1 | /* Branch prediction routines for the GNU compiler.
|
---|
2 | Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of GCC.
|
---|
5 |
|
---|
6 | GCC is free software; you can redistribute it and/or modify it under
|
---|
7 | the terms of the GNU General Public License as published by the Free
|
---|
8 | Software Foundation; either version 2, or (at your option) any later
|
---|
9 | version.
|
---|
10 |
|
---|
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
---|
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
---|
14 | for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with GCC; see the file COPYING. If not, write to the Free
|
---|
18 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
---|
19 | 02111-1307, USA. */
|
---|
20 |
|
---|
21 | /* References:
|
---|
22 |
|
---|
23 | [1] "Branch Prediction for Free"
|
---|
24 | Ball and Larus; PLDI '93.
|
---|
25 | [2] "Static Branch Frequency and Program Profile Analysis"
|
---|
26 | Wu and Larus; MICRO-27.
|
---|
27 | [3] "Corpus-based Static Branch Prediction"
|
---|
28 | Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
|
---|
29 |
|
---|
30 |
|
---|
31 | #include "config.h"
|
---|
32 | #include "system.h"
|
---|
33 | #include "tree.h"
|
---|
34 | #include "rtl.h"
|
---|
35 | #include "tm_p.h"
|
---|
36 | #include "hard-reg-set.h"
|
---|
37 | #include "basic-block.h"
|
---|
38 | #include "insn-config.h"
|
---|
39 | #include "regs.h"
|
---|
40 | #include "flags.h"
|
---|
41 | #include "output.h"
|
---|
42 | #include "function.h"
|
---|
43 | #include "except.h"
|
---|
44 | #include "toplev.h"
|
---|
45 | #include "recog.h"
|
---|
46 | #include "expr.h"
|
---|
47 | #include "predict.h"
|
---|
48 | #include "profile.h"
|
---|
49 | #include "real.h"
|
---|
50 | #include "params.h"
|
---|
51 | #include "target.h"
|
---|
52 | #include "loop.h"
|
---|
53 |
|
---|
54 | /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
|
---|
55 | 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
|
---|
56 | static REAL_VALUE_TYPE real_zero, real_one, real_almost_one, real_br_prob_base,
|
---|
57 | real_inv_br_prob_base, real_one_half, real_bb_freq_max;
|
---|
58 |
|
---|
59 | /* Random guesstimation given names. */
|
---|
60 | #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
|
---|
61 | #define PROB_EVEN (REG_BR_PROB_BASE / 2)
|
---|
62 | #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
|
---|
63 | #define PROB_ALWAYS (REG_BR_PROB_BASE)
|
---|
64 |
|
---|
65 | static bool predicted_by_p PARAMS ((basic_block,
|
---|
66 | enum br_predictor));
|
---|
67 | static void combine_predictions_for_insn PARAMS ((rtx, basic_block));
|
---|
68 | static void dump_prediction PARAMS ((enum br_predictor, int,
|
---|
69 | basic_block, int));
|
---|
70 | static void estimate_loops_at_level PARAMS ((struct loop *loop));
|
---|
71 | static void propagate_freq PARAMS ((struct loop *));
|
---|
72 | static void estimate_bb_frequencies PARAMS ((struct loops *));
|
---|
73 | static void counts_to_freqs PARAMS ((void));
|
---|
74 | static void process_note_predictions PARAMS ((basic_block, int *,
|
---|
75 | dominance_info,
|
---|
76 | dominance_info));
|
---|
77 | static void process_note_prediction PARAMS ((basic_block, int *,
|
---|
78 | dominance_info,
|
---|
79 | dominance_info, int, int));
|
---|
80 | static bool last_basic_block_p PARAMS ((basic_block));
|
---|
81 | static void compute_function_frequency PARAMS ((void));
|
---|
82 | static void choose_function_section PARAMS ((void));
|
---|
83 | static bool can_predict_insn_p PARAMS ((rtx));
|
---|
84 |
|
---|
85 | /* Information we hold about each branch predictor.
|
---|
86 | Filled using information from predict.def. */
|
---|
87 |
|
---|
88 | struct predictor_info
|
---|
89 | {
|
---|
90 | const char *const name; /* Name used in the debugging dumps. */
|
---|
91 | const int hitrate; /* Expected hitrate used by
|
---|
92 | predict_insn_def call. */
|
---|
93 | const int flags;
|
---|
94 | };
|
---|
95 |
|
---|
96 | /* Use given predictor without Dempster-Shaffer theory if it matches
|
---|
97 | using first_match heuristics. */
|
---|
98 | #define PRED_FLAG_FIRST_MATCH 1
|
---|
99 |
|
---|
100 | /* Recompute hitrate in percent to our representation. */
|
---|
101 |
|
---|
102 | #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
|
---|
103 |
|
---|
104 | #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
|
---|
105 | static const struct predictor_info predictor_info[]= {
|
---|
106 | #include "predict.def"
|
---|
107 |
|
---|
108 | /* Upper bound on predictors. */
|
---|
109 | {NULL, 0, 0}
|
---|
110 | };
|
---|
111 | #undef DEF_PREDICTOR
|
---|
112 |
|
---|
113 | /* Return true in case BB can be CPU intensive and should be optimized
|
---|
114 | for maximal perofmrance. */
|
---|
115 |
|
---|
116 | bool
|
---|
117 | maybe_hot_bb_p (bb)
|
---|
118 | basic_block bb;
|
---|
119 | {
|
---|
120 | if (profile_info.count_profiles_merged
|
---|
121 | && flag_branch_probabilities
|
---|
122 | && (bb->count
|
---|
123 | < profile_info.max_counter_in_program
|
---|
124 | / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
|
---|
125 | return false;
|
---|
126 | if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
|
---|
127 | return false;
|
---|
128 | return true;
|
---|
129 | }
|
---|
130 |
|
---|
131 | /* Return true in case BB is cold and should be optimized for size. */
|
---|
132 |
|
---|
133 | bool
|
---|
134 | probably_cold_bb_p (bb)
|
---|
135 | basic_block bb;
|
---|
136 | {
|
---|
137 | if (profile_info.count_profiles_merged
|
---|
138 | && flag_branch_probabilities
|
---|
139 | && (bb->count
|
---|
140 | < profile_info.max_counter_in_program
|
---|
141 | / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
|
---|
142 | return true;
|
---|
143 | if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
|
---|
144 | return true;
|
---|
145 | return false;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /* Return true in case BB is probably never executed. */
|
---|
149 | bool
|
---|
150 | probably_never_executed_bb_p (bb)
|
---|
151 | basic_block bb;
|
---|
152 | {
|
---|
153 | if (profile_info.count_profiles_merged
|
---|
154 | && flag_branch_probabilities)
|
---|
155 | return ((bb->count + profile_info.count_profiles_merged / 2)
|
---|
156 | / profile_info.count_profiles_merged) == 0;
|
---|
157 | return false;
|
---|
158 | }
|
---|
159 |
|
---|
160 | /* Return true if the one of outgoing edges is already predicted by
|
---|
161 | PREDICTOR. */
|
---|
162 |
|
---|
163 | static bool
|
---|
164 | predicted_by_p (bb, predictor)
|
---|
165 | basic_block bb;
|
---|
166 | enum br_predictor predictor;
|
---|
167 | {
|
---|
168 | rtx note;
|
---|
169 | if (!INSN_P (bb->end))
|
---|
170 | return false;
|
---|
171 | for (note = REG_NOTES (bb->end); note; note = XEXP (note, 1))
|
---|
172 | if (REG_NOTE_KIND (note) == REG_BR_PRED
|
---|
173 | && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
|
---|
174 | return true;
|
---|
175 | return false;
|
---|
176 | }
|
---|
177 |
|
---|
