source: trunk/src/os2ahci/ata.c@ 160

Last change on this file since 160 was 160, checked in by David Azarewicz, 12 years ago

fixed trap dump kernel exit, some work on suspend/resume routines

File size: 42.4 KB
Line 
1/******************************************************************************
2 * ata.c - ATA command processing
3 *
4 * Copyright (c) 2011 thi.guten Software Development
5 * Copyright (c) 2011 Mensys B.V.
6 *
7 * Authors: Christian Mueller, Markus Thielen
8 *
9 * Parts copied from/inspired by the Linux AHCI driver;
10 * those parts are (c) Linux AHCI/ATA maintainers
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27#include "os2ahci.h"
28#include "ata.h"
29
30/* -------------------------- macros and constants ------------------------- */
31
32/* ------------------------ typedefs and structures ------------------------ */
33
34/* -------------------------- function prototypes -------------------------- */
35
36static int ata_cmd_read (IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
37 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
38 ULONG sg_cnt);
39
40static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
41 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
42 ULONG sg_cnt, int write_through);
43
44/* ------------------------ global/static variables ------------------------ */
45
46/* ----------------------------- start of code ----------------------------- */
47
48/******************************************************************************
49 * Initialize AHCI command slot, FIS and S/G list for the specified ATA
50 * command. The command parameters are passed as a variable argument list
51 * of type and value(s). The list is terminated by AP_END.
52 *
53 * Notes:
54 *
55 * - The specified command slot is expected to be idle; no checks are
56 * performed to prevent messing with a busy port.
57 *
58 * - Port multipliers are not supported, yet, thus 'd' should always
59 * be 0 for the time being.
60 *
61 * - 'cmd' is passed as 16-bit integer because the compiler would push
62 * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
63 * macros would screw up the address of the first variable argument
64 * if the size of the last fixed argument wouldn't match what the
65 * compiler pushed on the stack.
66 *
67 * Return values:
68 * 0 : success
69 * > 0 : could not map all S/G entries; the return value is the number of
70 * S/G entries that could be mapped.
71 * < 0 : other error
72 */
73int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
74{
75 va_list va;
76 va_start(va, cmd);
77 return(v_ata_cmd(ai, p, d, slot, cmd, va));
78}
79
80int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
81{
82 AHCI_PORT_DMA _far *dma_base_virt;
83 AHCI_CMD_HDR _far *cmd_hdr;
84 AHCI_CMD_TBL _far *cmd_tbl;
85 SCATGATENTRY _far *sg_list = NULL;
86 SCATGATENTRY sg_single;
87 ATA_PARM ap;
88 ATA_CMD ata_cmd;
89 void _far *atapi_cmd = NULL;
90 u32 dma_base_phys;
91 u16 atapi_cmd_len = 0;
92 u16 ahci_flags = 0;
93 u16 sg_cnt = 0;
94 int i;
95 int n;
96
97 /* --------------------------------------------------------------------------
98 * Initialize ATA command. The ATA command is set up with the main command
99 * value and a variable list of additional parameters such as the sector
100 * address, transfer count, ...
101 */
102 memset(&ata_cmd, 0x00, sizeof(ata_cmd));
103 ata_cmd.cmd = (u8) cmd;
104
105 /* parse variable arguments */
106 do {
107 switch ((ap = va_arg(va, ATA_PARM))) {
108
109 case AP_AHCI_FLAGS:
110 ahci_flags |= va_arg(va, u16);
111 break;
112
113 case AP_WRITE:
114 if (va_arg(va, u16) != 0) {
115 ahci_flags |= AHCI_CMD_WRITE;
116 }
117 break;
118
119 case AP_FEATURES:
120 /* ATA features word */
121 ata_cmd.features |= va_arg(va, u16);
122 break;
123
124 case AP_COUNT:
125 /* transfer count */
126 ata_cmd.count = va_arg(va, u16);
127 break;
128
129 case AP_SECTOR_28:
130 /* 28-bit sector address */
131 ata_cmd.lba_l = va_arg(va, u32);
132 if (ata_cmd.lba_l & 0xf0000000UL) {
133 dprintf("error: LBA-28 address %ld has more than 28 bits\n", ata_cmd.lba_l);
134 return(ATA_CMD_INVALID_PARM);
135 }
136 /* add upper 4 bits to device field */
137 ata_cmd.device |= (ata_cmd.lba_l >> 24) & 0x0fU;
138 /* only lower 24 bits come into lba_l */
139 ata_cmd.lba_l &= 0x00ffffffUL;
140 break;
141
142 case AP_SECTOR_48:
143 /* 48-bit sector address */
144 ata_cmd.lba_l = va_arg(va, u32);
145 ata_cmd.lba_h = va_arg(va, u16);
146 break;
147
148 case AP_DEVICE:
149 /* ATA device byte; note that this byte contains the highest
150 * 4 bits of LBA-28 address; we have to leave them alone here. */
151 ata_cmd.device |= va_arg(va, u16) & 0xf0U;
152 break;
153
154 case AP_SGLIST:
155 /* scatter/gather list in SCATGATENTRY/count format */
156 sg_list = va_arg(va, void _far *);
157 sg_cnt = va_arg(va, u16);
158 break;
159
160 case AP_VADDR:
161 /* virtual buffer address in addr/len format (up to 4K) */
162 sg_single.ppXferBuf = virt_to_phys(va_arg(va, void _far *));
163 sg_single.XferBufLen = va_arg(va, u16);
