source: trunk/src/os2ahci/ata.c@ 155

Last change on this file since 155 was 155, checked in by David Azarewicz, 12 years ago

debugging updates

File size: 42.0 KB
Line 
1/******************************************************************************
2 * ata.c - ATA command processing
3 *
4 * Copyright (c) 2011 thi.guten Software Development
5 * Copyright (c) 2011 Mensys B.V.
6 *
7 * Authors: Christian Mueller, Markus Thielen
8 *
9 * Parts copied from/inspired by the Linux AHCI driver;
10 * those parts are (c) Linux AHCI/ATA maintainers
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27#include "os2ahci.h"
28#include "ata.h"
29
30/* -------------------------- macros and constants ------------------------- */
31
32/* ------------------------ typedefs and structures ------------------------ */
33
34/* -------------------------- function prototypes -------------------------- */
35
36static int ata_cmd_read (IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
37 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
38 ULONG sg_cnt);
39
40static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
41 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
42 ULONG sg_cnt, int write_through);
43
44/* ------------------------ global/static variables ------------------------ */
45
46/* ----------------------------- start of code ----------------------------- */
47
48/******************************************************************************
49 * Initialize AHCI command slot, FIS and S/G list for the specified ATA
50 * command. The command parameters are passed as a variable argument list
51 * of type and value(s). The list is terminated by AP_END.
52 *
53 * Notes:
54 *
55 * - The specified command slot is expected to be idle; no checks are
56 * performed to prevent messing with a busy port.
57 *
58 * - Port multipliers are not supported, yet, thus 'd' should always
59 * be 0 for the time being.
60 *
61 * - 'cmd' is passed as 16-bit integer because the compiler would push
62 * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
63 * macros would screw up the address of the first variable argument
64 * if the size of the last fixed argument wouldn't match what the
65 * compiler pushed on the stack.
66 *
67 * Return values:
68 * 0 : success
69 * > 0 : could not map all S/G entries; the return value is the number of
70 * S/G entries that could be mapped.
71 * < 0 : other error
72 */
73int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
74{
75 va_list va;
76 va_start(va, cmd);
77 return(v_ata_cmd(ai, p, d, slot, cmd, va));
78}
79
80int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
81{
82 AHCI_PORT_DMA _far *dma_base_virt;
83 AHCI_CMD_HDR _far *cmd_hdr;
84 AHCI_CMD_TBL _far *cmd_tbl;
85 SCATGATENTRY _far *sg_list = NULL;
86 SCATGATENTRY sg_single;
87 ATA_PARM ap;
88 ATA_CMD ata_cmd;
89 void _far *atapi_cmd = NULL;
90 u32 dma_base_phys;
91 u16 atapi_cmd_len = 0;
92 u16 ahci_flags = 0;
93 u16 sg_cnt = 0;
94 int i;
95 int n;
96
97 /* --------------------------------------------------------------------------
98 * Initialize ATA command. The ATA command is set up with the main command
99 * value and a variable list of additional parameters such as the sector
100 * address, transfer count, ...
101 */
102 memset(&ata_cmd, 0x00, sizeof(ata_cmd));
103 ata_cmd.cmd = (u8) cmd;
104
105 /* parse variable arguments */
106 do {
107 switch ((ap = va_arg(va, ATA_PARM))) {
108
109 case AP_AHCI_FLAGS:
110 ahci_flags |= va_arg(va, u16);
111 break;
112
113 case AP_WRITE:
114 if (va_arg(va, u16) != 0) {
115 ahci_flags |= AHCI_CMD_WRITE;
116 }
117 break;
118
119 case AP_FEATURES:
120 /* ATA features word */
121 ata_cmd.features |= va_arg(va, u16);
122 break;
123
124 case AP_COUNT:
125 /* transfer count */
126 ata_cmd.count = va_arg(va, u16);
127 break;
128
129 case AP_SECTOR_28:
130 /* 28-bit sector address */
131 ata_cmd.lba_l = va_arg(va, u32);
132 if (ata_cmd.lba_l & 0xf0000000UL) {
133 dprintf("error: LBA-28 address %ld has more than 28 bits\n", ata_cmd.lba_l);
134 return(ATA_CMD_INVALID_PARM);
135 }
136 /* add upper 4 bits to device field */
137 ata_cmd.device |= (ata_cmd.lba_l >> 24) & 0x0fU;
138 /* only lower 24 bits come into lba_l */
139 ata_cmd.lba_l &= 0x00ffffffUL;
140 break;
141
142 case AP_SECTOR_48:
143 /* 48-bit sector address */
144 ata_cmd.lba_l = va_arg(va, u32);
145 ata_cmd.lba_h = va_arg(va, u16);
146 break;
147
148 case AP_DEVICE:
149 /* ATA device byte; note that this byte contains the highest
150 * 4 bits of LBA-28 address; we have to leave them alone here. */
151 ata_cmd.device |= va_arg(va, u16) & 0xf0U;
152 break;
153
154 case AP_SGLIST:
155 /* scatter/gather list in SCATGATENTRY/count format */
156 sg_list = va_arg(va, void _far *);
157 sg_cnt = va_arg(va, u16);
158 break;
159
160 case AP_VADDR:
161 /* virtual buffer address in addr/len format (up to 4K) */
162 sg_single.ppXferBuf = virt_to_phys(va_arg(va, void _far *));
163 sg_single.XferBufLen = va_arg(va, u16);