178 | void
|
---|
179 | predict_insn (insn, predictor, probability)
|
---|
180 | rtx insn;
|
---|
181 | int probability;
|
---|
182 | enum br_predictor predictor;
|
---|
183 | {
|
---|
184 | if (!any_condjump_p (insn))
|
---|
185 | abort ();
|
---|
186 | if (!flag_guess_branch_prob)
|
---|
187 | return;
|
---|
188 |
|
---|
189 | REG_NOTES (insn)
|
---|
190 | = gen_rtx_EXPR_LIST (REG_BR_PRED,
|
---|
191 | gen_rtx_CONCAT (VOIDmode,
|
---|
192 | GEN_INT ((int) predictor),
|
---|
193 | GEN_INT ((int) probability)),
|
---|
194 | REG_NOTES (insn));
|
---|
195 | }
|
---|
196 |
|
---|
197 | /* Predict insn by given predictor. */
|
---|
198 |
|
---|
199 | void
|
---|
200 | predict_insn_def (insn, predictor, taken)
|
---|
201 | rtx insn;
|
---|
202 | enum br_predictor predictor;
|
---|
203 | enum prediction taken;
|
---|
204 | {
|
---|
205 | int probability = predictor_info[(int) predictor].hitrate;
|
---|
206 |
|
---|
207 | if (taken != TAKEN)
|
---|
208 | probability = REG_BR_PROB_BASE - probability;
|
---|
209 |
|
---|
210 | predict_insn (insn, predictor, probability);
|
---|
211 | }
|
---|
212 |
|
---|
213 | /* Predict edge E with given probability if possible. */
|
---|
214 |
|
---|
215 | void
|
---|
216 | predict_edge (e, predictor, probability)
|
---|
217 | edge e;
|
---|
218 | int probability;
|
---|
219 | enum br_predictor predictor;
|
---|
220 | {
|
---|
221 | rtx last_insn;
|
---|
222 | last_insn = e->src->end;
|
---|
223 |
|
---|
224 | /* We can store the branch prediction information only about
|
---|
225 | conditional jumps. */
|
---|
226 | if (!any_condjump_p (last_insn))
|
---|
227 | return;
|
---|
228 |
|
---|
229 | /* We always store probability of branching. */
|
---|
230 | if (e->flags & EDGE_FALLTHRU)
|
---|
231 | probability = REG_BR_PROB_BASE - probability;
|
---|
232 |
|
---|
233 | predict_insn (last_insn, predictor, probability);
|
---|
234 | }
|
---|
235 |
|
---|
236 | /* Return true when we can store prediction on insn INSN.
|
---|
237 | At the moment we represent predictions only on conditional
|
---|
238 | jumps, not at computed jump or other complicated cases. */
|
---|
239 | static bool
|
---|
240 | can_predict_insn_p (insn)
|
---|
241 | rtx insn;
|
---|
242 | {
|
---|
243 | return (GET_CODE (insn) == JUMP_INSN
|
---|
244 | && any_condjump_p (insn)
|
---|
245 | && BLOCK_FOR_INSN (insn)->succ->succ_next);
|
---|
246 | }
|
---|
247 |
|
---|
248 | /* Predict edge E by given predictor if possible. */
|
---|
249 |
|
---|
250 | void
|
---|
251 | predict_edge_def (e, predictor, taken)
|
---|
252 | edge e;
|
---|
253 | enum br_predictor predictor;
|
---|
254 | enum prediction taken;
|
---|
255 | {
|
---|
256 | int probability = predictor_info[(int) predictor].hitrate;
|
---|
257 |
|
---|
258 | if (taken != TAKEN)
|
---|
259 | probability = REG_BR_PROB_BASE - probability;
|
---|
260 |
|
---|
261 | predict_edge (e, predictor, probability);
|
---|
262 | }
|
---|
263 |
|
---|
264 | /* Invert all branch predictions or probability notes in the INSN. This needs
|
---|
265 | to be done each time we invert the condition used by the jump. */
|
---|
266 |
|
---|
267 | void
|
---|
268 | invert_br_probabilities (insn)
|
---|
269 | rtx insn;
|
---|
270 | {
|
---|
271 | rtx note;
|
---|
272 |
|
---|
273 | for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
---|
274 | if (REG_NOTE_KIND (note) == REG_BR_PROB)
|
---|
275 | XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
|
---|
276 | else if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
---|
277 | XEXP (XEXP (note, 0), 1)
|
---|
278 | = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
|
---|
279 | }
|
---|
280 |
|
---|
281 | /* Dump information about the branch prediction to the output file. */
|
---|
282 |
|
---|
283 | static void
|
---|
284 | dump_prediction (predictor, probability, bb, used)
|
---|
285 | enum br_predictor predictor;
|
---|
286 | int probability;
|
---|
287 | basic_block bb;
|
---|
288 | int used;
|
---|
289 | {
|
---|
290 | edge e = bb->succ;
|
---|
291 |
|
---|
292 | if (!rtl_dump_file)
|
---|
293 | return;
|
---|
294 |
|
---|
295 | while (e && (e->flags & EDGE_FALLTHRU))
|
---|
296 | e = e->succ_next;
|
---|
297 |
|
---|
298 | fprintf (rtl_dump_file, " %s heuristics%s: %.1f%%",
|
---|
299 | predictor_info[predictor].name,
|
---|
300 | used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
|
---|
301 |
|
---|
302 | if (bb->count)
|
---|
303 | {
|
---|
304 | fprintf (rtl_dump_file, " exec ");
|
---|
305 | fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
|
---|
306 | if (e)
|
---|
307 | {
|
---|
308 | fprintf (rtl_dump_file, " hit ");
|
---|
309 | fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC, e->count);
|
---|
310 | fprintf (rtl_dump_file, " (%.1f%%)", e->count * 100.0 / bb->count);
|
---|
311 | }
|
---|
312 | }
|
---|
313 |
|
---|
314 | fprintf (rtl_dump_file, "\n");
|
---|
315 | }
|
---|
316 |
|
---|
317 | /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
|
---|
318 | note if not already present. Remove now useless REG_BR_PRED notes. */
|
---|
319 |
|
---|
320 | static void
|
---|
321 | combine_predictions_for_insn (insn, bb)
|
---|
322 | rtx insn;
|
---|
323 | basic_block bb;
|
---|
324 | {
|
---|
325 | rtx prob_note = find_reg_note (insn, REG_BR_PROB, 0);
|
---|
326 | rtx *pnote = ®_NOTES (insn);
|
---|
327 | rtx note;
|
---|
328 | int best_probability = PROB_EVEN;
|
---|
329 | int best_predictor = END_PREDICTORS;
|
---|
330 | int combined_probability = REG_BR_PROB_BASE / 2;
|
---|
331 | int d;
|
---|
332 | bool first_match = false;
|
---|
333 | bool found = false;
|
---|
334 |
|
---|
335 | if (rtl_dump_file)
|
---|
336 | fprintf (rtl_dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
|
---|
337 | bb->index);
|
---|
338 |
|
---|
339 | /* We implement "first match" heuristics and use probability guessed
|
---|
340 | by predictor with smallest index. In the future we will use better
|
---|
341 | probability combination techniques. */
|
---|
342 | for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
---|
343 | if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
---|
344 | {
|
---|
345 | int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
|
---|
346 | int probability = INTVAL (XEXP (XEXP (note, 0), 1));
|
---|
347 |
|
---|
348 | found = true;
|
---|
349 | if (best_predictor > predictor)
|
---|
350 | best_probability = probability, best_predictor = predictor;
|
---|
351 |
|
---|
352 | d = (combined_probability * probability
|
---|
353 | + (REG_BR_PROB_BASE - combined_probability)
|
---|
354 | * (REG_BR_PROB_BASE - probability));
|
---|
355 |
|
---|
356 | /* Use FP math to avoid overflows of 32bit integers. */
|
---|
357 | if (d == 0)
|
---|
358 | /* If one probability is 0% and one 100%, avoid division by zero. */
|
---|
359 | combined_probability = REG_BR_PROB_BASE / 2;
|
---|
360 | else
|
---|
361 | combined_probability = (((double) combined_probability) * probability
|
---|
362 | * REG_BR_PROB_BASE / d + 0.5);
|
---|
363 | }
|
---|
364 |
|
---|