164 sg_list = &sg_single;
165 sg_cnt = 1;
166 break;
167
168 case AP_ATAPI_CMD:
169 /* ATAPI command */
170 atapi_cmd = va_arg(va, void _far *);
171 atapi_cmd_len = va_arg(va, u16);
172 ahci_flags |= AHCI_CMD_ATAPI;
173 break;
174
175 case AP_ATA_CMD:
176 /* ATA command "pass-through" */
177 memcpy(&ata_cmd, va_arg(va, void _far *), sizeof(ATA_CMD));
178 break;
179
180 case AP_END:
181 break;
182
183 default:
184 dprintf("error: v_ata_cmd() called with invalid parameter type (%d)\n", (int) ap);
185 return(ATA_CMD_INVALID_PARM);
186 }
187
188 } while (ap != AP_END);
189
190 /* --------------------------------------------------------------------------
191 * Fill in AHCI ATA command information. This includes the port command slot,
192 * the corresponding command FIS and the S/G list. The layout of the AHCI
193 * port DMA region is based on the Linux AHCI driver and looks like this:
194 *
195 * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
196 * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
197 * - 32 AHCI command tables, each consisting of
198 * - 64 bytes for command FIS
199 * - 16 bytes for ATAPI comands
200 * - 48 bytes reserved
201 * - 48 S/G entries (AHCI_SG) with 32 bytes, each
202 *
203 * Since the whole DMA buffer for all ports is larger than 64KB and we need
204 * multiple segments to address all of them, there are no virtual pointers
205 * to the individual elements in AD_INFO. Instead, we're relying on macros
206 * for getting the base address of a particular port's DMA region, then
207 * map a structure on top of that for convenience (AHCI_PORT_DMA).
208 */
209 dma_base_virt = port_dma_base(ai, p);
210 dma_base_phys = port_dma_base_phys(ai, p);
211
212 /* AHCI command header */
213 cmd_hdr = dma_base_virt->cmd_hdr + slot;
214 memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
215 cmd_hdr->options = ((d & 0x0f) << 12);
216 cmd_hdr->options |= ahci_flags; /* AHCI command flags */
217 cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
218 cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
219
220 /* AHCI command table */
221 cmd_tbl = dma_base_virt->cmd_tbl + slot;
222 memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
223 ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
224
225 if (atapi_cmd != NULL) {
226 /* copy ATAPI command */
227 memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
228 }
229
230 /* PRDT (S/G list)
231 *
232 * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
233 * size of each element, thus we need to split S/G elements larger than
234 * 22 bits into 2 AHCI_SG elements.
235 *
236 * - The S/G element size for AHCI is what the spec calls '0'-based
237 * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
238 * sizes to be even in the context of 16-bit transfers, thus bit '1'
239 * always needs to be set.
240 *
241 * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
242 * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
243 *
244 * - There's a limit on the maximum number of S/G elements in the port DMA
245 * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
246 * the control of this function to split commands which require more
247 * than AHCI_MAX_SG entries. In order to help the caller, the return value
248 * of this function will indicate how many OS/2 S/G entries were
249 * successfully mapped.
250 */
251 for (i = n = 0; i < sg_cnt; i++) {
252 u32 sg_addr = sg_list[i].ppXferBuf;
253 u32 sg_size = sg_list[i].XferBufLen;
254
255 do {
256 u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN
257 : sg_size;
258 if (n >= AHCI_MAX_SG) {
259 /* couldn't store all S/G elements in our DMA buffer */
260 ddprintf("ata_cmd(): too many S/G elements\n");
261 return(i - 1);
262 }
263 if ((sg_addr & 1) || (chunk & 1)) {
264 ddprintf("error: ata_cmd() called with unaligned S/G element(s)\n");
265 return(ATA_CMD_UNALIGNED_ADDR);
266 }
267 cmd_tbl->sg_list[n].addr = sg_addr;
268 cmd_tbl->sg_list[n].size = chunk - 1;
269 sg_addr += chunk;
270 sg_size -= chunk;
271 n++;
272 } while (sg_size > 0);
273 }
274
275 /* set final S/G count in AHCI command header */
276 cmd_hdr->options |= (u32) n << 16;
277
278 if (debug >= 2) {
279 aprintf("ATA command for %d.%d.%d, slot %d:\n", ad_no(ai), p, d, slot);
280 phex(cmd_hdr, offsetof(AHCI_CMD_HDR, reserved), "cmd_hdr: ");
281 phex(&ata_cmd, sizeof(ata_cmd), "ata_cmd: ");
282 if (atapi_cmd != NULL) {
283 phex(atapi_cmd, atapi_cmd_len, "atapi_cmd: ");
284 }
285 if (n > 0) {
286 phex(cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n, "sg_list: ");
287 }
288 }
289
290 return(ATA_CMD_SUCCESS);
291}
292
293/******************************************************************************
294 * Fill SATA command FIS with values extracted from an ATA command structure.
295 * The command FIS buffer (fis) is expected to be initialized to 0s. The
296 * structure of the FIS maps to the ATA shadow register block, including
297 * registers which can be written twice to store 16 bits (called 'exp').