164 sg_list = &sg_single;
165 sg_cnt = 1;
166 break;
167
168 case AP_ATAPI_CMD:
169 /* ATAPI command */
170 atapi_cmd = va_arg(va, void _far *);
171 atapi_cmd_len = va_arg(va, u16);
172 ahci_flags |= AHCI_CMD_ATAPI;
173 break;
174
175 case AP_ATA_CMD:
176 /* ATA command "pass-through" */
177 memcpy(&ata_cmd, va_arg(va, void _far *), sizeof(ATA_CMD));
178 break;
179
180 case AP_END:
181 break;
182
183 default:
184 dprintf("error: v_ata_cmd() called with invalid parameter type (%d)\n", (int) ap);
185 return(ATA_CMD_INVALID_PARM);
186 }
187
188 } while (ap != AP_END);
189
190 /* --------------------------------------------------------------------------
191 * Fill in AHCI ATA command information. This includes the port command slot,
192 * the corresponding command FIS and the S/G list. The layout of the AHCI
193 * port DMA region is based on the Linux AHCI driver and looks like this:
194 *
195 * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
196 * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
197 * - 32 AHCI command tables, each consisting of
198 * - 64 bytes for command FIS
199 * - 16 bytes for ATAPI comands
200 * - 48 bytes reserved
201 * - 48 S/G entries (AHCI_SG) with 32 bytes, each
202 *
203 * Since the whole DMA buffer for all ports is larger than 64KB and we need
204 * multiple segments to address all of them, there are no virtual pointers
205 * to the individual elements in AD_INFO. Instead, we're relying on macros
206 * for getting the base address of a particular port's DMA region, then
207 * map a structure on top of that for convenience (AHCI_PORT_DMA).
208 */
209 dma_base_virt = port_dma_base(ai, p);
210 dma_base_phys = port_dma_base_phys(ai, p);
211
212 /* AHCI command header */
213 cmd_hdr = dma_base_virt->cmd_hdr + slot;
214 memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
215 cmd_hdr->options = ((d & 0x0f) << 12);
216 cmd_hdr->options |= ahci_flags; /* AHCI command flags */
217 cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
218 cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
219
220 /* AHCI command table */
221 cmd_tbl = dma_base_virt->cmd_tbl + slot;
222 memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
223 ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
224
225 if (atapi_cmd != NULL) {
226 /* copy ATAPI command */
227 memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
228 }
229
230 /* PRDT (S/G list)
231 *
232 * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
233 * size of each element, thus we need to split S/G elements larger than
234 * 22 bits into 2 AHCI_SG elements.
235 *
236 * - The S/G element size for AHCI is what the spec calls '0'-based
237 * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
238 * sizes to be even in the context of 16-bit transfers, thus bit '1'
239 * always needs to be set.
240 *
241 * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
242 * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
243 *
244 * - There's a limit on the maximum number of S/G elements in the port DMA
245 * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
246 * the control of this function to split commands which require more
247 * than AHCI_MAX_SG entries. In order to help the caller, the return value
248 * of this function will indicate how many OS/2 S/G entries were
249 * successfully mapped.
250 */
251 for (i = n = 0; i < sg_cnt; i++) {
252 u32 sg_addr = sg_list[i].ppXferBuf;
253 u32 sg_size = sg_list[i].XferBufLen;
254
255 do {
256 u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN
257 : sg_size;
258 if (n >= AHCI_MAX_SG) {
259 /* couldn't store all S/G elements in our DMA buffer */
260 ddprintf("ata_cmd(): too many S/G elements\n");
261 return(i - 1);
262 }
263 if ((sg_addr & 1) || (chunk & 1)) {
264 ddprintf("error: ata_cmd() called with unaligned S/G element(s)\n");
265 return(ATA_CMD_UNALIGNED_ADDR);
266 }
267 cmd_tbl->sg_list[n].addr = sg_addr;
268 cmd_tbl->sg_list[n].size = chunk - 1;
269 sg_addr += chunk;
270 sg_size -= chunk;
271 n++;
272 } while (sg_size > 0);
273 }
274
275 /* set final S/G count in AHCI command header */
276 cmd_hdr->options |= (u32) n << 16;
277
278 if (debug >= 2) {
279 printf("ATA command for %d.%d.%d, slot %d:\n", ad_no(ai), p, d, slot);
280 phex(cmd_hdr, offsetof(AHCI_CMD_HDR, reserved), "cmd_hdr: ");
281 phex(&ata_cmd, sizeof(ata_cmd), "ata_cmd: ");
282 if (atapi_cmd != NULL) {
283 phex(atapi_cmd, atapi_cmd_len, "atapi_cmd: ");
284 }
285 if (n > 0) {
286 phex(cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n, "sg_list: ");
287 }
288 }
289
290 return(ATA_CMD_SUCCESS);
291}
292
293/******************************************************************************
294 * Fill SATA command FIS with values extracted from an ATA command structure.
295 * The command FIS buffer (fis) is expected to be initialized to 0s. The
296 * structure of the FIS maps to the ATA shadow register block, including
297 * registers which can be written twice to store 16 bits (called 'exp').