365 | /* Decide which heuristic to use. In case we didn't match anything,
|
---|
366 | use no_prediction heuristic, in case we did match, use either
|
---|
367 | first match or Dempster-Shaffer theory depending on the flags. */
|
---|
368 |
|
---|
369 | if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
|
---|
370 | first_match = true;
|
---|
371 |
|
---|
372 | if (!found)
|
---|
373 | dump_prediction (PRED_NO_PREDICTION, combined_probability, bb, true);
|
---|
374 | else
|
---|
375 | {
|
---|
376 | dump_prediction (PRED_DS_THEORY, combined_probability, bb, !first_match);
|
---|
377 | dump_prediction (PRED_FIRST_MATCH, best_probability, bb, first_match);
|
---|
378 | }
|
---|
379 |
|
---|
380 | if (first_match)
|
---|
381 | combined_probability = best_probability;
|
---|
382 | dump_prediction (PRED_COMBINED, combined_probability, bb, true);
|
---|
383 |
|
---|
384 | while (*pnote)
|
---|
385 | {
|
---|
386 | if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
|
---|
387 | {
|
---|
388 | int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
|
---|
389 | int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
|
---|
390 |
|
---|
391 | dump_prediction (predictor, probability, bb,
|
---|
392 | !first_match || best_predictor == predictor);
|
---|
393 | *pnote = XEXP (*pnote, 1);
|
---|
394 | }
|
---|
395 | else
|
---|
396 | pnote = &XEXP (*pnote, 1);
|
---|
397 | }
|
---|
398 |
|
---|
399 | if (!prob_note)
|
---|
400 | {
|
---|
401 | REG_NOTES (insn)
|
---|
402 | = gen_rtx_EXPR_LIST (REG_BR_PROB,
|
---|
403 | GEN_INT (combined_probability), REG_NOTES (insn));
|
---|
404 |
|
---|
405 | /* Save the prediction into CFG in case we are seeing non-degenerated
|
---|
406 | conditional jump. */
|
---|
407 | if (bb->succ->succ_next)
|
---|
408 | {
|
---|
409 | BRANCH_EDGE (bb)->probability = combined_probability;
|
---|
410 | FALLTHRU_EDGE (bb)->probability
|
---|
411 | = REG_BR_PROB_BASE - combined_probability;
|
---|
412 | }
|
---|
413 | }
|
---|
414 | }
|
---|
415 |
|
---|
416 | /* Statically estimate the probability that a branch will be taken.
|
---|
417 | ??? In the next revision there will be a number of other predictors added
|
---|
418 | from the above references. Further, each heuristic will be factored out
|
---|
419 | into its own function for clarity (and to facilitate the combination of
|
---|
420 | predictions). */
|
---|
421 |
|
---|
422 | void
|
---|
423 | estimate_probability (loops_info)
|
---|
424 | struct loops *loops_info;
|
---|
425 | {
|
---|
426 | dominance_info dominators, post_dominators;
|
---|
427 | basic_block bb;
|
---|
428 | int i;
|
---|
429 |
|
---|
430 | connect_infinite_loops_to_exit ();
|
---|
431 | dominators = calculate_dominance_info (CDI_DOMINATORS);
|
---|
432 | post_dominators = calculate_dominance_info (CDI_POST_DOMINATORS);
|
---|
433 |
|
---|
434 | /* Try to predict out blocks in a loop that are not part of a
|
---|
435 | natural loop. */
|
---|
436 | for (i = 1; i < loops_info->num; i++)
|
---|
437 | {
|
---|
438 | basic_block bb, *bbs;
|
---|
439 | int j;
|
---|
440 | int exits;
|
---|
441 | struct loop *loop = loops_info->parray[i];
|
---|
442 |
|
---|
443 | flow_loop_scan (loops_info, loop, LOOP_EXIT_EDGES);
|
---|
444 | exits = loop->num_exits;
|
---|
445 |
|
---|
446 | bbs = get_loop_body (loop);
|
---|
447 | for (j = 0; j < loop->num_nodes; j++)
|
---|
448 | {
|
---|
449 | int header_found = 0;
|
---|
450 | edge e;
|
---|
451 |
|
---|
452 | bb = bbs[j];
|
---|
453 |
|
---|
454 | /* Bypass loop heuristics on continue statement. These
|
---|
455 | statements construct loops via "non-loop" constructs
|
---|
456 | in the source language and are better to be handled
|
---|
457 | separately. */
|
---|
458 | if (!can_predict_insn_p (bb->end)
|
---|
459 | || predicted_by_p (bb, PRED_CONTINUE))
|
---|
460 | continue;
|
---|
461 |
|
---|
462 | /* Loop branch heuristics - predict an edge back to a
|
---|
463 | loop's head as taken. */
|
---|
464 | for (e = bb->succ; e; e = e->succ_next)
|
---|
465 | if (e->dest == loop->header
|
---|
466 | && e->src == loop->latch)
|
---|
467 | {
|
---|
468 | header_found = 1;
|
---|
469 | predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
|
---|
470 | }
|
---|
471 |
|
---|
472 | /* Loop exit heuristics - predict an edge exiting the loop if the
|
---|
473 | conditinal has no loop header successors as not taken. */
|
---|
474 | if (!header_found)
|
---|
475 | for (e = bb->succ; e; e = e->succ_next)
|
---|
476 | if (e->dest->index < 0
|
---|
477 | || !flow_bb_inside_loop_p (loop, e->dest))
|
---|
478 | predict_edge
|
---|
479 | (e, PRED_LOOP_EXIT,
|
---|
480 | (REG_BR_PROB_BASE
|
---|
481 | - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
|
---|
482 | / exits);
|
---|
483 | }
|
---|
484 | }
|
---|
485 |
|
---|
486 | /* Attempt to predict conditional jumps using a number of heuristics. */
|
---|
487 | FOR_EACH_BB (bb)
|
---|
488 | {
|
---|
489 | rtx last_insn = bb->end;
|
---|
490 | rtx cond, earliest;
|
---|
491 | edge e;
|
---|
492 |
|
---|
493 | if (! can_predict_insn_p (last_insn))
|
---|
494 | continue;
|
---|
495 |
|
---|
496 | for (e = bb->succ; e; e = e->succ_next)
|
---|
497 | {
|
---|
498 | /* Predict early returns to be probable, as we've already taken
|
---|
499 | care for error returns and other are often used for fast paths
|
---|
500 | trought function. */
|
---|
501 | if ((e->dest == EXIT_BLOCK_PTR
|
---|
502 | || (e->dest->succ && !e->dest->succ->succ_next
|
---|
503 | && e->dest->succ->dest == EXIT_BLOCK_PTR))
|
---|
504 | && !predicted_by_p (bb, PRED_NULL_RETURN)
|
---|
505 | && !predicted_by_p (bb, PRED_CONST_RETURN)
|
---|
506 | && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
|
---|
507 | && !last_basic_block_p (e->dest))
|
---|
508 | predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
|
---|
509 |
|
---|
510 | /* Look for block we are guarding (ie we dominate it,
|
---|
511 | but it doesn't postdominate us). */
|
---|
512 | if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
|
---|
513 | && dominated_by_p (dominators, e->dest, e->src)
|
---|
514 | && !dominated_by_p (post_dominators, e->src, e->dest))
|
---|
515 | {
|
---|
516 | rtx insn;
|
---|
517 |
|
---|
518 | /* The call heuristic claims that a guarded function call
|
---|
519 | is improbable. This is because such calls are often used
|
---|
520 | to signal exceptional situations such as printing error
|
---|
521 | messages. */
|
---|
522 | for (insn = e->dest->head; insn != NEXT_INSN (e->dest->end);
|
---|
523 | insn = NEXT_INSN (insn))
|
---|
524 | if (GET_CODE (insn) == CALL_INSN
|
---|
525 | /* Constant and pure calls are hardly used to signalize
|
---|
526 | something exceptional. */
|
---|
527 | && ! CONST_OR_PURE_CALL_P (insn))
|
---|
528 | {
|
---|
529 | predict_edge_def (e, PRED_CALL, NOT_TAKEN);
|
---|
530 | break;
|
---|
531 | }
|
---|
532 | }
|
---|
533 | }
|
---|
534 |
|
---|
535 | cond = get_condition (last_insn, &earliest);
|
---|
536 | if (! cond)
|
---|
537 | continue;
|
---|
538 |
|
---|
539 | /* Try "pointer heuristic."
