skip to main content
10.1145/2487276.2487277acmconferencesArticle/Chapter ViewAbstractPublication PagesnparConference Proceedingsconference-collections
research-article

Real-time rendering of water surfaces with cartography-oriented design

Published: 19 July 2013 Publication History

Abstract

More than 70% of the Earth's surface is covered by oceans, seas, and lakes, making water surfaces one of the primary elements in geospatial visualization. Traditional approaches in computer graphics simulate and animate water surfaces in the most realistic ways. However, to improve orientation, navigation, and analysis tasks within 3D virtual environments, these surfaces need to be carefully designed to enhance shape perception and land-water distinction. We present an interactive system that renders water surfaces with cartography-oriented design using the conventions of mapmakers. Our approach is based on the observation that hand-drawn maps utilize and align texture features to shorelines with non-linear distance to improve figure-ground perception and express motion. To obtain local orientation and principal curvature directions, first, our system computes distance and feature-aligned distance maps. Given these maps, waterlining, water stippling, contour-hatching, and labeling are applied in real-time with spatial and temporal coherence. The presented methods can be useful for map exploration, landscaping, urban planning, and disaster management, which is demonstrated by various real-world virtual 3D city and landscape models.

Supplementary Material

JPG File (p5-semmo.jpg)
AVI File (p5-semmo.avi)

References

[1]
Bratkova, M., Shirley, P., and Thompson, W. B. 2009. Artistic rendering of mountainous terrain. ACM Trans. Graph. 28, 102:1--102:17.
[2]
Brox, T., Boomgaard, R., Lauze, F., Weijer, J., Weickert, J., Mrázek, P., and Kornprobst, P. 2006. Adaptive Structure Tensors and their Applications. Visualization and Processing of Tensor Fields, 17--47.
[3]
Buchin, K., Sousa, M. C., Döllner, J., Samavati, F., and Walther, M. 2004. Illustrating Terrains using Direction of Slope and Lighting. In ICA Mountain Carthography Workshop, 259--269.
[4]
Cao, T.-T., Tang, K., Mohamed, A., and Tan, T.-S. 2010. Parallel Banding Algorithm to compute exact distance transform with the GPU. In Proc. I3D, 83--90.
[5]
Christensen, A. H. 1999. Cartographic Line Generalization with Waterlines and Medial-Axes. Cartography and Geographic Information Science 26, 1, 19--32.
[6]
Christensen, A. H. 2008. A Reflection on the Waterlining Technique in Relation to the History of Map Ornamentation. The Cartographic Journal 45, 1, 68--78.
[7]
Cipriano, G., and Gleicher, M. 2008. Text Scaffolds for Effective Surface Labeling. IEEE Trans. Vis. Comput. Graphics 14, 6, 1675--1682.
[8]
Coconu, L., Deussen, O., and Hege, H. 2006. Real-time pen-and-ink illustration of landscapes. In Proc. NPAR, 27--35.
[9]
Danielsson, P.-E. 1980. Euclidean distance mapping. Computer Graphics and Image Processing 14, 3, 227--248.
[10]
Darles, E., Crespin, B., Ghazanfarpour, D., and Gonzato, J. 2011. A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics. Comput. Graph. Forum 30, 1, 43--60.
[11]
Deussen, O., and Strothotte, T. 2000. Computer-generated pen-and-ink illustration of trees. In Proc. ACM SIGGRAPH, 13--18.
[12]
Döllner, J., and Walther, M. 2003. Real-time expressive rendering of city models. In Proc. IEEE IV, 245--250.
[13]
Eden, A. M., Bargteil, A. W., Goktekin, T. G., Eisinger, S. B., and O'Brien, J. F. 2007. A Method for Cartoon-Style Rendering of Liquid Animations. In Proc. ACM Graphics Interface, 51--55.
[14]
French, T. 1918. A manual of engineering drawing for students and draftsmen. McGraw-Hill book company.
[15]
Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. 2000. Adaptively sampled distance fields: a general representation of shape for computer graphics. In Proc. ACM SIGGRAPH, 249--254.
[16]
Gerl, M., and Isenberg, T. 2013. Interactive example-based hatching. Computers & Graphics 37, 1-2, 65--80.
[17]
Girshick, A., Interrante, V., Haker, S., and Lemoine, T. 2000. Line direction matters: an argument for the use of principal directions in 3D line drawings. In Proc. NPAR, 43--52.
[18]
Glanville, R. S. 2004. Texture Bombing. In GPU Gems. Addison-Wesley, 323--338.
[19]
Götzelmann, T., Ali, K., Hartmann, K., and Strothotte, T. 2005. Form Follows Function: Aesthetic Interactive Labels. In Proc. CAe, 193--200.
[20]
Green, C. 2007. Improved alpha-tested magnification for vector textures and special effects. In ACM SIGGRAPH Courses, 9--18.
[21]
Huffman, D. P. 2010. On Waterlines: Arguments for their Employment, Advice on their Generation. Cartographic Perspectives, NACIS 66, 23--30.
[22]
Hurtut, T., Landes, P.-E., Thollot, J., Gousseau, Y., Drouillhet, R., and Coeurjolly, J.-F. 2009. Appearance-guided Synthesis of Element Arrangements by Example. In Proc. NPAR, 51--60.
[23]
Imhof, E. 1972. Thematische Kartographie, vol. 10. Walter de Gruyter.
[24]
Imhof, E. 1975. Positioning names on maps. The American Cartographer 2, 2, 128--144.
[25]
Isenberg, T. 2013. Visual Abstraction and Stylisation of Maps. The Cartographic Journal 50, 1, 8--18.
[26]
Jobst, M., and Döllner, J. 2008. 3D City Model Visualization with Cartography-Oriented Design. In Proc. REAL CORP, 507--516.
[27]
Kalogerakis, E., Nowrouzezahrai, D., Breslav, S., and Hertzmann, A. 2012. Learning hatching for pen-and-ink illustration of surfaces. ACM Trans. Graph. 31, 1, 1:1--1:17.
[28]
Kim, D., Son, M., Lee, Y., Kang, H., and Lee, S. 2008. Feature-guided Image Stippling. Comput. Graph. Forum 27, 4, 1209--1216.
[29]
Kim, Y., Yu, J., Yu, X., and Lee, S. 2008. Line-art illustration of dynamic and specular surfaces. ACM Trans. Graph. 27, 5, 156:1--156:10.
[30]
Kim, S., Woo, I., Maciejewski, R., and Ebert, D. 2010. Automated Hedcut Illustration Using Isophotes. In Proc. Smart Graphics, 172--183.
[31]
Kraak, M., and Ormeling, F. 2003. Cartography: Visualization of Geospatial Data. Pearson Education.
[32]
Kyprianidis, J. E., Collomosse, J., Wang, T., and Isenberg, T. 2012. State of the 'Art': A Taxonomy of Artistic Stylization Techniques for Images and Video. IEEE Trans. Vis. Comput. Graphics 19, 5, 866--885.
[33]
Maass, S., and Döllner, J. 2008. Seamless Integration of Labels into Interactive Virtual 3D Environments Using Parameterized Hulls. In Proc. CAe, 33--40.
[34]
MacEachren, A. 1995. How Maps Work. Guilford Press.
[35]
Merian, M. 2005. Topographia Germaniae.
[36]
Nehab, D., Maximo, A., Lima, R. S., and Hoppe, H. 2011. GPU-efficient recursive filtering and summed-area tables. ACM Trans. Graph. 30, 176:1--176:12.
[37]
Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped textures. In Proc. ACM SIGGRAPH, 465--470.
[38]
Praun, E., Hoppe, H., Webb, M., and Finkelstein, A. 2001. Real-time hatching. In Proc. ACM SIGGRAPH, 581--586.
[39]
Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling, A. J., and Guptill, S. C. 1995. Elements of cartography. New York: John Wiley & Sons.
[40]
Rong, G., and Tan, T.-S. 2006. Jump flooding in GPU with applications to Voronoi diagram and distance transform. In Proc. ACM I3D, 109--116.
[41]
Ropinski, T., Prassni, J.-S., Roters, J., and Hinrichs, K. 2007. Internal Labels as Shape Cues for Medical Illustration. In Proc. VMV, 203--212.
[42]
Salisbury, M. P., Wong, M. T., Hughes, J. F., and Salesin, D. H. 1997. Orientable textures for image-based pen-and-ink illustration. In Proc. ACM SIGGRAPH, 401--406.
[43]
Semmo, A., Trapp, M., Kyprianidis, J. E., and Döllner, J. 2012. Interactive Visualization of Generalized Virtual 3D City Models using Level-of-Abstraction Transitions. Comput. Graph. Forum 31, 885--894.
[44]
Tyner, J. 2010. Principles of map design. Guilford Press.
[45]
Webb, M., Praun, E., Finkelstein, A., and Hoppe, H. 2002. Fine tone control in hardware hatching. In Proc. NPAR, 53--58.
[46]
Wei, L., Lefebvre, S., Kwatra, V., Turk, G., et al. 2009. State of the Art in Example-based Texture Synthesis. In Eurographics 2009 State of the Art Report, 93--117.
[47]
Xu, K., Cohen-Or, D., Ju, T., Liu, L., Zhang, H., Zhou, S., and Xiong, Y. 2009. Feature-aligned shape texturing. ACM Trans. Graph. 28, 108:1--108:7.
[48]
Yu, J., Jiang, X., Chen, H., and Yao, C. 2007. Real-time cartoon water animation. Computer Animation and Virtual Worlds 18, 4-5, 405--414.