298 *
299 * The FIS structure looks like this (using LSB notation):
300 *
301 * +----------------+----------------+----------------+----------------+
302 * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
303 * +----------------+----------------+----------------+----------------+
304 * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
305 * +----------------+----------------+----------------+----------------+
306 * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
307 * +----------------+----------------+----------------+----------------+
308 * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
309 * +----------------+----------------+----------------+----------------+
310 * 16 | Reserved | Reserved | Reserved | Reserved |
311 * +----------------+----------------+----------------+----------------+
312 */
313void ata_cmd_to_fis(u8 _far *fis, ATA_CMD _far *ata_cmd, int d)
314{
315 fis[0] = 0x27; /* register - host to device FIS */
316 fis[1] = (u8) (d & 0xf); /* port multiplier number */
317 fis[1] |= 0x80; /* bit 7 indicates Command FIS */
318 fis[2] = (u8) ata_cmd->cmd;
319 fis[3] = (u8) ata_cmd->features;
320
321 fis[4] = (u8) ata_cmd->lba_l;
322 fis[5] = (u8) (ata_cmd->lba_l >> 8);
323 fis[6] = (u8) (ata_cmd->lba_l >> 16);
324 fis[7] = (u8) ata_cmd->device;
325
326 fis[8] = (u8) (ata_cmd->lba_l >> 24);
327 fis[9] = (u8) ata_cmd->lba_h;
328 fis[10] = (u8) (ata_cmd->lba_h >> 8);
329 fis[11] = (u8) (ata_cmd->features >> 8);
330
331 fis[12] = (u8) ata_cmd->count;
332 fis[13] = (u8) (ata_cmd->count >> 8);
333}
334
335/******************************************************************************
336 * Get index in S/G list for the number of transferred sectors in the IORB.
337 *
338 * Returning io->cSGList indicates an error.
339 *
340 * NOTE: OS/2 makes sure S/G lists are set up such that entries at the HW
341 * limit will never cross sector boundaries. This means that splitting
342 * S/G lists into multiple commands can be done without editing the S/G
343 * lists.
344 */
345u16 ata_get_sg_indx(IORB_EXECUTEIO _far *io)
346{
347 ULONG offset = io->BlocksXferred * io->BlockSize;
348 USHORT i;
349
350 for (i = 0; i < io->cSGList && offset > 0; i++) {
351 offset -= io->pSGList[i].XferBufLen;
352 }
353
354 return(i);
355}
356
357/******************************************************************************
358 * Get max S/G count which will fit into our HW S/G buffers. This function is
359 * called when the S/G list is too long and we need to split the IORB into
360 * multiple commands. It returns both the number of sectors and S/G list
361 * elements that we can handle in a single command.
362 *
363 * The parameter 'sg_indx' indicates the current start index in the S/G list
364 * (0 if this is the first command iteration).
365 *
366 * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
367 * how many S/G elements were successfully mapped. Whatever we return needs to
368 * be less or equal to this value.
369 *
370 * Returning 0 in *sg_cnt indicates an error.
371 *
372 * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
373 * will never cross sector boundaries. This means that splitting S/G
374 * lists into multiple commands can be done without editing S/G list
375 * elements. Since AHCI only allows 22 bits for each S/G element, the
376 * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
377 * on the actual length of S/G elements. This function looks for the
378 * maximum number of S/G elements that can be mapped on sector
379 * boundaries which will still fit into our HW S/G list.
380 */
381void ata_max_sg_cnt(IORB_EXECUTEIO _far *io, USHORT sg_indx, USHORT sg_max,
382 USHORT _far *sg_cnt, USHORT _far *sector_cnt)
383{
384 ULONG max_sector_cnt = 0;
385 USHORT max_sg_cnt = 0;
386 ULONG offset = 0;
387 USHORT i;
388
389 for (i = sg_indx; i < io->cSGList; i++) {
390 if (i - sg_indx >= sg_max) {
391 /* we're beyond the number of S/G elements we can map */
392 break;
393 }
394
395 offset += io->pSGList[i].XferBufLen;
396 if (offset % io->BlockSize == 0) {
397 /* this S/G element ends on a sector boundary */
398 max_sector_cnt = offset / io->BlockSize;
399 max_sg_cnt = i + 1;
400 }
401 }
402
403 /* return the best match we found (0 indicating failure) */
404 *sector_cnt = max_sector_cnt;
405 *sg_cnt = max_sg_cnt;
406}
407
408
409/******************************************************************************
410 * Get device or media geometry. Device and media geometry are expected to be
411 * the same for non-removable devices, which will always be the case for the
412 * ATA devices we're dealing with (hard disks). ATAPI is a different story
413 * and handled by atapi_get_geometry().
414 */
415int ata_get_geometry(IORBH _far *iorb, int slot)
416{
417 ADD_WORKSPACE _far *aws = add_workspace(iorb);
418 int rc;
419
420 /* allocate buffer for ATA identify information */
421 if ((aws->buf = malloc(ATA_ID_WORDS * sizeof(u16))) == NULL) {
422 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
423 return(-1);
424 }
425
426 /* request ATA identify information */
427 aws->ppfunc = ata_get_geometry_pp;
428 rc = ata_cmd(ad_infos + iorb_unit_adapter(iorb),
429 iorb_unit_port(iorb),
430 iorb_unit_device(iorb),
431 slot,
432 ATA_CMD_ID_ATA,
433 AP_VADDR, (void _far *) aws->buf, ATA_ID_WORDS * sizeof(u16),
434 AP_END);
435
436 if (rc != 0) {
437 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
438 }
439
440 return(rc);
441}
442
443/******************************************************************************
444 * Try to read LVM information from the disk. If found, use the LVM geometry.
