skip to main content
article
Free access

Hierarchical triangulation for multiresolution surface description

Published: 01 October 1995 Publication History

Abstract

A new hierarchical triangle-based model for representing surfaces over sampled data is proposed, which is based on the subdivision of the surface domain into nested triangulations, called a hierarchical triangulation (HT). The model allows compression of spatial data and representation of a surface at successively finer degrees of resolution. An HT is a collection of triangulations organized in a tree, where each node, except for the root, is a triangulation refining a face belonging to its parent in the hierarchy. We present a topological model for representing an HT, and algorithms for its construction and for the extraction of a triangulation at a given degree of resolution. The surface model, called a hierarchical triangulated surface (HTS) is obtained by associating data values with the vertices of triangles, and by defining suitable functions that describe the surface over each triangular patch. We consider an application of a piecewise-linear version of the HTS to interpolate topographical data, and we describe a specialized version of the construction algorithm that builds an HTS for a terrain starting from a high-resolution rectangular grid of sampled data. Finally, we present an algorithm for extracting representations of terrain at variable resolution over the domain.

References

[1]
AGARWAL, P. K., AND SURI, S. 1994. Surface approximation and geometric partitions. In Proceedings of the 5th ACM SIAM,Symposium on Discrete Algorithms. ACM, New York, pp. 24 33.
[2]
At;~;^aWAI., A., GUmAS, L. J., SAXE, J., AND SHOR, P. 1989. A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4,591-604.
[3]
BANK. R. E. 1986. A posteriori error estimate. Adaptive local mesh refinement and multigrid iteration. In Multigrid Methods II. Lecture Notes in Mathematics, 1228, Springer-Verlag, New York, 7 22.
[4]
B^RaER^, R., AND VAZQUEZ, A. N. 1984. A hierarchical method for representing relief. In Proceedings of the Peeora IX Symposium on Spatial Information Technologies for Remote ~ensing Today and Tomorrow (Sioux Falls, S.D., Oct.), 87-92.
[5]
BERTOLO~IY), M., DE FLORIANI, L., AND MARZANO, P. 1995a. Pyramidal simplicial complexes. In 3rd ACM Symposium on Solid Modeling and Applications (Salt Lake City, Utah, May 17-19). ACM, New York, 153 162.
[6]
BERTOLOTTO, M., DE FLOR1ANI, L., AND MARZANO, P. 1995b. A unifying framework for multilevel description of spatial data. In Spatial Information Theory--A Theoretical Basis for GIS (Proceedings COS1T95), A. U. Frank and W. Kuhn, Eds., Lecture Notes in Computer Science 988, Springer, New York, 259-278.
[7]
BERTOLOTTO, M., DE FLORIANI, L., AND PUPPO, E. 1994. Hierarchical hypersurface modeling. In IGIS 94: Geographic Information Systems, J. Nievergelt, T. Roos, H. Schek, and P. Widmayer, Eds. Lecture Notes in Computer Science, 884. Springer-Verlag, New York, 88 97.
[8]
BERTOLOq'FO, M., MAGILLO, P., DE FLOR{ANI, L. 1995. Overlapping hierarchical maps. In Proceedings 3rd ACM Workshop on Advances in Geographic Information Systems (Baltimore, Md., Dec. 1-2).
[9]
CHEN, Z. T., AND TOBLER, W. R. 1986. Quadtree representation of digital terrain. In Proceedings of Autocarto (London), 475 484.
[10]
C1GNONI, r., PuPPO, E., AND SCOPIGNO, R. 1995. Representation and visualization of terrain surfaces at variable resolution. In Scientific Visualization 95, R. Scateni, Ed., World Scientific, Singapore, 50-68.
[11]
CIGNONI, P., DE FLORIANI, L., MONTANI, C., PuPPo, E, AND SCOPIGNO, R. 1994. Multiresolution modeling and visualization of volume data based on simplicial complexes. In Proceedings of the 1994 ACM Symposium on Volume Visualization (Washington, D.C., Oct. 17 18). ACM, New York, 19-26.
[12]
DE BERG, M., AND DOBRINDT, K. T. G. 1995. On the levels of detail in terrains. In 11th ACM Symposium on Computational Geometry (Vancouver, B.C., June 5-7). ACM, New York.
[13]
DE FLORIANI, L. 1989. A pyramidal data structure for triangle-based surface description. IEEE Comput. Graph. Appl. (Mar.), 67-78.
[14]
DE FLORtANI, L., AND MAGILLO, P. 1995. Horizon computation on a hierarchical triangulated terrain model. Visual Comput. 11, 134 149.
[15]
DE FLORIANI, L., AND PuPPo, E. 1992. A hierarchical triangle-based model for terrain description. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, A. U. Frank, I. Campari, and U. Formentini, Eds. Lecture Notes in Computer Science, 639. Springer-Verlag, New York, 236-251.
