source: trunk/src/os2ahci/ata.c@ 48

Last change on this file since 48 was 46, checked in by markus, 15 years ago

display geomtry info if debug is set

File size: 30.8 KB
Line 
1/******************************************************************************
2 * ata.c - ATA command processing
3 *
4 * Copyright (c) 2010 Christian Mueller, Markus Thielen.
5 * Parts copied from/inspired by the Linux AHCI driver;
6 * those parts are (c) Linux AHCI/ATA maintainers
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23#include "os2ahci.h"
24#include "ata.h"
25
26/* -------------------------- macros and constants ------------------------- */
27
28/* ------------------------ typedefs and structures ------------------------ */
29
30/* -------------------------- function prototypes -------------------------- */
31
32/* ------------------------ global/static variables ------------------------ */
33
34/* ----------------------------- start of code ----------------------------- */
35
36/******************************************************************************
37 * Initialize AHCI command slot, FIS and S/G list for the specified ATA
38 * command. The command parameters are passed as a variable argument list
39 * of type and value(s). The list is terminated by AP_END.
40 *
41 * Notes:
42 *
43 * - The specified command slot is expected to be idle; no checks are
44 * performed to prevent messing with a busy port.
45 *
46 * - Port multipliers are not supported, yet, thus 'd' should always
47 * be 0 for the time being.
48 *
49 * - 'cmd' is passwd as 16-bit integer because the compiler would push
50 * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
51 * macros would screw up the address of the first variable argument
52 * if the size of the last fixed argument wouldn't match what the
53 * compiler pushed on the stack.
54 *
55 * Return values:
56 * 0 : success
57 * > 0 : could not map all S/G entries; the return value is the number of
58 * S/G entries that could be mapped.
59 * < 0 : other error
60 */
61int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
62{
63 va_list va;
64 va_start(va, cmd);
65 return(v_ata_cmd(ai, p, d, slot, cmd, va));
66}
67
68int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
69{
70 AHCI_PORT_DMA _far *dma_base_virt;
71 AHCI_CMD_HDR _far *cmd_hdr;
72 AHCI_CMD_TBL _far *cmd_tbl;
73 SCATGATENTRY _far *sg_list = NULL;
74 SCATGATENTRY sg_single;
75 ATA_PARM ap;
76 ATA_CMD ata_cmd;
77 void _far *atapi_cmd = NULL;
78 u32 dma_base_phys;
79 u16 atapi_cmd_len = 0;
80 u16 ahci_flags = 0;
81 u16 sg_cnt = 0;
82 int i;
83 int n;
84
85 /* --------------------------------------------------------------------------
86 * Initialize ATA command. The ATA command is set up with the main command
87 * value and a variable list of additional parameters such as the sector
88 * address, transfer count, ...
89 */
90 memset(&ata_cmd, 0x00, sizeof(ata_cmd));
91 ata_cmd.cmd = (u8) cmd;
92
93 /* parse variable arguments */
94 do {
95 switch ((ap = va_arg(va, ATA_PARM))) {
96
97 case AP_AHCI_FLAGS:
98 ahci_flags |= va_arg(va, u16);
99 break;
100
101 case AP_WRITE:
102 if (va_arg(va, u16) != 0) {
103 ahci_flags |= AHCI_CMD_WRITE;
104 }
105 break;
106
107 case AP_FEATURES:
108 /* ATA features word */
109 ata_cmd.features = va_arg(va, u16);
110 break;
111
112 case AP_COUNT:
113 /* transfer count */
114 ata_cmd.count = va_arg(va, u16);
115 break;
116
117 case AP_SECTOR_28:
118 /* 28-bit sector address */
119 ata_cmd.lba_l = va_arg(va, u32);
120 if (ata_cmd.lba_l & 0xf0000000UL) {
121 dprintf("error: LBA-28 address %ld has more than 28 bits\n", ata_cmd.lba_l);
122 return(-1);
123 }
124 break;
125
126 case AP_SECTOR_48:
127 /* 48-bit sector address */
128 ata_cmd.lba_l = va_arg(va, u32);
129 ata_cmd.lba_h = va_arg(va, u16);
130 break;
131
132 case AP_DEVICE:
133 /* ATA device byte */
134 ata_cmd.device = va_arg(va, u16) >> 8;
135 break;
136
137 case AP_SGLIST:
138 /* scatter/gather list in SCATGATENTRY/count format */
139 sg_list = va_arg(va, void _far *);
140 sg_cnt = va_arg(va, u16);
141 break;
142
143 case AP_VADDR:
144 /* virtual buffer address in addr/len format (up to 4K) */
145 DevHelp_VirtToPhys(va_arg(va, void _far *), &sg_single.ppXferBuf);
146 sg_single.XferBufLen = va_arg(va, u16);
147 sg_list = &sg_single;
148 sg_cnt = 1;
149 break;
150
151 case AP_ATAPI_CMD:
152 /* ATAPI command */
153 atapi_cmd = va_arg(va, void _far *);
