skip to main content
10.1111/j.1467-8659.2009.01697.xguideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Brushing moments in interactive visual analysis

Published: 09 June 2010 Publication History

Abstract

We present a systematic study of opportunities for the interactive visual analysis of multi-dimensional scientific data that is based on the integration of statistical aggregations along selected independent data dimensions in a framework of coordinated multiple views (with linking and brushing). Traditional and robust estimates of the four statistical moments (mean, variance, skewness, and kurtosis) as well as measures of outlyingness are integrated in an iterative visual analysis process. Brushing particular statistics, the analyst can investigate data characteristics such as trends and outliers. We present a categorization of beneficial combinations of attributes in 2D scatterplots: (a) kth vs. (k+1)th statistical moment of a traditional or robust estimate, (b) traditional vs. robust version of the same moment, (c) two different robust estimates of the same moment. We propose selected view transformations to iteratively construct this multitude of informative views as well as to enhance the depiction of the statistical properties in scatterplots and quantile plots. In the framework, we interrelate the original distributional data and the aggregated statistics, which allows the analyst to work with both data representations simultaneously. We demonstrate our approach in the context of two visual analysis scenarios of multi-run climate simulations.

References

[1]
BAUER E., GANOPOLSKI A., MONTOYA M.: Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz. Paleoceanography 19 (2004).
[2]
CHAMBERS J., CLEVELAND W. S., KLEINER B., TUKEY P.: Graphical Methods for Data Analysis. Chapman and Hall, 1983.
[3]
CLEVELAND W. S.: Visualizing Data. Hobart Press, 1993.
[4]
CLEVELAND W. C., MCGILL M. E. (Eds.): Dynamic Graphics for Statistics. Wadsworth, 1988.
[5]
CRAWLEY M.: Statistics: An introduction using R. Wiley, 2005.
[6]
COOKE R., VAN NOORTWIJK J.: Graphical Methods for Uncertainty and Sensitivity Analysis. In Sensitivity Analysis, Saltelli, Chan, Scott, (Eds.). Wiley, 2000, pp. 245-266.
[7]
DOLEISCH H., GASSER M., HAUSER H.: Interactive feature specification for focus+context visualization of complex simulation data. In Proc. VisSym 2003 (2003), pp. 239-248.
[8]
DOLEISCH H., HAUSER H.: Smooth brushing for focus+ context visualization of simulation data in 3D. Journal of WSCG 10, 1 (2002), 147-154.
[9]
FLEISHMAN A.: A method for simulating nonnormal distributions. Psychometrika 43 (1978), 521-532.
[10]
FILZMOSER P., MARONNA R., WERNER M.: Outlier identification in high dimensions. Computational Statistics & Data Analysis 52, 3 (2008), 1694-1711.
[11]
GRESH D., ROGOWITZ B., WINSLOW R., SCOLLAN D., YUNG C.: WEAVE: a system for visually linking 3-D and statistical visualizations applied to cardiac simulation and measurement data. In Proc. IEEE Visualization (2000), pp. 489-492.
[12]
HAMBY D. M.: A review of techniques for parameter sensitivity analysis of environmental models. J. Environmental Monitoring & Assessment 32, 2 (2004), 135-154.
[13]
HAUSER H.: Generalizing Focus+Context Visualization. In Scientific Visualization: The Visual Extraction of Knowledge from Data (2005), Springer, pp. 305-327.
[14]
HAUSER H.: Interactive visual analysis - an opportunity for industrial simulation. In Simulation and Visualization (2006), pp. 1-6.
[15]
HIBBARD B., BÖTTINGER M., SCHULTZ M., BIERCAMP J.: Visualization in Earth System Science. SIGGRAPH Comput. Graph. 36, 4 (2002), 5-9.
[16]
HELTON J. C.: Uncertainty and sensitivity analysis for models of complex systems. In Computational Methods in Transport: Verification and Validation, vol. 62 of Lecture Notes in Computational Science and Engineering. 2008, pp. 207-228.
[17]
HYNDMAN R. J., FAN Y.: Sample quantiles in statistical packages. The American Statistician 50, 4 (1996), 361-365.
[18]
HINKLEY D.: On power transformations to symmetry. Biometrika 63 (1975), 101-111.
[19]
KAO D., DUNGAN J. L., PANG A.: Visualizing 2D probability distributions from EOS satellite image-derived data sets: a case study. In Proc. IEEE Visualization 2001 (2001), pp. 457-460.
[20]
KAO D., LUO A., DUNGAN J., PANG A.: Visualizing spatially varying distribution data. In Proc. Intl. Conf. Information Visualization (IV '02) (2002), pp. 219-225.
[21]
KEIM D., MANSMANN F., SCHNEIDEWIND J., ZIEGLER H.: Challenges in visual data analysis. In Proc. Intl. Conf. Information Visualisation (IV '06) (2006), pp. 9-16.
[22]
KIM T.-H., WHITE H.: On more robust estimation of skewness and kurtosis. Finance Res. Letters 1, 1 (2004), 56-73.
[23]
LOVE A., PANG A., KAO D.: Visualizing spatial multivalue data. IEEE Comput. Graph. Appl. 25, 3 (2005), 69-79.
[24]
MATKOVIĆ K., GRAČANIN D., KLARIN B., HAUSER H.: Interactive visual analysis of complex scientific data as families of data surfaces. IEEE Trans. Vis. Comp. Graph. 15, 6 (2009), 1351-1358.
[25]
MARONNA R., MARTIN D., YOHAI V.: Robust Statistics: Theory and Methods. John Wiley & Sons, 2006.
[26]
MÜLLER W., NOCKE T., SCHUMANN H.: Enhancing the visualization process with principal component analysis to support the exploration of trends. In Proc. Asia Pacific Symp. on Information Visualisation (APVIS '06) (2006), pp. 121-130.
[27]
MOORS J.: A quantile alternative for kurtosis. The Statistician 37 (1988), 25-32.
[28]
MORRIS M.: Factorial plans for preliminary computational experiments. Technometrics 33, 2 (1991), 161-174.
[29]
NORTH C., CONKLIN N., INDUKURI K., SAINI V.: Visualization schemas and a web-based architecture for custom multiple-view visualization of multiple-table databases. Information Visualization 1, 3-4 (2002), 211-228.
[30]
NOCKE T., FLECHSIG M., BÖHM U.: Visual exploration and evaluation of climate-related simulation data. In Proc. Winter Simulation Conference (2007), pp. 703-711.
[31]
NOCKE T.: Visual data mining and visualization design for climate research. PhD thesis, Dept. of Computer Science and Electrical Engineering, Univ. of Rostock, 2007. (in German).
[32]
OELTZE S., DOLEISCH H., HAUSER H., MUIGG P., PREIM B.: Interactive visual analysis of perfusion data. IEEE Trans. Vis. Comp. Graph. 13, 6 (2007), 1392-1399.
[33]
PATEL D., HAIDACHER M., BALABANIAN J.-P., GRÖLLER M. E.: Moment curves. In Proc. IEEE Pacific Vis 2009 (2009), pp. 201-208.
[34]
REIMANN C., FILZMOSER P., GARRETT R.: Background and threshold: critical comparison of methods of determination. Science of the Total Environment 346 (2005), 1-16.
[35]
ROBERTS J. C.: State of the art: Coordinated & multiple views in exploratory visualization. In Proc. Coordinated & Multiple Views in Exploratory Visualization (2007), pp. 61-71.
[36]
SWAYNE D. F., COOK D., BUJA A.: XGobi: Interactive Dynamic Data Visualization in the X Window System. J. Computational and Graphical Statistics 7, 1 (1998), 113-130.
[37]
SHNEIDERMAN B.: The eyes have it: A task by data type taxonomy for information visualizations. In IEEE Visual Languages (1996), pp. 336-343.
[38]
THOMAS J., COOK K.: A visual analytics agenda. IEEE Comput. Graph. Appl. 26, 1 (2006), 10-13.
[39]
THEUS M., URBANEK S.: Interactive Graphics for Data Analysis: Principles and Examples. Chapman & Hall, 2008.
[40]
TUFTE E. R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut, USA, 1983.
[41]
TUKEY J. W.: Exploratory Data Analysis. Addison-Wesley, 1977.
[42]
WARD M.: XmdvTool: Integrating multiple methods for visualizing multivariate data. In Proc. IEEE Visualization (1994), pp. 326-336.
[43]
WEAVER C.: Conjunctive visual forms. IEEE Trans. Vis. Comp. Graph. 15, 6 (2009), 929-936.
[44]
WEAVER C.: Cross-filtered views for multidimensional visual analysis. IEEE Trans. Vis. Comp. Graph. 16, 2 (2010), 192-204.
[45]
WILK M. B., GNANADESIKAN R.: Probability plotting methods for the analysis of data. Biometrika 55, 1 (1968), 1-17.
[46]
WALLACE J. M., HOBBS P. V.: Atmospheric Science - An Introductory Survey. Elsevier Academic Press, USA, 2006.