298 *
299 * The FIS structure looks like this (using LSB notation):
300 *
301 * +----------------+----------------+----------------+----------------+
302 * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
303 * +----------------+----------------+----------------+----------------+
304 * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
305 * +----------------+----------------+----------------+----------------+
306 * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
307 * +----------------+----------------+----------------+----------------+
308 * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
309 * +----------------+----------------+----------------+----------------+
310 * 16 | Reserved | Reserved | Reserved | Reserved |
311 * +----------------+----------------+----------------+----------------+
312 */
313void ata_cmd_to_fis(u8 _far *fis, ATA_CMD _far *ata_cmd, int d)
314{
315 fis[0] = 0x27; /* register - host to device FIS */
316 fis[1] = (u8) (d & 0xf); /* port multiplier number */
317 fis[1] |= 0x80; /* bit 7 indicates Command FIS */
318 fis[2] = (u8) ata_cmd->cmd;
319 fis[3] = (u8) ata_cmd->features;
320
321 fis[4] = (u8) ata_cmd->lba_l;
322 fis[5] = (u8) (ata_cmd->lba_l >> 8);
323 fis[6] = (u8) (ata_cmd->lba_l >> 16);
324 fis[7] = (u8) ata_cmd->device;
325
326 fis[8] = (u8) (ata_cmd->lba_l >> 24);
327 fis[9] = (u8) ata_cmd->lba_h;
328 fis[10] = (u8) (ata_cmd->lba_h >> 8);
329 fis[11] = (u8) (ata_cmd->features >> 8);
330
331 fis[12] = (u8) ata_cmd->count;
332 fis[13] = (u8) (ata_cmd->count >> 8);
333}
334
335/******************************************************************************
336 * Get index in S/G list for the number of transferred sectors in the IORB.
337 *
338 * Returning io->cSGList indicates an error.
339 *
340 * NOTE: OS/2 makes sure S/G lists are set up such that entries at the HW
341 * limit will never cross sector boundaries. This means that splitting
342 * S/G lists into multiple commands can be done without editing the S/G
343 * lists.
344 */
345u16 ata_get_sg_indx(IORB_EXECUTEIO _far *io)
346{
347 ULONG offset = io->BlocksXferred * io->BlockSize;
348 USHORT i;
349
350 for (i = 0; i < io->cSGList && offset > 0; i++) {
351 offset -= io->pSGList[i].XferBufLen;
352 }
353
354 return(i);
355}
356
357/******************************************************************************
358 * Get max S/G count which will fit into our HW S/G buffers. This function is
359 * called when the S/G list is too long and we need to split the IORB into
360 * multiple commands. It returns both the number of sectors and S/G list
361 * elements that we can handle in a single command.
362 *
363 * The parameter 'sg_indx' indicates the current start index in the S/G list
364 * (0 if this is the first command iteration).
365 *
366 * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
367 * how many S/G elements were successfully mapped. Whatever we return needs to
368 * be less or equal to this value.
369 *
370 * Returning 0 in *sg_cnt indicates an error.
371 *
372 * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
373 * will never cross sector boundaries. This means that splitting S/G
374 * lists into multiple commands can be done without editing S/G list
375 * elements. Since AHCI only allows 22 bits for each S/G element, the
376 * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
377 * on the actual length of S/G elements. This function looks for the
378 * maximum number of S/G elements that can be mapped on sector
379 * boundaries which will still fit into our HW S/G list.
380 */
381void ata_max_sg_cnt(IORB_EXECUTEIO _far *io, USHORT sg_indx, USHORT sg_max,
382 USHORT _far *sg_cnt, USHORT _far *sector_cnt)
383{
384 ULONG max_sector_cnt = 0;
385 USHORT max_sg_cnt = 0;
386 ULONG offset = 0;
387 USHORT i;
388
389 for (i = sg_indx; i < io->cSGList; i++) {
390 if (i - sg_indx >= sg_max) {
391 /* we're beyond the number of S/G elements we can map */
392 break;
393 }
394
395 offset += io->pSGList[i].XferBufLen;
396 if (offset % io->BlockSize == 0) {
397 /* this S/G element ends on a sector boundary */
398 max_sector_cnt = offset / io->BlockSize;
399 max_sg_cnt = i + 1;
400 }
401 }
402
403 /* return the best match we found (0 indicating failure) */
404 *sector_cnt = max_sector_cnt;
405 *sg_cnt = max_sg_cnt;
406}
407
408
409/******************************************************************************
410 * Get device or media geometry. Device and media geometry are expected to be
411 * the same for non-removable devices, which will always be the case for the
412 * ATA devices we're dealing with (hard disks). ATAPI is a different story
413 * and handled by atapi_get_geometry().
