|
---|
439 |
|
---|
440 | cond = get_condition (last_insn, &earliest);
|
---|
441 | if (! cond)
|
---|
442 | continue;
|
---|
443 |
|
---|
444 | /* Try "pointer heuristic."
|
---|
445 | A comparison ptr == 0 is predicted as false.
|
---|
446 | Similarly, a comparison ptr1 == ptr2 is predicted as false. */
|
---|
447 | if (GET_RTX_CLASS (GET_CODE (cond)) == '<'
|
---|
448 | && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
|
---|
449 | || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
|
---|
450 | {
|
---|
451 | if (GET_CODE (cond) == EQ)
|
---|
452 | predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
|
---|
453 | else if (GET_CODE (cond) == NE)
|
---|
454 | predict_insn_def (last_insn, PRED_POINTER, TAKEN);
|
---|
455 | }
|
---|
456 | else
|
---|
457 |
|
---|
458 | /* Try "opcode heuristic."
|
---|
459 | EQ tests are usually false and NE tests are usually true. Also,
|
---|
460 | most quantities are positive, so we can make the appropriate guesses
|
---|
461 | about signed comparisons against zero. */
|
---|
462 | switch (GET_CODE (cond))
|
---|
463 | {
|
---|
464 | case CONST_INT:
|
---|
465 | /* Unconditional branch. */
|
---|
466 | predict_insn_def (last_insn, PRED_UNCONDITIONAL,
|
---|
467 | cond == const0_rtx ? NOT_TAKEN : TAKEN);
|
---|
468 | break;
|
---|
469 |
|
---|
470 | case EQ:
|
---|
471 | case UNEQ:
|
---|
472 | /* Floating point comparisons appears to behave in a very
|
---|
473 | inpredictable way because of special role of = tests in
|
---|
474 | FP code. */
|
---|
475 | if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
---|
476 | ;
|
---|
477 | /* Comparisons with 0 are often used for booleans and there is
|
---|
478 | nothing usefull to predict about them. */
|
---|
479 | else if (XEXP (cond, 1) == const0_rtx
|
---|
480 | || XEXP (cond, 0) == const0_rtx)
|
---|
481 | ;
|
---|
482 | else
|
---|
483 | predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
|
---|
484 | break;
|
---|
485 |
|
---|
486 | case NE:
|
---|
487 | case LTGT:
|
---|
488 | /* Floating point comparisons appears to behave in a very
|
---|
489 | inpredictable way because of special role of = tests in
|
---|
490 | FP code. */
|
---|
491 | if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
---|
492 | ;
|
---|
493 | /* Comparisons with 0 are often used for booleans and there is
|
---|
494 | nothing usefull to predict about them. */
|
---|
495 | else if (XEXP (cond, 1) == const0_rtx
|
---|
496 | || XEXP (cond, 0) == const0_rtx)
|
---|
497 | ;
|
---|
498 | else
|
---|
499 | predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
|
---|
500 | break;
|
---|
501 |
|
---|
502 | case ORDERED:
|
---|
503 | predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
|
---|
504 | break;
|
---|
505 |
|
---|
506 | case UNORDERED:
|
---|
507 | predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
|
---|
508 | break;
|
---|
509 |
|
---|
510 | case LE:
|
---|
511 | case LT:
|
---|
512 | if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
---|
513 | || XEXP (cond, 1) == constm1_rtx)
|
---|
514 | predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
|
---|
515 | break;
|
---|
516 |
|
---|
517 | case GE:
|
---|
518 | case GT:
|
---|
519 | if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
---|
520 | || XEXP (cond, 1) == constm1_rtx)
|
---|
521 | predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
|
---|
522 | break;
|
---|
523 |
|
---|
524 | default:
|
---|
525 | break;
|
---|
526 | }
|
---|
527 | }
|
---|
528 |
|
---|
529 | /* Attach the combined probability to each conditional jump. */
|
---|
530 | for (i = 0; i < n_basic_blocks; i++)
|
---|
531 | if (GET_CODE (BLOCK_END (i)) == JUMP_INSN
|
---|
532 | && any_condjump_p (BLOCK_END (i)))
|
---|
533 | combine_predictions_for_insn (BLOCK_END (i), BASIC_BLOCK (i));
|
---|
534 |
|
---|
535 | sbitmap_vector_free (post_dominators);
|
---|
536 | sbitmap_vector_free (dominators);
|
---|
537 |
|
---|
538 | estimate_bb_frequencies (loops_info);