|
---|
540 | A comparison ptr == 0 is predicted as false.
|
---|
541 | Similarly, a comparison ptr1 == ptr2 is predicted as false. */
|
---|
542 | if (GET_RTX_CLASS (GET_CODE (cond)) == '<'
|
---|
543 | && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
|
---|
544 | || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
|
---|
545 | {
|
---|
546 | if (GET_CODE (cond) == EQ)
|
---|
547 | predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
|
---|
548 | else if (GET_CODE (cond) == NE)
|
---|
549 | predict_insn_def (last_insn, PRED_POINTER, TAKEN);
|
---|
550 | }
|
---|
551 | else
|
---|
552 |
|
---|
553 | /* Try "opcode heuristic."
|
---|
554 | EQ tests are usually false and NE tests are usually true. Also,
|
---|
555 | most quantities are positive, so we can make the appropriate guesses
|
---|
556 | about signed comparisons against zero. */
|
---|
557 | switch (GET_CODE (cond))
|
---|
558 | {
|
---|
559 | case CONST_INT:
|
---|
560 | /* Unconditional branch. */
|
---|
561 | predict_insn_def (last_insn, PRED_UNCONDITIONAL,
|
---|
562 | cond == const0_rtx ? NOT_TAKEN : TAKEN);
|
---|
563 | break;
|
---|
564 |
|
---|
565 | case EQ:
|
---|
566 | case UNEQ:
|
---|
567 | /* Floating point comparisons appears to behave in a very
|
---|
568 | inpredictable way because of special role of = tests in
|
---|
569 | FP code. */
|
---|
570 | if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
---|
571 | ;
|
---|
572 | /* Comparisons with 0 are often used for booleans and there is
|
---|
573 | nothing usefull to predict about them. */
|
---|
574 | else if (XEXP (cond, 1) == const0_rtx
|
---|
575 | || XEXP (cond, 0) == const0_rtx)
|
---|
576 | ;
|
---|
577 | else
|
---|
578 | predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
|
---|
579 | break;
|
---|
580 |
|
---|
581 | case NE:
|
---|
582 | case LTGT:
|
---|
583 | /* Floating point comparisons appears to behave in a very
|
---|
584 | inpredictable way because of special role of = tests in
|
---|
585 | FP code. */
|
---|
586 | if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
---|
587 | ;
|
---|
588 | /* Comparisons with 0 are often used for booleans and there is
|
---|
589 | nothing usefull to predict about them. */
|
---|
590 | else if (XEXP (cond, 1) == const0_rtx
|
---|
591 | || XEXP (cond, 0) == const0_rtx)
|
---|
592 | ;
|
---|
593 | else
|
---|
594 | predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
|
---|
595 | break;
|
---|
596 |
|
---|
597 | case ORDERED:
|
---|
598 | predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
|
---|
599 | break;
|
---|
600 |
|
---|
601 | case UNORDERED:
|
---|
602 | predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
|
---|
603 | break;
|
---|
604 |
|
---|
605 | case LE:
|
---|
606 | case LT:
|
---|
607 | if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
---|
608 | || XEXP (cond, 1) == constm1_rtx)
|
---|
609 | predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
|
---|
610 | break;
|
---|
611 |
|
---|
612 | case GE:
|
---|
613 | case GT:
|
---|
614 | if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
---|
615 | || XEXP (cond, 1) == constm1_rtx)
|
---|
616 | predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
|
---|
617 | break;
|
---|
618 |
|
---|
619 | default:
|
---|
620 | break;
|
---|
621 | }
|
---|
622 | }
|
---|
623 |
|
---|
624 | /* Attach the combined probability to each conditional jump. */
|
---|
625 | FOR_EACH_BB (bb)
|
---|
626 | if (GET_CODE (bb->end) == JUMP_INSN
|
---|
627 | && any_condjump_p (bb->end)
|
---|
628 | && bb->succ->succ_next != NULL)
|
---|
629 | combine_predictions_for_insn (bb->end, bb);
|
---|
630 |
|
---|
631 | free_dominance_info (post_dominators);
|
---|
632 | free_dominance_info (dominators);
|
---|
633 |
|
---|
634 | remove_fake_edges ();
|
---|
635 | estimate_bb_frequencies (loops_info);
|
---|
636 | }
|
---|
637 | |
---|
638 |
|
---|
639 | /* __builtin_expect dropped tokens into the insn stream describing expected
|
---|
640 | values of registers. Generate branch probabilities based off these
|
---|
641 | values. */
|
---|
642 |
|
---|
643 | void
|
---|
644 | expected_value_to_br_prob ()
|
---|
645 | {
|
---|
646 | rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
|
---|
647 |
|
---|
648 | for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
|
---|
649 | {
|
---|
650 | switch (GET_CODE (insn))
|
---|
651 | {
|
---|
652 | case NOTE:
|
---|
653 | /* Look for expected value notes. */
|
---|
654 | if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
|
---|
655 | {
|
---|
656 | ev = NOTE_EXPECTED_VALUE (insn);
|
---|
657 | ev_reg = XEXP (ev, 0);
|
---|
658 | delete_insn (insn);
|
---|
659 | }
|
---|
660 | continue;
|
---|
661 |
|
---|
662 | case CODE_LABEL:
|
---|
663 | /* Never propagate across labels. */
|
---|
664 | ev = NULL_RTX;
|
---|
665 | continue;
|
---|
666 |
|
---|
667 | case JUMP_INSN:
|
---|
668 | /* Look for simple conditional branches. If we haven't got an
|
---|
669 | expected value yet, no point going further. */
|
---|
670 | if (GET_CODE (insn) != JUMP_INSN || ev == NULL_RTX
|
---|
671 | || ! any_condjump_p (insn))
|
---|
672 | continue;
|
---|
673 | break;
|
---|
674 |
|
---|
675 | default:
|
---|
676 | /* Look for insns that clobber the EV register. */
|
---|
677 | if (ev && reg_set_p (ev_reg, insn))
|
---|
678 | ev = NULL_RTX;
|
---|
679 | continue;
|
---|
680 | }
|
---|
681 |
|
---|
682 | /* Collect the branch condition, hopefully relative to EV_REG. */
|
---|
683 | /* ??? At present we'll miss things like
|
---|
684 | (expected_value (eq r70 0))
|
---|
685 | (set r71 -1)
|
---|
686 | (set r80 (lt r70 r71))
|
---|
687 | (set pc (if_then_else (ne r80 0) ...))