414 */
415int ata_get_geometry(IORBH _far *iorb, int slot)
416{
417 ADD_WORKSPACE _far *aws = add_workspace(iorb);
418 int rc;
419
420 /* allocate buffer for ATA identify information */
421 if ((aws->buf = malloc(ATA_ID_WORDS * sizeof(u16))) == NULL) {
422 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
423 return(-1);
424 }
425
426 /* request ATA identify information */
427 aws->ppfunc = ata_get_geometry_pp;
428 rc = ata_cmd(ad_infos + iorb_unit_adapter(iorb),
429 iorb_unit_port(iorb),
430 iorb_unit_device(iorb),
431 slot,
432 ATA_CMD_ID_ATA,
433 AP_VADDR, (void _far *) aws->buf, ATA_ID_WORDS * sizeof(u16),
434 AP_END);
435
436 if (rc != 0) {
437 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
438 }
439
440 return(rc);
441}
442
443int check_lvm(IORBH _far *iorb, ULONG sector)
444{
445 DLA_Table_Sector *pDLA = (DLA_Table_Sector*)add_workspace(iorb)->buf;
446 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
447 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
448 int p = iorb_unit_port(iorb);
449 int rc;
450
451 rc = ahci_exec_polled_cmd(ai, p, 0, 500, ATA_CMD_READ,
452 AP_SECTOR_28, (u32) sector-1,
453 AP_COUNT, (u16) 1,
454 AP_VADDR, (void _far *) pDLA, 512,
455 AP_DEVICE, 0x40,
456 AP_END);
457 if (rc) return 0;
458
459 ddphex(pDLA, sizeof(DLA_Table_Sector), "DLA sector %d:\n", sector-1);
460
461 if ((pDLA->DLA_Signature1 == DLA_TABLE_SIGNATURE1) && (pDLA->DLA_Signature2 == DLA_TABLE_SIGNATURE2)) {
462 ddprintf("is_lvm_geometry found at sector %d\n", sector-1);
463 geometry->TotalCylinders = pDLA->Cylinders;
464 geometry->NumHeads = pDLA->Heads_Per_Cylinder;
465 geometry->SectorsPerTrack = pDLA->Sectors_Per_Track;
466 geometry->TotalSectors = pDLA->Cylinders * pDLA->Heads_Per_Cylinder * pDLA->Sectors_Per_Track;
467 return 1;
468 }
469
470 return 0;
471}
472
473/******************************************************************************
474 * Try to read LVM information from the disk. If found, use the LVM geometry.
475 * This function will only work at init time. A better strategy would be to
476 * calculate the geometry during ahci_scan_ports and save it away and then just
477 * return the saved values when ata_get_geometry() is called.
478 */
479int is_lvm_geometry(IORBH _far *iorb)
480{
481 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
482 ULONG sector;
483
484 if (init_complete) return 0; /* We cannot use ahci_exec_polled_cmd() after init_complete */
485
486 if (use_lvm_info) {
487 #ifdef DEBUG
488 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
489 int p = iorb_unit_port(iorb);
490 int d = iorb_unit_device(iorb);
491 ddprintf("is_lvm_geometry (%d.%d.%d)\n", ad_no(ai), p, d);
492 #endif
493
494 /* First check the sector reported by the hardware */
495 if (check_lvm(iorb, geometry->SectorsPerTrack)) return 1;
496
497 for (sector = 255; sector >= 63; sector >>= 1) {
498 if (sector == geometry->SectorsPerTrack) continue;
499 if (check_lvm(iorb, sector)) return 1;
500 }
501 }
502
503 return 0;
504}
505
506/******************************************************************************
507 * Post processing function for ata_get_geometry(): convert the ATA identify
508 * information to OS/2 IOCC_GEOMETRY information.
509 */
510void ata_get_geometry_pp(IORBH _far *iorb)
511{
512 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
513 USHORT geometry_len = ((IORB_GEOMETRY _far *) iorb)->GeometryLen;
514 u16 *id_buf = add_workspace(iorb)->buf;
515 int a = iorb_unit_adapter(iorb);
516 int p = iorb_unit_port(iorb);
517 char *Method;
518
519 /* Fill-in geometry information; the ATA-8 spec declares the geometry
520 * fields in the ATA ID buffer as obsolete but it's still the best
521 * guess in most cases. If the information stored in the geometry
522 * fields is apparently incorrect, we'll use the algorithm typically
523 * used by SCSI adapters and modern PC BIOS versions:
524 *
525 * - 512 bytes per sector
526 * - 255 heads
527 * - 63 sectors per track (or 56 with the parameter "/4")
528 * - x cylinders (calculated)
529 *
530 * Please note that os2ahci currently does not natively support ATA sectors
531 * larger than 512 bytes, therefore relies on the translation logic built
532 * into the corresponding ATA disks. In order to prevent file systems that
533 * use block sizes larger than 512 bytes (FAT, JFS, ...) from ending up on
534 * incorrectly aligned physical sector accesses, hence using more physical
535 * I/Os than necessary, the command line parameter "/4" can be used to force
536 * a track size of 56 sectors. This way, partitions will start on 4K
537 * boundaries.
538 *
539 * Another limitation is that OS/2 has a 32-bit variable for the total number
540 * of sectors, limiting the maximum capacity to roughly 2TB. This is another
541 * issue that needs to be addressed sooner or later; large sectors could
542 * raise this limit to something like 8TB but this is not really much of a
543 * difference. Maybe there's something in later DDKs that allows more than
544 * 32 bits?
545 */
546 memset(geometry, 0x00, geometry_len);
547 geometry->BytesPerSector = ATA_SECTOR_SIZE;
548
549 /* extract total number of sectors */
550 if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400) {
551 /* 48-bit LBA supported */
552 if (ATA_CAPACITY48_H(id_buf) != 0) {
553 /* more than 32 bits for number of sectors */
554 dprintf("warning: limiting disk %d.%d.%d to 2TB\n",
555 iorb_unit_adapter(iorb), iorb_unit_port(iorb),
556 iorb_unit_device(iorb));
557 geometry->TotalSectors = 0xffffffffUL;
558 } else {
559 geometry->TotalSectors = ATA_CAPACITY48_L(id_buf);
560 }
561 } else {
562 /* 28-bit LBA */
563 geometry->TotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffffUL;
564 }
565
566 Method = "None";
567 /* fabricate the remaining geometry fields */
568 if (track_size[a][p] != 0) {
569 /* A specific track size has been requested for this port; this is
570 * typically done for disks with 4K sectors to make sure partitions
571 * start on 8-sector boundaries (parameter "/4").
