skip to main content
10.1007/978-3-319-16940-8_4guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Designing for Hover- and Force-Enriched Touch Interaction

Published: 14 April 2015 Publication History

Abstract

As touch-based interfaces become more popular, there are attempts to enhance the touch interface by making the interface more sensitive to the finger. This means that touch surfaces not only sense the location of a finger contact, but also other properties such as a finger hover or the applied force. In this chapter, we summarize the properties of hover- and force-enriched touch and what we should consider to design rich-touch interactions based on the findings from previous works. We present design strategies for rich-touch interactions and example applications, which we developed with the novel touchpad prototype that is capable of measuring a finger hover as well as the finger force applied to the screen. We measured the performance of using rich touch and collected users’ feedback through the experiments.

References

[1]
Annett, M., Grossman, T., Wigdor, D., Fitzmaurice G.: Medusa: a proximity-aware multi-touch tabletop. In: Proceedings of the UIST 2011, pp. 337–346. ACM (2011)
[3]
Banerjee, A., Burstyn, J., Girouard, A., Vertegaal, R.: Pointable: an in-air pointing technique to manipulate out-of-reach targets on tabletops. In: Proceedings of the ITS 2011, pp. 11–20. ACM Press (2011)
[4]
Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch screens. In: Proceedings of the CHI 2006, pp. 1263–1272. ACM Press (2006)
[5]
Benko, H., Saponas, T.S., Morris, D., Tan, D.: Enhancing input on and above the interactive surface with muscle sensing. In: Proceedings of the ITS 2009, pp. 93–100. ACM Press. (2009)
[6]
Choi, S., Han, J., Lee, G., Lee, N., Lee, W.: RemoteTouch: touch-screen-like interaction in the TV viewing environment. In: Proceedings of the CHI 2011, pp. 393–402. ACM Press (2011)
[7]
Choi, S., Han, J., Kim, S., Heo, S., Lee, G.: ThickPad: a hover-tracking touchpad for a laptop. In: Adjunct. Proceedings of the UIST 2011, pp. 15–16. ACM Press (2011)
[8]
Choi, S., Gu, J., Han, J., Lee, G.: Area gestures for a laptop computer enabled by a hover-tracking touchpad. In: Proceedings of the APCHI 2012, pp. 119–124. ACM Press (2012)
[9]
Cypress Semiconductor, TrueTouch. http://www.cypress.com/touch/
[10]
Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., Balakrishnan, R.: Hover widgets: using the tracking state to extend the capabilities of pen-operated devices. In: Proceedings of the CHI 2006, pp. 861–870. ACM Press (2006)
[11]
Gu, J., Heo, S., Han, J., Kim, S., Lee, G.: LongPad: a touchpad using the entire area below the keyboard of a laptop computer. In: Proceedings of the CHI 2013, pp. 1421–1430. ACM Press (2013)
[12]
Han J, Choi S, Heo S, and Lee G Optical touch sensing based on internal scattering in touch surface Electron. Lett. 2012 48 22 1420-1422
[13]
Han, J., Gu, J., Lee, G.: Trampoline: a double-sided elastic touch device for creating reliefs. In: Proceedings of the UIST 2014, pp. 383–388. ACM Press (2014)
[14]
Han, S., Park, J.: A study on touch & hover based interaction for zooming. In: Extended Abstracts, Proceedings of the CHI 2012, pp. 2183–2188. ACM Press (2012)
[15]
Harrison, C., Dey, A.K.: Lean and zoom: proximity-aware user interface and content magnification. In: Proceedings of the CHI 2008, pp. 507–510. ACM Press (2008)
[16]
Harrison, C., Hudson, S.: Using shear as a supplemental two-dimensional input channel for rich touchscreen interaction. In: Proceedings of the CHI 2012, pp. 3149–3152. ACM Press (2012)
[17]
Heo, S., Lee, G.: Forcetap: extending the input vocabulary of mobile touch screens by adding tap gestures. In: Proceedings of the MobileHCI 2011, pp. 113–122. ACM Press (2011)
[18]
Heo, S., Lee, G.: Force gestures: augmenting touch screen gestures with normal and tangential forces. In: Proceedings of the UIST 2011, pp. 621–626. ACM Press (2011)
[19]
Heo, S., Lee, G.: ForceDrag: using pressure as a touch input modifier. In: Proceedings of the OzCHI 2012, pp. 204–207. ACM Press (2012)
[20]
Heo, S., Lee, G.: Indirect shear force estimation for multi-point shear force operations. In: Proceedings of the CHI 2013, pp. 281–284. ACM Press (2013)
[21]
Heo, S., Han, J., Lee, G.: Designing rich touch interaction through proximity and 2.5D force sensing touchpad. In: Proceedings of the OzCHI 2013, pp. 401–404. ACM Press (2013)
[22]