|
---|
539 | }
|
---|
540 | |
---|
541 |
|
---|
542 | /* __builtin_expect dropped tokens into the insn stream describing expected
|
---|
543 | values of registers. Generate branch probabilities based off these
|
---|
544 | values. */
|
---|
545 |
|
---|
546 | void
|
---|
547 | expected_value_to_br_prob ()
|
---|
548 | {
|
---|
549 | rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
|
---|
550 |
|
---|
551 | for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
|
---|
552 | {
|
---|
553 | switch (GET_CODE (insn))
|
---|
554 | {
|
---|
555 | case NOTE:
|
---|
556 | /* Look for expected value notes. */
|
---|
557 | if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
|
---|
558 | {
|
---|
559 | ev = NOTE_EXPECTED_VALUE (insn);
|
---|
560 | ev_reg = XEXP (ev, 0);
|
---|
561 | delete_insn (insn);
|
---|
562 | }
|
---|
563 | continue;
|
---|
564 |
|
---|
565 | case CODE_LABEL:
|
---|
566 | /* Never propagate across labels. */
|
---|
567 | ev = NULL_RTX;
|
---|
568 | continue;
|
---|
569 |
|
---|
570 | case JUMP_INSN:
|
---|
571 | /* Look for simple conditional branches. If we haven't got an
|
---|
572 | expected value yet, no point going further. */
|
---|
573 | if (GET_CODE (insn) != JUMP_INSN || ev == NULL_RTX
|
---|
574 | || ! any_condjump_p (insn))
|
---|
575 | continue;
|
---|
576 | break;
|
---|
577 |
|
---|
578 | default:
|
---|
579 | /* Look for insns that clobber the EV register. */
|
---|
580 | if (ev && reg_set_p (ev_reg, insn))
|
---|
581 | ev = NULL_RTX;
|
---|
582 | continue;
|
---|
583 | }
|
---|
584 |
|
---|
585 | /* Collect the branch condition, hopefully relative to EV_REG. */
|
---|
586 | /* ??? At present we'll miss things like
|
---|
587 | (expected_value (eq r70 0))
|
---|
588 | (set r71 -1)
|
---|
589 | (set r80 (lt r70 r71))
|
---|
590 | (set pc (if_then_else (ne r80 0) ...))
|
---|
591 | as canonicalize_condition will render this to us as
|
---|
592 | (lt r70, r71)
|
---|
593 | Could use cselib to try and reduce this further. */
|
---|
594 | cond = XEXP (SET_SRC (pc_set (insn)), 0);
|
---|
595 | cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg);
|
---|
596 | if (! cond || XEXP (cond, 0) != ev_reg
|
---|
597 | || GET_CODE (XEXP (cond, 1)) != CONST_INT)
|
---|
598 | continue;
|
---|
599 |
|
---|
600 | /* Substitute and simplify. Given that the expression we're
|
---|
601 | building involves two constants, we should wind up with either
|
---|
602 | true or false. */
|
---|
603 | cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
|
---|
604 | XEXP (ev, 1), XEXP (cond, 1));
|
---|
605 | cond = simplify_rtx (cond);
|
---|
606 |
|
---|
607 | /* Turn the condition into a scaled branch probability. */
|
---|
608 | if (cond != const_true_rtx && cond != const0_rtx)
|
---|
609 | abort ();
|
---|
610 | predict_insn_def (insn, PRED_BUILTIN_EXPECT,
|
---|
611 | cond == const_true_rtx ? TAKEN : NOT_TAKEN);
|
---|
612 | }
|
---|
613 | }
|
---|
614 | |
---|
615 |
|
---|
616 | /* This is used to carry information about basic blocks. It is
|
---|
617 | attached to the AUX field of the standard CFG block. */
|
---|
618 |
|
---|
619 | typedef struct block_info_def
|
---|
620 | {
|
---|
621 | /* Estimated frequency of execution of basic_block. */
|
---|
622 | volatile double frequency;
|
---|
623 |
|
---|
624 | /* To keep queue of basic blocks to process. */
|
---|
625 | basic_block next;
|
---|
626 |
|
---|
627 | /* True if block needs to be visited in prop_freqency. */
|
---|
628 | int tovisit:1;
|
---|
629 |
|
---|
630 | /* Number of predecessors we need to visit first. */
|
---|
631 | int npredecessors;
|
---|
632 | } *block_info;
|
---|
633 |
|
---|
634 | /* Similar information for edges. */
|
---|
635 | typedef struct edge_info_def
|
---|
636 | {
|
---|
637 | /* In case edge is an loopback edge, the probability edge will be reached
|
---|
638 | in case header is. Estimated number of iterations of the loop can be
|
---|
639 | then computed as 1 / (1 - back_edge_prob).