572 */
573 geometry->NumHeads = 255;
574 geometry->SectorsPerTrack = track_size[a][p];
575 geometry->TotalCylinders = geometry->TotalSectors /
576 ((u32) geometry->NumHeads *
577 (u32) geometry->SectorsPerTrack);
578 Method = "Custom";
579 } else if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 &&
580 CUR_SECTORS(id_buf) > 0 &&
581 CUR_CAPACITY(id_buf) == (u32) CUR_HEADS(id_buf) *
582 (u32) CUR_CYLS(id_buf) *
583 (u32) CUR_SECTORS(id_buf)) {
584 /* BIOS-supplied (aka "current") geometry values look valid */
585 geometry->NumHeads = CUR_HEADS(id_buf);
586 geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
587 geometry->TotalCylinders = CUR_CYLS(id_buf);
588 Method = "BIOS";
589 } else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 &&
590 ATA_SECTORS(id_buf) > 0) {
591 /* ATA-supplied values for geometry look valid */
592 geometry->NumHeads = ATA_HEADS(id_buf);
593 geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
594 geometry->TotalCylinders = ATA_CYLS(id_buf);
595 Method = "ATA";
596 } else {
597 /* use typical SCSI geometry */
598 geometry->NumHeads = 255;
599 geometry->SectorsPerTrack = 63;
600 geometry->TotalCylinders = geometry->TotalSectors /
601 ((u32) geometry->NumHeads *
602 (u32) geometry->SectorsPerTrack);
603 Method = "SCSI";
604 }
605
606 if (is_lvm_geometry(iorb)) Method = "LVM";
607
608 dprintf("Drive geometry: %ld cylinders, %d heads, %d sectors per track (%ldMB) (%s)\n",
609 (u32) geometry->TotalCylinders, (u16) geometry->NumHeads, (u16) geometry->SectorsPerTrack,
610 (u32) (geometry->TotalSectors / 2048), Method);
611
612 /* tell interrupt handler that this IORB is complete */
613 add_workspace(iorb)->complete = 1;
614}
615
616/******************************************************************************
617 * Test whether unit is ready.
618 */
619int ata_unit_ready(IORBH _far *iorb, int slot)
620{
621 /* This is a NOP for ATA devices (at least right now); returning an error
622 * without setting an error code means ahci_exec_iorb() will not queue any
623 * HW command and the IORB will complete successfully.
624 */
625 ((IORB_UNIT_STATUS _far *) iorb)->UnitStatus = US_READY | US_POWER;
626 return(-1);
627}
628
629/******************************************************************************
630 * Read sectors from AHCI device.
631 */
632int ata_read(IORBH _far *iorb, int slot)
633{
634 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
635 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
636 ULONG sector = io->RBA + io->BlocksXferred;
637 USHORT count = io->BlockCount - io->BlocksXferred;
638 USHORT sg_indx;
639 USHORT sg_cnt;
640 int p = iorb_unit_port(iorb);
641 int d = iorb_unit_device(iorb);
642 int rc;
643
644 if (io->BlockCount == 0) {
645 /* NOP; return -1 without error in IORB to indicate success */
646 return(-1);
647 }
648
649 if (add_workspace(iorb)->unaligned) {
650 /* unaligned S/G addresses present; need to use double buffers */
651 return(ata_read_unaligned(iorb, slot));
652 }
653
654 /* Kludge: some I/O commands during boot use excessive S/G buffer lengths
655 * which cause NCQ commands to lock up. If there's only one S/G element
656 * and this element is already larger than what we can derive from the sector
657 * count, we'll adjust that element.
658 */
659 if (io->BlocksXferred == 0 && io->cSGList == 1 &&
660 io->pSGList[0].XferBufLen > (ULONG) io->BlockCount * io->BlockSize) {
661 io->pSGList[0].XferBufLen = (ULONG) io->BlockCount * io->BlockSize;
662 }
663
664 /* prepare read command while keeping an eye on S/G count limitations */
665 do {
666 sg_indx = ata_get_sg_indx(io);
667 sg_cnt = io->cSGList - sg_indx;
668 if ((rc = ata_cmd_read(iorb, ai, p, d, slot, sector, count,
669 io->pSGList + sg_indx, sg_cnt)) > 0) {
670 /* couldn't map all S/G elements */
671 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
672 }
673 } while (rc > 0 && sg_cnt > 0);
674
675 if (rc == 0) {
676 add_workspace(iorb)->blocks = count;
677 add_workspace(iorb)->ppfunc = ata_read_pp;
678
679 } else if (rc > 0) {
680 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
681
682 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
683 /* unaligned S/G addresses detected; need to use double buffers */
684 add_workspace(iorb)->unaligned = 1;
685 return(ata_read_unaligned(iorb, slot));
686
687 } else {
688 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
689 }
690
691 return(rc);
692}
693
694/******************************************************************************
695 * Read sectors from AHCI device with unaligned S/G element addresses. AHCI
696 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
697 * restrictions. This doesn't happen very often but when it does, we need to
698 * use a transfer buffer and copy the data manually.