445 * This function will only work at init time. A better strategy would be to
446 * calculate the geometry during ahci_scan_ports and save it away and then just
447 * return the saved values when ata_get_geometry() is called.
448 */
449int is_lvm_geometry(IORBH _far *iorb)
450{
451 ADD_WORKSPACE _far *aws = add_workspace(iorb);
452 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
453 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
454 PDLA_Table_Sector pDLA;
455 int p = iorb_unit_port(iorb);
456 int d = iorb_unit_device(iorb);
457 int rc;
458 ULONG sector;
459
460 if (init_complete) return 0; /* We cannot use ahci_exec_polled_cmd() after init_complete */
461
462 if (use_lvm_info) {
463 ddprintf("is_lvm_geometry (%d.%d.%d)\n", ad_no(ai), p, d);
464
465 for (sector = 255; sector >= 63; sector >>= 1) {
466 rc = ahci_exec_polled_cmd(ai, p, 0, 500, ATA_CMD_READ,
467 AP_SECTOR_28, (u32) sector-1,
468 AP_COUNT, (u16) 1,
469 AP_VADDR, (void _far *) aws->buf, 512,
470 AP_DEVICE, 0x40,
471 AP_END);
472 if (rc) continue;
473
474 pDLA = (PDLA_Table_Sector)aws->buf;
475 ddphex(pDLA, sizeof(DLA_Table_Sector), "DLA sector %d:\n", sector-1);
476
477 if ((pDLA->DLA_Signature1 == DLA_TABLE_SIGNATURE1) && (pDLA->DLA_Signature2 == DLA_TABLE_SIGNATURE2)) {
478 ddprintf("is_lvm_geometry found at sector %d\n", sector);
479 geometry->TotalCylinders = pDLA->Cylinders;
480 geometry->NumHeads = pDLA->Heads_Per_Cylinder;
481 geometry->SectorsPerTrack = pDLA->Sectors_Per_Track;
482 return 1;
483 }
484 }
485 }
486
487 return 0;
488}
489
490/******************************************************************************
491 * Post processing function for ata_get_geometry(): convert the ATA identify
492 * information to OS/2 IOCC_GEOMETRY information.
493 */
494void ata_get_geometry_pp(IORBH _far *iorb)
495{
496 GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
497 USHORT geometry_len = ((IORB_GEOMETRY _far *) iorb)->GeometryLen;
498 u16 *id_buf = add_workspace(iorb)->buf;
499 int a = iorb_unit_adapter(iorb);
500 int p = iorb_unit_port(iorb);
501 char *Method;
502
503 /* Fill-in geometry information; the ATA-8 spec declares the geometry
504 * fields in the ATA ID buffer as obsolete but it's still the best
505 * guess in most cases. If the information stored in the geometry
506 * fields is apparently incorrect, we'll use the algorithm typically
507 * used by SCSI adapters and modern PC BIOS versions:
508 *
509 * - 512 bytes per sector
510 * - 255 heads
511 * - 63 sectors per track (or 56 with the parameter "/4")
512 * - x cylinders (calculated)
513 *
514 * Please note that os2ahci currently does not natively support ATA sectors
515 * larger than 512 bytes, therefore relies on the translation logic built
516 * into the corresponding ATA disks. In order to prevent file systems that
517 * use block sizes larger than 512 bytes (FAT, JFS, ...) from ending up on
518 * incorrectly aligned physical sector accesses, hence using more physical
519 * I/Os than necessary, the command line parameter "/4" can be used to force
520 * a track size of 56 sectors. This way, partitions will start on 4K
521 * boundaries.
522 *
523 * Another limitation is that OS/2 has a 32-bit variable for the total number
524 * of sectors, limiting the maximum capacity to roughly 2TB. This is another
525 * issue that needs to be addressed sooner or later; large sectors could
526 * raise this limit to something like 8TB but this is not really much of a
527 * difference. Maybe there's something in later DDKs that allows more than
528 * 32 bits?
529 */
530 memset(geometry, 0x00, geometry_len);
531 geometry->BytesPerSector = ATA_SECTOR_SIZE;
532
533 /* extract total number of sectors */
534 if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400) {
535 /* 48-bit LBA supported */
536 if (ATA_CAPACITY48_H(id_buf) != 0) {
537 /* more than 32 bits for number of sectors */
538 dprintf("warning: limiting disk %d.%d.%d to 2TB\n",
539 iorb_unit_adapter(iorb), iorb_unit_port(iorb),
540 iorb_unit_device(iorb));
541 geometry->TotalSectors = 0xffffffffUL;
542 } else {
543 geometry->TotalSectors = ATA_CAPACITY48_L(id_buf);
544 }
545 } else {
546 /* 28-bit LBA */
547 geometry->TotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffffUL;
548 }
549
550 Method = "None";
551 /* fabricate the remaining geometry fields */
552 if (track_size[a][p] != 0) {
553 /* A specific track size has been requested for this port; this is
554 * typically done for disks with 4K sectors to make sure partitions
555 * start on 8-sector boundaries (parameter "/4").