154 atapi_cmd_len = va_arg(va, u16);
155 ahci_flags |= AHCI_CMD_ATAPI;
156 break;
157
158 case AP_ATA_CMD:
159 /* ATA command "pass-through" */
160 memcpy(&ata_cmd, va_arg(va, void _far *), sizeof(ATA_CMD));
161 break;
162
163 case AP_END:
164 break;
165
166 default:
167 dprintf("error: v_ata_cmd() called with invalid parameter type (%d)\n", (int) ap);
168 return(-1);
169 }
170
171 } while (ap != AP_END);
172
173 /* --------------------------------------------------------------------------
174 * Fill in AHCI ATA command information. This includes the port command slot,
175 * the corresponding command FIS and the S/G list. The layout of the AHCI
176 * port DMA region is based on the Linux AHCI driver and looks like this:
177 *
178 * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
179 * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
180 * - 32 AHCI command tables, each consisting of
181 * - 64 bytes for command FIS
182 * - 16 bytes for ATAPI comands
183 * - 48 bytes reserved
184 * - 48 S/G entries (AHCI_SG) with 32 bytes, each
185 *
186 * Since the whole DMA buffer for all ports is larger than 64KB and we need
187 * multiple segments to address all of them, there are no virtual pointers
188 * to the individual elements in AD_INFO. Instead, we're relying on macros
189 * for getting the base address of a particular port's DMA region, then
190 * map a structure on top of that for convenience (AHCI_PORT_DMA).
191 */
192 dma_base_virt = port_dma_base(ai, p);
193 dma_base_phys = port_dma_base_phys(ai, p);
194
195 /* AHCI command header */
196 cmd_hdr = dma_base_virt->cmd_hdr + slot;
197 memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
198 cmd_hdr->options = ((d & 0x0f) << 12);
199 cmd_hdr->options |= ahci_flags; /* AHCI commaand flags */
200 cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
201 cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
202
203 /* AHCI command table */
204 cmd_tbl = dma_base_virt->cmd_tbl + slot;
205 memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
206 ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
207
208 if (atapi_cmd != NULL) {
209 /* copy ATAPI command */
210 memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
211 }
212
213 /* PRDT (S/G list)
214 *
215 * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
216 * size of each element, thus we need to split S/G elements larger than
217 * 22 bits into 2 AHCI_SG elements.
218 *
219 * - The S/G element size for AHCI is what the spec calls "'0' based"
220 * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
221 * sizes to be even in the context of 16-bit transfers, thus bit '1'
222 * always needs to be set.
223 *
224 * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
225 * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
226 *
227 * - There's a limit on the maximum number of S/G elements in the port DMA
228 * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
229 * the control of this function to split commands which require more
230 * than AHCI_MAX_SG entries. In order to help the caller, the return value
231 * of this function will indicate how many OS/2 S/G entries were
232 * successfully mapped.
233 *
234 */
235 for (i = n = 0; i < sg_cnt; i++) {
236 u32 sg_addr = sg_list[i].ppXferBuf;
237 u32 sg_size = sg_list[i].XferBufLen;
238
239 do {
240 u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN
241 : sg_size;
242 if (n >= AHCI_MAX_SG) {
243 /* couldn't store all S/G elements in our DMA buffer */
244 ddprintf("ata_cmd(): too many S/G elements\n");
245 return(i - 1);
246 }
247 cmd_tbl->sg_list[n].addr = sg_addr;
248 cmd_tbl->sg_list[n].size = chunk - 1;
249 sg_addr += chunk;
250 sg_size -= chunk;
251 n++;
252 } while (sg_size > 0);
253 }
254
255 /* set final S/G count in AHCI command header */
256 cmd_hdr->options |= (u32) n << 16;
257
258 if (debug >= 2) {
259 printf("ATA command for %d.%d.%d:\n", ad_no(ai), p, d);
260 phex(cmd_hdr, offsetof(AHCI_CMD_HDR, reserved), "cmd_hdr: ");
261 phex(&ata_cmd, sizeof(ata_cmd), "ata_cmd: ");
262 if (atapi_cmd != NULL) {
263 phex(atapi_cmd, atapi_cmd_len, "atapi_cmd: ");
264 }
265 if (n > 0) {
266 phex(cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n, "sg_list: ");
267 }
268 }
269
270 return(0);
271}
272
273/******************************************************************************
274 * Fill SATA command FIS with values extracted from an ATA command structure.