[16]
DE FLORIANI, L., MIRRA, D., AND PuPPo, E. 1993. Extracting contour lines from a hierarchical surface model. Comput. Graph. Forum. (EUROGRAPHICS Conference Issue) 12, 3 (Sept.), 249-260.
[17]
DE FLORIANI, L., FALCIDIENO, B., PIENOVl, C., AND NAGY, G. 1984. A hierarchical data structure for surface approximation. Comput. Graph. 8, 2, 475-484.
[18]
DE FLORIANI, L., GATTORNA, G., MARZANO, P., AND PUPPO, E. 1994. Spatial queries on a hierarchical terrain model. In Proceedings of the 6th International Symposium on Spatial Data Handling (Edinburgh, U.K., Sept. 5 9), 819-834.
[19]
DOUGLAS, D. H., AND PEUCKER, T. K. 1973. Algorithms for the reduction of the number of points required to represent a line or its caricature. Can. Cartogr. 10, 2, 112-122.
[20]
DYN, N., LEVlN, D., AND GREGORY, J. A. 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 2 (Apr.), 160-169.
[21]
EDELSBRUNNER, H. 1987. Algorithms in Combinatorial Geometry. Springer-Verlag, New York.
[22]
EDEI,SBRUNNER, H., AND TAN, T. S. 1992. An upper bound for conforming Delaunay triangulations. In Proceedings of the 8th ACM Symposium on Computational Geometry. ACM, New York, 53-62.
[23]
FARIN, G. 1986. Triangular Bernstein-B6zier patches. Comput. Aided Geom. Des. 3, 2, 83-128.
[24]
FEKETE, G., AND DAVIS, L. S. 1984. Property spheres: A new representation for 3-D object recognition. In Proceedings of the Workshop on Computer Vision: Representation and Control. CS Press, Los Alamitos, Calif., 192-201.
[25]
FONG, P., AND SE1DEL, H.-P. 1993. An implementation of triangular B-spline surfaces over arbitrary triangulations. Comput. Aided Geom. Des. 10, 267-275.
[26]
FOWLER, R. J., AND LITTLE, J. J. 1979. Automatic extraction of irregular network digital terrain models. Comput. Graph. 13, 3 (Aug.), 199-207.
[27]
GOMEZ, D., AND GUZM_~, A. 1979. Digital model for three-dimensional surface representation. Geo-Processing 1, 53-70.
[28]
GOODCmL9, M. F., AND SHIREN, Y. 1992. A hierarchical spatial data structure for global geographic information systems. CVGIP--Graph. Models Image Process. 54, 1 (Jan.), 31-44.
[29]
Gum~, L. J., ~,'~o STOLFI, J. 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. Graph. 4, 74-123.
[30]
HERSHBERGER, J., x~o SNOEYINK, J. 1992. Speeding up the Douglas-Peucker line simplification algorithm. In Proceedings of the 5th International Symposium on Spatial Data Handling (Charleston, S.C., Aug. 3-7), 134-143.
[31]
I~Rr~~ATRtCK, D. G. 1983. Optimal search in planar subdivisions. SIAM J. Comput. 12, 28-35.
[32]
LEE, J. 1991. Comparison of existing methods for building triangular irregular network models of terrain from grid digital elevation models. Int. J. Geog. Inf. Syst. 5, 3, 267-285.
[33]
POTTMANN, H., ~O Ecg, M. 1990. Modified multiquadric methods for scattered data interpolation over a sphere. Comput. Aided Geom. Des. 7, 313-321.
[34]
PREPARATA, F. P., AND SHAMOS, M. I. 1985. Computational Geometry: An Introduction. Springer-Verlag, Berlin.
[35]
RENKA, R. J., ^~o CLIniC, A. K. 1984. A triangle-based CI interpolation method. Rocky MT J. Math. 14, 1, 223-237.
[36]
RIPPA, S. 1990. Minimal roughness property of Delaunay triangulation. Comput. Aided Geom. Des. 7, 489-497.
[37]
RIPPA, S. 1992. Adaptive approximations by piecewise linear polynomials on triangulations of subsets of scattered data. SIAM J. Sci. Stat. Comput. 13, 1, 1123-1141.
[38]
SAMET, H. 1990. Applications of Spatial Data Structures. Addison-Wesley, Reading, Mass.
[39]
SCARLATOS, L. L., AND PAVLIDIS, T. 1992. Hierarchical triangulation using cartographic coherence. CVGIP: Graph. Models Image Process. 54, 2, 147-161.
[40]
SCHUMAKER, L. L. 1993. Computing optimal triangulations using simulated annealing. Comput. Aided Geom. Des. 10, 329-345.
[41]
SEIDEL, H. P. 1992. Polar forms and triangular B-spline surfaces. In Computing in Euclidean Geometry, D.-Z. Du and F. Hwang, Eds. World Scientific, Singapore.
[42]
SILVESTER, P. P., AND FERI~RI, R. L. 1990. Finite Elements for Electrical Engineers. 2nd ed. Cambridge University Press, New York.
[43]
VON HERZEN, B., AND BARR, A. H. 1987. Accurate triangulations of deformed, intersecting surfaces. Comput. Graph. 21, 4 (July), 103-110.
[44]
Woo, T. C. 1985. A combinatorial analysis of boundary data structure schemata. IEEE Comput. Graph. Appl. 5, 3, 19-27.