Cited By

View all
  • (2017)Améliorer la perception du réalisme dans la géovisualisation du littoralRevue Internationale de Géomatique10.3166/rig.2016.0000826:4(403-424)Online publication date: 9-Feb-2017
  • (2017)Data-Driven NPR Illustrations of Natural Flows in Chinese PaintingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2016.262226923:12(2535-2549)Online publication date: 1-Dec-2017
  • (2016)Map style formalizationProceedings of the Joint Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering10.5555/2981324.2981333(59-68)Online publication date: 7-May-2016
  • Show More Cited By

Index Terms

  1. Real-time rendering of water surfaces with cartography-oriented design

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CAE '13: Proceedings of the Symposium on Computational Aesthetics
      July 2013
      102 pages
      ISBN:9781450322034
      DOI:10.1145/2487276
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 19 July 2013

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. cartography-oriented design
      2. contour-hatching
      3. illustrative rendering
      4. water stippling
      5. water surfaces
      6. waterlining

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      Expressive 2013
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 11 of 25 submissions, 44%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)16
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 14 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2017)Améliorer la perception du réalisme dans la géovisualisation du littoralRevue Internationale de Géomatique10.3166/rig.2016.0000826:4(403-424)Online publication date: 9-Feb-2017
      • (2017)Data-Driven NPR Illustrations of Natural Flows in Chinese PaintingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2016.262226923:12(2535-2549)Online publication date: 1-Dec-2017
      • (2016)Map style formalizationProceedings of the Joint Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering10.5555/2981324.2981333(59-68)Online publication date: 7-May-2016
      • (2015)Cartography-Oriented Design of 3D Geospatial Information Visualization – Overview and TechniquesThe Cartographic Journal10.1080/00087041.2015.111946252:2(95-106)Online publication date: 26-Nov-2015

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media