|
---|
688 | as canonicalize_condition will render this to us as
|
---|
689 | (lt r70, r71)
|
---|
690 | Could use cselib to try and reduce this further. */
|
---|
691 | cond = XEXP (SET_SRC (pc_set (insn)), 0);
|
---|
692 | cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg);
|
---|
693 | if (! cond || XEXP (cond, 0) != ev_reg
|
---|
694 | || GET_CODE (XEXP (cond, 1)) != CONST_INT)
|
---|
695 | continue;
|
---|
696 |
|
---|
697 | /* Substitute and simplify. Given that the expression we're
|
---|
698 | building involves two constants, we should wind up with either
|
---|
699 | true or false. */
|
---|
700 | cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
|
---|
701 | XEXP (ev, 1), XEXP (cond, 1));
|
---|
702 | cond = simplify_rtx (cond);
|
---|
703 |
|
---|
704 | /* Turn the condition into a scaled branch probability. */
|
---|
705 | if (cond != const_true_rtx && cond != const0_rtx)
|
---|
706 | abort ();
|
---|
707 | predict_insn_def (insn, PRED_BUILTIN_EXPECT,
|
---|
708 | cond == const_true_rtx ? TAKEN : NOT_TAKEN);
|
---|
709 | }
|
---|
710 | }
|
---|
711 | |
---|
712 |
|
---|
713 | /* Check whether this is the last basic block of function. Commonly tehre
|
---|
714 | is one extra common cleanup block. */
|
---|
715 | static bool
|
---|
716 | last_basic_block_p (bb)
|
---|
717 | basic_block bb;
|
---|
718 | {
|
---|
719 | if (bb == EXIT_BLOCK_PTR)
|
---|
720 | return false;
|
---|
721 |
|
---|
722 | return (bb->next_bb == EXIT_BLOCK_PTR
|
---|
723 | || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
|
---|
724 | && bb->succ && !bb->succ->succ_next
|
---|
725 | && bb->succ->dest->next_bb == EXIT_BLOCK_PTR));
|
---|
726 | }
|
---|
727 |
|
---|
728 | /* Sets branch probabilities according to PREDiction and FLAGS. HEADS[bb->index]
|
---|
729 | should be index of basic block in that we need to alter branch predictions
|
---|
730 | (i.e. the first of our dominators such that we do not post-dominate it)
|
---|
731 | (but we fill this information on demand, so -1 may be there in case this
|
---|
732 | was not needed yet). */
|
---|
733 |
|
---|
734 | static void
|
---|
735 | process_note_prediction (bb, heads, dominators, post_dominators, pred, flags)
|
---|
736 | basic_block bb;
|
---|
737 | int *heads;
|
---|
738 | dominance_info dominators;
|
---|
739 | dominance_info post_dominators;
|
---|
740 | int pred;
|
---|
741 | int flags;
|
---|
742 | {
|
---|
743 | edge e;
|
---|
744 | int y;
|
---|
745 | bool taken;
|
---|
746 |
|
---|
747 | taken = flags & IS_TAKEN;
|
---|
748 |
|
---|
749 | if (heads[bb->index] < 0)
|
---|
750 | {
|
---|
751 | /* This is first time we need this field in heads array; so
|
---|
752 | find first dominator that we do not post-dominate (we are
|
---|
753 | using already known members of heads array). */
|
---|
754 | basic_block ai = bb;
|
---|
755 | basic_block next_ai = get_immediate_dominator (dominators, bb);
|
---|
756 | int head;
|
---|
757 |
|
---|
758 | while (heads[next_ai->index] < 0)
|
---|
759 | {
|
---|
760 | if (!dominated_by_p (post_dominators, next_ai, bb))
|
---|
761 | break;
|
---|
762 | heads[next_ai->index] = ai->index;
|
---|
763 | ai = next_ai;
|
---|
764 | next_ai = get_immediate_dominator (dominators, next_ai);
|
---|
765 | }
|
---|
766 | if (!dominated_by_p (post_dominators, next_ai, bb))
|
---|
767 | head = next_ai->index;
|
---|
768 | else
|
---|
769 | head = heads[next_ai->index];
|
---|
770 | while (next_ai != bb)
|
---|
771 | {
|
---|
772 | next_ai = ai;
|
---|
773 | if (heads[ai->index] == ENTRY_BLOCK)
|
---|
774 | ai = ENTRY_BLOCK_PTR;
|
---|
775 | else
|
---|
776 | ai = BASIC_BLOCK (heads[ai->index]);
|
---|
777 | heads[next_ai->index] = head;
|
---|
778 | }
|
---|
779 | }
|
---|
780 | y = heads[bb->index];
|
---|
781 |
|
---|
782 | /* Now find the edge that leads to our branch and aply the prediction. */
|
---|
783 |
|
---|
784 | if (y == last_basic_block || !can_predict_insn_p (BASIC_BLOCK (y)->end))
|
---|
785 | return;
|
---|
786 | for (e = BASIC_BLOCK (y)->succ; e; e = e->succ_next)
|
---|
787 | if (e->dest->index >= 0
|
---|
788 | && dominated_by_p (post_dominators, e->dest, bb))
|
---|
789 | predict_edge_def (e, pred, taken);
|
---|
790 | }
|
---|
791 |
|
---|
792 | /* Gathers NOTE_INSN_PREDICTIONs in given basic block and turns them
|
---|
793 | into branch probabilities. For description of heads array, see
|
---|
794 | process_note_prediction. */
|
---|
795 |
|
---|
796 | static void
|
---|
797 | process_note_predictions (bb, heads, dominators, post_dominators)
|
---|
798 | basic_block bb;
|
---|
799 | int *heads;
|
---|
800 | dominance_info dominators;
|
---|
801 | dominance_info post_dominators;
|
---|
802 | {
|
---|
803 | rtx insn;
|
---|
804 | edge e;
|
---|
805 |
|
---|
806 | /* Additionaly, we check here for blocks with no successors. */
|
---|
807 | int contained_noreturn_call = 0;
|
---|
808 | int was_bb_head = 0;
|
---|
809 | int noreturn_block = 1;
|
---|
810 |
|
---|
811 | for (insn = bb->end; insn;
|
---|
812 | was_bb_head |= (insn == bb->head), insn = PREV_INSN (insn))
|
---|
813 | {
|
---|
814 | if (GET_CODE (insn) != NOTE)
|
---|
815 | {
|
---|
816 | if (was_bb_head)
|
---|
817 | break;
|
---|
818 | else
|
---|
819 | {
|
---|
820 | /* Noreturn calls cause program to exit, therefore they are
|
---|
821 | always predicted as not taken. */
|
---|
822 | if (GET_CODE (insn) == CALL_INSN
|
---|
823 | && find_reg_note (insn, REG_NORETURN, NULL))
|
---|
824 | contained_noreturn_call = 1;
|
---|
825 | continue;
|
---|
826 | }
|
---|
827 | }
|
---|
828 | if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PREDICTION)
|
---|
829 | {
|
---|
830 | int alg = (int) NOTE_PREDICTION_ALG (insn);
|
---|
831 | /* Process single prediction note. */
|
---|
832 | process_note_prediction (bb,
|
---|
833 | heads,
|
---|
834 | dominators,
|
---|
835 | post_dominators,
|
---|
836 | alg, (int) NOTE_PREDICTION_FLAGS (insn));
|
---|
837 | delete_insn (insn);
|
---|
838 | }
|
---|
839 | }
|
---|
840 | for (e = bb->succ; e; e = e->succ_next)
|
---|
841 | if (!(e->flags & EDGE_FAKE))
|
---|
842 | noreturn_block = 0;
|
---|
843 | if (contained_noreturn_call)
|
---|
844 | {
|
---|
845 | /* This block ended from other reasons than because of return.