275 * The command FIS buffer (fis) is expected to be initialized to 0s. The
276 * structure of the FIS maps to the ATA shadow register block, including
277 * registers which can be written twice to store 16 bits (called 'exp').
278 *
279 * The FIS structure looks like this (using LSB notation):
280 *
281 * +----------------+----------------+----------------+----------------+
282 * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
283 * +----------------+----------------+----------------+----------------+
284 * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
285 * +----------------+----------------+----------------+----------------+
286 * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
287 * +----------------+----------------+----------------+----------------+
288 * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
289 * +----------------+----------------+----------------+----------------+
290 * 16 | Reserved | Reserved | Reserved | Reserved |
291 * +----------------+----------------+----------------+----------------+
292 */
293void ata_cmd_to_fis(u8 _far *fis, ATA_CMD _far *ata_cmd, int d)
294{
295 fis[0] = 0x27; /* register - host to device FIS */
296 fis[1] = (u8) (d & 0xf); /* port multiplier number */
297 fis[1] |= 0x80; /* bit 7 indicates Command FIS */
298 fis[2] = (u8) ata_cmd->cmd;
299 fis[3] = (u8) ata_cmd->features;
300
301 fis[4] = (u8) ata_cmd->lba_l;
302 fis[5] = (u8) (ata_cmd->lba_l >> 8);
303 fis[6] = (u8) (ata_cmd->lba_l >> 16);
304 fis[7] = (u8) ata_cmd->device;
305
306 fis[8] = (u8) (ata_cmd->lba_l >> 24);
307 fis[9] = (u8) ata_cmd->lba_h;
308 fis[10] = (u8) (ata_cmd->lba_h >> 8);
309 fis[11] = (u8) (ata_cmd->features >> 8);
310
311 fis[12] = (u8) ata_cmd->count;
312 fis[13] = (u8) (ata_cmd->count >> 8);
313}
314
315/******************************************************************************
316 * Get index in S/G list for the number of transferred sectors in the IORB.
317 *
318 * Returning io->cSGList indicates an error.
319 *
320 * NOTE: OS/2 makes sure S/G lists are set up such that entries at the HW
321 * limit will never cross sector boundaries. This means that splitting
322 * S/G lists into multiple commands can be done without editing the S/G
323 * lists.
324 */
325u16 ata_get_sg_indx(IORB_EXECUTEIO _far *io)
326{
327 ULONG offset = io->BlocksXferred * io->BlockSize;
328 USHORT i;
329
330 for (i = 0; i < io->cSGList && offset > 0; i++) {
331 offset -= io->pSGList[i].XferBufLen;
332 }
333
334 return(i);
335}
336
337/******************************************************************************
338 * Get max S/G count which will fit into our HW S/G buffers. This function is
339 * called when the S/G list is too long and we need to split the IORB into
340 * multiple commands. It returns both the number of sectors and S/G list
341 * elements that we can handle in a single command.
342 *
343 * The parameter 'sg_indx' indicates the current start index in the S/G list
344 * (0 if this is the first command iteration).
345 *
346 * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
347 * how many S/G elements were successfully mapped. Whatever we return needs to
348 * be less or equal to this value.
349 *
350 * Returning 0 in *sg_cnt indicates an error.
351 *
352 * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
353 * will never cross sector boundaries. This means that splitting S/G
354 * lists into multiple commands can be done without editing S/G list
355 * elements. Since AHCI only allows 22 bits for each S/G element, the
356 * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
357 * on the actual length of S/G elements. This function looks for the
358 * maximum number of S/G elements that can be mapped on sector
359 * boundaries which will still fit into our HW S/G list.