699 */
700int ata_read_unaligned(IORBH _far *iorb, int slot)
701{
702 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
703 ADD_WORKSPACE _far *aws = add_workspace(iorb);
704 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
705 ULONG sector = io->RBA + io->BlocksXferred;
706 SCATGATENTRY sg_single;
707 int p = iorb_unit_port(iorb);
708 int d = iorb_unit_device(iorb);
709 int rc;
710
711 ddprintf("ata_read_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
712
713 /* allocate transfer buffer */
714 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
715 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
716 return(-1);
717 }
718
719 /* prepare read command using transfer buffer */
720 sg_single.ppXferBuf = virt_to_phys(aws->buf);
721 sg_single.XferBufLen = io->BlockSize;
722 rc = ata_cmd_read(iorb, ai, p, d, slot, sector, 1, &sg_single, 1);
723
724 if (rc == 0) {
725 add_workspace(iorb)->blocks = 1;
726 add_workspace(iorb)->ppfunc = ata_read_pp;
727
728 } else if (rc > 0) {
729 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
730
731 } else {
732 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
733 }
734
735 return(rc);
736}
737
738/******************************************************************************
739 * Post processing function for ata_read(); this function updates the
740 * BlocksXferred counter in the IORB and, if not all blocks have been
741 * transferred, requeues the IORB to process the remaining sectors. It also
742 * takes care of copying data from the transfer buffer for unaligned reads.
743 */
744void ata_read_pp(IORBH _far *iorb)
745{
746 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
747 ADD_WORKSPACE _far *aws = add_workspace(iorb);
748
749 if (aws->unaligned) {
750 /* copy transfer buffer to corresponding physical address in S/G list */
751 sg_memcpy(io->pSGList, io->cSGList,
752 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
753 aws->buf, io->BlockSize, BUF_TO_SG);
754 }
755
756 io->BlocksXferred += add_workspace(iorb)->blocks;
757 ddprintf("ata_read_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
758
759 if (io->BlocksXferred >= io->BlockCount) {
760 /* we're done; tell IRQ handler the IORB is complete */
761 add_workspace(iorb)->complete = 1;
762 } else {
763 /* requeue this IORB for next iteration */
764 iorb_requeue(iorb);
765 }
766}
767
768/******************************************************************************
769 * Verify readability of sectors on ATA device.
770 */
771int ata_verify(IORBH _far *iorb, int slot)
772{
773 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
774 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
775 int p = iorb_unit_port(iorb);
776 int d = iorb_unit_device(iorb);
777 int rc;
778
779 if (io->BlockCount == 0) {
780 /* NOP; return -1 without error in IORB to indicate success */
781 return(-1);
782 }
783
784 /* prepare verify command */
785 if (io->RBA >= (1UL << 28) || io->BlockCount > 256) {
786 /* need LBA48 for this command */
787 if (!ai->ports[p].devs[d].lba48) {
788 iorb_seterr(iorb, IOERR_RBA_LIMIT);
789 return(-1);
790 }
791 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
792 AP_SECTOR_48, (u32) io->RBA, (u16) 0,
793 AP_COUNT, (u16) io->BlockCount,
794 AP_DEVICE, 0x40,
795 AP_END);
796 } else {
797 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
798 AP_SECTOR_28, (u32) io->RBA,
799 AP_COUNT, (u16) io->BlockCount & 0xffU,
800 AP_DEVICE, 0x40,
801 AP_END);
802 }
803
804 return(rc);
805}
806
807/******************************************************************************
808 * Write sectors to AHCI device.
809 */
810int ata_write(IORBH _far *iorb, int slot)
811{
812 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
813 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
814 ULONG sector = io->RBA + io->BlocksXferred;
815 USHORT count = io->BlockCount - io->BlocksXferred;
816 USHORT sg_indx;
817 USHORT sg_cnt;
818 int p = iorb_unit_port(iorb);
819 int d = iorb_unit_device(iorb);
820 int rc;
821
822 if (io->BlockCount == 0) {
823 /* NOP; return -1 without error in IORB to indicate success */
824 return(-1);
825 }
826
827 if (add_workspace(iorb)->unaligned) {
828 /* unaligned S/G addresses present; need to use double buffers */
829 return(ata_write_unaligned(iorb, slot));
830 }
831
832 /* prepare write command while keeping an eye on S/G count limitations */
833 do {
834 sg_indx = ata_get_sg_indx(io);
835 sg_cnt = io->cSGList - sg_indx;
836 if ((rc = ata_cmd_write(iorb, ai, p, d, slot, sector, count,
837 io->pSGList + sg_indx, sg_cnt,
838 io->Flags & XIO_DISABLE_HW_WRITE_CACHE)) > 0) {
839 /* couldn't map all S/G elements */
840 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
841 }
842 } while (rc > 0 && sg_cnt > 0);
843
844 if (rc == 0) {
845 add_workspace(iorb)->blocks = count;
846 add_workspace(iorb)->ppfunc = ata_write_pp;
847
848 } else if (rc > 0) {
849 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
850
851 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
852 /* unaligned S/G addresses detected; need to use double buffers */
853 add_workspace(iorb)->unaligned = 1;
854 return(ata_write_unaligned(iorb, slot));
855
856 } else {
857 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
858 }
859
860 return(rc);
861}
862
863/******************************************************************************
864 * Write sectors from AHCI device with unaligned S/G element addresses. AHCI
865 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
866 * restrictions. This doesn't happen very often but when it does, we need to
867 * use a transfer buffer and copy the data manually.