556 */
557 geometry->NumHeads = 255;
558 geometry->SectorsPerTrack = track_size[a][p];
559 geometry->TotalCylinders = geometry->TotalSectors /
560 ((u32) geometry->NumHeads *
561 (u32) geometry->SectorsPerTrack);
562 Method = "Custom";
563 } else if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 &&
564 CUR_SECTORS(id_buf) > 0 &&
565 CUR_CAPACITY(id_buf) == (u32) CUR_HEADS(id_buf) *
566 (u32) CUR_CYLS(id_buf) *
567 (u32) CUR_SECTORS(id_buf)) {
568 /* BIOS-supplied (aka "current") geometry values look valid */
569 geometry->NumHeads = CUR_HEADS(id_buf);
570 geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
571 geometry->TotalCylinders = CUR_CYLS(id_buf);
572 Method = "BIOS";
573 } else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 &&
574 ATA_SECTORS(id_buf) > 0) {
575 /* ATA-supplied values for geometry look valid */
576 geometry->NumHeads = ATA_HEADS(id_buf);
577 geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
578 geometry->TotalCylinders = ATA_CYLS(id_buf);
579 Method = "ATA";
580 } else {
581 /* use typical SCSI geometry */
582 geometry->NumHeads = 255;
583 geometry->SectorsPerTrack = 63;
584 geometry->TotalCylinders = geometry->TotalSectors /
585 ((u32) geometry->NumHeads *
586 (u32) geometry->SectorsPerTrack);
587 Method = "SCSI";
588 }
589
590 if (is_lvm_geometry(iorb)) Method = "LVM";
591
592 if (debug) {
593 printf("Drive geometry: %d cylinders, %d heads, %d sectors per track (%ldMB) (%s)\n",
594 (u16) geometry->TotalCylinders, (u16) geometry->NumHeads, (u16) geometry->SectorsPerTrack,
595 (u32) (geometry->TotalSectors / 2048), Method);
596 }
597
598 /* tell interrupt handler that this IORB is complete */
599 add_workspace(iorb)->complete = 1;
600}
601
602/******************************************************************************
603 * Test whether unit is ready.
604 */
605int ata_unit_ready(IORBH _far *iorb, int slot)
606{
607 /* This is a NOP for ATA devices (at least right now); returning an error
608 * without setting an error code means ahci_exec_iorb() will not queue any
609 * HW command and the IORB will complete successfully.
610 */
611 ((IORB_UNIT_STATUS _far *) iorb)->UnitStatus = US_READY | US_POWER;
612 return(-1);
613}
614
615/******************************************************************************
616 * Read sectors from AHCI device.
617 */
618int ata_read(IORBH _far *iorb, int slot)
619{
620 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
621 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
622 ULONG sector = io->RBA + io->BlocksXferred;
623 USHORT count = io->BlockCount - io->BlocksXferred;
624 USHORT sg_indx;
625 USHORT sg_cnt;
626 int p = iorb_unit_port(iorb);
627 int d = iorb_unit_device(iorb);
628 int rc;
629
630 if (io->BlockCount == 0) {
631 /* NOP; return -1 without error in IORB to indicate success */
632 return(-1);
633 }
634
635 if (add_workspace(iorb)->unaligned) {
636 /* unaligned S/G addresses present; need to use double buffers */
637 return(ata_read_unaligned(iorb, slot));
638 }
639
640 /* Kludge: some I/O commands during boot use excessive S/G buffer lengths
641 * which cause NCQ commands to lock up. If there's only one S/G element
642 * and this element is already larger than what we can derive from the sector
643 * count, we'll adjust that element.
644 */
645 if (io->BlocksXferred == 0 && io->cSGList == 1 &&
646 io->pSGList[0].XferBufLen > (ULONG) io->BlockCount * io->BlockSize) {
647 io->pSGList[0].XferBufLen = (ULONG) io->BlockCount * io->BlockSize;
648 }
649
650 /* prepare read command while keeping an eye on S/G count limitations */
651 do {
652 sg_indx = ata_get_sg_indx(io);
653 sg_cnt = io->cSGList - sg_indx;
654 if ((rc = ata_cmd_read(iorb, ai, p, d, slot, sector, count,
655 io->pSGList + sg_indx, sg_cnt)) > 0) {
656 /* couldn't map all S/G elements */
657 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
658 }
659 } while (rc > 0 && sg_cnt > 0);
660
661 if (rc == 0) {
662 add_workspace(iorb)->blocks = count;
663 add_workspace(iorb)->ppfunc = ata_read_pp;
664
665 } else if (rc > 0) {
666 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
667
668 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
669 /* unaligned S/G addresses detected; need to use double buffers */
670 add_workspace(iorb)->unaligned = 1;
671 return(ata_read_unaligned(iorb, slot));
672
673 } else {
674 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
675 }
676
677 return(rc);
678}
679
680/******************************************************************************
681 * Read sectors from AHCI device with unaligned S/G element addresses. AHCI
682 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
683 * restrictions. This doesn't happen very often but when it does, we need to
684 * use a transfer buffer and copy the data manually.
685 */
686int ata_read_unaligned(IORBH _far *iorb, int slot)
687{
688 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
689 ADD_WORKSPACE _far *aws = add_workspace(iorb);
690 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
691 ULONG sector = io->RBA + io->BlocksXferred;
692 SCATGATENTRY sg_single;
693 int p = iorb_unit_port(iorb);
694 int d = iorb_unit_device(iorb);
695 int rc;
696
697 ddprintf("ata_read_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
698
699 /* allocate transfer buffer */
700 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
701 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
702 return(-1);
703 }
704
705 /* prepare read command using transfer buffer */
706 sg_single.ppXferBuf = virt_to_phys(aws->buf);
707 sg_single.XferBufLen = io->BlockSize;
708 rc = ata_cmd_read(iorb, ai, p, d, slot, sector, 1, &sg_single, 1);
709
710 if (rc == 0) {
711 add_workspace(iorb)->blocks = 1;
712 add_workspace(iorb)->ppfunc = ata_read_pp;
713
714 } else if (rc > 0) {
715 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
716
717 } else {
718 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
719 }
720
721 return(rc);
722}
723
724/******************************************************************************
725 * Post processing function for ata_read(); this function updates the
726 * BlocksXferred counter in the IORB and, if not all blocks have been
727 * transferred, requeues the IORB to process the remaining sectors. It also
728 * takes care of copying data from the transfer buffer for unaligned reads.