360 */
361void ata_max_sg_cnt(IORB_EXECUTEIO _far *io, USHORT sg_indx, USHORT sg_max,
362 USHORT _far *sg_cnt, USHORT _far *sector_cnt)
363{
364 ULONG max_sector_cnt = 0;
365 USHORT max_sg_cnt = 0;
366 ULONG offset = 0;
367 USHORT i;
368
369 for (i = sg_indx; i < io->cSGList; i++) {
370 if (i - sg_indx >= sg_max) {
371 /* we're beyond the number of S/G elements we can map */
372 break;
373 }
374
375 offset += io->pSGList[i].XferBufLen;
376 if (offset % io->BlockSize == 0) {
377 /* this S/G element ends on a sector boundary */
378 max_sector_cnt = offset / io->BlockSize;
379 max_sg_cnt = i + 1;
380 }
381 }
382
383 /* return the best match we found so far (0 indicating failure) */
384 *sector_cnt = max_sector_cnt;
385 *sg_cnt = max_sg_cnt;
386}
387
388
389/******************************************************************************
390 * Get device or media geometry. Device and media geometry are expected to be
391 * the same for non-removable devices, which will always be the case for the
392 * ATA devices we're dealing with (hard disks). ATAPI is a different story
393 * and handled by atapi_get_geometry().
394 */
395int ata_get_geometry(IORBH _far *iorb, int slot)
396{
397 ADD_WORKSPACE _far *aws = add_workspace(iorb);
398 int rc;
399
400 /* allocate buffer for ATA identify information */
401 if ((aws->buf = malloc(ATA_ID_WORDS * sizeof(u16))) == NULL) {
402 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
403 return(-1);
404 }
405
406 /* request ATA identify information */
407 aws->ppfunc = ata_get_geometry_pp;
408 rc = ata_cmd(ad_infos + iorb_unit_adapter(iorb),
409 iorb_unit_port(iorb),
410 iorb_unit_device(iorb),
411 slot,
412 ATA_CMD_ID_ATA,
413 AP_VADDR, (void _far *) aws->buf, ATA_ID_WORDS * sizeof(u16),
414 AP_END);
415
416 if (rc != 0) {
417 free(aws->buf);
418 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
419 }
420
421 return(rc);
422}
423
424/******************************************************************************
425 * Post processing function for ata_get_geometry(): convert the ATA identify
426 * information to OS/2 IOCC_GEOMETRY information.
427 */
428void ata_get_geometry_pp(IORBH _far *iorb)
429{
430 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
431 USHORT geometry_len = ((IORB_GEOMETRY _far *) iorb)->GeometryLen;
432 u16 *id_buf = add_workspace(iorb)->buf;
433
434 /* Fill-in geometry information; the ATA-8 spec declares the geometry
435 * fields in the ATA ID buffer as obsolete but it's still the best
436 * guess in most cases. If the information stored in the geometry
437 * fields is apparently incorrect, we'll use the algorithm typically
438 * used by SCSI adapters and modern PC BIOS releases:
439 *
440 * - 512 bytes per sector
441 * - 255 heads
442 * - 63 sectors per track
443 * - x cylinders (calculated)
444 *
445 * Please note that os2ahci currently does not support ATA sectors larger
446 * than 512 bytes, therefore relies on the translation logic built into the
447 * corresponding ATA disks. In theory, partitions should be aligned to the
448 * large sectors to prevent needless mapping all over the place but HPFS
449 * uses logical block sizes smaller than the typical large sectors found on
450 * modern hard disks so this won't make much of a difference. Large sector
451 * support will be evaluated at a later time (it's unclear right now whether
452 * HPFS would even support anything larger than 512 bytes).
453 *
454 * Another limitation is that OS/2 has a 32-bit variable for the total number
455 * of sectors, limiting the maximum capacity to roughly 2TB. This is another
456 * issue that needs to be addressed sooner or later; large sectors could
457 * raise this limit to something like 8TB but this is not really much of a
458 * difference. Maybe there's something in later DDKs that allows more than
459 * 32 bits?