|
---|
846 | If it is because of noreturn call, this should certainly not
|
---|
847 | be taken. Otherwise it is probably some error recovery. */
|
---|
848 | process_note_prediction (bb,
|
---|
849 | heads,
|
---|
850 | dominators,
|
---|
851 | post_dominators, PRED_NORETURN, NOT_TAKEN);
|
---|
852 | }
|
---|
853 | }
|
---|
854 |
|
---|
855 | /* Gathers NOTE_INSN_PREDICTIONs and turns them into
|
---|
856 | branch probabilities. */
|
---|
857 |
|
---|
858 | void
|
---|
859 | note_prediction_to_br_prob ()
|
---|
860 | {
|
---|
861 | basic_block bb;
|
---|
862 | dominance_info post_dominators, dominators;
|
---|
863 | int *heads;
|
---|
864 |
|
---|
865 | /* To enable handling of noreturn blocks. */
|
---|
866 | add_noreturn_fake_exit_edges ();
|
---|
867 | connect_infinite_loops_to_exit ();
|
---|
868 |
|
---|
869 | post_dominators = calculate_dominance_info (CDI_POST_DOMINATORS);
|
---|
870 | dominators = calculate_dominance_info (CDI_DOMINATORS);
|
---|
871 |
|
---|
872 | heads = xmalloc (sizeof (int) * last_basic_block);
|
---|
873 | memset (heads, -1, sizeof (int) * last_basic_block);
|
---|
874 | heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
|
---|
875 |
|
---|
876 | /* Process all prediction notes. */
|
---|
877 |
|
---|
878 | FOR_EACH_BB (bb)
|
---|
879 | process_note_predictions (bb, heads, dominators, post_dominators);
|
---|
880 |
|
---|
881 | free_dominance_info (post_dominators);
|
---|
882 | free_dominance_info (dominators);
|
---|
883 | free (heads);
|
---|
884 |
|
---|
885 | remove_fake_edges ();
|
---|
886 | }
|
---|
887 | |
---|
888 |
|
---|
889 | /* This is used to carry information about basic blocks. It is
|
---|
890 | attached to the AUX field of the standard CFG block. */
|
---|
891 |
|
---|
892 | typedef struct block_info_def
|
---|
893 | {
|
---|
894 | /* Estimated frequency of execution of basic_block. */
|
---|
895 | REAL_VALUE_TYPE frequency;
|
---|
896 |
|
---|
897 | /* To keep queue of basic blocks to process. */
|
---|
898 | basic_block next;
|
---|
899 |
|
---|
900 | /* True if block needs to be visited in prop_freqency. */
|
---|
901 | int tovisit:1;
|
---|
902 |
|
---|
903 | /* Number of predecessors we need to visit first. */
|
---|
904 | int npredecessors;
|
---|
905 | } *block_info;
|
---|
906 |
|
---|
907 | /* Similar information for edges. */
|
---|
908 | typedef struct edge_info_def
|
---|
909 | {
|
---|
910 | /* In case edge is an loopback edge, the probability edge will be reached
|
---|
911 | in case header is. Estimated number of iterations of the loop can be
|
---|
912 | then computed as 1 / (1 - back_edge_prob). */
|
---|
913 | REAL_VALUE_TYPE back_edge_prob;
|
---|
914 | /* True if the edge is an loopback edge in the natural loop. */
|
---|
915 | int back_edge:1;
|
---|
916 | } *edge_info;
|
---|
917 |
|
---|
918 | #define BLOCK_INFO(B) ((block_info) (B)->aux)
|
---|
919 | #define EDGE_INFO(E) ((edge_info) (E)->aux)
|
---|
920 |
|
---|
921 | /* Helper function for estimate_bb_frequencies.
|
---|
922 | Propagate the frequencies for LOOP. */
|
---|
923 |
|
---|
924 | static void
|
---|
925 | propagate_freq (loop)
|
---|
926 | struct loop *loop;
|
---|
927 | {
|
---|
928 | basic_block head = loop->header;
|
---|
929 | basic_block bb;
|
---|
930 | basic_block last;
|
---|
931 | edge e;
|
---|
932 | basic_block nextbb;
|
---|
933 |
|
---|
934 | /* For each basic block we need to visit count number of his predecessors
|
---|
935 | we need to visit first. */
|
---|
936 | FOR_EACH_BB (bb)
|
---|
937 | {
|
---|
938 | if (BLOCK_INFO (bb)->tovisit)
|
---|
939 | {
|
---|
940 | int count = 0;
|
---|
941 |
|
---|
942 | for (e = bb->pred; e; e = e->pred_next)
|
---|
943 | if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
|
---|
944 | count++;
|
---|
945 | else if (BLOCK_INFO (e->src)->tovisit
|
---|
946 | && rtl_dump_file && !EDGE_INFO (e)->back_edge)
|
---|
947 | fprintf (rtl_dump_file,
|
---|
948 | "Irreducible region hit, ignoring edge to %i->%i\n",
|
---|
949 | e->src->index, bb->index);
|
---|
950 | BLOCK_INFO (bb)->npredecessors = count;
|
---|
951 | }
|
---|
952 | }
|
---|
953 |
|
---|
954 | memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
|
---|
955 | last = head;
|
---|
956 | for (bb = head; bb; bb = nextbb)
|
---|
957 | {
|
---|
958 | REAL_VALUE_TYPE cyclic_probability, frequency;
|
---|
959 |
|
---|
960 | memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
|
---|
961 | memcpy (&frequency, &real_zero, sizeof (real_zero));
|
---|
962 |
|
---|
963 | nextbb = BLOCK_INFO (bb)->next;
|
---|
964 | BLOCK_INFO (bb)->next = NULL;
|
---|
965 |
|
---|
966 | /* Compute frequency of basic block. */
|
---|
967 | if (bb != head)
|
---|
968 | {
|
---|
969 | #ifdef ENABLE_CHECKING
|
---|
970 | for (e = bb->pred; e; e = e->pred_next)
|
---|
971 | if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
|
---|
972 | abort ();
|
---|
973 | #endif
|
---|
974 |
|
---|
975 | for (e = bb->pred; e; e = e->pred_next)
|
---|
976 | if (EDGE_INFO (e)->back_edge)
|
---|
977 | {
|
---|
978 | REAL_ARITHMETIC (cyclic_probability, PLUS_EXPR,
|
---|
979 | cyclic_probability,
|
---|
980 | EDGE_INFO (e)->back_edge_prob);
|
---|
981 | }
|
---|
982 | else if (!(e->flags & EDGE_DFS_BACK))
|
---|
983 | {
|
---|
984 | REAL_VALUE_TYPE tmp;
|
---|
985 |
|
---|
986 | /* frequency += (e->probability
|
---|
987 | * BLOCK_INFO (e->src)->frequency /
|
---|
988 | REG_BR_PROB_BASE); */
|
---|
989 |
|
---|
990 | REAL_VALUE_FROM_INT (tmp, e->probability, 0,
|
---|
991 | TYPE_MODE (double_type_node));
|
---|
992 | REAL_ARITHMETIC (tmp, MULT_EXPR, tmp,
|
---|
993 | BLOCK_INFO (e->src)->frequency);
|
---|
994 | REAL_ARITHMETIC (tmp, MULT_EXPR, tmp, real_inv_br_prob_base);
|
---|
995 | REAL_ARITHMETIC (frequency, PLUS_EXPR, frequency, tmp);
|
---|
996 | }
|
---|
997 |
|
---|
998 | if (REAL_VALUES_IDENTICAL (cyclic_probability, real_zero))
|
---|
999 | memcpy (&BLOCK_INFO (bb)->frequency, &frequency, sizeof (frequency));
|
---|
1000 | else
|
---|
1001 | {
|
---|
1002 | if (REAL_VALUES_LESS (real_almost_one, cyclic_probability))
|
---|
1003 | memcpy (&cyclic_probability, &real_almost_one, sizeof (real_zero));
|
---|
1004 |
|
---|
1005 | /* BLOCK_INFO (bb)->frequency = frequency / (1 - cyclic_probability)
|
---|
1006 | */
|
---|
1007 |
|
---|
1008 | REAL_ARITHMETIC (cyclic_probability, MINUS_EXPR, real_one,
|
---|