729 */
730void ata_read_pp(IORBH _far *iorb)
731{
732 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
733 ADD_WORKSPACE _far *aws = add_workspace(iorb);
734
735 if (aws->unaligned) {
736 /* copy transfer buffer to corresponding physical address in S/G list */
737 sg_memcpy(io->pSGList, io->cSGList,
738 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
739 aws->buf, io->BlockSize, BUF_TO_SG);
740 }
741
742 io->BlocksXferred += add_workspace(iorb)->blocks;
743 ddprintf("ata_read_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
744
745 if (io->BlocksXferred >= io->BlockCount) {
746 /* we're done; tell IRQ handler the IORB is complete */
747 add_workspace(iorb)->complete = 1;
748 } else {
749 /* requeue this IORB for next iteration */
750 iorb_requeue(iorb);
751 }
752}
753
754/******************************************************************************
755 * Verify readability of sectors on ATA device.
756 */
757int ata_verify(IORBH _far *iorb, int slot)
758{
759 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
760 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
761 int p = iorb_unit_port(iorb);
762 int d = iorb_unit_device(iorb);
763 int rc;
764
765 if (io->BlockCount == 0) {
766 /* NOP; return -1 without error in IORB to indicate success */
767 return(-1);
768 }
769
770 /* prepare verify command */
771 if (io->RBA >= (1UL << 28) || io->BlockCount > 256) {
772 /* need LBA48 for this command */
773 if (!ai->ports[p].devs[d].lba48) {
774 iorb_seterr(iorb, IOERR_RBA_LIMIT);
775 return(-1);
776 }
777 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
778 AP_SECTOR_48, (u32) io->RBA, (u16) 0,
779 AP_COUNT, (u16) io->BlockCount,
780 AP_DEVICE, 0x40,
781 AP_END);
782 } else {
783 rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
784 AP_SECTOR_28, (u32) io->RBA,
785 AP_COUNT, (u16) io->BlockCount & 0xffU,
786 AP_DEVICE, 0x40,
787 AP_END);
788 }
789
790 return(rc);
791}
792
793/******************************************************************************
794 * Write sectors to AHCI device.
795 */
796int ata_write(IORBH _far *iorb, int slot)
797{
798 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
799 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
800 ULONG sector = io->RBA + io->BlocksXferred;
801 USHORT count = io->BlockCount - io->BlocksXferred;
802 USHORT sg_indx;
803 USHORT sg_cnt;
804 int p = iorb_unit_port(iorb);
805 int d = iorb_unit_device(iorb);
806 int rc;
807
808 if (io->BlockCount == 0) {
809 /* NOP; return -1 without error in IORB to indicate success */
810 return(-1);
811 }
812
813 if (add_workspace(iorb)->unaligned) {
814 /* unaligned S/G addresses present; need to use double buffers */
815 return(ata_write_unaligned(iorb, slot));
816 }
817
818 /* prepare write command while keeping an eye on S/G count limitations */
819 do {
820 sg_indx = ata_get_sg_indx(io);
821 sg_cnt = io->cSGList - sg_indx;
822 if ((rc = ata_cmd_write(iorb, ai, p, d, slot, sector, count,
823 io->pSGList + sg_indx, sg_cnt,
824 io->Flags & XIO_DISABLE_HW_WRITE_CACHE)) > 0) {
825 /* couldn't map all S/G elements */
826 ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
827 }
828 } while (rc > 0 && sg_cnt > 0);
829
830 if (rc == 0) {
831 add_workspace(iorb)->blocks = count;
832 add_workspace(iorb)->ppfunc = ata_write_pp;
833
834 } else if (rc > 0) {
835 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
836
837 } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
838 /* unaligned S/G addresses detected; need to use double buffers */
839 add_workspace(iorb)->unaligned = 1;
840 return(ata_write_unaligned(iorb, slot));
841
842 } else {
843 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
844 }
845
846 return(rc);
847}
848
849/******************************************************************************
850 * Write sectors from AHCI device with unaligned S/G element addresses. AHCI
851 * only allows aligned S/G addresses while OS/2 doesn't have these kind of
852 * restrictions. This doesn't happen very often but when it does, we need to
853 * use a transfer buffer and copy the data manually.