|
---|
640 |
|
---|
641 | Volatile is needed to avoid differences in the optimized and unoptimized
|
---|
642 | builds on machines where FP registers are wider than double. */
|
---|
643 | volatile double back_edge_prob;
|
---|
644 | /* True if the edge is an loopback edge in the natural loop. */
|
---|
645 | int back_edge:1;
|
---|
646 | } *edge_info;
|
---|
647 |
|
---|
648 | #define BLOCK_INFO(B) ((block_info) (B)->aux)
|
---|
649 | #define EDGE_INFO(E) ((edge_info) (E)->aux)
|
---|
650 |
|
---|
651 | /* Helper function for estimate_bb_frequencies.
|
---|
652 | Propagate the frequencies for loops headed by HEAD. */
|
---|
653 |
|
---|
654 | static void
|
---|
655 | propagate_freq (head)
|
---|
656 | basic_block head;
|
---|
657 | {
|
---|
658 | basic_block bb = head;
|
---|
659 | basic_block last = bb;
|
---|
660 | edge e;
|
---|
661 | basic_block nextbb;
|
---|
662 | int n;
|
---|
663 |
|
---|
664 | /* For each basic block we need to visit count number of his predecessors
|
---|
665 | we need to visit first. */
|
---|
666 | for (n = 0; n < n_basic_blocks; n++)
|
---|
667 | {
|
---|
668 | basic_block bb = BASIC_BLOCK (n);
|
---|
669 | if (BLOCK_INFO (bb)->tovisit)
|
---|
670 | {
|
---|
671 | int count = 0;
|
---|
672 |
|
---|
673 | for (e = bb->pred; e; e = e->pred_next)
|
---|
674 | if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
|
---|
675 | count++;
|
---|
676 | else if (BLOCK_INFO (e->src)->tovisit
|
---|
677 | && rtl_dump_file && !EDGE_INFO (e)->back_edge)
|
---|
678 | fprintf (rtl_dump_file,
|
---|
679 | "Irreducible region hit, ignoring edge to %i->%i\n",
|
---|
680 | e->src->index, bb->index);
|
---|
681 | BLOCK_INFO (bb)->npredecessors = count;
|
---|
682 | }
|
---|
683 | }
|
---|
684 |
|
---|
685 | BLOCK_INFO (head)->frequency = 1;
|
---|
686 | for (; bb; bb = nextbb)
|
---|
687 | {
|
---|
688 | double cyclic_probability = 0, frequency = 0;
|
---|
689 |
|
---|
690 | nextbb = BLOCK_INFO (bb)->next;
|
---|
691 | BLOCK_INFO (bb)->next = NULL;
|
---|
692 |
|
---|
693 | /* Compute frequency of basic block. */
|
---|
694 | if (bb != head)
|
---|
695 | {
|
---|
696 | #ifdef ENABLE_CHECKING
|
---|
697 | for (e = bb->pred; e; e = e->pred_next)
|
---|
698 | if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
|
---|
699 | abort ();
|
---|
700 | #endif
|
---|
701 |
|
---|
702 | for (e = bb->pred; e; e = e->pred_next)
|
---|
703 | if (EDGE_INFO (e)->back_edge)
|
---|
704 | cyclic_probability += EDGE_INFO (e)->back_edge_prob;
|
---|
705 | else if (!(e->flags & EDGE_DFS_BACK))
|
---|
706 | frequency += (e->probability
|
---|
707 | * BLOCK_INFO (e->src)->frequency /
|
---|
708 | REG_BR_PROB_BASE);
|
---|
709 |
|
---|
710 | if (cyclic_probability > 1.0 - 1.0 / REG_BR_PROB_BASE)
|
---|
711 | cyclic_probability = 1.0 - 1.0 / REG_BR_PROB_BASE;
|
---|
712 |
|
---|
713 | BLOCK_INFO (bb)->frequency = frequency / (1 - cyclic_probability);
|
---|
714 | }
|
---|
715 |
|
---|
716 | BLOCK_INFO (bb)->tovisit = 0;
|
---|
717 |
|
---|