460 */
461 memset(geometry, 0x00, geometry_len);
462 geometry->BytesPerSector = 512;
463
464 /* extract total number of sectors */
465 if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400) {
466 /* 48-bit LBA supported */
467 if (ATA_CAPACITY48_H(id_buf) != 0) {
468 /* more than 32 bits for number of sectors */
469 dprintf("warning: limiting disk %d.%d.%d to 2TB\n",
470 iorb_unit_adapter(iorb), iorb_unit_port(iorb),
471 iorb_unit_device(iorb));
472 geometry->TotalSectors = 0xffffffffUL;
473 } else {
474 geometry->TotalSectors = ATA_CAPACITY48_L(id_buf);
475 }
476 } else {
477 /* 28-bit LBA */
478 geometry->TotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffffUL;
479 }
480
481 /* see whether the "current" (read: BIOS-supplied) geometry looks OK */
482 if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 &&
483 CUR_SECTORS(id_buf) > 0 &&
484 CUR_CAPACITY(id_buf) == CUR_HEADS(id_buf) *
485 CUR_CYLS(id_buf) *
486 CUR_SECTORS(id_buf)) {
487 /* use BIOS-supplied values for geometry */
488 geometry->NumHeads = CUR_HEADS(id_buf);
489 geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
490 geometry->TotalCylinders = CUR_CYLS(id_buf);
491
492 } else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 &&
493 ATA_SECTORS(id_buf) > 0) {
494 /* use ATA-supplied values for geometry */
495 geometry->NumHeads = ATA_HEADS(id_buf);
496 geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
497 geometry->TotalCylinders = ATA_CYLS(id_buf);
498
499 }
500
501 /* MT: if neither ATA nor BIOS supply valid data, or if their
502 * CHS values result in a sector count lower than determined,
503 * we use a typical [SCSI] BIOS algorithm
504 */
505 if ((u32) geometry->NumHeads * (u32) geometry->SectorsPerTrack *
506 (u32) geometry->TotalCylinders < geometry->TotalSectors) {
507 geometry->NumHeads = 255;
508 geometry->SectorsPerTrack = 63;
509 geometry->TotalCylinders = geometry->TotalSectors /
510 ((u32) geometry->NumHeads *
511 (u32) geometry->SectorsPerTrack);
512 }
513
514 if (debug) {
515 printf("geometry information:\n");
516 printf(" heads: %d\n", (u16) geometry->NumHeads);
517 printf(" sectors: %d\n", (u16) geometry->SectorsPerTrack);
518 printf(" cylinders: %d\n", (u16) geometry->TotalCylinders);
519 printf(" capacity: %ldMB\n", (u32) (geometry->TotalSectors / 2048));
520 }
521
522 /* tell interrupt handler that this IORB is complete */
523 add_workspace(iorb)->complete = 1;
524}
525
526/******************************************************************************
527 * Test whether unit is ready.
528 */
529int ata_unit_ready(IORBH _far *iorb, int slot)
530{
531 /* This is a NOP for ATA devices (at least right now); returning an error
532 * without setting an error code means ahci_exec_iorb() will not queue any
533 * HW command and the IORB will complete successfully.
534 */
535 ((IORB_UNIT_STATUS _far *) iorb)->UnitStatus = US_READY | US_POWER;
536 return(-1);
537}
538
539/******************************************************************************
540 * Read sectors from AHCI device.
541 */
542int ata_read(IORBH _far *iorb, int slot)
543{
544 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
545 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
546 ULONG sector = io->RBA + io->BlocksXferred;
547 USHORT count = io->BlockCount - io->BlocksXferred;
548 USHORT sg_indx;
549 USHORT sg_cnt;
550 int p = iorb_unit_port(iorb);
551 int d = iorb_unit_device(iorb);
552 int rc;
553
554 /* prepare read command while keeping an eye on S/G count limitations */
555 do {
556 sg_indx = ata_get_sg_indx(io);
557 sg_cnt = io->cSGList - sg_indx;
558
559 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
560 /* need LBA48 for this command */
561 if (!ai->ports[p].devs[d].lba48) {
562 iorb_seterr(iorb, IOERR_RBA_LIMIT);
563 return(-1);
564 }
565 if (add_workspace(iorb)->is_ncq) {
566 /* use NCQ read; count goes into feature register, tag into count! */
567 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
568 AP_SECTOR_48, (u32) sector, (u16) 0,
569 AP_FEATURES, (u16) count,
570 AP_COUNT, (u16) slot, /* tag = slot */
571 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
572 AP_DEVICE, 0x4000,
573 AP_END);
574 } else {
575 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
576 AP_SECTOR_48, (u32) sector, (u16) 0,
577 AP_COUNT, (u16) count,
578 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
579 AP_DEVICE, 0x4000,
580 AP_END);
581 }
582
583 } else {
584 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
585 AP_SECTOR_28, (u32) sector,
586 AP_COUNT, (u16) count & 0xffU,
587 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
588 AP_DEVICE, 0x4000,
589 AP_END);
590 }
591
592 if (rc > 0) {
593 /* couldn't map all S/G elements */
594 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
595 }
596 } while (rc > 0 && sg_cnt > 0);
597
598 if (rc == 0) {
599 add_workspace(iorb)->blocks = count;
600 add_workspace(iorb)->ppfunc = ata_read_pp;
601
602 } else if (rc > 0) {
603 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
604
605 } else {
606 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
607 }
608
609 return(rc);
610}
611
612/******************************************************************************
613 * Post processing function for ata_read(); this function updates the
614 * BlocksXferred counter in the IORB and, if not all blocks have been
615 * transferred, requeues the IORB to process the remaining sectors.