854 */
855int ata_write_unaligned(IORBH _far *iorb, int slot)
856{
857 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
858 ADD_WORKSPACE _far *aws = add_workspace(iorb);
859 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
860 ULONG sector = io->RBA + io->BlocksXferred;
861 SCATGATENTRY sg_single;
862 int p = iorb_unit_port(iorb);
863 int d = iorb_unit_device(iorb);
864 int rc;
865
866 ddprintf("ata_write_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
867
868 /* allocate transfer buffer */
869 if ((aws->buf = malloc(io->BlockSize)) == NULL) {
870 iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
871 return(-1);
872 }
873
874 /* copy next sector from S/G list to transfer buffer */
875 sg_memcpy(io->pSGList, io->cSGList,
876 (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
877 aws->buf, io->BlockSize, SG_TO_BUF);
878
879 /* prepare write command using transfer buffer */
880 sg_single.ppXferBuf = virt_to_phys(aws->buf);
881 sg_single.XferBufLen = io->BlockSize;
882 rc = ata_cmd_write(iorb, ai, p, d, slot, sector, 1, &sg_single, 1,
883 io->Flags & XIO_DISABLE_HW_WRITE_CACHE);
884
885 if (rc == 0) {
886 add_workspace(iorb)->blocks = 1;
887 add_workspace(iorb)->ppfunc = ata_write_pp;
888
889 } else if (rc > 0) {
890 iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
891
892 } else {
893 iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
894 }
895
896 return(rc);
897}
898
899
900/******************************************************************************
901 * Post processing function for ata_write(); this function updates the
902 * BlocksXferred counter in the IORB and, if not all blocks have been
903 * transferred, requeues the IORB to process the remaining sectors.
904 */
905void ata_write_pp(IORBH _far *iorb)
906{
907 IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
908
909 io->BlocksXferred += add_workspace(iorb)->blocks;
910 ddprintf("ata_write_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
911
912 if (io->BlocksXferred >= io->BlockCount) {
913 /* we're done; tell IRQ handler the IORB is complete */
914 add_workspace(iorb)->complete = 1;
915 } else {
916 /* requeue this IORB for next iteration */
917 iorb_requeue(iorb);
918 }
919}
920
921/******************************************************************************
922 * Execute ATA command.
923 */
924int ata_execute_ata(IORBH _far *iorb, int slot)
925{
926 IORB_ADAPTER_PASSTHRU _far *apt = (IORB_ADAPTER_PASSTHRU _far *) iorb;
927 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
928 int p = iorb_unit_port(iorb);
929 int d = iorb_unit_device(iorb);
930 int rc;
931
932 if (apt->ControllerCmdLen != sizeof(ATA_CMD)) {
933 iorb_seterr(iorb, IOERR_CMD_SYNTAX);
934 return(-1);
935 }
936
937 rc = ata_cmd(ai, p, d, slot, 0,
938 AP_SGLIST, apt->pSGList, apt->cSGList,
939 AP_ATA_CMD, apt->pControllerCmd,
940 AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
941 AP_END);
942
943 if (rc == 0) {
944 add_workspace(iorb)->ppfunc = ata_execute_ata_pp;
945 }
946
947 return(rc);
948}
949
950/******************************************************************************
951 * Post processing function for ata_execute_ata(); the main purpose of this
952 * function is to copy the received D2H FIS (i.e. the device registers after
953 * command completion) back to the ATA command structure.
954 *
955 * See ata_cmd_to_fis() for an explanation of the mapping.
956 */
957void ata_execute_ata_pp(IORBH _far *iorb)
958{
959 AHCI_PORT_DMA _far *dma_base;
960 ATA_CMD _far *cmd;
961 AD_INFO *ai;
962 u8 _far *fis;
963 int p;
964
965 /* get address of D2H FIS */
966 ai = ad_infos + iorb_unit_adapter(iorb);
967 p = iorb_unit_port(iorb);
968 dma_base = port_dma_base(ai, p);
969 fis = dma_base->rx_fis + 0x40;
970
971 if (fis[0] != 0x34) {
972 /* this is not a D2H FIS - give up silently */
973 ddprintf("ata_execute_ata_pp(): D2H FIS type incorrect: %d\n", fis[0]);
974 add_workspace(iorb)->complete = 1;
975 return;
976 }
977
978 /* map D2H FIS to the original ATA controller command structure */
979 cmd = (ATA_CMD _far *) ((IORB_ADAPTER_PASSTHRU _far *) iorb)->pControllerCmd;
980
981 cmd->cmd = fis[2];
982 cmd->device = fis[7];
983 cmd->features = ((u16) fis[3])
984 | ((u16) fis[11]);
985 cmd->lba_l = ((u32) fis[4])
986 | ((u32) fis[5] << 8)
987 | ((u32) fis[6] << 16)
988 | ((u32) fis[8] << 24);
989 cmd->lba_h = ((u16) fis[9])
990 | ((u16) fis[10] << 8);
991 cmd->count = ((u16) fis[12])
992 | ((u16) fis[13] << 8);
993
994 dphex(cmd, sizeof(*cmd), "ahci_execute_ata_pp(): cmd after completion:\n");
995
996 /* signal completion to interrupt handler */
997 add_workspace(iorb)->complete = 1;
998}
999
1000/******************************************************************************
1001 * Request sense information for a failed command. Since there is no "request
1002 * sense" command for ATA devices, we need to read the current error code from
1003 * the AHCI task file register and fabricate the sense information.
1004 *
1005 * NOTES:
1006 *
1007 * - This function must be called right after an ATA command has failed and
1008 * before any other commands are queued on the corresponding port. This
1009 * function is typically called in the port restart context hook which is
1010 * triggered by an AHCI error interrupt.
1011 *
1012 * - The ATA error bits are a complete mess. We'll try and catch the most
1013 * interesting error codes (such as medium errors) and report everything
1014 * else with a generic error code.