Cited By

View all
  • (2024)Path planning in three-dimensional space based on butterfly optimization algorithmScientific Reports10.1038/s41598-024-52750-914:1Online publication date: 28-Jan-2024
  • (2021)Simplification and unfolding of 3D mesh models: review and evaluation of existing toolsProcedia CIRP10.1016/j.procir.2021.05.023100(121-126)Online publication date: 2021
  • (2019)A Multilevel Terrain Rendering Method Based on Dynamic Stitching StripsISPRS International Journal of Geo-Information10.3390/ijgi80602558:6(255)Online publication date: 30-May-2019
  • Show More Cited By

Index Terms

  1. Hierarchical triangulation for multiresolution surface description

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 14, Issue 4
      Oct. 1995
      101 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/225294
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 October 1995
      Published in TOG Volume 14, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. hierarchical subdivision
      2. multiresolution surface model
      3. terrain model
      4. triangulation

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)90
      • Downloads (Last 6 weeks)12
      Reflects downloads up to 15 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Path planning in three-dimensional space based on butterfly optimization algorithmScientific Reports10.1038/s41598-024-52750-914:1Online publication date: 28-Jan-2024
      • (2021)Simplification and unfolding of 3D mesh models: review and evaluation of existing toolsProcedia CIRP10.1016/j.procir.2021.05.023100(121-126)Online publication date: 2021
      • (2019)A Multilevel Terrain Rendering Method Based on Dynamic Stitching StripsISPRS International Journal of Geo-Information10.3390/ijgi80602558:6(255)Online publication date: 30-May-2019
      • (2017)A variable resolution right TIN approach for gridded oceanographic dataComputers & Geosciences10.1016/j.cageo.2017.07.008109:C(59-66)Online publication date: 1-Dec-2017
      • (2016)Recursive Voronoi DiagramsEnvironment and Planning B: Planning and Design10.1068/b1298430:1(113-124)Online publication date: 2-Dec-2016
      • (2014)A model-integrated localized collocation meshless method for large scale three-dimensional heat transfer problemsEngineering Analysis with Boundary Elements10.1016/j.enganabound.2014.01.01445(2-19)Online publication date: Aug-2014
      • (2012)Representing Terrain with Mathematical OperatorsAdvances in Spatial Data Handling10.1007/978-3-642-32316-4_10(143-155)Online publication date: 3-Nov-2012
      • (2012)Refinement Trees and Space-Filling CurvesSpace-Filling Curves10.1007/978-3-642-31046-1_9(129-142)Online publication date: 1-Aug-2012
      • (2012)Space-Filling Curves in 3DSpace-Filling Curves10.1007/978-3-642-31046-1_8(109-127)Online publication date: 1-Aug-2012
      • (2012)Further Space-Filling CurvesSpace-Filling Curves10.1007/978-3-642-31046-1_7(93-108)Online publication date: 1-Aug-2012
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media