1009 | cyclic_probability);
|
---|
1010 | REAL_ARITHMETIC (BLOCK_INFO (bb)->frequency,
|
---|
1011 | RDIV_EXPR, frequency, cyclic_probability);
|
---|
1012 | }
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | BLOCK_INFO (bb)->tovisit = 0;
|
---|
1016 |
|
---|
1017 | /* Compute back edge frequencies. */
|
---|
1018 | for (e = bb->succ; e; e = e->succ_next)
|
---|
1019 | if (e->dest == head)
|
---|
1020 | {
|
---|
1021 | REAL_VALUE_TYPE tmp;
|
---|
1022 |
|
---|
1023 | /* EDGE_INFO (e)->back_edge_prob
|
---|
1024 | = ((e->probability * BLOCK_INFO (bb)->frequency)
|
---|
1025 | / REG_BR_PROB_BASE); */
|
---|
1026 | REAL_VALUE_FROM_INT (tmp, e->probability, 0,
|
---|
1027 | TYPE_MODE (double_type_node));
|
---|
1028 | REAL_ARITHMETIC (tmp, MULT_EXPR, tmp,
|
---|
1029 | BLOCK_INFO (bb)->frequency);
|
---|
1030 | REAL_ARITHMETIC (EDGE_INFO (e)->back_edge_prob,
|
---|
1031 | MULT_EXPR, tmp, real_inv_br_prob_base);
|
---|
1032 |
|
---|
1033 | }
|
---|
1034 |
|
---|
1035 | /* Propagate to successor blocks. */
|
---|
1036 | for (e = bb->succ; e; e = e->succ_next)
|
---|
1037 | if (!(e->flags & EDGE_DFS_BACK)
|
---|
1038 | && BLOCK_INFO (e->dest)->npredecessors)
|
---|
1039 | {
|
---|
1040 | BLOCK_INFO (e->dest)->npredecessors--;
|
---|
1041 | if (!BLOCK_INFO (e->dest)->npredecessors)
|
---|
1042 | {
|
---|
1043 | if (!nextbb)
|
---|
1044 | nextbb = e->dest;
|
---|
1045 | else
|
---|
1046 | BLOCK_INFO (last)->next = e->dest;
|
---|
1047 |
|
---|
1048 | last = e->dest;
|
---|
1049 | }
|
---|
1050 | }
|
---|
1051 | }
|
---|
1052 | }
|
---|
1053 |
|
---|
1054 | /* Estimate probabilities of loopback edges in loops at same nest level. */
|
---|
1055 |
|
---|
1056 | static void
|
---|
1057 | estimate_loops_at_level (first_loop)
|
---|
1058 | struct loop *first_loop;
|
---|
1059 | {
|
---|
1060 | struct loop *loop;
|
---|
1061 |
|
---|
1062 | for (loop = first_loop; loop; loop = loop->next)
|
---|
1063 | {
|
---|
1064 | edge e;
|
---|
1065 | basic_block *bbs;
|
---|
1066 | int i;
|
---|
1067 |
|
---|
1068 | estimate_loops_at_level (loop->inner);
|
---|
1069 |
|
---|
1070 | if (loop->latch->succ) /* Do not do this for dummy function loop. */
|
---|
1071 | {
|
---|
1072 | /* Find current loop back edge and mark it. */
|
---|
1073 | e = loop_latch_edge (loop);
|
---|
1074 | EDGE_INFO (e)->back_edge = 1;
|
---|
1075 | }
|
---|
1076 |
|
---|
1077 | bbs = get_loop_body (loop);
|
---|
1078 | for (i = 0; i < loop->num_nodes; i++)
|
---|
1079 | BLOCK_INFO (bbs[i])->tovisit = 1;
|
---|
1080 | free (bbs);
|
---|
1081 | propagate_freq (loop);
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 | /* Convert counts measured by profile driven feedback to frequencies. */
|
---|
1086 |
|
---|
1087 | static void
|
---|
1088 | counts_to_freqs ()
|
---|
1089 | {
|
---|
1090 | HOST_WIDEST_INT count_max = 1;
|
---|
1091 | basic_block bb;
|
---|
1092 |
|
---|
1093 | FOR_EACH_BB (bb)
|
---|
1094 | count_max = MAX (bb->count, count_max);
|
---|
1095 |
|
---|
1096 | FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
---|
1097 | bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 | /* Return true if function is likely to be expensive, so there is no point to
|
---|
1101 | optimize performance of prologue, epilogue or do inlining at the expense
|
---|
1102 | of code size growth. THRESHOLD is the limit of number of isntructions
|
---|
1103 | function can execute at average to be still considered not expensive. */
|
---|
1104 |
|
---|
1105 | bool
|
---|
1106 | expensive_function_p (threshold)
|
---|
1107 | int threshold;
|
---|
1108 | {
|
---|
1109 | unsigned int sum = 0;
|
---|
1110 | basic_block bb;
|
---|
1111 | unsigned int limit;
|
---|
1112 |
|
---|
1113 | /* We can not compute accurately for large thresholds due to scaled
|
---|
1114 | frequencies. */
|
---|
1115 | if (threshold > BB_FREQ_MAX)
|
---|
1116 | abort ();
|
---|
1117 |
|
---|
1118 | /* Frequencies are out of range. This either means that function contains
|
---|
1119 | internal loop executing more than BB_FREQ_MAX times or profile feedback
|
---|
1120 | is available and function has not been executed at all. */
|
---|
1121 | if (ENTRY_BLOCK_PTR->frequency == 0)
|
---|
1122 | return true;
|
---|
1123 |
|
---|
1124 | /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
|
---|
1125 | limit = ENTRY_BLOCK_PTR->frequency * threshold;
|
---|
1126 | FOR_EACH_BB (bb)
|
---|
1127 | {
|
---|
1128 | rtx insn;
|
---|
1129 |
|
---|
1130 | for (insn = bb->head; insn != NEXT_INSN (bb->end);
|
---|
1131 | insn = NEXT_INSN (insn))
|
---|
1132 | if (active_insn_p (insn))
|
---|
1133 | {
|
---|
1134 | sum += bb->frequency;
|
---|
1135 | if (sum > limit)
|
---|
1136 | return true;
|
---|
1137 | }
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | return false;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | /* Estimate basic blocks frequency by given branch probabilities. */
|
---|
1144 |
|
---|
1145 | static void
|
---|
1146 | estimate_bb_frequencies (loops)
|
---|
1147 | struct loops *loops;
|
---|
1148 | {
|
---|
1149 | basic_block bb;
|
---|
1150 | REAL_VALUE_TYPE freq_max;
|
---|
1151 | enum machine_mode double_mode = TYPE_MODE (double_type_node);
|
---|
1152 |
|
---|
1153 | if (flag_branch_probabilities)
|
---|
1154 | counts_to_freqs ();
|
---|
1155 | else
|
---|
1156 | {
|
---|
1157 | REAL_VALUE_FROM_INT (real_zero, 0, 0, double_mode);
|
---|
1158 | REAL_VALUE_FROM_INT (real_one, 1, 0, double_mode);
|
---|
1159 | REAL_VALUE_FROM_INT (real_br_prob_base, REG_BR_PROB_BASE, 0, double_mode);
|
---|
1160 | REAL_VALUE_FROM_INT (real_bb_freq_max, BB_FREQ_MAX, 0, double_mode);
|
---|
1161 | REAL_VALUE_FROM_INT (real_one_half, 2, 0, double_mode);
|
---|
1162 | REAL_ARITHMETIC (real_one_half, RDIV_EXPR, real_one, real_one_half);
|
---|
1163 | REAL_ARITHMETIC (real_inv_br_prob_base, RDIV_EXPR, real_one, real_br_prob_base);
|
---|
1164 | REAL_ARITHMETIC (real_almost_one, MINUS_EXPR, real_one, real_inv_br_prob_base);
|
---|
1165 |
|
---|
1166 | mark_dfs_back_edges ();
|
---|
1167 | /* Fill in the probability values in flowgraph based on the REG_BR_PROB
|
---|
1168 | notes. */
|
---|
1169 | FOR_EACH_BB (bb)
|
---|
1170 | {
|
---|
1171 | rtx last_insn = bb->end;
|
---|
1172 |
|
---|
1173 | if (!can_predict_insn_p (last_insn))
|
---|
1174 | {
|
---|
1175 | /* We can predict only conditional jumps at the moment.