1015 */
1016int ata_req_sense(IORBH _far *iorb, int slot)
1017{
1018 AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
1019 u8 _far *port_mmio = port_base(ai, iorb_unit_port(iorb));
1020 u32 tf_data = readl(port_mmio + PORT_TFDATA);
1021 u8 err = (u8) (tf_data >> 8);
1022 u8 sts = (u8) (tf_data);
1023
1024 if (sts & ATA_ERR) {
1025 if (sts & ATA_DF) {
1026 /* there is a device-specific error condition */
1027 if (err & ATA_ICRC) {
1028 iorb_seterr(iorb, IOERR_ADAPTER_DEVICEBUSCHECK);
1029 } else if (err & ATA_UNC) {
1030 iorb_seterr(iorb, IOERR_MEDIA);
1031 } else if (err & ATA_IDNF) {
1032 iorb_seterr(iorb, IOERR_RBA_ADDRESSING_ERROR);
1033 } else {
1034 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
1035 }
1036
1037 } else {
1038 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
1039 }
1040 } else {
1041 /* this function only gets called when we received an error interrupt */
1042 iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
1043 }
1044
1045 /* Return an error to indicate there's no HW command to be submitted and
1046 * that the IORB can be completed "as is" (the upstream code expects the
1047 * IORB error code, if any, to be set when this happens and this is exactly
1048 * what this function is all about).
1049 */
1050 return(-1);
1051}
1052
1053/******************************************************************************
1054 * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
1055 * in the indentify buffer are byte-swapped, we need to swap them back.
1056 */
1057char *ata_dev_name(u16 *id_buf)
1058{
1059 static char dev_name[ATA_ID_PROD_LEN + 1];
1060 char *t = dev_name;
1061 char *s = (char *) (id_buf + ATA_ID_PROD);
1062 int i;
1063
1064 dev_name[sizeof(dev_name)-1] = '\0';
1065
1066 for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
1067 *(t++) = s[1];
1068 *(t++) = s[0];
1069 s += 2;
1070 }
1071
1072 return(dev_name);
1073}
1074
1075/******************************************************************************
1076 * Fabricate ATA READ command based on the capabilities of the corresponding
1077 * device and the paramters set from above (NCQ, etc).
1078 */
1079static int ata_cmd_read(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
1080 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
1081 ULONG sg_cnt)
1082{
1083 int rc;
1084
1085 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
1086 /* need LBA48 for this command */
1087 if (!ai->ports[p].devs[d].lba48) {
1088 iorb_seterr(iorb, IOERR_RBA_LIMIT);
1089 return(-1);
1090 }
1091 if (add_workspace(iorb)->is_ncq) {
1092 /* use NCQ read; count goes into feature register, tag into count! */
1093 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
1094 AP_SECTOR_48, (u32) sector, (u16) 0,
1095 AP_FEATURES, (u16) count,
1096 AP_COUNT, (u16) (slot << 3), /* tag == slot */
1097 AP_SGLIST, sg_list, (u16) sg_cnt,
1098 AP_DEVICE, 0x40,
1099 AP_END);
1100 } else {
1101 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
1102 AP_SECTOR_48, (u32) sector, (u16) 0,
1103 AP_COUNT, (u16) count,
1104 AP_SGLIST, sg_list, (u16) sg_cnt,
1105 AP_DEVICE, 0x40,
1106 AP_END);
1107 }
1108
1109 } else {
1110 rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
1111 AP_SECTOR_28, (u32) sector,
1112 AP_COUNT, (u16) count & 0xffU,
1113 AP_SGLIST, sg_list, (u16) sg_cnt,
1114 AP_DEVICE, 0x40,
1115 AP_END);
1116 }
1117
1118 return(rc);
1119}
1120
1121/******************************************************************************
1122 * Fabricate ATA WRITE command based on the capabilities of the corresponding
1123 * device and the paramters set from above (NCQ, etc)
1124 */
1125static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
1126 ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
1127 ULONG sg_cnt, int write_through)
1128{
1129 int rc;
1130
1131 if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
1132 /* need LBA48 for this command */
1133 if (!ai->ports[p].devs[d].lba48) {
1134 iorb_seterr(iorb, IOERR_RBA_LIMIT);
1135 return(-1);
1136 }
1137 if (add_workspace(iorb)->is_ncq) {
1138 /* use NCQ write; count goes into feature register, tag into count! */
1139 rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
1140 AP_SECTOR_48, (u32) sector, (u16) 0,
1141 AP_FEATURES, (u16) count,
1142 /* tag = slot */
1143 AP_COUNT, (u16) (slot << 3),
1144 AP_SGLIST, sg_list, (u16) sg_cnt,
1145 AP_DEVICE, 0x40,
1146 /* force unit access */
1147 AP_DEVICE, (write_through && !force_write_cache) ? 0x80 : 0,
1148 AP_WRITE, 1,
1149 AP_END);
1150 } else {
1151 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
1152 AP_SECTOR_48, (u32) sector, (u16) 0,
1153 AP_COUNT, (u16) count,
1154 AP_SGLIST, sg_list, (u16) sg_cnt,
1155 AP_DEVICE, 0x40,
1156 AP_WRITE, 1,
1157 AP_END);
1158 }
1159
1160 } else {
1161 rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
1162 AP_SECTOR_28, (u32) sector,
1163 AP_COUNT, (u16) count & 0xffU,
1164 AP_SGLIST, sg_list, (u16) sg_cnt,
1165 AP_DEVICE, 0x40,
1166 AP_WRITE, 1,
1167 AP_END);
1168 }
1169
1170 return(rc);
1171}
Note: See TracBrowser for help on using the repository browser.