868 */
869int ata_write_unaligned(IORBH _far *iorb, int slot)
870{
871 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
872 ADD_WORKSPACE _far *aws = add_workspace(iorb);
873 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
874 ULONG sector = io->RBA + io->BlocksXferred;
875 SCATGATENTRY sg_single;
876 int p = iorb_unit_port(iorb);
877 int d = iorb_unit_device(iorb);
878 int rc;
879
880 ddprintf("ata_write_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
881
882 /* allocate transfer buffer */
883 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
884 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
885 return(-1);
886 }
887
888 /* copy next sector from S/G list to transfer buffer */
889 sg_memcpy(io->pSGList, io->cSGList,
890 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
891 aws->buf, io->BlockSize, SG_TO_BUF);
892
893 /* prepare write command using transfer buffer */
894 sg_single.ppXferBuf = virt_to_phys(aws->buf);
895 sg_single.XferBufLen = io->BlockSize;
896 rc = ata_cmd_write(iorb, ai, p, d, slot, sector, 1, &sg_single, 1,
897 io->Flags & XIO_DISABLE_HW_WRITE_CACHE);
898
899 if (rc == 0) {
900 add_workspace(iorb)->blocks = 1;
901 add_workspace(iorb)->ppfunc = ata_write_pp;
902
903 } else if (rc > 0) {
904 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
905
906 } else {
907 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
908 }
909
910 return(rc);
911}
912
913
914/******************************************************************************
915 * Post processing function for ata_write(); this function updates the
916 * BlocksXferred counter in the IORB and, if not all blocks have been
917 * transferred, requeues the IORB to process the remaining sectors.
918 */
919void ata_write_pp(IORBH _far *iorb)
920{
921 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
922
923 io->BlocksXferred += add_workspace(iorb)->blocks;
924 ddprintf("ata_write_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
925
926 if (io->BlocksXferred >= io->BlockCount) {
927 /* we're done; tell IRQ handler the IORB is complete */
928 add_workspace(iorb)->complete = 1;
929 } else {
930 /* requeue this IORB for next iteration */
931 iorb_requeue(iorb);
932 }
933}
934
935/******************************************************************************
936 * Execute ATA command.
937 */
938int ata_execute_ata(IORBH _far *iorb, int slot)
939{
940 IORB_ADAPTER_PASSTHRU _far *apt = (IORB_ADAPTER_PASSTHRU _far *) iorb;
941 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
942 int p = iorb_unit_port(iorb);
943 int d = iorb_unit_device(iorb);
944 int rc;
945
946 if (apt->ControllerCmdLen != sizeof(ATA_CMD)) {
947 iorb_seterr(iorb, IOERR_CMD_SYNTAX);
948 return(-1);
949 }
950
951 rc = ata_cmd(ai, p, d, slot, 0,
952 AP_SGLIST, apt->pSGList, apt->cSGList,
953 AP_ATA_CMD, apt->pControllerCmd,
954 AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
955 AP_END);
956
957 if (rc == 0) {
958 add_workspace(iorb)->ppfunc = ata_execute_ata_pp;
959 }
960
961 return(rc);
962}
963
964/******************************************************************************
965 * Post processing function for ata_execute_ata(); the main purpose of this
966 * function is to copy the received D2H FIS (i.e. the device registers after
967 * command completion) back to the ATA command structure.
968 *
969 * See ata_cmd_to_fis() for an explanation of the mapping.
970 */
971void ata_execute_ata_pp(IORBH _far *iorb)
972{
973 AHCI_PORT_DMA _far *dma_base;
974 ATA_CMD _far *cmd;
975 AD_INFO *ai;
976 u8 _far *fis;
977 int p;
978
979 /* get address of D2H FIS */
980 ai = ad_infos + iorb_unit_adapter(iorb);
981 p = iorb_unit_port(iorb);
982 dma_base = port_dma_base(ai, p);
983 fis = dma_base->rx_fis + 0x40;
984
985 if (fis[0] != 0x34) {
986 /* this is not a D2H FIS - give up silently */
987 ddprintf("ata_execute_ata_pp(): D2H FIS type incorrect: %d\n", fis[0]);
988 add_workspace(iorb)->complete = 1;
989 return;
990 }
991
992 /* map D2H FIS to the original ATA controller command structure */
993 cmd = (ATA_CMD _far *) ((IORB_ADAPTER_PASSTHRU _far *) iorb)->pControllerCmd;
994
995 cmd->cmd = fis[2];
996 cmd->device = fis[7];
997 cmd->features = ((u16) fis[3])
998 | ((u16) fis[11]);
999 cmd->lba_l = ((u32) fis[4])
1000 | ((u32) fis[5] << 8)
1001 | ((u32) fis[6] << 16)
1002 | ((u32) fis[8] << 24);
1003 cmd->lba_h = ((u16) fis[9])
1004 | ((u16) fis[10] << 8);
1005 cmd->count = ((u16) fis[12])
1006 | ((u16) fis[13] << 8);
1007
1008 dphex(cmd, sizeof(*cmd), "ahci_execute_ata_pp(): cmd after completion:\n");
1009
1010 /* signal completion to interrupt handler */
1011 add_workspace(iorb)->complete = 1;
1012}
1013
1014/******************************************************************************
1015 * Request sense information for a failed command. Since there is no "request
1016 * sense" command for ATA devices, we need to read the current error code from
1017 * the AHCI task file register and fabricate the sense information.
1018 *
1019 * NOTES:
1020 *
1021 * - This function must be called right after an ATA command has failed and
1022 * before any other commands are queued on the corresponding port. This
1023 * function is typically called in the port restart context hook which is
1024 * triggered by an AHCI error interrupt.
1025 *
1026 * - The ATA error bits are a complete mess. We'll try and catch the most
1027 * interesting error codes (such as medium errors) and report everything
1028 * else with a generic error code.