Cited By

View all
  • (2019)An Interactive Framework for Visualization of Weather Forecast EnsemblesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286481525:1(1091-1101)Online publication date: 1-Jan-2019
  • (2018)Visual analytics for simulation ensemblesProceedings of the 2018 Winter Simulation Conference10.5555/3320516.3320563(321-335)Online publication date: 9-Dec-2018
  • (2016)Towards Quantitative Visual Analytics with Structured Brushing and Linked StatisticsComputer Graphics Forum10.5555/3071534.307156235:3(251-260)Online publication date: 1-Jun-2016
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
EuroVis'10: Proceedings of the 12th Eurographics / IEEE - VGTC conference on Visualization
June 2010
1250 pages

Sponsors

  • LaBRI: LaBRI
  • Conseil Rgional d'Aquitaine
  • Université Bordeaux 1: Université Bordeaux 1
  • INRIA: Institut Natl de Recherche en Info et en Automatique
  • IEEE-CS\DATC: IEEE Computer Society

Publisher

The Eurographs Association & John Wiley & Sons, Ltd.

Chichester, United Kingdom

Publication History

Published: 09 June 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 15 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2019)An Interactive Framework for Visualization of Weather Forecast EnsemblesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.286481525:1(1091-1101)Online publication date: 1-Jan-2019
  • (2018)Visual analytics for simulation ensemblesProceedings of the 2018 Winter Simulation Conference10.5555/3320516.3320563(321-335)Online publication date: 9-Dec-2018
  • (2016)Towards Quantitative Visual Analytics with Structured Brushing and Linked StatisticsComputer Graphics Forum10.5555/3071534.307156235:3(251-260)Online publication date: 1-Jun-2016
  • (2013)Hierarchical visual filtering, pragmatic and epistemic actions for database visualizationProceedings of the 28th Annual ACM Symposium on Applied Computing10.1145/2480362.2480545(946-952)Online publication date: 18-Mar-2013
  • (2013)Visualization of flow past a marine turbineComputing and Visualization in Science10.1007/s00791-014-0229-416:3(89-103)Online publication date: 1-Jun-2013

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media