616 */
617void ata_read_pp(IORBH _far *iorb)
618{
619 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
620
621 io->BlocksXferred += add_workspace(iorb)->blocks;
622 ddprintf("ata_read_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
623
624 if (io->BlocksXferred >= io->BlockCount) {
625 /* we're done; tell IRQ handler the IORB is complete */
626 add_workspace(iorb)->complete = 1;
627 } else {
628 /* requeue this IORB for next iteration */
629 iorb_requeue(iorb);
630 }
631}
632
633/******************************************************************************
634 * Verify readability of sectors on ATA device.
635 */
636int ata_verify(IORBH _far *iorb, int slot)
637{
638 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
639 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
640 int p = iorb_unit_port(iorb);
641 int d = iorb_unit_device(iorb);
642 int rc;
643
644 /* prepare verify command */
645 if (io->RBA >= (1UL << 28) || io->BlockCount > 256) {
646 /* need LBA48 for this command */
647 if (!ai->ports[p].devs[d].lba48) {
648 iorb_seterr(iorb, IOERR_RBA_LIMIT);
649 return(-1);
650 }
651 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
652 AP_SECTOR_48, (u32) io->RBA, (u16) 0,
653 AP_COUNT, (u16) io->BlockCount,
654 AP_DEVICE, 0x4000,
655 AP_END);
656 } else {
657 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
658 AP_SECTOR_28, (u32) io->RBA,
659 AP_COUNT, (u16) io->BlockCount & 0xffU,
660 AP_END);
661 }
662
663 return(rc);
664}
665
666/******************************************************************************
667 * Write sectors to AHCI device.
668 */
669int ata_write(IORBH _far *iorb, int slot)
670{
671 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
672 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
673 ULONG sector = io->RBA + io->BlocksXferred;
674 USHORT count = io->BlockCount - io->BlocksXferred;
675 USHORT sg_indx;
676 USHORT sg_cnt;
677 int p = iorb_unit_port(iorb);
678 int d = iorb_unit_device(iorb);
679 int rc;
680
681 /* prepare write command while keeping an eye on S/G count limitations */
682 do {
683 sg_indx = ata_get_sg_indx(io);
684 sg_cnt = io->cSGList - sg_indx;
685
686 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
687 /* need LBA48 for this command */
688 if (!ai->ports[p].devs[d].lba48) {
689 iorb_seterr(iorb, IOERR_RBA_LIMIT);
690 return(-1);
691 }
692 if (add_workspace(iorb)->is_ncq) {
693 /* use NCQ write; count goes into feature register, tag into count! */
694 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
695 AP_SECTOR_48, (u32) sector, (u16) 0,
696 AP_FEATURES, (u16) count,
697 AP_COUNT, (u16) slot, /* tag = slot */
698 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
699 AP_DEVICE, 0xc000, /* force unit access (FUA) */
700 AP_WRITE, 1,
701 AP_END);
702 } else {
703 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
704 AP_SECTOR_48, (u32) sector, (u16) 0,
705 AP_COUNT, (u16) count,
706 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
707 AP_DEVICE, 0x4000,
708 AP_WRITE, 1,
709 AP_END);
710 }
711
712 } else {
713 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
714 AP_SECTOR_28, (u32) sector,
715 AP_COUNT, (u16) count & 0xffU,
716 AP_SGLIST, io->pSGList + sg_indx, (u16) sg_cnt,
717 AP_DEVICE, 0x4000,
718 AP_WRITE, 1,
719 AP_END);
720 }
721
722 if (rc > 0) {
723 /* couldn't map all S/G elements */
724 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
725 }
726 } while (rc > 0 && sg_cnt > 0);
727
728 if (rc == 0) {
729 add_workspace(iorb)->blocks = count;
730 add_workspace(iorb)->ppfunc = ata_write_pp;
731
732 } else if (rc > 0) {
733 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
734
735 } else {
736 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
737 }
738
739 return(rc);
740}
741
742/******************************************************************************
743 * Post processing function for ata_write(); this function updates the
744 * BlocksXferred counter in the IORB and, if not all blocks have been
745 * transferred, requeues the IORB to process the remaining sectors.