718 | /* Compute back edge frequencies. */
|
---|
719 | for (e = bb->succ; e; e = e->succ_next)
|
---|
720 | if (e->dest == head)
|
---|
721 | EDGE_INFO (e)->back_edge_prob
|
---|
722 | = ((e->probability * BLOCK_INFO (bb)->frequency)
|
---|
723 | / REG_BR_PROB_BASE);
|
---|
724 |
|
---|
725 | /* Propagate to successor blocks. */
|
---|
726 | for (e = bb->succ; e; e = e->succ_next)
|
---|
727 | if (!(e->flags & EDGE_DFS_BACK)
|
---|
728 | && BLOCK_INFO (e->dest)->npredecessors)
|
---|
729 | {
|
---|
730 | BLOCK_INFO (e->dest)->npredecessors--;
|
---|
731 | if (!BLOCK_INFO (e->dest)->npredecessors)
|
---|
732 | {
|
---|
733 | if (!nextbb)
|
---|
734 | nextbb = e->dest;
|
---|
735 | else
|
---|
736 | BLOCK_INFO (last)->next = e->dest;
|
---|
737 |
|
---|
738 | last = e->dest;
|
---|
739 | }
|
---|
740 | }
|
---|
741 | }
|
---|
742 | }
|
---|
743 |
|
---|
744 | /* Estimate probabilities of loopback edges in loops at same nest level. */
|
---|
745 |
|
---|
746 | static void
|
---|
747 | estimate_loops_at_level (first_loop)
|
---|
748 | struct loop *first_loop;
|
---|
749 | {
|
---|
750 | struct loop *l, *loop = first_loop;
|
---|
751 |
|
---|
752 | for (loop = first_loop; loop; loop = loop->next)
|
---|
753 | {
|
---|
754 | int n;
|
---|
755 | edge e;
|
---|
756 |
|
---|
757 | estimate_loops_at_level (loop->inner);
|
---|
758 |
|
---|
759 | /* Find current loop back edge and mark it. */
|
---|
760 | for (e = loop->latch->succ; e->dest != loop->header; e = e->succ_next)
|
---|
761 | ;
|
---|
762 |
|
---|
763 | EDGE_INFO (e)->back_edge = 1;
|
---|
764 |
|
---|
765 | /* In case the loop header is shared, ensure that it is the last
|
---|
766 | one sharing the same header, so we avoid redundant work. */
|
---|
767 | if (loop->shared)
|
---|
768 | {
|
---|
769 | for (l = loop->next; l; l = l->next)
|
---|
770 | if (l->header == loop->header)
|
---|
771 | break;
|
---|
772 |
|
---|
773 | if (l)
|
---|
774 | continue;
|
---|
775 | }
|
---|
776 |
|
---|
777 | /* Now merge all nodes of all loops with given header as not visited. */
|
---|
778 | for (l = loop->shared ? first_loop : loop; l != loop->next; l = l->next)
|
---|
779 | if (loop->header == l->header)
|
---|
780 | EXECUTE_IF_SET_IN_SBITMAP (l->nodes, 0, n,
|
---|
781 | BLOCK_INFO (BASIC_BLOCK (n))->tovisit = 1
|
---|
782 | );
|
---|
783 |
|
---|
784 | propagate_freq (loop->header);
|
---|
785 | }
|
---|
786 | }
|
---|
787 |
|
---|
788 | /* Convert counts measured by profile driven feedback to frequencies. */
|
---|
789 |
|
---|
790 | static void
|
---|
791 | counts_to_freqs ()
|
---|
792 | {
|
---|
793 | HOST_WIDEST_INT count_max = 1;
|
---|
794 | int i;
|
---|
795 |
|
---|
796 | for (i = 0; i < n_basic_blocks; i++)
|
---|
797 | count_max = MAX (BASIC_BLOCK (i)->count, count_max);
|
---|
798 |
|
---|
799 | for (i = -2; i < n_basic_blocks; i++)
|
---|
800 | {
|
---|
801 | basic_block bb;
|
---|
802 |
|
---|
803 | if (i == -2)
|
---|
804 | bb = ENTRY_BLOCK_PTR;
|
---|
805 | else if (i == -1)
|
---|
806 | bb = EXIT_BLOCK_PTR;