1029 */
1030int ata_req_sense(IORBH _far *iorb, int slot)
1031{
1032 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
1033 u8 _far *port_mmio = port_base(ai, iorb_unit_port(iorb));
1034 u32 tf_data = readl(port_mmio + PORT_TFDATA);
1035 u8 err = (u8) (tf_data >> 8);
1036 u8 sts = (u8) (tf_data);
1037
1038 if (sts & ATA_ERR) {
1039 if (sts & ATA_DF) {
1040 /* there is a device-specific error condition */
1041 if (err & ATA_ICRC) {
1042 iorb_seterr(iorb, IOERR_ADAPTER_DEVICEBUSCHECK);
1043 } else if (err & ATA_UNC) {
1044 iorb_seterr(iorb, IOERR_MEDIA);
1045 } else if (err & ATA_IDNF) {
1046 iorb_seterr(iorb, IOERR_RBA_ADDRESSING_ERROR);
1047 } else {
1048 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
1049 }
1050
1051 } else {
1052 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
1053 }
1054 } else {
1055 /* this function only gets called when we received an error interrupt */
1056 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
1057 }
1058
1059 /* Return an error to indicate there's no HW command to be submitted and
1060 * that the IORB can be completed "as is" (the upstream code expects the
1061 * IORB error code, if any, to be set when this happens and this is exactly
1062 * what this function is all about).
1063 */
1064 return(-1);
1065}
1066
1067/******************************************************************************
1068 * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
1069 * in the indentify buffer are byte-swapped, we need to swap them back.
1070 */
1071char *ata_dev_name(u16 *id_buf)
1072{
1073 static char dev_name[ATA_ID_PROD_LEN + 1];
1074 char *t = dev_name;
1075 char *s = (char *) (id_buf + ATA_ID_PROD);
1076 int i;
1077
1078 dev_name[sizeof(dev_name)-1] = '\0';
1079
1080 for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
1081 *(t++) = s[1];
1082 *(t++) = s[0];
1083 s += 2;
1084 }
1085
1086 return(dev_name);
1087}
1088
1089/******************************************************************************
1090 * Fabricate ATA READ command based on the capabilities of the corresponding
1091 * device and the paramters set from above (NCQ, etc).
1092 */
1093static int ata_cmd_read(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
1094 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
1095 ULONG sg_cnt)
1096{
1097 int rc;
1098
1099 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
1100 /* need LBA48 for this command */
1101 if (!ai->ports[p].devs[d].lba48) {
1102 iorb_seterr(iorb, IOERR_RBA_LIMIT);
1103 return(-1);
1104 }
1105 if (add_workspace(iorb)->is_ncq) {
1106 /* use NCQ read; count goes into feature register, tag into count! */
1107 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
1108 AP_SECTOR_48, (u32) sector, (u16) 0,
1109 AP_FEATURES, (u16) count,
1110 AP_COUNT, (u16) (slot << 3), /* tag == slot */
1111 AP_SGLIST, sg_list, (u16) sg_cnt,
1112 AP_DEVICE, 0x40,
1113 AP_END);
1114 } else {
1115 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
1116 AP_SECTOR_48, (u32) sector, (u16) 0,
1117 AP_COUNT, (u16) count,
1118 AP_SGLIST, sg_list, (u16) sg_cnt,
1119 AP_DEVICE, 0x40,
1120 AP_END);
1121 }
1122
1123 } else {
1124 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
1125 AP_SECTOR_28, (u32) sector,
1126 AP_COUNT, (u16) count & 0xffU,
1127 AP_SGLIST, sg_list, (u16) sg_cnt,
1128 AP_DEVICE, 0x40,
1129 AP_END);
1130 }
1131
1132 return(rc);
1133}
1134
1135/******************************************************************************
1136 * Fabricate ATA WRITE command based on the capabilities of the corresponding
1137 * device and the paramters set from above (NCQ, etc)
1138 */
1139static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
1140 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
1141 ULONG sg_cnt, int write_through)
1142{
1143 int rc;
1144
1145 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
1146 /* need LBA48 for this command */
1147 if (!ai->ports[p].devs[d].lba48) {
1148 iorb_seterr(iorb, IOERR_RBA_LIMIT);
1149 return(-1);
1150 }
1151 if (add_workspace(iorb)->is_ncq) {
1152 /* use NCQ write; count goes into feature register, tag into count! */
1153 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
1154 AP_SECTOR_48, (u32) sector, (u16) 0,
1155 AP_FEATURES, (u16) count,
1156 /* tag = slot */
1157 AP_COUNT, (u16) (slot << 3),
1158 AP_SGLIST, sg_list, (u16) sg_cnt,
1159 AP_DEVICE, 0x40,
1160 /* force unit access */
1161 AP_DEVICE, (write_through && !force_write_cache) ? 0x80 : 0,
1162 AP_WRITE, 1,
1163 AP_END);
1164 } else {
1165 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
1166 AP_SECTOR_48, (u32) sector, (u16) 0,
1167 AP_COUNT, (u16) count,
1168 AP_SGLIST, sg_list, (u16) sg_cnt,
1169 AP_DEVICE, 0x40,
1170 AP_WRITE, 1,
1171 AP_END);
1172 }
1173
1174 } else {
1175 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
1176 AP_SECTOR_28, (u32) sector,
1177 AP_COUNT, (u16) count & 0xffU,
1178 AP_SGLIST, sg_list, (u16) sg_cnt,
1179 AP_DEVICE, 0x40,
1180 AP_WRITE, 1,
1181 AP_END);
1182 }
1183
1184 return(rc);
1185}
Note: See TracBrowser for help on using the repository browser.