|
---|
1176 | Expect each edge to be equally probable.
|
---|
1177 | ?? In the future we want to make abnormal edges improbable. */
|
---|
1178 | int nedges = 0;
|
---|
1179 | edge e;
|
---|
1180 |
|
---|
1181 | for (e = bb->succ; e; e = e->succ_next)
|
---|
1182 | {
|
---|
1183 | nedges++;
|
---|
1184 | if (e->probability != 0)
|
---|
1185 | break;
|
---|
1186 | }
|
---|
1187 | if (!e)
|
---|
1188 | for (e = bb->succ; e; e = e->succ_next)
|
---|
1189 | e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
|
---|
1190 | }
|
---|
1191 | }
|
---|
1192 |
|
---|
1193 | ENTRY_BLOCK_PTR->succ->probability = REG_BR_PROB_BASE;
|
---|
1194 |
|
---|
1195 | /* Set up block info for each basic block. */
|
---|
1196 | alloc_aux_for_blocks (sizeof (struct block_info_def));
|
---|
1197 | alloc_aux_for_edges (sizeof (struct edge_info_def));
|
---|
1198 | FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
---|
1199 | {
|
---|
1200 | edge e;
|
---|
1201 |
|
---|
1202 | BLOCK_INFO (bb)->tovisit = 0;
|
---|
1203 | for (e = bb->succ; e; e = e->succ_next)
|
---|
1204 | {
|
---|
1205 | REAL_VALUE_FROM_INT (EDGE_INFO (e)->back_edge_prob,
|
---|
1206 | e->probability, 0, double_mode);
|
---|
1207 | REAL_ARITHMETIC (EDGE_INFO (e)->back_edge_prob,
|
---|
1208 | MULT_EXPR, EDGE_INFO (e)->back_edge_prob,
|
---|
1209 | real_inv_br_prob_base);
|
---|
1210 | }
|
---|
1211 | }
|
---|
1212 |
|
---|
1213 | /* First compute probabilities locally for each loop from innermost
|
---|
1214 | to outermost to examine probabilities for back edges. */
|
---|
1215 | estimate_loops_at_level (loops->tree_root);
|
---|
1216 |
|
---|
1217 | memcpy (&freq_max, &real_zero, sizeof (real_zero));
|
---|
1218 | FOR_EACH_BB (bb)
|
---|
1219 | if (REAL_VALUES_LESS
|
---|
1220 | (freq_max, BLOCK_INFO (bb)->frequency))
|
---|
1221 | memcpy (&freq_max, &BLOCK_INFO (bb)->frequency,
|
---|
1222 | sizeof (freq_max));
|
---|
1223 |
|
---|
1224 | REAL_ARITHMETIC (freq_max, RDIV_EXPR, real_bb_freq_max, freq_max);
|
---|
1225 |
|
---|
1226 | FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
---|
1227 | {
|
---|
1228 | REAL_VALUE_TYPE tmp;
|
---|
1229 |
|
---|
1230 | REAL_ARITHMETIC (tmp, MULT_EXPR, BLOCK_INFO (bb)->frequency,
|
---|
1231 | freq_max);
|
---|
1232 | REAL_ARITHMETIC (tmp, PLUS_EXPR, tmp, real_one_half);
|
---|
1233 | bb->frequency = REAL_VALUE_UNSIGNED_FIX (tmp);
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | free_aux_for_blocks ();
|
---|
1237 | free_aux_for_edges ();
|
---|
1238 | }
|
---|
1239 | compute_function_frequency ();
|
---|
1240 | if (flag_reorder_functions)
|
---|
1241 | choose_function_section ();
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | /* Decide whether function is hot, cold or unlikely executed. */
|
---|
1245 | static void
|
---|
1246 | compute_function_frequency ()
|
---|
1247 | {
|
---|
1248 | basic_block bb;
|
---|
1249 |
|
---|
1250 | if (!profile_info.count_profiles_merged
|
---|
1251 | || !flag_branch_probabilities)
|
---|
1252 | return;
|
---|
1253 | cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
|
---|
1254 | FOR_EACH_BB (bb)
|
---|
1255 | {
|
---|
1256 | if (maybe_hot_bb_p (bb))
|
---|
1257 | {
|
---|
1258 | cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
|
---|
1259 | return;
|
---|
1260 | }
|
---|
1261 | if (!probably_never_executed_bb_p (bb))
|
---|
1262 | cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
|
---|
1263 | }
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | /* Choose appropriate section for the function. */
|
---|
1267 | static void
|
---|
1268 | choose_function_section ()
|
---|
1269 | {
|
---|
1270 | if (DECL_SECTION_NAME (current_function_decl)
|
---|
1271 | || !targetm.have_named_sections
|
---|
1272 | /* Theoretically we can split the gnu.linkonce text section too,
|
---|
1273 | but this requires more work as the frequency needs to match
|
---|
1274 | for all generated objects so we need to merge the frequency
|
---|
1275 | of all instances. For now just never set frequency for these. */
|
---|
1276 | || DECL_ONE_ONLY (current_function_decl))
|
---|
1277 | return;
|
---|
1278 | if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
|
---|
1279 | DECL_SECTION_NAME (current_function_decl) =
|
---|
1280 | build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
|
---|
1281 | if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
|
---|
1282 | DECL_SECTION_NAME (current_function_decl) =
|
---|
1283 | build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
|
---|
1284 | UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
|
---|
1285 | }
|
---|