|
---|
807 | else
|
---|
808 | bb = BASIC_BLOCK (i);
|
---|
809 |
|
---|
810 | bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
|
---|
811 | }
|
---|
812 | }
|
---|
813 |
|
---|
814 | /* Return true if function is likely to be expensive, so there is no point to
|
---|
815 | optimize performance of prologue, epilogue or do inlining at the expense
|
---|
816 | of code size growth. THRESHOLD is the limit of number of isntructions
|
---|
817 | function can execute at average to be still considered not expensive. */
|
---|
818 |
|
---|
819 | bool
|
---|
820 | expensive_function_p (threshold)
|
---|
821 | int threshold;
|
---|
822 | {
|
---|
823 | unsigned int sum = 0;
|
---|
824 | int i;
|
---|
825 | unsigned int limit;
|
---|
826 |
|
---|
827 | /* We can not compute accurately for large thresholds due to scaled
|
---|
828 | frequencies. */
|
---|
829 | if (threshold > BB_FREQ_MAX)
|
---|
830 | abort ();
|
---|
831 |
|
---|
832 | /* Frequencies are out of range. This either means that function contains
|
---|
833 | internal loop executing more than BB_FREQ_MAX times or profile feedback
|
---|
834 | is available and function has not been executed at all. */
|
---|
835 | if (ENTRY_BLOCK_PTR->frequency == 0)
|
---|
836 | return true;
|
---|
837 |
|
---|
838 | /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
|
---|
839 | limit = ENTRY_BLOCK_PTR->frequency * threshold;
|
---|
840 | for (i = 0; i < n_basic_blocks; i++)
|
---|
841 | {
|
---|
842 | basic_block bb = BASIC_BLOCK (i);
|
---|
843 | rtx insn;
|
---|
844 |
|
---|
845 | for (insn = bb->head; insn != NEXT_INSN (bb->end);
|
---|
846 | insn = NEXT_INSN (insn))
|
---|
847 | if (active_insn_p (insn))
|
---|
848 | {
|
---|
849 | sum += bb->frequency;
|
---|
850 | if (sum > limit)
|
---|
851 | return true;
|
---|
852 | }
|
---|
853 | }
|
---|
854 |
|
---|
855 | return false;
|
---|
856 | }
|
---|
857 |
|
---|
858 | /* Estimate basic blocks frequency by given branch probabilities. */
|
---|
859 |
|
---|
860 | static void
|
---|
861 | estimate_bb_frequencies (loops)
|
---|
862 | struct loops *loops;
|
---|
863 | {
|
---|
864 | int i;
|
---|
865 | double freq_max = 0;
|
---|
866 |
|
---|
867 | mark_dfs_back_edges ();
|
---|
868 | if (flag_branch_probabilities)
|
---|
869 | {
|
---|
870 | counts_to_freqs ();
|
---|
871 | return;
|
---|
872 | }
|
---|
873 |
|
---|
874 | /* Fill in the probability values in flowgraph based on the REG_BR_PROB
|
---|
875 | notes. */
|
---|
876 | for (i = 0; i < n_basic_blocks; i++)
|
---|
877 | {
|
---|
878 | rtx last_insn = BLOCK_END (i);
|
---|
879 | int probability;
|
---|
880 | edge fallthru, branch;
|
---|
881 |
|
---|
882 | if (GET_CODE (last_insn) != JUMP_INSN || !any_condjump_p (last_insn)
|
---|
883 | /* Avoid handling of conditional jumps jumping to fallthru edge. */
|
---|
884 | || BASIC_BLOCK (i)->succ->succ_next == NULL)
|
---|
885 | {
|
---|
886 | /* We can predict only conditional jumps at the moment.
|
---|
887 | Expect each edge to be equally probable.