Herot, C., Weinzapfel, G.: One-point touch input of vector information for computer displays. In: Proceedings of the SIGGRAPH 1978, pp. 210–216. ACM Press (1978)
[23]
Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A., Butz, A.: Interactions in the air: adding further depth to interactive tabletops. In: Proceedings of the UIST 2009, pp. 139–148. ACM (2009)
[24]
Hinckley, K., Song, H.: Sensor synaesthesia: touch in motion, and motion in touch. In: Proceedings of the CHI 2011, pp. 801–810. ACM Press (2011)
[25]
Hirsch M, Lanman D, Holtzman H, and Raskar R BiDi screen: a thin, depth-sensing LCD for 3D interaction using light fields ACM Trans Graph 2009 28 5 159:1-159:9
[26]
Leap Motion Controller, Leap Motion. https://www.leapmotion.com/product/
[27]
Lee, B., Lee, H., Lim, S.-C., Lee, H., Han, S., Park, J.: Evaluation of human tangential force input performance. In: Proceedings of the CHI 2012, pp. 3121–3130. ACM Press (2012)
[28]
Lee, G., Lee, S., Bang, W., Kim, Y.: A TV pointing device using LED directivity. In: IEEE International Conference on Consumer Electronics (ICCE 2011), pp. 619–620. IEEE Press (2011)
[30]
Marquardt N, Jota R, Greenberg S, and Jorge JA Campos P, Graham N, Jorge J, Nunes N, Palanque P, and Winckler M The continuous interaction space: interaction techniques unifying touch and gesture on and above a digital surface Human-Computer Interaction – INTERACT 2011 2011 Heidelberg Springer 461-476
[32]
Minsky, M.: Manipulating simulated objects with real-world gestures using a force and position sensitive screen. In: Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, pp. 195–203. ACM Press (1984)
[33]
Miyaki, T., Rekimoto, J.: GraspZoom: zooming and scrolling control model for single-handed mobile interaction. In: Proceedings of the MobileHCI 2009, p. 11. ACM Press (2009)
[34]
Ramos, G., Boulos, M., Balakrishnan, R.: Pressure widgets. In: Proceedings of the CHI 2004, pp. 487–494. ACM Press (2004)
[35]
Ramos, G., Balakrishnan, R.: Pressure marks. In: Proceedings of the CHI 2007, pp. 1375–1384. ACM Press (2007)
[36]
Rekimoto, J.: SmartSkin: an infrastructure for free hand manipulation on interactive surfaces. In: Proceedings of the CHI 2002, pp. 113–120. ACM Press (2002)
[37]
Rendl, C., Greindl, P., Probst, K., Behrens, M., Haller, M.: Presstures: exploring pressure-sensitive multi-touch gestures on trackpads. In: Proceedings of the CHI 2014, pp. 431–434. ACM Press (2014)
[39]
Rosenberg I and Perlin K The UnMousePad: an interpolating multi-touch force-sensing input pad ACM Trans. Graph. (TOG). 2009 28 3 65:1-65:9 ACM Press
[42]
Takeoka, Y., Miyaki, T., Rekimoto, J.: Z-touch: an infrastructure for 3d gesture interaction in the proximity of tabletop surfaces. In: Proceedings of the ITS 2010, pp. 91–94. ACM Press (2010)
[43]
Tsukada, Y., Hoshino, T.: Layered touch panel: the input device with two touch panel layers. In: Extended Abstracts, Proceedings of the CHI 2002, pp. 584–585. ACM Press (2002)
[45]
Westerman, W.: Hand Tracking, Finger Identification and Chordic Manipulation on a Multi-Touch Surface. Ph.D. thesis, University of Delaware (1999)
[46]
Wilson, A.D., Benko, H.: Combining multiple depth cameras and projectors for interactions on, above and between surfaces. In: Proceedings of the UIST 2010. ACM Press (2010)
[47]
Wu, M., Shen, C., Ryall, K., Forlines, C., Balakrishnan, R.: Gesture registration, relaxation, and reuse for multi-point direct-touch surfaces. In: Proceedings of the TableTop 2006, p. 8. IEEE Press (2006)
[48]
Yu, C., Tan, X., Shi, Y., Shi, Y.: Air finger: enabling multi-scale navigation by finger height above the surface. In: Proceedings of the UbiComp 2011, pp. 495–496. ACM Press (2011)
[49]
Zhai, S.: Human Performance in Six Degree of Freedom Input Control. Ph.D. thesis, University of Toronto (1995)

Index Terms

  1. Designing for Hover- and Force-Enriched Touch Interaction
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    Computer-Human Interaction. Cognitive Effects of Spatial Interaction, Learning, and Ability: 25th Australian Computer-Human Interaction Conference, OzCHI 2013, Adelaide, SA, Australia, November 25-29, 2013. Revised and Extended Papers
    Nov 2013
    226 pages
    ISBN:978-3-319-16939-2
    DOI:10.1007/978-3-319-16940-8
    • Editors:
    • Theodor Wyeld,
    • Paul Calder,
    • Haifeng Shen

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 14 April 2015

    Author Tags

    1. Hover touch
    2. Force touch
    3. Interaction design

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Sep 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media