746 */
747void ata_write_pp(IORBH _far *iorb)
748{
749 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
750
751 io->BlocksXferred += add_workspace(iorb)->blocks;
752 ddprintf("ata_write_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
753
754 if (io->BlocksXferred >= io->BlockCount) {
755 /* we're done; tell IRQ handler the IORB is complete */
756 add_workspace(iorb)->complete = 1;
757 } else {
758 /* requeue this IORB for next iteration */
759 iorb_requeue(iorb);
760 }
761}
762
763/******************************************************************************
764 * Execute ATA command.
765 */
766int ata_execute_ata(IORBH _far *iorb, int slot)
767{
768 IORB_ADAPTER_PASSTHRU _far *apt = (IORB_ADAPTER_PASSTHRU _far *) iorb;
769 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
770 int p = iorb_unit_port(iorb);
771 int d = iorb_unit_device(iorb);
772 int rc;
773
774 if (apt->ControllerCmdLen != sizeof(ATA_CMD)) {
775 iorb_seterr(iorb, IOERR_CMD_SYNTAX);
776 return(-1);
777 }
778
779 rc = ata_cmd(ai, p, d, slot, 0,
780 AP_SGLIST, apt->pSGList, apt->ppSGLIST,
781 AP_ATA_CMD, apt->pControllerCmd,
782 AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
783 AP_END);
784
785 return(rc);
786}
787
788/******************************************************************************
789 * Request sense information for a failed command. Since there is no "request
790 * sense" command for ATA devices, we need to read the current error code from
791 * the AHCI task file register and fabricate the sense information.
792 *
793 * NOTES:
794 *
795 * - This function must be called right after an ATA command has failed and
796 * before any other commands are queued on the corresponding port. This
797 * function is typically called in the port restart context hook which is
798 * triggered by an AHCI error interrupt.
799 *
800 * - The ATA error bits are a complete mess. We'll try and catch the most
801 * interesting error codes (such as medium errors) and report everything
802 * else with a generic error code.
803 */
804int ata_req_sense(IORBH _far *iorb, int slot)
805{
806 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
807 u8 _far *port_mmio = port_base(ai, iorb_unit_port(iorb));
808 u32 tf_data = readl(port_mmio + PORT_TFDATA);
809 u8 err = (u8) (tf_data >> 8);
810 u8 sts = (u8) (tf_data);
811
812 if (sts & ATA_ERR) {
813 if (sts & ATA_DF) {
814 /* there is a device-specific error condition */
815 if (err & ATA_ICRC) {
816 iorb_seterr(iorb, IOERR_ADAPTER_DEVICEBUSCHECK);
817 } else if (err & ATA_UNC) {
818 iorb_seterr(iorb, IOERR_MEDIA);
819 } else if (err & ATA_IDNF) {
820 iorb_seterr(iorb, IOERR_RBA_ADDRESSING_ERROR);
821 } else {
822 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
823 }
824
825 } else {
826 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
827 }
828 }
829
830 /* Return an error to indicate there's no HW command to be submitted and
831 * that the IORB can be completed "as is" (the upstream code expects the
832 * IORB error code, if any, to be set when this happens and this is exactly
833 * what this function is all about).
834 */
835 return(-1);
836}
837
838/******************************************************************************
839 * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
840 * in the indentify buffer are byte-swapped, we need to swap them back.
841 */
842char *ata_dev_name(u16 *id_buf)
843{
844 static char dev_name[ATA_ID_PROD_LEN + 1];
845 char *t = dev_name;
846 char *s = (char *) (id_buf + ATA_ID_PROD);
847 int i;
848
849 dev_name[sizeof(dev_name)-1] = '\0';
850
851 for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
852 *(t++) = s[1];
853 *(t++) = s[0];
854 s += 2;
855 }
856
857 return(dev_name);
858}
859
Note: See TracBrowser for help on using the repository browser.