|
---|
888 | ?? In the future we want to make abnormal edges improbable. */
|
---|
889 | int nedges = 0;
|
---|
890 | edge e;
|
---|
891 |
|
---|
892 | for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
|
---|
893 | {
|
---|
894 | nedges++;
|
---|
895 | if (e->probability != 0)
|
---|
896 | break;
|
---|
897 | }
|
---|
898 | if (!e)
|
---|
899 | for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
|
---|
900 | e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
|
---|
901 | }
|
---|
902 | else
|
---|
903 | {
|
---|
904 | probability = INTVAL (XEXP (find_reg_note (last_insn,
|
---|
905 | REG_BR_PROB, 0), 0));
|
---|
906 | fallthru = BASIC_BLOCK (i)->succ;
|
---|
907 | if (!fallthru->flags & EDGE_FALLTHRU)
|
---|
908 | fallthru = fallthru->succ_next;
|
---|
909 | branch = BASIC_BLOCK (i)->succ;
|
---|
910 | if (branch->flags & EDGE_FALLTHRU)
|
---|
911 | branch = branch->succ_next;
|
---|
912 |
|
---|
913 | branch->probability = probability;
|
---|
914 | fallthru->probability = REG_BR_PROB_BASE - probability;
|
---|
915 | }
|
---|
916 | }
|
---|
917 |
|
---|
918 | ENTRY_BLOCK_PTR->succ->probability = REG_BR_PROB_BASE;
|
---|
919 |
|
---|
920 | /* Set up block info for each basic block. */
|
---|
921 | alloc_aux_for_blocks (sizeof (struct block_info_def));
|
---|
922 | alloc_aux_for_edges (sizeof (struct edge_info_def));
|
---|
923 | for (i = -2; i < n_basic_blocks; i++)
|
---|
924 | {
|
---|
925 | edge e;
|
---|
926 | basic_block bb;
|
---|
927 |
|
---|
928 | if (i == -2)
|
---|
929 | bb = ENTRY_BLOCK_PTR;
|
---|
930 | else if (i == -1)
|
---|
931 | bb = EXIT_BLOCK_PTR;
|
---|
932 | else
|
---|
933 | bb = BASIC_BLOCK (i);
|
---|
934 |
|
---|
935 | BLOCK_INFO (bb)->tovisit = 0;
|
---|
936 | for (e = bb->succ; e; e = e->succ_next)
|
---|
937 | EDGE_INFO (e)->back_edge_prob = ((double) e->probability
|
---|
938 | / REG_BR_PROB_BASE);
|
---|
939 | }
|
---|
940 |
|
---|
941 | /* First compute probabilities locally for each loop from innermost
|
---|
942 | to outermost to examine probabilities for back edges. */
|
---|
943 | estimate_loops_at_level (loops->tree_root);
|
---|
944 |
|
---|
945 | /* Now fake loop around whole function to finalize probabilities. */
|
---|
946 | for (i = 0; i < n_basic_blocks; i++)
|
---|
947 | BLOCK_INFO (BASIC_BLOCK (i))->tovisit = 1;
|
---|
948 |
|
---|
949 | BLOCK_INFO (ENTRY_BLOCK_PTR)->tovisit = 1;
|
---|
950 | BLOCK_INFO (EXIT_BLOCK_PTR)->tovisit = 1;
|
---|
951 | propagate_freq (ENTRY_BLOCK_PTR);
|
---|
952 |
|
---|
953 | for (i = 0; i < n_basic_blocks; i++)
|
---|
954 | if (BLOCK_INFO (BASIC_BLOCK (i))->frequency > freq_max)
|
---|
955 | freq_max = BLOCK_INFO (BASIC_BLOCK (i))->frequency;
|
---|
956 |
|
---|
957 | for (i = -2; i < n_basic_blocks; i++)
|
---|
958 | {
|
---|
959 | basic_block bb;
|
---|
960 | volatile double tmp;
|
---|
961 |
|
---|
962 | if (i == -2)
|
---|
963 | bb = ENTRY_BLOCK_PTR;
|
---|
964 | else if (i == -1)
|
---|
965 | bb = EXIT_BLOCK_PTR;
|
---|
966 | else
|
---|
967 | bb = BASIC_BLOCK (i);
|
---|
968 |
|
---|
969 | /* ??? Prevent rounding differences due to optimization on x86. */
|
---|
970 | tmp = BLOCK_INFO (bb)->frequency * BB_FREQ_MAX;
|
---|
971 | tmp /= freq_max;
|
---|
972 | tmp += 0.5;
|
---|
973 | bb->frequency = tmp;
|
---|
974 | }
|
---|
975 |
|
---|
976 | free_aux_for_blocks ();
|
---|
977 | free_aux_for_edges ();
|
---|
978 | }
|
---|